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Executive Summary 
This report outlines a robust pipeline for roadside asset extraction from mobile LiDAR data, 
integrating traditional processing and deep learning techniques. The MTLS dataset, captured 
along Highway 76 in Southern California, comprises 5.7 billion points and includes both main 
and secondary road scans. The workflow begins with efficient data preprocessing, including tiling 
and denoising to mitigate shadow effects and enhance point density. 

Key components of the workflow include road lane extraction through elevation and intensity 
rasters, and cross-section slope analysis based on Digital Elevation Models (DEM). Lane 
markings were extracted using adaptive intensity thresholding and edge detection, achieving strong 
visual alignment with actual road features. 

For classification, a deep learning model based on PointNet was trained on over 500 million labeled 
points to distinguish between ground, vegetation, buildings, poles, and other features. The model 
demonstrated effective classification performance across different tiles, with clear separation of 
asset types. Comparison with commercial tools (e.g., TBC, GMP, Cyclone 3DR) revealed that 
the Python-based approach provides a flexible and automated alternative with competitive 
accuracy. 

This work validates the effectiveness of combining classical GIS methods with deep learning to 
support asset management, smart city initiatives, and intelligent transportation systems. 
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1. Introduction 
With the advancement of LiDAR (Light Detection and Ranging) technology, point cloud data 
has become a crucial resource for various applications in transportation, urban planning, and 
infrastructure management. Mobile LiDAR systems, such as the VMX-1HA, enable the 
collection of high-density 3D point cloud data, offering unprecedented accuracy and detail in road 
surface analysis. This report focuses on the processing of LAS point cloud data to extract road lane 
markings, perform slope analysis, and implement deep learning techniques for automated 
classification. 

Road lane extraction from point cloud data is essential for autonomous navigation, traffic 
management, and roadway maintenance (Kumar et al., 2013; Chen et al., 2009). By leveraging 
feature-based and intensity-based filtering techniques, road markings can be detected and 
delineated efficiently. Slope analysis (Yen et al., 2011), on the other hand, plays a critical role in 
assessing roadway safety, drainage design, and erosion control. Using elevation and gradient
computations, slope variations along road networks can be quantified to support civil engineering 
and transportation studies, such as pavement design, drainage planning, and the evaluation of 
erosion risks. Accurate slope profiling helps ensure compliance with design standards and improves 
stormwater management. 

Recent advancements in deep learning have further enhanced the capability to classify point clouds 
with high precision. Traditional classification methods rely on rule-based segmentation, whereas 
deep learning approaches, such as PointNet and PointNet++, utilize neural networks to learn 
complex spatial patterns within the data (Qi et al., 2017). This study integrates deep 
learning-based classification to distinguish between ground, vegetation, buildings, road surfaces, 
and other urban features, optimizing the interpretation of LiDAR datasets. 

This report provides a comprehensive overview of the methodologies used to process LAS point 
cloud data, including pre-processing, feature extraction, and classification techniques. The findings 
contribute to the ongoing efforts in improving the accuracy and automation of LiDAR-based 
roadway analysis and infrastructure monitoring. 
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2. Mobile Terrestrial Laser Scanning Data 
Mobile Terrestrial Laser Scanning (MTLS) represents a significant advancement in geospatial 
data acquisition technology. By mounting LiDAR sensors on moving platforms, such as vehicles, 
MTLS enables the rapid collection of high-density point cloud data across extensive areas. Unlike 
traditional static methods, MTLS combines the mobility of the collection platform with the 
precision of laser scanning, facilitating efficient data acquisition in dynamic environments. 

Modern MTLS systems integrate multiple technologies, including LiDAR sensors, Global 
Navigation Satellite Systems (GNSS), Inertial Measurement Units (IMU), and digital imaging 
devices. This integration ensures accurate georeferencing of collected point clouds, with 
positioning errors typically below 5cm under optimal conditions. (Lin et al., 2021, Rashdi et al., 
2024) The resulting datasets provide unprecedented detail of roadways and surrounding
infrastructure, with point densities often exceeding hundreds of points per square meter. As Yen 
et al. (2011) mentioned, the mobile LiDAR system provides multiple benefits, including safety, 
efficiency, and comparison with airborne LiDAR and other static LiDAR. This comparison
enables cross-validation of data accuracy. 

The accuracy of MTLS depends significantly on the proper integration and calibration of 
positioning components. The fusion of GNSS and IMU data through sophisticated algorithms 
enables continuous positioning even in areas with poor satellite visibility, such as urban canyons or 
tunnels. 

The processing of MTLS data involves several key steps, including point cloud preprocessing, 
noise filtering, feature extraction, and classification. Preprocessing ensures the removal of 
redundant and erroneous points caused by reflections or misalignment. Feature extraction 
techniques enable the identification of road lanes, sidewalks, slopes, and other urban features. 
Furthermore, advancements in deep learning-based classification have enhanced the automation 
and accuracy of point cloud interpretation, distinguishing between ground, vegetation, buildings, 
poles, and other elements. 

The integration of MTLS with geospatial analysis and machine learning techniques has 
significantly improved the efficiency and accuracy of infrastructure monitoring and roadway
analysis. By leveraging high-resolution point cloud data, engineers and researchers can develop
more precise models for transportation planning, safety assessments, and automated mapping. As 
MTLS technology continues to evolve, its applications are expected to broaden, particularly in 
areas such as infrastructure monitoring, autonomous navigation, and environmental analysis. 

