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Executive Summary 
California is prone to earthquakes due to its location on the San Andreas Fault and other active 
fault systems. California is located where the Pacific and North American tectonic plates meet, 
resulting in frequent seismic activity. California accounts for two-thirds of the nation's earthquake 
risk. There is a greater than 99% probability of an earthquake of magnitude 6.7 or larger occurring 
in California. 

Reinforced concrete (RC) bridge structures are essential to transportation networks in California, 
where earthquakes have repeatedly demonstrated the seismic vulnerability of existing RC bridge 
structures. RC bridge structures with longer life spans can significantly reduce environmental 
impacts. There are urgent needs for seismic retrofitting and bridge maintenance to extend the life 
span of RC bridges. Therefore, sustainability in the transportation system could be improved. 

In this research, two studies were performed. The Canyon Road Overcrossing RC highway bridge 
in California was selected for the studies. In study 1, fiber-based nonlinear finite element models 
with section damage indices are used for damage predictions and bridge deficiency assessment 
under earthquake motions. The proposed frameworks could accurately assess, predict the seismic 
performance and damage state of RC bridge structures, and make recommendations for retrofit to 
extend the life span of bridges. Therefore, significant reduction in environmental impacts can be 
accomplished. In study 2, the proposed Life Cycle Assessment (LCA) method of the selected RC 
bridge was performed to demonstrate that retrofitting existing RC bridge structures to extend their 
life span would be better than rebuilding new bridges to reduce the environmental impact to 
improve sustainable bridge structures under seismic hazards. 

Fiber-based nonlinear finite element damage models were used to assess the seismic performance 
of RC bridges. The cross section of the RC bridge columns was divided into fiber cells, which 
were assigned uniaxial constitutive modeling with nonlinear material properties and could record 
the stress-strains history of concrete and steel under earthquake motions. The RC cross section 
was made up of cover concrete, core concrete, and reinforcing steel bars. Continuous recording of 
the progression of cover concrete and longitudinal reinforcing steel bars damages could be 
obtained. In addition, the RC bridge columns were discretized with finite element nodes. 
Nonlinear fiber-based and displacement-based beam-column elements were placed between the 
nodes. The nonlinear fiber-based and displacement-based beam-column elements could distribute 
plasticity which allows for the growth of nonlinearities along the members. Additionally, a low-
cycle fatigue damage mechanism was also considered. Furthermore, the low-cycle fatigue effect 
with buckling was correlated by fatigue life coefficients as a function of the buckling parameter. 
Bond-slip effect was also considered by adding a zero-length section element at the intersection 
between the flexural member and an adjoining member to capture the strain penetration effects at 
the bridge column-to-footing intersection. 
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Life Cycle Assessment (LCA) is a comprehensive method for evaluating the environmental 
impacts of a product, process, or service throughout its entire life cycle. This includes all stages 
from raw material extraction to production, use, and disposal, which help identify and quantify the 
environmental burdens associated with each stage. 

The proposed LCA method was performed on the selected RC highway bridge. The proposed 
LCA method includes the following stages: Product, Construction Process, Use, End-of-Life, and 
Beyond Building Life. The environmental footprint of the bridge due to global warming potential 
are recorded under each of the stages. The results indicated that Stage 1 (Product, A1 to A3) and 
Stage 5 (Beyond Building Life, D) were the prominent causes of environmental impact in the 
selected RC highway bridge. Although bridges are a crucial transportation medium where vehicles 
emit considerable amounts of CO2, Stage 3 (Use, B2, B4, and B6) had zero contribution in all 
stages of all areas as the structure itself does not emit any CO2. Stage 2 (Construction Process, A4 
and A5) and Stage 4 (End-of-Life, C1 to C4) contributed similar amounts of CO2. The proposed 
LCA method shows that retrofitting existing RC bridge structures to extend their life span would 
be better than rebuilding new bridges to reduce the environmental impact to improve sustainable 
bridge structures under seismic hazards. 
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1. Introduction 
Bridge structures are essential to transportation networks in California. Bridge structures with 
extended lifespans significantly contribute to a reduction in environmental impacts. This is because 
the environmental impact of bridge construction is significant, encompassing the entire life cycle 
from raw material extraction to end-of-life disposal. In California, earthquakes have repeatedly 
demonstrated the seismic vulnerability of existing bridge structures. There are urgent needs for 
seismic retrofitting and bridge maintenance to extend the life span of bridges. Therefore, 
sustainability in the transportation system could be improved. 

