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Executive Summary 
Numerical optimization was performed to develop optimized staggered wave surfaces in the form 
of half-stepped cylinders for the development of reactor surfaces covered with titanium 
dioxide (TiO2) infused paint for increased reduction in ambient NO concentration. While the 
numerical results showed increased air recirculation over the optimized surface, due to the 
limitations in surface textured fabrication, the experimental verifications of the numerical results 
were conducted using surfaces with textured geometries scaled uniformly to 5 times (5X) of the 
optimized geometries. The wave surfaces were tested at two orientations of parallel and 
perpendicular to the flow direction. They were initially covered with 7% by-weight TiO2-infused 
paint and tested according to the ISO22197-1 standard. Results indicated 5.3% and 11.5% 
increases in NO2 formation for 5X-parallel and 5X-perpendicular surfaces, respectively, when 
compared with the result for the untextured smooth surface, which corresponds to estimated NOX 

reductions of approximately 7% and 15%. 
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1. Introduction 
Disadvantaged populations have traditionally borne a greater pollution burden than other 
communities, and sensitive populations within and around these communities are more vulnerable 
to the effects of pollution than other populations. Trades and goods movements are major 
components of California’s economy, with adverse environmental impacts, especially on 
disadvantaged communities. According to the California Air Resources Board (CARB), high 
levels of air pollution are present in proximity to freeways and high-traffic roadways and can 
negatively impact communities within 1000 ft of these roads. Studies (Rahai, 2008; Rahai and 
Sciortino, 2012) on the diffusion of particulate matter (PM) from the passage of diesel locomotives 
near the Port of Los Angeles have shown high concentrations of diesel particulates up to nearly 
200 ft from the railroad and increased PM concentration near the structures in these areas. 

Senate Bill 1000 (SB 1000) requires cities and counties to include policies and objectives for 
reducing pollution exposure, improving air quality, engaging the community in the public
decision-making process, and meeting the needs of disadvantaged communities in their plans. 
Senate Bill 535 (SB 535) directs 25% of the proceeds from the greenhouse gas reduction fund to 
projects that benefit disadvantaged communities, and Assembly Bill 1550 (AB 1550) requires that 
the fund be spent on projects within these communities. The disadvantaged communities are 
identified by the CalenviroSreen model. 

Nitrogen oxides (NOX) are greenhouse gases, and reductions in the tailpipe and ambient NOX 

improve climate change. Ambient NOX is one of the main ingredients involved in the formation 
of ground-level ozone (smog), which causes respiratory illnesses—especially in children, older 
adults, and people with lung diseases—and contributes to global warming and the formation of 
particulates in the atmosphere. Heavy-duty diesel vehicles (HDVs) are responsible for more than 
70% of NOX emissions of on-road vehicles in California. 

Investigations of the addition of titanium dioxide (TiO2) nanoparticles to paint and its potential 
in reducing ambient NOX concentration have provided opportunities for research and development 
of methods for passive control and filtration of the ambient NOX. Previous investigations (Dylla 
et al., 2010; Hassan et al., 2010; Dylla et al. 2011; Allen et al., 2008; Zhao et al., 2003; Choi et 
al., 2002; Cassar et al., 2003; Guo et al., 2015; Janus et al., 2019; Yu et al., 2020; Wang et al., 
2018) have shown that the surface coating of concrete walls with TiO2 in the form of a 
cementitious ultra-thin surface layer reduces ambient NO concentration and application of paint 
infused with TiO2 to building surfaces has shown antifouling performance and ambient NOX 

reduction by 30%–40%. The addition of TiO2 to cement road materials has shown up to an 80% 
reduction in ambient NOX. The behavior of TiO2 changes when a mixture of NO and NO2 is 
present, and a higher NO2/NOX ratio negatively impacts the effectiveness of the photocatalytic 
process. The maximum photodegradation rate was found at 25% relative humidity. 
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A study on the effects of different levels of irradiation and humidity on the NOX reduction 
effectiveness of surfaces painted with paint-infused TiO2 has shown that, even with low levels of 
irradiation and for a range of humidity levels, the TiO2-infused paint could still reduce NOX 

concentration (Song et al., 2020). 