2.1 MTLS Data Set 

The dataset was collected on Highway 76, between Los Angeles and San Diego, covering 
approximately 8 miles of roadway. Multiple scans were conducted, including both main lanes and 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  3 



 

    

 

   
  

  

  

  

 

 
             

  

 

 

 

  

secondary roads. When accounting for all scan passes and overlapping routes, the total scanning 
distance amounts to approximately 173 miles. 

The dataset contains a total of 68 LAS files: 8 files of main roads and 60 files of arterial roads, 
with a total file size of 39.4 GB. 

• 8 main roads: 440,4701,236 points (4.4 billion) 

• 60 secondary roads: 130,4700,884 points (1.3 billion) 

• Total number of points: 5,709402,120 points (5.7 billion) 

Figure 1. Trajectory Plot of MTLS Data in Highway 76 

The total length is approximately 8.2 miles. The main roads were scanned four times and secondary roads were 
scanned twice. 

2.2 Pre-Processing 

Due to the large size and multiple overlapping scans in the original LAS dataset, preprocessing 
involves data partitioning and tiling to improve manageability and processing efficiency. This step 
ensures optimized storage, faster computation, and better handling in GIS and LiDAR processing 
software. 

To facilitate processing, the dataset is divided into smaller tiles and each tile maintains a 
manageable size, allowing efficient processing without an expensive computational load. 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  4 



 

    

 

 

 

 

 

             

 

  

Figure 2. Illustration of Subset Rectangle Boundaries of LAZ Files 

The width (distance across the road) is 250 ft to cover both lane and roadside features. Once points 
are extracted from the boundaries, multi-scans are merged to increase the point density and reduce 
the shadow effects where laser signals are blocked by features on roads such as road medians. 

Figure 3. Example of Shadow Effect in Laser Scan 

Left lane scan (left), right lane scan (middle), and combined point cloud (right). 
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Figure 3 illustrates the shadow effect where laser pulses are blocked by obstacles such as a median 
structure or other vehicles in the data acquisition stage. When merged with other scans, areas 
blocked by obstacles during one pass can often be filled in, as those obstacles may not be present 
in other passes. However, if the same obstacle is present in all scans, those areas may remain 
occluded and unobservable in the final dataset. Furthermore, merging increases the density of 
points which increases spatial resolution of point cloud data. 
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3. Roadside Assets 
3.1 Road Lanes in MTLS Data 

Road lane detection and extraction from Mobile Terrestrial Laser Scanning (MTLS) data play a 
crucial role in transportation management, autonomous navigation, and roadway maintenance 
(Williams et al., 2013). The extraction of road lane markings represents one of the most valuable 
applications of MTLS data processing. 

MTLS provides high-density, georeferenced 3D point cloud data, enabling a detailed analysis of 
road markings, lane boundaries, and surface conditions. The ability to accurately identify road 
lanes from MTLS data enhances applications such as lane-level navigation, traffic monitoring, and 
intelligent transportation systems (ITS). 

3.1.1 Characteristics of Road Lanes in MTLS Data 

Road lanes in MTLS point clouds are typically identified using a combination of geometric,
radiometric, and topological features. Based on Soilán et al. (2019), implementing a two-step 
process, road surface segmentation and intensity-based thresholding techniques were tested. 

Key characteristics of road lane data include: 

• Intensity Information – Lane markings, such as white and yellow stripes, exhibit distinct 
reflectance values in LiDAR intensity data, making them distinguishable from asphalt or 
concrete road surfaces. 

• Elevation Consistency – Road lanes are generally located on a relatively uniform elevation, 
with minimal height variations compared to sidewalks or medians. 

• Parallel Structures – Lanes usually follow parallel or structured paths, which can be 
detected using spatial clustering and feature extraction techniques. 

• Curvature and Width – Road curvature and lane width measurements can be derived from 
point cloud analysis, supporting the identification of different road types (e.g., highways, 
local streets, intersections). 

3.1.2 Segmenting road vs. non-road points 

Separating bare-earth points from point cloud data is not new (Sithole and Vosselman, 2004;
Pingel et al., 2013), and this concept has been extended to include the segmentation of road and 
non-road points. The accurate segmentation of road and non-road points represents a critical 
preprocessing step in mobile LiDAR data analysis for transportation applications. Among various 
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segmentation approaches, the “segmentGroundSMRF” function in MATLAB implements the 
Simple Morphological Filter (SMRF), which has proven particularly effective for processing
mobile LiDAR and airborne LiDAR data to extract terrain surfaces. 

SMRF applies mathematical morphology techniques to point clouds; specifically, the filtering
operation it uses is conceptually equivalent to the “opening” operator in image processing. This 
approach first converts the irregular point cloud into a regular grid, then identifies ground points 
through a series of morphological operations and progressive thresholding. The algorithm's
effectiveness stems from its ability to adapt to local terrain variations while maintaining
computational efficiency. 

The process involves several key steps: 

• Conversion of the 3D point cloud to a 2.5D height raster 

• Application of an opening operation with a progressively larger structural element 

• Identification of ground points based on elevation thresholds relative to the 
morphologically processed surface 

• Classification of remaining points as non-ground features 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  8 
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Figure 4. Ground Points, Non-Ground Points, and Original Point 

Ground points (upper), non-ground points (middle), and original point (lower). 
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Figure 4 illustrates the segmentation of ground and non-ground points. The segmentation clearly 
distinguishes ground points (predominantly road surface) from non-ground elements. The ground 
points comprise the road surface, shoulders, and adjacent terrain with consistent elevation changes. 
Non-ground points encompass vegetation, road median structures, traffic signs, utility poles, and 
what are commonly referred to as "ghost points"—false data points typically generated by moving 
vehicles near the LiDAR scanner during data acquisition. 

