Towards a Smart World: Hazard Levels for Monitoring of Autonomous Vehicles’ Swarms

This work explores the creation of quantifiable indices to monitor the safe operations and movement of families of autonomous vehicles (AV) in restricted highway-like environments. Specifically, this work will explore the creation of ad-hoc rules for monitoring lateral and longitudinal movement of multiple AVs based on behavior that mimics swarm and flock movement (or particle swarm motion).

This exploratory work is sponsored by the Emerging Leader Seed grant program of the Mineta Transportation Institute and aims at investigating feasibility of adaptation of particle swarm motion to control families of autonomous vehicles. Specifically, it explores how particle swarm approaches can be augmented by setting safety thresholds and fail-safe mechanisms to avoid collisions in off-nominal situations. This concept leverages the integration of the notion of hazard and danger levels (i.e., measures of the “closeness” to a given accident scenario, typically used in robotics) with the concept of safety distance and separation/collision avoidance for ground vehicles. A draft of implementation of four hazard level functions indicates that safety thresholds can be set up to autonomously trigger lateral and longitudinal motion control based on three main rules respectively based on speed, heading, and braking distance to steer the vehicle and maintain separation/avoid collisions in families of autonomous vehicles. The concepts here presented can be used to set up a high-level framework for developing artificial intelligence algorithms that can serve as back-up to standard machine learning approaches for control and steering of autonomous vehicles. Although there are no constraints on the concept’s implementation, it is expected that this work would be most relevant for highly-automated Level 4 and Level 5 vehicles, capable of communicating with each other and in the presence of a monitoring ground control center for the operations of the swarm.

Principal Investigator: 
Francesca M. Favaro
PI Contact Information: 

francesca.favaro@sjsu.edu
San José State University

Dates: 
May 2017 to August 2018
Project Number: 
1735

-

CSUTC
MCEEST
MCTM
NTFC
NTSC

Contact Us

SJSU Research Foundation   210 N. 4th Street, 4th Floor, San Jose, CA 95112    Phone: 408-924-7560   Email: mineta-institute@sjsu.edu