These studies have indicated that surface texture, the distribution of TiO2 on the surface, and 
residence time (exposure time) play major roles in the effectiveness ofTiO2-infused paint for 
controlling ambient NOX. 

Increasing residence time requires development of a surface texture where air could be trapped, 
increasing the time for chemical reaction and reducing NOX concentration. Within an urban 
canopy, flow around structures ranged from very low Reynolds numbers of natural convection to 
highly turbulent flows, and surface textures impact flow conditions at and near the surface within 
the boundary layer. There have been extensive investigations of how riblets affect laminar and 
turbulent boundary layers (Bushnell & Hefner, 1990; Gad-el-Hak, 2000; García-Mayoral & 
Jiménez, 2011; Sareen et al., 2014; Khader & Sayma, 2018; Raayai-Ardakani & McKinley, 2019; 
Houshmand et al., 1983). Figure 1 shows a typical riblet. 

Figure 1. A V-Grooved Riblet (Raayai-Ardakani & McKinley, 2019) 

In a laminar boundary layer over a ribbed surface, the flow inside the grooves is increasingly
retarded, creating a layer of slow-moving fluid and resulting in lower shear stress inside the 
grooves, especially at the base of the grooves. This shear stress is lower than the corresponding 
shear stress for a smooth flat plate boundary layer. Increasing the riblets’ aspect ratio (h/d) increases 
the thickness of the viscous boundary layer, and the axial vorticity within the groove decreases with 
increasing length of the groove. These results indicate that creating a layer of slow-moving fluid 
and increasing the thickness of the viscous boundary layer could increase the residence time and 
meet our objective of higher ambient NOX reductions. 

The present research used geometrical optimization to identify an optimized surface geometry of 
half-stepped cylinders for increasing air recirculation and residence time for maximum ambient 
NOX reduction. The optimized surface was painted with titanium-infused paint and tested for 
NOX reduction according to ISO 22197-1 standard (Houshmand et al., 1983). 
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2. Methodology 
2.1 Numerical Optimization 

ANSYS OptiSlang’s Adaptive Metamodel of Optimal Prognosis (AMOP), in conjunction with 
the Design of the Experiment (DOE), was used for the optimization process. CFD ANSYS 
Fluent was used for all the simulations. Figure 2 shows the optimization process. DOE is a 
systematic approach to generating the desired number of design points based on the minimum and 
maximum values set for each parameter. These design points form the basis of initial training data 
in the Metamodel of Optimal Prognosis (MOP) machine learning algorithm. A metamodel is a 
model of models such that a single metamodel can provide surface responses, sampling data, and 
filtration of variables for Reduced Order Modeling (ROM), for accurate prediction. 

MOP surveys the data, calculates the Coefficient of Prognosis (CoP) values, and compares them 
using cross-validation. MOP then selects the best metamodel and parameters with their 
contributions, which identifies the parameters with the most impact. Using these results, DOE is 
redefined, and a new simulation is conducted. The process continues until the optimum design 
parameters and the best possible output for the given conditions are achieved. 

The numerical optimization and simulations were performed using the CSULB High-
Performance Computing (HPC) in conjunction with ANSYS OptiSlang software and Fluent 
Solver. 

Figure 2. The Optimization Processes 
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The major geometrical dimensions for optimization were the radius (r) and width (w) of the step 
and the spacing (s) between adjacent steps. The numerical optimization was focused on optimizing 
these parameters for maximum recirculation. The optimization was performed in two 
configurations: (1) the stepped cylinders were aligned, similar to ridges (Figure 3) and (2) offset 
half-stepped cylinders (Figure 4). The CFD simulations were performed at zero pressure gradients 
on a flat plate with the optimized half-stepped cylinder surface. 