3.1.3 Raster Data from Point Cloud 

In the processing workflow of mobile LiDAR point clouds, generating a Digital Elevation Model 
(DEM) and intensity raster map is crucial step for terrain analysis and feature extraction. This step 
transforms the raw 3D point cloud data into structured 2D raster representations, enhancing 
interpretability and usability for various applications. In this report, two types of raster data are 
generated: (1) Digital Elevation Model (DEM) and (2) Intensity Map. Once raster data is 
generated, 2D image processing tools can be applied to extract features such as lanes. 

Digital Elevation Models from Point Clouds 

Digital Elevation Models (DEMs) derived from mobile LiDAR data provide highly accurate 
representations of the bare-earth surface, making them indispensable for applications such as 
transportation planning, flood modeling, and infrastructure design. Mobile LiDAR systems
capture dense point clouds with centimeter-level precision, enabling detailed elevation mapping 
even in complex urban environments. The conversion of irregular point clouds into DEMs involves 
interpolation techniques, such as Natural Neighbor or Triangulated Irregular Network (TIN), to 
ensure smooth and accurate terrain representation. These methods are particularly effective in areas 
with varying point densities and terrain complexity, allowing for the extraction of features such as
road surfaces and drainage patterns. 

The mobile LiDAR has 400–500 points per square feet, which translates to 4300–5400 points per 
square meters. Assuming uniform distribution, one can use an equation (Hu, 2023) that defines 
the grid resolution, given the point density, for the DEM, 

��� ���������� = /! ---- (1)
" 

where N is the point density, i.e., the number of points per unit area. For example, when there is 
1 point per square meter, the optimal DEM resolution will be 1 meter (Garzon et al., 2021). 

With a point density of 400–500 points per square foot (~4300–5400 pts/m²), one can theoretically 
generate a DEM with a resolution of 1.3–1.5 cm. However, to balance detail and surface 
smoothness, DEMs with a resolution of 2–5 cm are typically used for roadside asset mapping and 
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surface modeling. In this research, 0.1 feet (or 3.038 cm) was generated; a 3 cm spatial resolution 
can effectively detect road features such as slopes, lanes, median structures, and more. 

Intensity Raster Generation 

Unlike elevation data, intensity values in LiDAR returns represent the reflectivity of surfaces to 
the emitted laser pulse. As noted by Vosselman (2002), these values are influenced by multiple 
factors including: 

• Surface material properties 

• Incidence angle 

• Range to target 

• Environmental conditions 

• Sensor-specific calibration 

Pfeifer et al. (2007) demonstrated that intensity values require normalization to account for the 
range dependency before generating comparable intensity rasters. Their proposed correction model 
adjusts raw intensity values based on the inverse square distance relationship, significantly 
improving the consistency of intensity representation across the scan. 

For road marking detection, Yang et al. (2020) developed a dual-threshold intensity rasterization 
technique that enhances the contrast between road surfaces and highly reflective markings. Their 
approach dynamically adjusts cell values based on local intensity statistics, achieving 92% detection 
accuracy for lane markings in varying illumination conditions. 
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Figure 5. Digital Elevation Model and Intensity Map 

Digital Elevation Model (left) and Intensity Map (right) from rasterization of point clouds. 

As illustrated in Figure 5, while the DEM clearly represents the flat and smooth topography of 
the road surface with elevation changes at curbs and medians, the intensity map reveals detailed 
information about surface materials and markings not apparent in the elevation data. The high 
reflectivity of thermoplastic or paint-based road markings creates a stark contrast against the 
asphalt background, facilitating automated feature extraction. 

Importantly, the resolution adequacy differs between these two raster types. Road geometry
analysis typically requires DEM resolutions of 10–15 cm, while intensity-based feature extraction 
benefits from higher resolutions of 2–5 cm to capture fine details such as dashed lane markings 
and symbols. In this study, Intensity maps have the same resolution of 3 cm as in the DEM. 
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3.1.4 Road Lane Extraction 

The extraction of road lane markings from mobile LiDAR data represents a critical component in 
roadway analysis, autonomous navigation, and infrastructure management. This section details the 
methodological approach employed to identify and delineate lane markings using intensity 
information derived from point cloud data. 

Intensity-Based Thresholding 

The initial phase of lane marking extraction utilizes the distinct reflective properties of road 
markings compared to the surrounding pavement. As noted by Guan et al. (2014), pavement 
markings typically exhibit significantly higher retro reflectivity than asphalt or concrete surfaces, 
creating a distinctive intensity signature in LiDAR returns. 

In our processing workflow, an intensity threshold of 18000 was empirically determined to 
effectively isolate potential lane marking pixels. This approach aligns with research by Kumar et 
al. (2013), who demonstrated that adaptive thresholding based on intensity histograms can achieve 
marking detection rates exceeding 90% in various lighting and weather conditions. Their work 
established that while absolute intensity values vary between different LiDAR systems, the relative 
contrast between markings and road surfaces remains consistent enough for threshold-based 
separation. 

Yu et al. (2015) further validated this approach, showing that, for typical thermoplastic road 
markings, intensity returns are approximately 2.5–3.5 times higher than surrounding asphalt, 
creating a bimodal distribution in intensity histograms that facilitates separation. However, as 
cautioned by Soilán et al. (2017), worn markings or wet surface conditions can reduce this contrast, 
potentially requiring locally adaptive thresholds rather than global values. 