The construction of new reinforced concrete (RC) bridges consumes a great number of resources 
and energy and generates significant environmental impact. Bridge construction uses a 
considerable amount of energy and raw materials, but considerations of their environmental 
performance are rarely integrated into the decision-making process (Du, 2015). The majority of 
bridges in California are made of reinforced concrete materials, but concrete releases a large
amount of carbon dioxide during construction as demonstrated in various studies (Tait & Cheung, 
2016; Chen et al., 2021; Mostafaei et al., 2023). Concrete is one of the most used construction 
materials. Consequently, concrete production is responsible for up to 8% of carbon dioxide 
emissions worldwide (Tait & Cheung, 2016). Producing the cement ingredient for concrete is a 
very carbon-intensive step of the concrete production process due to the extraction of materials 
such as limestone and heating in kilns. The limestone undergoes a calcination process to remove 
impurities and break down into calcium oxide, which is a process that releases large amounts of 
CO2 from the chemical reaction. Additionally, the kilns require large amounts of energy to heat, 
mix, and cool the materials. This emission of CO2 has led to the rapid acceleration of global 
warming. 

Life cycle assessment (LCA) is an effective method for evaluating the environmental impact of a 
structure throughout its service life. When RC bridges undergo extensive damage from seismic 
ground motion, they need to be either repaired or rebuilt. However, rebuilding new RC bridge 
structures would negatively impact the environment. 

The most widely used LCA analysis is based on International Standards ISO 14040 (Zimoch, 
2012). LCA has a few different methods to carry out the assessment: cradle-to-gate, gate-to-gate, 
and cradle-to-grave. Cradle-to-gate is a method that starts the study from acquiring the resources 
(cradle) to the processing plant (gate). The use and disposal phases are not included. Gate-to-gate 
is an LCA analysis that only reviews one stage of production. Cradle-to-grave is an LCA analysis 
that includes the study from the extraction of resources (cradle) to their disposal (grave). This 
method is the most extensive as it looks at all phases of a structure’s life and includes all inputs and 
outputs. 
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LCA is used in various industries. However, its applications on bridges are still limited and require
further research. Bouhaya et al. (2009) conducted an LCA on a bridge structure made of wood 
and high-performance concrete, but the analysis did not consider the bridge’s foundation. 
Additionally, the LCA was restricted to energy consumption and greenhouse gas emissions. They
found that the production phase required the most energy which represented 73.4% of the total 
amount. Penadés-Plà et al. (2020) evaluated three alternative concrete bridge designs
environmentally and socially. They found that the manufacturing phase had the highest impact on
every alternative bridge design. Itoh and Kitagawa (2003) compared the CO2 emission of three 
bridges: a PC pre-tensioned T-girder bridge, a PC box girder bridge, and a steel box girder bridge. 
However, their LCA excluded the end-of-life phase (EOL), the disposal of the bridge at the last 
life cycle. Du (2015) performed LCA analysis on various bridge types: a railway bridge with ballast 
or fix-slab track, a steel box-girder composite bridge, a steel I-girder composite bridge, a post
tensioned concrete box-girder bridge, a balanced cantilever concrete box-girder bridge, a steel-soil 
composite bridge, and a concrete slab-frame bridge. 

Research on sustainability is highly focused on buildings, while research for other structures such 
as RC bridges is still limited. Furthermore, most of the existing studies mentioned earlier were 
limited to a few environmental indicators or life stages. 

Our research goal is to accurately predict the damage state after an earthquake, to determine bridge 
deficiencies, and to make recommendations for seismic retrofit and bridge maintenance to extend 
the life span of bridges as well as to improve sustainability in the transportation system in 
California. 