Figure 3. The Aligned Half-Stepped Cylinder Sheet 

Figure 4. The Offset Half-Stepped Cylinder Sheet 

2.2 Experimental Verification 

The experiments were conducted according to International Standard ISO 22197-1 (2007). 
Figures 5 and 6 show the experimental setup. The ISO Reactor is a small chamber, a plexiglass
box with inside dimensions of 28 cm in length, 14 cm in height, and 14 cm in width. The top 
surface is an access door allowing the placing of the sample on a flat-plate sample holder. The 
sample holder has a 25 mm width and 2 mm depth cutout at the mid-section spanning the length 
of the box at the mid-height. The box has inlet and outlet supply lines aligned with the flat-plate 
sample holder. For all tests, except the top surface that was exposed to UV light, the other sides 
were covered with black opaque paper to minimize outside light exposure. The samples have 
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projected surface dimensions of 5 cm by 10 cm (50 cm2 area) and 5 mm thickness fitted tightly 
into the sample holder. 

The light source was an Everbeam 365nm 50W LED Black Light. The distance Y between the 
light source and the reactor was adjusted to maintain a nearly 10 W/m2 irradiance at the sample 
surface. The level of radiation was confirmed with an AMTAST UV340B light meter with a 
wavelength of 290–390 nm with an accuracy of ±(4% FS+2digit) for a range to 40 mW/cm2. 

A Zynect Air-Quality Egg was used for monitoring temperature, humidity, and NO2 with the 
operating ranges of -40°C–125°C, 0–100%, and up to 1 ppm, respectively. The uncertainties in 
temperature, humidity, and NO2 measurements were respectively ±0.1°C, ±1.5%, and ±16 ppb for 
≤ 150 ppb and ±10% for > 150 ppb. Data monitoring and collection were performed using a 
mini-PC. 

Figure 5. The Experimental Setup 
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Figure 6. The Test Setup 

A ProJet 6000HD-3D printer was used to print a baseline flat surface sample and samples with 
various scaled of the optimized geometry. The samples’ dimensions were approximately 50 mm 
wide, 100 mm long, and 5 mm thick. The samples were tested for different orientations, the 
printed texture being parallel or perpendicular to the flow direction. The samples were exposed to 
the UV light at an irradiance of 10 W/m2 for 16 hours to decompose any residual organic matter 
on the surface before the tests. 

Initially, we prepared a TiO2 coating composition according to Table 1 (Bushnel & Hefner, 1990). 
However, we had difficulty maintaining a highly mixed solution, even with an ultrasonic mixer. 
Then the decision was made to try various water-based paints with the addition of 2% weight-
reinforced TiO2. Table 2 shows the paint specifications with the addition of TiO2 concentration. 
The mixture was mixed thoroughly before application. The coating was applied with an airbrush, 
and then the samples were allowed to dry in an oven at 50°C for 24 hours. Care was taken to 
maintain the same thickness on all samples. The samples were weighed again, and the new weights 
were recorded. 

Table 1. The Composition of the TiO2 Coating 

Composition of TiO2 Coating by Weight 
TiO2 1.75% 

Silicon Compound 5.6% 
Ethanol 41.6% 
Water 51.05% 
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Table 2. Paints Tested 

Paint Brand Paint % Weight Initial TiO2 Composition Total TiO2 % Weight 
Acrylic 98 2% 7% 

The tests were conducted according to the following procedure: 

1. The baseline sample was placed in the photoreactor, and the light source distance was 
adjusted to maintain an irradiance of 10 W/m2 at the sample location. The light source was 
then turned off. 

2. The standard NO gas with a volume fraction of 100 µl/l and flow rate of 0.1 l/min was 
mixed with dry air at 1 l/min and wet air at nearly 40% RH at 2 l/min. The mixed gas from 
the mixing box was fed to the photoreactor. The flow is maintained for 30 minutes, and 
the volume fraction of NO2, temperature, and humidity were recorded. The flow rate was 
to maintain an RH ±3% and temperature of 25°C ±10%. 