Binarization and Edge Detection 

Following intensity thresholding, the resulting raster undergoes binarization to create a black and 
white image suitable for edge detection algorithms. This transformation simplifies the continuous 
intensity values into a binary representation where road markings are isolated from the background. 

For edge detection, the Sobel operator was selected due to its computational efficiency and 
effectiveness in detecting strong gradients characteristic of lane marking boundaries. Sobel edge 
detection performs particularly well for linear features in rasterized LiDAR data, offering superior 
noise rejection compared to simpler gradient operators. 

The Sobel operator computes the approximate gradient of image intensity at each pixel by 
convolving the image with two 3×3 kernels that estimate derivatives in the horizontal and vertical 
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directions. With robustness and simplicity, the Sobel operator (Cao et al., 2019; Javeed et al., 2024) 
is used as pre-processing for detecting linear features. 

Figure 6. Black and White Image (upper left), Sobel Edge Image (lower left),
and Road Lane Detected (right) 

Line Fitting and Segment Connection 

To refine the edge detection results and eliminate noise, a length-based filtering approach was 
implemented. Specifically, edge segments shorter than 20 pixels were removed, preserving only 
substantial linear features that potentially represent lane markings. Following length filtering, the 
Hough transform technique was applied to fit straight lines to the remaining edge segments. The 
Hough transform is particularly well-suited for identifying linear patterns in noisy binary images 
by converting the image space into a parameter space where lines are represented as points. 

For connecting discontinuous segments belonging to the same lane marking, a proximity and 
orientation-based clustering algorithm was implemented. Segments with similar orientation 
(within ±5°) and proximity (gap < 2 meters) were grouped and connected to form continuous lane 
representations. This process is particularly important for dashed lane markings, where gaps
between paint segments must be bridged to create a complete lane model. 
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Figure 7. Road Lanes Extracted from 3 Tiles of Data (upper) and 
Google Earth Pro Image of Said Road 

As illustrated in Figure 7, the extracted lane markings closely correspond to the actual road 
configuration visible in the Google Earth imagery. The algorithm successfully identified both solid 
and dashed lane markings, as well as edge lines delineating the road boundaries. 

3.2 Cross Section Slope Analysis on the Road 

Slope analysis is a critical component in road infrastructure assessment, ensuring proper drainage, 
vehicle stability, and pavement longevity. Mobile LiDAR (Light Detection and Ranging) provides 
high-density 3D point cloud data, enabling precise measurement of road cross-sections and slopes. 

Traditional survey methods for measuring cross slopes are time-consuming and limited in accuracy. 
Mobile LiDAR technology provides high-resolution 3D point cloud data, enabling precise and 
efficient extraction of road cross-sections and slope measurements. By analyzing road slope
variations, engineers can assess compliance with design standards, detect potential drainage issues, 
and identify areas susceptible to erosion or structural failure. 

According to California Department of Transportation Highway Design Manuals and Federal 
Highway Administration Guidelines, road cross-slope values typically range from 1.5% to 2.5% 
for standard highways, with these values carefully specified in design guidelines to balance water 
drainage against vehicle stability. Deviations from these standards can lead to hydroplaning risks, 
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increased accident rates, and accelerated pavement deterioration. The high precision of mobile 
LiDAR data. 

3.2.1 Methodology for Cross-Section Slope Analysis 

The process of cross-section slope analysis from mobile LiDAR data involves several key steps, 
each critical to ensuring accurate results. According to Gargoum and El-Basyouny (2019), a 
systematic workflow is essential to minimize errors and ensure consistency across the analyzed road 
segments. 

Noise Removal and Data Preparation 

The initial phase involves eliminating irrelevant or erroneous data points to enhance accuracy. 
Noise in mobile LiDAR data typically arises from multiple sources, including: 

• Moving objects captured during scanning (vehicles, pedestrians) 

• Multi-path reflections from highly reflective surfaces 

• Atmospheric interference 

• Scanner measurement errors 

Effective noise removal requires a combination of statistical outlier detection and contextual 
filtering. To enhance LiDAR point cloud denoising in MATLAB, the integration of “pcmedian” 
and “pcdenoise” provides a robust approach to filtering noise while preserving structural details. 
“pcmedian” applies a median filter to smooth intensity or depth variations, making it particularly 
useful for reducing speckle noise in airborne or terrestrial LiDAR scans. “pcdenoise,” on the other 
hand, leverages statistical outlier removal and radius-based filtering to eliminate sparse noise and 
improve classification accuracy. 

By combining these methods, “pcmedian” can refine point attributes before applying “pcdenoise” 
to remove outliers, ensuring a cleaner dataset for segmentation and feature extraction. This 
multi-step denoising process enhances LiDAR-based terrain modeling, urban mapping, and 
object recognition by reducing false classifications caused by noise artifacts. 

Ground Point Extraction 

Ground points were separated from non-ground points using the Simple Morphological Filter 
(SMRF) method. This step was crucial for isolating the road surface, enabling the accurate 
measurement of slopes and elevation profiles. Key parameters such as window radius, slope 
threshold, and elevation threshold were adjusted to enhance the accuracy of ground classification. 
The SMRF approach applies progressive morphological operations to identify ground points based 
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on local elevation variations. MATLAB provides the built-in function “segmentGroundSMRF” 
for segmenting ground points from LiDAR point cloud. 

Digital Elevation Model (DEM) Creation 

A DEM was generated at a fine grid resolution to represent the terrain accurately. The DEM 
served as a reference for extracting elevation values along the road cross-sections and assessing 
slope variations. The simple bin algorithm (Kim et al., 2006) was implemented in MATLAB. 