In this research, two studies were performed. In study 1, nonlinear finite element models with 
section damage indices are used for damage predictions and bridge deficiency assessment under 
earthquake motions. The proposed frameworks could accurately assess and predict the seismic 
performance and damage states of RC bridge structures and can make recommendations for 
retrofitting to extend the life span of bridges. Therefore, significant reduction in environmental 
impacts can be improved. In addition, in study 2, the proposed LCA method will be used to 
demonstrate the environmental impact of rebuilding a new RC bridge from construction to 
demolition after earthquake damage. Therefore, retrofitting existing RC bridge structures to 
extend their life span would be better than rebuilding new bridges to reduce the environmental 
impact under seismic damage. 

This research aims to provide a comprehensive seismic assessment of the sustainability of the 
reinforced concrete bridges. The case study used herein is a reinforced concrete highway bridge in 
California which is modeled using validated nonlinear finite element fiber-based numerical 
damage models (Ko, 2022; Ko & Gonzalez, 2023, 2024; Su et al., 2017). The selected reinforced 
concrete highway bridge underwent nonlinear dynamic analysis subjected to ten different 
earthquakes within the vicinity of the bridge. Section damage indices were determined for each 
earthquake motion. The seismic performance of the selected reinforced concrete highway bridge 
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was obtained. The need for retrofitting was recommended to extend the life span of this existing 
bridge structure. In addition, the proposed LCA method was conducted for this selected reinforced 
concrete highway bridge as if it needs to be rebuilt. LCA results demonstrated that retrofitting 
existing RC bridge structures to extend their life span would be better than re-building new bridges 
to reduce the environmental impact to achieve sustainable bridge structures. 
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2. Descriptions of the Reinforced Concrete Bridge 
Selected for Assessment 

2.1 The Canyon Road Overcrossing Reinforced Concrete Bridge 

To investigate the seismic performance and LCA of the RC bridges, the Canyon Road 
Overcrossing RC highway bridge was selected for this study. The Canyon Road Overcrossing RC 
highway bridge is located about 5.5 miles south of Los Banos in California. This bridge is over 
Interstate 5 (I-5) and serves to connect transportation and promote mobility between Los Banos 
City and the Los Banos Reservoir. 

2.2 Structural Descriptions of the Reinforced Concrete Bridge 

The Canyon Road Overcrossing RC highway bridge is in a highly seismic area of California. As 
shown in Figure 1, this bridge consists of two spans at a total of 259 ft long, and the height of the 
circular column is 22 ft. Three box-girders make up its superstructure. As shown in Figure 2, the 
section of the box-girder is 5 feet and 6 inches tall and 34 feet wide. 

In Figure 3, the cross section of the column is 6 feet in diameter with 3 inches of cover thickness 
and consists of forty-five #11 steel bars with 1.41 inches in diameter as longitudinal reinforcements 
as well as #4 steel bars with 0.50 inches in diameter and 12 inches in spacing as the transverse 
reinforcements. The yielding and ultimate strength of the steel reinforcements was 165 MPa and 
196 MPa, respectively. The concrete strength was 8.96 MPa. The total axial load applied to the 
column was 432 kips. When determining the axial force on the bridge column, the distributed 
dead load from the superstructure and the live load from moving highway loads were accounted 
for. The bridge quantities included 155 cubic yards of structural bridge concrete, 585 cubic yards 
of cast-in-place prestressed concrete, and 137,000 lbs. of reinforcing steel bars. 
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Figure 1. Reinforced Concrete Bridge Elevation 

Figure 2. Reinforced Concrete Bridge Section 
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Figure 3. Reinforced Concrete Bridge Cross Section 
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3. Study 1: Seismic Performance Assessment of the
Selected Reinforced Concrete Bridge 

3.1 Damage Indices and Seismic Performance Assessment 

The seismic performance of the RC bridges was assessed using damage indices (Ko, 2022; Ko & 
Gonzalez, 2023, 2024; Su et al., 2017) as shown in Figure 4. 

