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Research Motivation

e Can geo-social network data be used to model the flow of people?
e Can we identify commuter flows using geosocial network data?
e Can we identify other types of regular flows?

* At what spatial scale can we match and augment existing flow data?



Geo-Social Network Data

. Twitter, Facebook, Instagram, etc.

Location derived from tweets

Explicit: user allows sharing of tweet lat/lon
Pre April 2015
* 90% drop since 2015

Implicit: semantic analysis of tweet content augmented by gazetteers




Understanding Geospatial Tweets

Usefulness of tweet locations is a function of
- Spatial resolution (address / census tract / county)
- Temporal extent (day / week / month/ year / multi-year)

.- As with Census data, researchers must compromise one or the other

. Scope of analysis influenced by tradeoffs between spatial specificity
and temporal extent

Presently, geospatial Twitter data is not abundant enough to conduct
detailed short-term analyses such as capturing the effect of a
temporary road or bridge closure



Volume of Geo-Spatial Tweets by Count
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Authoritative Data Sources To Measure Flows

. US Census-based

1. Census Transportation Planning Package

2. LEHD Origin-Destination Employment Statistics

. Both provide Origin-Destination (OD) pairs
« CTTP: Tract- and TAZ-level; many attributes; latest version 2012-16
- LEHD: block-level; no further attributes; latest version 2018

. 3,252,286 block-to-block LODES flows = commutes


https://ctpp.transportation.org/
https://lehd.ces.census.gov/
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Project Workflow — calculating OD matrix
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OD Pairs in Twitter and LODES

Built a O-D dataset using our Twitter dataset to make it as
comparable as possible to the LODES dataset

44,812,476 georeferenced tweets (Oct 2010 — Apr 2020)

Filter and pre-processing (removing automated tweets)

Clusters of user locations by Twitter-ID

Identifying individual direct trips

Spatially aggregating these to block-to-block flows (to mirror LODES)

S o

Creating a Twitter O-D matrix



County-to-County Movements

Twitter rush hour Twitter outside weekday rush hours LODES (commutes)
Mo-Fr 6-8 AM and 3-5 PM



Project Workflow - flows and trlp purpose
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Commuting Flows and Trip Purpose

. We distinguish trips by
« Rush hour (Mo-Fr 6-8 AM, 3-5 PM)

- Weekday non-rush hour
- Weekends

. Twitter trips are a lot shorter than LODES trips (3 minutes versus 14)

. Trip purpose derived from land use to be discussed a little later
- Twitter trips are more commonly residential to residential
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Project Workflow —

land use- based trip purpose
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Deriving Trip Purpose from Land Use
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Conclusions
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Thank you for joining us for:

y @MinetaTrans
Twitter to Model Traffic Flows

0 @MinetaTransportation

View the full report at:
https://transweb.sjsu.edu/research/2037-Detecting-Commuter-Mobility-Patterns #MTIResearchSna PS

//Research Snaps

Tune in for our next MTI Research Snap “Getting There with Google’s
Via2G and the Future of Commuting” on July 22, 2021 at 10a.m. (PT)!
Visit https://transweb.sjsu.edu/events for details and registration.

Have a suggestion for a webinar topic you’'d like to see featured? Email
irma.garcia@sjsu.edu

mri/
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