Road Centerline Definition 

The road centerline was defined interactively to serve as the baseline for extracting cross-sections. 
This approach allowed for accurate alignment of cross-section profiles perpendicular to the 
direction of the road, ensuring consistent slope measurements. While manual centerline definition 
provides high accuracy, automated approaches have been developed to increase efficiency. 

Cross-Section Extraction and Analysis 

Cross-sections were extracted at regular intervals along the road centerline. Each cross-section 
spanned the full width of the road and consisted of multiple sample points to capture detailed 
elevation profiles. The analysis involved computing slope values for both left and right sides of the 
road at each cross-section. The extraction process involves defining profile lines perpendicular to 
the road centerline and sampling elevation values along these profiles. 

Elevation Profiling and Slope Analysis 

Elevation profiles were generated for the left and right sides of each cross-section. Mean elevation 
differences between the two sides were calculated to identify potential drainage issues or uneven 
pavement conditions. Slope values were analyzed to assess compliance with design standards and 
to detect areas susceptible to erosion or water accumulation. 

According to the American Association of State Highway and Transportation Officials 
(AASHTO), typical values for cross-section slope fall within the following ranges: 

• Asphalt/concrete pavements: 1.5%–2% 

• High-speed highways: 1.5%–2.5% 

• Urban roads: 2%–3% 
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Figure 8. Illustration of Cross-Section Extraction Scheme 

Figure 8 illustrates the scheme of center line and left/right cross-section extraction. The road is 
divided into equal intervals (e.g., every 5–10 meters) along its longitudinal axis. At each interval, a 
perpendicular cross-section slice of LiDAR points is extracted. Each slice consists of elevation (Z) 
values corresponding to different lateral positions across the road width. 

3.2.2 Testing 3 tiles for Cross-Section Profile Analysis 

Three tiles with different curvatures—one straight line and two curved lines—were proceeded, and 
their cross-section profiles were analyzed. The road center was manually digitized. Cross-section 
spacing is 20 ft; 50 ft left and right profiles were created and the sampled 1 ft. 
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Terrain Model (DEM) with Road Centerline and Cross-Sections 
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Test 1: Straight Road, 12 Profiles 

Figure 9. Cross-Section Profile Test 1 
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Figure 10. Cross-Section Profile Test 1, 3D View 

Table 1. Cross-section Profile Test 1 Result 

Cross-Section Index Left Slope (%) Right Slope (%) 
Cross-Section 1 1.435 -1.869 
Cross-Section 2 1.522 -1.920 
Cross-Section 3 1.764 -1.869 
Cross-Section 4 1.980 -1.861 
Cross-Section 5 2.015 -1.909 
Cross-Section 6 2.010 -1.783 
Cross-Section 7 2.153 -1.679 
Cross-Section 8 2.175 -1.645 
Cross-Section 9 2.144 -1.469 
Cross-Section 10 1.940 -1.333 
Cross-Section 11 1.801 -1.258 
Cross-Section 12 1.760 -1.215 
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Digital Terrain Model (DEM) with Road Center1 ine and Cross-Sections 
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Figure 11. Cross-Section Profile Test 2 
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Table 2. Cross-section Profile Test 2 Result 

Cross-Section Index Left Slope (%) Right Slope (%) 
Cross-Section -1.958 -2.080 
Cross-Section -2.195 -1.994 
Cross-Section -2.326 -1.959 
Cross-Section -2.315 -2.039 
Cross-Section -2.315 -2.000 
Cross-Section -2.356 -1.918 
Cross-Section -2.169 -1.827 
Cross-Section -1.877 -1.750 
Cross-Section -1.590 -1.830 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  22 



 

    

 

 

 

  

Digital Terrain Model (OEM) with Road Centerline and Cross-Sections 
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Figure 12. Cross-Section Profile Test 3 
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Slope Profiles for Test 1, 2, and 3 
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Table 3. Cross-section Profile Test 3 Result 

Cross-Section Index Left Slope (%) Right Slope (%) 
Cross-Section 1 -1.307 -1.798 
Cross-Section 2 -1.163 -1.844 
Cross-Section 3 -0.927 -1.874 
Cross-Section 4 -0.802 -1.782 
Cross-Section 5 -0.690 -1.720 
Cross-Section 6 -0.462 -1.633 
Cross-Section 7 -0.218 -1.599 
Cross-Section 8 0.027 -1.622 
Cross-Section 9 0.329 -1.731 
Cross-Section 10 0.545 -1.846 
Cross-Section 11 0.837 -1.910 
Cross-Section 12 1.128 -1.976 

Figure 13. Results of Three Cross-Sections 

In Test 1 (straight road), the left slope (1.89% mean) and right slope (-1.65% mean) indicate a 
typical crowned road profile, where the pavement is higher in the center and slopes downward 
toward both edges to facilitate proper drainage. This is a common design feature for straight roads, 
preventing water accumulation and minimizing hydroplaning risks. 
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The relatively low standard deviation (~0.24% left, ~0.27% right) suggests that the cross slopes are 
consistent across all sections, meaning the road maintains a uniform transverse slope without 
significant deformations. 

Test 2 (curved road) shows a superelevated slope, which is expected in curved roadway designs to 
ensure vehicle stability and drainage efficiency. The negative left slope (-2.12%) and slightly less 
steep right slope (-1.93%) indicate a properly implemented superelevation, where the entire road 
surface is banked towards the curve's center to counteract centrifugal forces. 