Figure 4. Section Damage Index 

The section damage indices can be correlated with seismic performance assessments as shown in 
Table 1 (Stone & Taylor, 1993, 1999) and Table 2 (TRB, 2013). Table 1 (Stone & Taylor, 1993, 
1999) classifies bridge performance assessment. There are five levels of performance
characterizations used to measure the RC bridge performance which include Level I (Cracking), 
Level II (Yielding), Level III (Initiation of local mechanism), Level IV (Full development of local 
mechanism), and Level V (Strength degradation). Table 2 (TRB, 2013) defines the damage index 
levels of RC bridges from 0.0 to 1.0. This range corresponds to the structure damage. 
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Table 1. Bridge Performance Assessment (Stone & Taylor, 1993, 1999) 

Level Performance level Qualitative performance characterization Quantitative performance 
characterization 

I Cracking Onset of hairline cracks Cracks hardly visible 

II Yielding Theoretical first yielding of longitudinal 
reinforcement 

Crack widths <1 mm 

III Initiation of local 
mechanism 

Initiation of inelastic deformation, onset 
of concrete spalling, development of 

diagonal cracks 

Crack widths of 1–2 mm, 
length of spalled region 

>1/10 of the cross-section’s 
depth 

IV Full development 
of local 

mechanism 

Wide and extended cracks, significant 
spalling over local mechanism region 

Crack widths >2 mm, 
diagonal cracks extend over 

2/3 of the cross-section’s 
depth, 

Length of spalled region >1/2 
of the cross-section’s depth 

V Strength 
degradation 

Buckling of main reinforcement, 
Rupture of transverse reinforcement, 

Crushing of core concrete 

Crack widths >2 mm 
in core concrete 

Table 2. Definitions of Damage Index Levels (TRB, 2013) 

Level Damage
Classification 

Damage Value Description Performance 
Condition 

I 

II 

None 

Minor 

D < 0.1 

0.1 ≤ D< 0.2 

Onset of hairline cracks 

Crack widening, first yielding 
of reinforcement 

Fully 
operational 
Operational 

III 

IV 
V 

Moderate 

Major 
Local 
Failure/Collapse 

0.2 ≤ D< 0.4 

0.4 ≤ D< 0.6 
0.6 ≤ D< 1.0 

Onset of cover concrete 
spalling 
Significant spalling 
Buckling of reinforcement,
crushing of core concrete 

Limited 
damage 
Life safety 
Collapse 
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3.2. Fiber-Based Material Damage Models 

The selected RC highway bridge was simulated using fiber-based nonlinear finite element damage 
models (Ko, 2022; Ko & Gonzalez, 2023, 2024; Su et al., 2017) with nonlinear analysis using the 
Open System for Earthquake Engineering Simulation (OpenSees) program (McKenna et al., 
2000). The RC bridge column circular cross section is divided into fiber cells which are assigned
uniaxial constitutive modeling with nonlinear material properties and can record the stress-strains 
history of concrete and steel under earthquake motions. The RC cross section is made up of the 
cover concrete, core concrete, and reinforcing steel bars as shown in Figure 3. The cover and core 
concrete are represented by the OpenSees Concrete02, a uniaxial material model that represents 
concrete with linear tension softening and a specified compressive behavior, and the longitudinal 
reinforcing bars are represented by the OpenSees Hysteretic material which considers the 
mechanical effects of strain softening, compression buckling, and tensile fracture, as well as low-
cycle fatigue of the reinforcement bars. Benefits of the fiber-based nonlinear finite element are that
continuous recording of the progression of cover concrete and longitudinal reinforcing steel bars 
damages could be obtained. 

3.3 Nonlinear Finite Element Modeling Formulations 

The RC bridge column was discretized with finite element nodes. Six nonlinear fiber-based and 
displacement-based beam-column elements are placed between the nodes. The nonlinear 
fiber-based and displacement-based beam-column elements can distribute plasticity which allows 
growth of nonlinearities along the members (Ko, 2022; Ko & Gonzalez, 2023, 2024; Su et al., 
2017). 