3. Commence irradiation of the sample and continue measuring NO2, RH, and temperature 
for 5 hours. 

4. Stop irradiation and continue recording parameters as in step 3 for 30 minutes. 

2.3 Forced Air Experimentation 

To assess the effects of increased air movement on the photochemical conversion, selective samples 
were tested with an air velocity of 1 m/s aligned with the optimization of the numerical results. 
The same setup as before was used with increased volume flow rate to have a speed of 1 m/s over 
the sample’s surface while NO concentration and humidity were maintained constant. With the 
sample in place, the test procedure was according to the following steps: 

1. Start the dry and wet air and maintain flow for 30 minutes. 

2. Turn the NO gas on for 10 minutes without the UV light on. 

3. Turn the UV light on for 2 hours, while continuously collecting data. 

4. Turn the light and NO gas off and run dry and wet air for 30 minutes. 
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3. Results and Discussions 
3.1 Numerical Results 

The numerical optimizations were performed at a mean velocity of 1 m/s to obtain the design 
parameters for maximum recirculation. Figure 7 shows the dimensions of the optimized
geometries for one row of the half-stepped cylinders. The optimized dimension between the crest 
and trough was 0.655 mm and between the peak-to-peak half-stepped cylinder was 0.650 mm. To 
increase circulation, the rows of the half-stepped cylinders were offset by 0.38125 mm peak-to-
peak to force the gas through and over the cylinders, increasing the residence time for a maximum 
NOX conversion (Figure 8). 

Figure 9 shows the velocity vectors through the optimized half-stepped cylinders. The results show 
increased recirculation through the cavity. The corresponding circulations over the entire surface 
for the smooth and the optimized surfaces are respectively 0.389 m2/s and 0.598 m2/s, which 
indicates that the circulation for the optimized surface has increased by more than 53% when 
compared with the circulation for the smooth surface. The increase in circulation is associated with 
increased residence time and should result in a higher NOX conversion. 

Figure 7. An Optimized Row of Half-Stepped Cylinders 
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Figure 8. Offset Rows of Half-Stepped Cylinders 
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Figure 9. Velocity Vector Through the Optimized Half-Stepped Cylinders 

3.2 Experimental Results 

3.2.1 ISO-Standard Test Results 

Due to the printer’s limitations, we could not print the exact textured surface based on the 
dimensions from the numerical optimization. The nearest scale that was printed was twice the 
scale (2X) texture. We also proceeded with testing the 5X scales to assess the effects of a larger
scaling on NOX conversion. Figure 10 shows the samples tested. 

Figure 10. Test Samples from Left to Right: Smooth, 5X Parallel, 5X Perpendicular,
2X Parallel, 2X Perpendicular. The Direction of the Gas is from Top to Bottom 
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Figure 11 shows the changes in nitrogen dioxide (NO2) concentration for the flat and 5X samples 
with 7% TiO2-infused paint under ISO-standard testing conditions. For the flat surface, the 
nitrogen NO2 concentration decreases initially before it increases to a maximum of 0.0844 ppm at 
the light-off. For the 5X-parallel sample, with the light on, the maximum NO2 concentration is 
0.089 ppm just before the light off, and for the 5X-perpendicular, the maximum is 0.093 ppm 
before it decreases to 0.089 at the light off. Table 1 shows the total NO2 increase by the test pieces 
between the light on and off. The increase in NO2 concentration is 5.3% for the 5X parallel and 
11.5% for the 5X perpendicular. Previous investigation (Song et al., 2020) has shown that a 13.6% 
in NO2 production is associated with respectively 35.6% and 21.6% reduction in NO and NOX 
concentrations. Although our sensor did not measure NO concentration directly to accurately
estimate the increase in NOX reduction, based on this previous investigation, for the 5X textured 
surfaces, we can infer that the increase in NOX reduction would be between 7% and 15%.  

Figure 11. NO2 Formed for the ISO-Standard Test Condition 
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Table 3. NO2 Concentration with Standard ISO Condition 

Flat 5X Parallel 5X Perpendicular 
µmol 2.89 3.04 3.22 

% Increase 5.2 11.4 

3.2.2. Forced Air 

As mentioned before, the geometrical dimensions for the optimized staggered sinusoidal wave 
surfaces were too small for our printer to fabricate, and testing the surfaces with 2X dimensions 
did not result in a significant change in NOX reduction under ISO-standard testing conditions. 
Only the 5X configurations increased the contact between the layer of air near the surface and the 
samples for increased NO2 formation. 