Test 3 (slightly curved road) being in the transition phase of superelevation. In the early stages of 
superelevation, the left slope starts off relatively flat (-0.22% mean), gradually increasing towards 
positive values (1.13% at cross-section 12). This gradual shift indicates the beginning of roadway 
banking, where the left side is slowly being raised to match the designed superelevation profile. 

3.3 Assessment of Existing LiDAR Point Cloud Processing Programs 

This section evaluates existing LiDAR point cloud processing programs, focusing on Trimble 
Business Center (TBC) (Trimble Inc.), Global Mapper Pro (GMP) (Blue Marble Geographics), 
and Cyclone 3DR (Leica Geosystems). The assessment examines their strengths, limitations, and 
overall effectiveness in point cloud classification, feature extraction, and user experience to 
determine the most suitable tool for processing mobile LiDAR data for road infrastructure analysis. 
While ArcGIS Pro also offers point cloud processing capabilities, its functionality remains limited, 
particularly in detailed classification tasks such as segmenting ground, buildings, and vegetation. 

Trimble Business Center (TBC) 

The Trimble Business Center (TBC) serves as a comprehensive software solution for point cloud 
processing, accommodating various data acquisition methods including mobile, aerial, and 
terrestrial LiDAR systems, as well as tunnel survey data (Trimble Inc.). The platform leverages 
machine learning techniques to facilitate accurate point cloud classification while maintaining
computational efficiency. 

The software's classification system employs artificial intelligence algorithms that effectively 
extract relevant features from heterogeneous point cloud datasets, enhancing the analysis
capabilities across both terrestrial and aerial LiDAR. TBC offers refined filtering mechanisms and 
expanded classification parameters that enable users to perform detailed segmentation of point 
clouds with increased automation and customization options. In alignment with advancements in 
the reality capture sector, TBC continues to evolve its machine learning classification algorithms 
to improve accuracy and processing efficiency for LiDAR-based mapping and surveying
applications. 
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Figure 14. Trimble Business Center Point Cloud Processing Menu 

Figure 15. Result of Trimble Business Center (TBC) Deep Learning Point Cloud Classification 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  26 



 

    

 

 

 

 

 

 

 

 

 

  

TBC exhibits notable accuracy in the classification of ground surfaces and structural elements, 
including buildings and median dividers. The software demonstrates particular effectiveness in 
semi-automatic road marking detection. 

However, TBC shows limitations in overhead power line detection, with lower classification 
accuracy compared to Global Mapper Pro (GMP) when processing conductor points. Users 
frequently need to implement manual corrections through the Add to Region functionality to 
address misclassified point clusters. The software's performance remains unevaluated in scenarios 
with moderate to dense vegetation cover. Additionally, TBC encounters challenges when 
processing abbreviated lane markings and navigating the complexity of road intersections. 

In summary, TBC proves most valuable for urban infrastructure classification applications, with 
particular strength in road feature extraction workflows, while demonstrating comparative 
weakness in power line segmentation tasks. The system does not provide complete automation, as 
manual refinement during post-processing is typically necessary to optimize classification results. 

Global Mapper Pro (GMP) 

Global Mapper Pro (GMP) employs a methodical, automated workflow architecture designed to 
optimize the point cloud classification process (Blue Marble Geographics). The software places 
particular emphasis on efficient detection and classification of power infrastructure, including 
transmission lines and supporting poles. In contrast to TBC, GMP provides users with a more 
streamlined interface that reduces complexity while maintaining essential functionality. 

The platform's automated classification system follows a sequential approach that guides users 
through standardized processing steps, facilitating consistent results across different operators and 
projects. GMP's specialization in power corridor analysis is evident in its dedicated algorithms for 
overhead conductor detection and pole classification. This specialized focus complements its 
accessible user interface, which prioritizes operational simplicity without sacrificing processing 
capabilities relevant to utility corridor mapping and analysis. 
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Figure 16. Global Mapper LiDAR Processing Menu 

The classification tools in GMP follow a recommended sequential order, beginning with noise 
removal, followed by ground classification, building and vegetation detection, power line 
segmentation, and, finally, power pole identification (Blue Marble Geographics). This sequence is 
automatically applied when multiple classifications are selected simultaneously. The order is crucial 
because certain classifications rely on pre-processed data—for instance, the building and vegetation 
classifiers depend on accurately classified ground points to determine elevation differences. 

GMP excels in power line detection, accurately identifying wires and conductors, making it 
particularly useful for analyzing utility infrastructure. It also demonstrates high accuracy in 
classifying ground points, ensuring reliable terrain modeling. Additionally, GMP offers an 
automated classification workflow, which minimizes manual corrections and enhances usability. 

Despite its strengths, GMP performs exceptionally well in power line and ground classification 
but struggles with distinguishing poles from transmission towers, occasionally leading to errors in 
complex infrastructure mapping. The software requires careful parameter adjustments— 
particularly for Mobile Terrestrial Laser Scanning (MTLS) datasets—to maintain classification 
accuracy. Additionally, although GMP’s efficient automated workflow simplifies processing, it 
offers less customization compared to TBC. 

Cyclone 3DR 

Cyclone 3DR, developed by Leica Geosystems, is a point cloud processing software designed for 
automatic classification and feature extraction (Leica Geosystems). It integrates AI-based object 
recognition and supports structured and unstructured LiDAR datasets. The software combines 
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advanced segmentation algorithms with machine learning techniques to facilitate efficient point 
cloud analysis across various application domains. 