The circular cross section was comprised of confined core concrete fibers, unconfined cover 
concrete fibers, and longitudinal reinforcing steel fibers. The cross section was made up of uniaxial 
nonlinear fibers labeled as “UniaxialMaterial” to capture the stress-strain hysteresis behaviors of 
concrete and reinforcing steel bars. The uniaxial concrete material Concrete02 in OpenSees was 
used to represent the confined and unconfined concrete. The longitudinal reinforcing steel bars 
were modeled using uniaxial bilinear Hysteretic material. 

Additionally, low-cycle fatigue was another damage mechanism that was considered and recorded 
in OpenSees by wrapping fatigue material to the Hysteretic material. The fatigue material model 
applied to the Coffin and Manson fatigue life relationship. Furthermore, the low-cycle fatigue 
effect with buckling was correlated by fatigue life coefficients as a function of buckling parameters
(Tripathi et al., 2019a, 2019b; Dhakal & Maekawa, 2002; Goodnight, 2015, Goodnight et al., 
2016; Feng et al., 2014; Bakkar et al., 2021; Brown & Kunnath, 2004). 

Specifically, bond-slip effects (Ko, 2022) were also considered by adding a zero-length section 
element at the intersection between the flexural member and an adjoining member to capture the 
strain penetration effects at the bridge column-to-footing intersection. The concrete material 
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within the zero-length section uses the same Concrete02 material as the fiber-based beam-column 
elements, but the reinforcing steel rebars adopted the Bond_SP01 uniaxial material, a uniaxial 
material model used to simulate the behavior of bond slip between steel reinforcing bars and 
concrete. 

3.4 Seismic Performance Assessment Results of the Selected Reinforced Concrete 
Bridge 

The numerical simulation methods and damage models described in Sections 3.1, 3.2, and 3.3 
were used to conduct seismic performance assessments of the selected RC highway bridge under
ten selected earthquakes. Ten ground motion records were selected from the Pacific Earthquake 
Engineering Research Center (PEER) Strong Motion Database (https://ngawest2.berkeley.edu/)
in this study. The magnitude of the selected ground motions ranged from 4.9 to 6.9. Ten 
earthquake ground motion records were selected within the vicinity of the bridge’s location. The 
selected ground motions are listed in Table 3. Peak Ground Acceleration (PGA) is a measure of 
the maximum acceleration of the ground during an earthquake. It is expressed in terms of a 
percentage of the Earth's gravitational acceleration (g). It is a key parameter adopted in seismic 
hazard assessment as well as structural analysis and structural design. 

Table 3. Selected Ground Motion Records 

No. Event Year Station Magnitude PGA (g) 

1 Gilroy 2002 Gilroy-Gavillan Coll. 4.9 0.2100 
2 Gilroy 2002 Gilroy Array #6 4.9 0.0952 
3 Gilroy 2002 Gilroy Array #3 4.9 0.2168 
4 Coalinga-05 1983 Oil Fields Fire Station - FF 5.77 0.2175 
5 Coalinga-04 1983 Transmitter Hil 5.77 0.7798 
6 Coalinga-05 1983 Oil City 5.77 0.8412 
7 Loma Prieta 1989 Corralitos 6.93 0.6447 
8 Loma Prieta 1989 Hollister City Hall 6.93 0.2463 
9 Coalinga-05 1983 Coalinga-14th & Elm (Old CHP) 5.77 0.3415 
10 Hollister-03 1974 Gilroy Array #1 5.14 0.1003 

There are two different levels of ground shaking used for structural design: Design Basis 
Earthquake (DBE) and Maximum Considered Earthquake (MCE). DBE has a lower magnitude 
of earthquakes with a higher probability of exceedance 10% in 50 years. MCE is the most severe 
earthquake with 2% in 50 years. For the site location of the selected RC highway bridge, DBE 
had a PGA value of 0.41 g, and MCE had a PGA value of 0.77 g. 
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The PGAs of the ten selected earthquake ground motions were scaled from 0.1 g to 1.0 g in 0.1 g 
increments. Nonlinear time history analysis was conducted for each of these scaled ground motions 
using the proposed damage models and damage indices as described in Section 3 for the selected 
RC highway bridge under different ground motions (see Figure 5). 