Further increasing NOX conversion without modifying the chemical reaction rates requires a 
higher flow rate to increase the volume of air in contact with the reactive surface. In addition, the 
numerical optimization results were conducted at a mean speed of 1 m/s over the surface, which is 
significantly higher than the gas-air mixture speed of the ISO-standard test condition. To meet 
the condition prescribed in the numerical optimization, the volume flow rates of the dry and wet 
air were increased by 5 times while the NO concentration remained the same, resulting in a NO 
concentration of 0.2 ppm. Figure 12 shows the corresponding results for the increased flow 
condition. The level of NO2 formation is reduced for all cases when compared with the standard 
ISO test results, which would be expected from the decrease in incoming NO concentration. 
However, the flat surface results now show a higher NO2 formation as compared with the 5X 
surfaces with the results for the parallel surface being higher than the perpendicular surface. Table 
4 shows the NO2 concentration. The reduction in NO2 formation for 5X parallel and perpendicular 
surfaces are respectively 15% and 24% when compared with the corresponding result for the flat 
surface. Here we postulate that with increased air speed to 1 m/s, the contact between the textured 
surfaces and the air is reduced due to the formation of the cavities resulting in a lower reaction and 
less NO2 formation. 
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Figure 12. NO2 Formation with the Forced Air 
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Table 4. NO2 Formation for the Forced-Air System 

Flat 5X Parallel 5X Perpendicular 

µmol 5.1 4.33 3.85 
% Reduction 15 24.5 

The above results are for supplied NO gas at 0.2 ppm concentration. To compare the forced-air 
and ISO-standard results, the above results need to be adjusted for 1 ppm supplied NO. Previous 
investigation (Song et al., 2020) has shown a four-fold change in ppm of NO results in a two-fold 
change in NO2 formation. Table 5 shows the comparisons of the forced-air and ISO-standard 
results. The data has been adjusted for a one-hour test. For the forced air, the increase in NO2 

formation is 4.4-fold for the smooth surface and 3.54-fold and 3.0-fold for 5X-parallel and 5X-
perpendicular surfaces, respectively. These results indicate that with the forced-air system, a much 
higher level of NOX reduction could be obtained and mitigating the challenge associated with 
manufacturing the optimized dimensions of the staggered sinusoidal wave surface could increase 
the recirculation and residence time at this speed and thus achieving a higher NOX reduction. 
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Table 5. Comparison of NO2 Formation for the Forced-Air and the ISO-Standard Conditions 

µmol/hr Flat 5X Parallel 5X Perpendicular 
ISO Standard 0.58 0.61 0.64 

Forced Air 2.55 2.16 1.925 
Ratio 4.4 3.54 3.0 
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Figure 13. Variations of NO2 with Time for Forced Air at a Velocity of 1 m/s 
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4. Summary and Conclusions 
Numerical optimization was used for the development of optimized staggered sinusoidal surfaces 
for an ambient NOX reduction reactor. For experimental verifications, the surfaces were fabricated 
at five times the optimized geometries and tested at two orientations of the textured surface, being 
parallel and perpendicular to the flow direction (5X-parallel and 5X-perpendicular). The surfaces 
were initially painted with 7% TiO2-infused paint and tested using the ISO 22197-1-2007 
standard. Results indicated a 5.3% and 11.5% increase in NO2 for surfaces being respectively at 
perpendicular and parallel orientations. when compared with the corresponding result for the 
smooth surface. These increases correspond to estimated NOX reductions of 7% and 15%. The 5X 
parallel surface was also tested for increased TiO2 concentration from 7% to 20%, and results 
showed a 25% increase in NO2 formation. 

These surfaces were then tested with a forced gas-air mixture at 1 m/s, without changing the 
incoming NO concentration, and results indicated increases in NO2 formation for smooth, 
5X-parallel, and 5X-perpendicular by 4.4, 3.54, and 3.0 folds, respectively, when compared with 
the corresponding results from the ISO-standard tests. While the forced-air approach showed a 
substantial increase in NO2 formation and thus NOX reduction, we postulate that, at this speed, 
flow over the textured surfaces forms micro-cavities resulting in reduced recirculation and contact 
between the incoming gas and the surface and thus a lower NO2 formation when compared with 
the results for the smooth surface. 
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