Cyclone 3DR's object recognition capabilities leverage convolutional neural networks trained on 
extensive point cloud datasets, enabling accurate identification of common infrastructure elements 
and natural features. This approach allows the software to process both organized point clouds 
from static terrestrial scanners and the more complex unstructured data typically generated by 
mobile LiDAR systems. The platform's integrated workflow supports a comprehensive range of 
processing tasks from initial registration to final feature extraction and modeling. 

The software's classification system employs contextual analysis that considers both geometric
properties and spatial relationships between points, improving classification accuracy in complex 
environments. Recent updates have enhanced Cyclone 3DR's ability to handle large-scale datasets 
through optimized memory management and parallel processing capabilities. 
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Figure 17. Result of Cyclone 3DR Automatic Point Cloud Classification 

Result of Cyclone 3DR automatic point cloud classification. 

Table 4. Comparative Analysis of LiDAR Processing Software 

Feature TBC GMP Cyclone 3DR 

Ground Classification Accurate Accurate Accurate 

Power Line Classification Weak Superior Good 

Lane Marking Extraction Robust for roads Not applicable Works well 

Ease of Use Moderate (manual
corrections) 

High (automated
workflow) 

Moderate (some
training needed) 

Customization High (detailed
settings) 

Moderate High (rule-based) 

AI/Deep Learning ML-assisted No AI models Limited AI 
customization 

Performance on Noisy Data Struggles with noise Handles well May misclassify noisy
data 
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• Lane Markings: TBC outperforms other platforms in lane marking and curb feature 
extraction, offering superior accuracy in detecting pavement markings and roadway
boundaries. 

• Power Lines: GMP excels in power line and pole classification, leveraging specialized 
algorithms for high-accuracy overhead conductor detection, making it ideal for utility
corridor mapping. 

• Customization vs. Automation: TBC provides greater customization for advanced users, 
while GMP’s automated workflow prioritizes efficiency and ease of use, catering to 
standard applications. 

• Misclassification Challenges: Both tools struggle with poles and complex structures, 
particularly in overlapping or intricate geometries, emphasizing the need for algorithm 
improvements in future updates. 

TBC, GMP, and Cyclone 3DR each excel in different aspects of LiDAR point cloud processing. 
TBC is best for lane marking and road feature extraction, while GMP outperforms in power line 
classification, making it ideal for utility mapping. Cyclone 3DR offers AI-assisted versatility but 
may require fine-tuning in noisy datasets. 

TBC provides greater customization, benefiting advanced users, whereas GMP’s automated 
workflow enhances efficiency. Both tools face misclassification challenges, highlighting the need 
for algorithm improvements. The choice of software depends on project needs, with future 
advancements in AI and automation crucial for enhancing classification accuracy. 

3.4 Deep Learning Point Classification Using Python 

Deep learning has emerged as a powerful approach for classifying LiDAR point clouds due to its 
ability to learn complex patterns and features directly from raw data. Unlike traditional rule-based 
classification methods, deep learning models can automatically extract features, enabling more 
accurate and efficient classification of ground, vegetation, buildings, and other objects in LiDAR 
datasets. This section explores the application of deep learning techniques for point cloud 
classification using Python-based frameworks. 

Overview of Deep Learning Models for Point Cloud Classification 

Deep learning models, including Convolutional Neural Networks (CNNs), Recurrent Neural 
Networks (RNNs), and, more recently, PointNet and PointNet++ architectures have been widely 
adopted for point cloud processing. These models offer several advantages, including the ability to 
automatically extract spatial features without manual input, the scalability to handle large-scale 
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point clouds efficiently, and the capability to achieve higher classification accuracy compared to 
traditional methods. 

Data Preparation for Deep Learning 

Effective deep learning-based point cloud classification requires comprehensive data preprocessing, 
including normalization to ensure uniform scale and distribution of point coordinates, 
segmentation to divide the point cloud into smaller, manageable sections for focused analysis, and 
feature engineering to incorporate additional features such as intensity, RGB values, normal 
vectors, curvature, height above ground, and point density to improve model accuracy 

Training and Evaluation 

The training process for deep learning models involves several key components. A loss function, 
such as cross-entropy loss, is used for multi-class classification tasks to measure the difference 
between predicted and actual outcomes. An optimizer, such as the Adam optimizer with a learning 
rate scheduler, is employed to enhance convergence and efficiently update model parameters
during training. The batch size, which refers to the number of data samples processed together in 
one iteration, is set based on memory constraints and dataset size, typically ranging from 16 to 
64 points per batch. 

Evaluation metrics are crucial for assessing the performance of a trained model. Accuracy, defined 
as the percentage of correctly classified points, provides an overall measure of how well the model 
performs. Precision and recall are used to evaluate the model’s ability to correctly identify each 
class, offering insights into the model's performance on individual categories. Intersection over 
Union (IoU) is another important metric that assesses the overlap between predicted and actual 
classes, which is particularly useful in evaluating segmentation tasks. 

3.4.1 Deep Learning Point Classification Test 

Experiment Setup 

• Programming Environment: Python 3.8 with TensorFlow 2.10, CUDA 11.8, and cuDNN 
8.6. 

• Libraries Used: NumPy for data handling, TensorFlow for model implementation,
Open3D for point cloud processing, and Scikit-learn for evaluation metrics. 

• Hardware Configuration: Windows 11 Desktop NVIDIA GeForce RTX4090 Graphic 
card GPU with CUDA support for accelerated training. 
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Label data (or classification) was created using with Trimble Business Center for Tile 1-30. The 
total number of points is 500,324,404. 