In Figure 5, the section damage indices for the scaled PGAs of each earthquake ground motion 
are indicated as gray lines. The average section damage indices of the ten earthquake ground 
motions are shown as the black line. 

The results show that damage values increased with the increase of the PGA. The average section 
damage value of the selected RC highway bridge column under the DBE was 0.52, which signifies 
a major damage level, including significant concrete cover spalling. The average damage value of 
the selected RC highway bridge column was 0.93 under the MCE, which indicates failure or 
collapse of the RC bridge column, including buckling of reinforcement and crushing of the core 
concrete. 

By considering the potential for different earthquake intensities and ground motion scenarios, this 
approach will achieve specific performance goals, such as preventing collapse or ensuring minimal 
damage. The results in Figure 5 also show that the selected RC highway bridge needs to be 
repaired and retrofitted prior to a DBE and an MCE. Otherwise, in the event of an MCE, this 
RC bridge would collapse and need to be rebuilt, which would negatively impact the environment. 

Figure 5. Results of Damage Analysis 
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4. Study 2: Life Cycle Assessment of the Reinforced
Concrete Bridge 

4.1 Concept of Life Cycle Assessment 

Life Cycle Assessment (LCA) is a method for evaluating the environmental impacts of a product 
or process throughout its entire lifespan, from raw material extraction to disposal. LCAs not only 
focus on the outcome but also focus on the impact of the process on the environment. 

Therefore, LCAs can evaluate a product’s impact on the environment during its entire life cycle. 
The environmental impact assessment can be conducted both for production and for its function 
during the lifespan of whole bridge structures. LCAs can include identification and quantitative 
assessment of environmental effects, including the materials used and the energy consumed during 
production and use. 

4.2 Concept of Life Cycle Assessment of Reinforced Concrete Structures 

LCAs of RC structures quantify the lifetime environmental impacts of RC structures. They are 
used to measure and reduce the embodied, operational, and whole-life carbon emissions of RC 
structures. 

The infrastructure sector produces a large amount of greenhouse gas emissions, in particular carbon 
dioxide, which is emitted during all its phases: production, transportation, and construction 
(Mostafaei et al., 2023). Over time, structures deteriorate and need repair or rebuilding, which 
involves undergoing all the phases again. However, civil infrastructure is necessary for economic 
and social development. Therefore, it is crucial for structures to be designed to have a long service 
life to reduce their environmental impact. 

One of the most used building materials is concrete due to its durability and strength. It is a 
versatile material that is often used in roads, overpasses, walls, and other structures. As such, 
concrete is a core building foundation of modern society. However, the use of concrete has 
significant environmental repercussions (Manjunatha et al., 2021), starting with the quarrying and 
manufacturing process, which includes acquiring natural resources such as limestone and produces 
greenhouse gas emissions. The production process has a large environmental impact; for example, 
transporting raw materials uses a lot of energy and emits CO2 into the atmosphere. Construction 
also inevitably means the destruction of natural environments during quarrying. If a structure fails 
and is no longer serviceable, then demolishing the structure also adds to construction waste. 
Therefore, it is imperative that reinforced concrete structures be designed optimally. 

Researchers have adopted LCAs to determine the ecological repercussions of various concrete mix 
designs. For instance, Mostafaei et al. (2023) investigated the effects of different concrete mix 
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designs on the environmental impacts of RC structures within the system boundaries, which are 
the analysis limits of the LCA. Three different concrete mixing designs of strengths 20, 30, and 
40 MPA were compared with regards to their effects on human health, ecosystem quality, climate 
change, resources, and acidification. The ingredients of the RC structures, including cement, sand, 
gravel, and water, were compared to determine which had the greatest impact. Although engineers 
prefer the higher compressive strength of concrete to reduce the cross-sectional areas of structures 
and thus reduce their weight, this increase in concrete mixes with higher compressive strength 
leads to an increase in energy-intensive constituents. They found that when the compressive
strength of concrete increased from 20 to 40 MPa, the LCA indicators for human health, climate
change, and human toxicity also increased by 12.58%, 19.49%, and 20.38%, respectively. 

Additionally, Van den Heede and De Belie (2012) studied the environmental impacts of green 
concrete versus traditional concrete. They found that green concrete made from furnace slag
created less contamination than Portland cement-based concrete. Black and Purnell (2016) also 
noted that the cost of the greener ingredients of concrete provides weak financial incentives and 
may easily be outweighed by other factors such as transportation and labor. The cost of developing 
greener concrete deters industries from exploring these alternative more sustainable options. 

4.3 Life Cycle Assessment of the Selected Reinforced Concrete Bridge 

4.3.1 The Proposed LCA Method 

An LCA for reinforced concrete (RC) bridges follows a systematic process that includes defining 
the goal and scope, conducting an inventory analysis, performing an impact assessment, and 
interpreting the results, considering all stages of the bridge's life cycle from material extraction to 
demolition and recycling, including construction, maintenance, and end-of-life phases. 

The proposed LCA method included the following stages: Stage 1 (Product) was labeled as A1 to 
A3 and included material productions as well as transportation of raw materials and 
manufacturing; Stage 2 (Construction Process) was labeled as A4 and A5 and included 
transportation of equipment to the construction site, installation, and construction; Stage 3 (Use) 
was labeled as B2, B4, and B6 and included maintenance and repair; Stage 4 (End-of-Life) was 
labeled as C1–C4 and included demolition and waste disposal; and Stage 5 (Beyond Building Life)
was labeled D and included the reuse and recycling of material beyond the bridge’s life cycle. 

4.3.2 The LCA Results of the Selected RC Bridge 

The bridge included 155 cubic yards of structural bridge concrete, 585 cubic yards of cast-in-place 
prestressed concrete, and 137,000 lbs. of reinforcing steel bars. The environmental footprint of the 
selected RC highway bridge due to global warming potential was recorded for each stage. The 
environmental impacts are summarized in Tables 4–8 and shown in Figure 6. The results show 
that Stage 1 (Product, A1toA3) and Stage 5 (Beyond Building Life, D) were the prominent causes 
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of environmental impact in the selected RC highway bridge. Although bridges are a crucial 
transportation medium where vehicles emit considerable amounts of CO2, Stage 3 (Use, B2, B4, 
and B6) had zero contribution in all stages of all areas as the structure itself does not emit any CO2. 
Stage 2 (Construction Process, A4 and A5) and Stage 4 (End-of-Life, C1 to C4) contributed 
similar amounts of CO2. 

The LCA’s results highlight the need to retrofit, rather than rebuild, to reduce environmental 
impacts. The LCA demonstrates that retrofitting existing RC bridge structures to extend their life 
span would be better than rebuilding new bridges to reduce the environmental impact and improve 
sustainable bridge structures under seismic attacks. 

Table 4. LCA Measure by Life Cycle Stages: Stage 1 (Product) 

PRODUCT 
(A1 to A3) 

LCA Measures Unit Manufacturing Transport Total 

Global Warming Potential kg CO2 eq 2.22E+05 3.48E+03 2.26E+05 

Table 5. LCA Measure by Life Cycle Stages: Stage 2 (Construction Process) 

CONSTRUCTION PROCESS 
(A4 and A5) 

LCA Measures Unit Construction-
Installation Process 

Transport Total 

Global Warming Potential kg CO2 eq 1.44E+04 1.09E+04 2.53E+04 

Table 6. LCA Measure by Life Cycle Stages: Stage 3 (Use) 

USE 
(B2, B4, and B6) 

LCA Measures Unit Replacement
Manufacturing 

Replacement
Transport 

Operational
Energy Use

Total 

Total 

Global Warming Potential kg CO2 eq 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
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Table 7. LCA Measure by Life Cycle Stages: Stage 4 (End-of-Life) 

END-of-LIFE 
(C1 to C4) 

LCA Measures Unit De-construction, Demolition,
Disposal & Waste Processing 

Transport Total 

Global Warming Potential kg CO2 eq 1.92E+04 4.40E+03 2.36E+04 

Table 8. LCA Measure by Life Cycle Stages: Stage 5 (Beyond Building Life) 