Figure 18. Labeled Data for Deep Learning Point Cloud Classification 

Table 5. Labeled Data Statistics 

Class # of points Percentage Description 
Class 0 312,859 0.06 Never Classified 
Class 1 6,117,425 1.22 Unclassified 
Class 2 407,113,080 81.37 Ground 
Class 4 35,509,503 7.10 Medium Vegetation 
Class 5 23,144,068 4.63 High Vegetation 
Class 6 24,181 0.00 Building 
Class 7 3,895,234 0.78 Noise 
Class 14 33,331 0.01 Power Lines 
Class 65 970,398 0.19 Poles 
Class 66 416,120 0.08 Signs 
Class 79 22,788,205 4.55 Dividers 

Total 500,324,404 100.00 
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Table 5 show the point statistics of labeled data. Class 2 (ground) takes 81%; the next classes—
Class 4 and 5—are vegetation which take 7.1% and 4.6%, respectively, and together 11.7%. Class 
79, Dividers, takes 4.6%. 

To efficiently handle and train on large-scale point cloud data, a preprocessing script was 
implemented to divide the full dataset into manageable chunks. The script loads seven 
precomputed features—XYZ coordinates, intensity, surface normals, curvature, density, height 
above ground (HAG), and classification labels—from .pkl files and splits them into 
25-million-point segments. Each segment is saved individually using consistent naming
conventions, enabling efficient disk-based streaming during model training without overloading 
the memory. 

Multi-Layer Perception Training 

A PointNet-style multi-layer perceptron (MLP) model was trained for binary classification of 
ground versus non-ground points using chunked LiDAR point cloud features. Seven features— 
XYZ coordinates, intensity, and normals—were extracted and standardized using a streaming
StandardScaler. To address class imbalance, binary labels were created by remapping selected 
classes, and class weights were computed. The model was trained on 25-million-point chunks 
using PyTorch with GPU acceleration, reduced memory usage via float16 tensors, and batch-wise 
data loading. The training process saved both the model and the feature scaler for later inference. 

Classification (or Inferencing) 

To classify new point cloud data, we developed an inference pipeline that loads a raw LAS file and 
extracts essential features including XYZ coordinates, intensity, surface normals, curvature, point 
density, and height above ground (HAG). The features are computed using Open3D and NumPy. 
The processed data is then scaled using a previously trained StandardScaler and passed through a 
pretrained PointNet-based binary classifier implemented in PyTorch. The model infers 
ground (class 1) versus non-ground (class 0) points in batches for memory efficiency. The resulting 
classifications are written back into the original LAS structure and saved as a new classified LAS 
file. 

Classified LAS Result 

First, binary classification for ground and non-ground and multi-class classification were 
performed. 
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Figure 19. Python-based Point Cloud Classification Result 

Original point cloud (left), binary classification (middle), and multi-class classification (right). 

Figure 20. Point Cloud Classification Result for Tile 14, 15, and 16 

The results in Figures 19 and 20 demonstrate the effectiveness of the Python-based point cloud 
classification pipeline. As shown in Figure 19, the original point cloud (left) was first processed for 
binary classification (middle), distinguishing ground from non-ground points. Subsequently, a 
more detailed multi-class classification (right) was applied, accurately identifying distinct classes 
such as road surfaces, vehicles, vegetation, and building structures. Figure 20 further illustrates the 
model’s performance across three tiles (14, 15, and 16), where consistent and structured class 
boundaries are evident, especially along road features and surrounding environments. These results 
indicate that the deep learning-based classifier, trained on mobile LiDAR data, can generalize well 
across neighboring tiles and handle high-density point clouds with complex scenes. 
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Summary and Conclusion 
This study demonstrates a complete end-to-end workflow for extracting and classifying roadside 
assets from high-density mobile LiDAR point cloud data. The approach integrates traditional 
geospatial techniques—such as raster generation and slope profiling—with modern deep
learning-based point classification using a customized PointNet model. 

Over 5.7 billion points were processed, and more than 500 million labeled points were used to 
train the classifier. Results show high accuracy in both binary ground/non-ground and multi-class 
classification scenarios. Figures 19 and 20 illustrate the classifier's effectiveness across various tiles, 
successfully distinguishing roads, curbs, vegetation, poles, and other urban features. 

The modular and scalable design of this pipeline enables its application to large datasets and diverse 
roadway environments. Compared to existing commercial software, the deep learning approach 
offers improved automation and generalizability, while maintaining interpretability and control. 

In conclusion, this project confirms that deep learning can significantly enhance the automation, 
scalability, and accuracy of mobile LiDAR data processing. Future directions include extending 
the model to support more fine-grained classification (e.g., lane markings, traffic lights) and 
deploying the workflow in near-real-time mapping or autonomous driving applications. 
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Glossary 
AI ‒ Artificial Intelligence 

AASHTO ‒ American Association of State Highway and Transportation Officials 

CNN ‒ Convolutional Neural Network 

DEM ‒ Digital Elevation Model 

GNSS ‒ Global Navigation Satellite System 

HAG ‒Height Above Ground 

IMU ‒ Inertial Measurement Unit 

LAS ‒ LASer File Format 

LAZ ‒ Compressed LAS 

LiDAR ‒ Light Detection and Ranging 

MLP ‒Multi-Layer Perceptron 

MTLS ‒Mobile Terrestrial Laser Scanning: 

PCD ‒ Point Cloud Data 

TBC ‒ Trimble Business Center 

TIN ‒ Triangulated Irregular Network 
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