BEYOND BUILDING LIFE 
(D) 

LCA Measures Unit BBL Material BBL Transport Total 

Global Warming Potential kg CO2 eq 2.17E+05 0.00E+00 2.17E+05 

Figure 6. Global Warming Potential for Each LCA Stage 
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5. Summary & Conclusions 
In this research, two studies were conducted. The Canyon Road Overcrossing RC highway bridge 
in California was selected for the studies. In study 1, fiber-based nonlinear finite elements were 
used to simulate the nonlinear seismic responses of the selected RC bridge, considering buckling 
and low-cycle fatigue of steel rebars as well as cover concrete damage. Damage indices based on 
fiber models were used to evaluate the damage states of the selected RC bridge. The selected RC 
bridge deficiency under earthquake motions was assessed. The proposed frameworks could 
accurately assess and predict the seismic performance and damage states of RC bridge structures 
and can make recommendations for retrofitting to extend the life span of bridges. Therefore, 
significant reduction in environmental impacts can be improved. In addition, in study 2, the 
proposed LCA methods were used to demonstrate the environmental impact of rebuilding a new 
RC bridge from construction to demolish after earthquake damages. LCA results show the need
to retrofit rather than to rebuild the selected RC highway bridge to mitigate environmental impacts 
under seismic damage. 

The selected RC highway bridge was simulated using fiber-based nonlinear finite element damage 
models with nonlinear analysis using OpenSees program to assess the seismic performance of the 
RC highway bridge. In addition, low-cycle fatigue effect with buckling was correlated with fatigue 
life coefficients as a function of buckling parameter. Moreover, bond-slip effects were also 
considered by adding a zero-length section element at the intersection between the flexural 
member and an adjoining member to capture the strain penetration effects at the bridge column-
to-footing intersection. The selected RC highway bridge underwent ten selected earthquakes by 
nonlinear time-history analysis selected from the Pacific Earthquake Engineering Research Center 
(PEER) Strong Motion Database. 

The simulation results demonstrate that section damage values increase with the increase of the 
PGA. In addition, the results reveal a major damage level to the selected RC highway bridge, 
including significant concrete cover spalling under the DBE as well as failure or collapse of the 
RC bridge column, including buckling of reinforcement and crushing of the core concrete, under 
the MCE. As a result, it is recommended that the selected RC highway bridge should be repaired 
and retrofitted prior to DBE and MCE. Collapse in the event of MCE can be prevented to avoid 
the needs to be rebuilt and result in negative impact to the environment. 

The proposed LCA method considered various stages during the entire life cycle of the selected 
RC highway bridge. The environmental footprints of the RC bridge due to global warming 
potential are recorded under each of the stages: Stage 1 (Product), Stage 2 (Construction Process),
Stage 3 (Use), Stage 4 (End-of-Life), and Stage 5 (Beyond Building Life). The results indicated 
that Stage 1 (Product, A1 to A3) and Stage 5 (Beyond Building Life, D) were the prominent 
causes of environmental impact in the selected RC highway bridge. Although bridges are a crucial 
transportation medium where vehicles emit considerable amounts of CO2, Stage 3 (Use, B2, B4, 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  18 



 

    

 

 

 

 

  

and B6) had zero contribution in all stages of all areas as the structure itself does not emit any CO2. 
Stage 2 (Construction Process, A4 and A5) and Stage 4 (End-of-Life, C1 to C4) contributed 
similar amounts of CO2. The results of the LCA emphasize the need to retrofit rather than to 
rebuild the selected RC highway bridge to mitigate environmental impacts. The LCA also 
demonstrated that retrofitting existing RC bridge structures to extend their life span would be 
better than rebuilding new bridges to reduce environmental impact and improve sustainable bridge 
structures under seismic risks. This research focused on global warming potential for LCA studies. 
However, LCA research, while valuable for evaluating the environmental impact of products and 
processes, faces several limitations. These include challenges related to the complexity of modeling 
various life cycle stages, the subjectivity in choosing methodologies and system boundaries, etc. 
Future LCA studies could be improved to address these challenges. 
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