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Executive Summary 
The extraction of traffic signs from Mobile Light Detection and Ranging (LiDAR) point cloud 
data has become a pivotal focus in research, driven by the growing integration of LiDAR 
technologies in transportation applications. LiDAR, a remote sensing technology, captures highly 
detailed three-dimensional point cloud data, offering a comprehensive representation of the 
surrounding environment. The advantage of efficient data collection for large-scale road networks 
is particularly evident with Mobile LiDAR systems mounted on vehicles. 

This study is centered on developing and refining techniques for extracting traffic signs from 
Mobile LiDAR point cloud data. The precise detection and localization of traffic signs are crucial 
for enhancing road safety, navigation systems, and intelligent transportation solutions. The 
incorporation of LiDAR technology in this context opens up new possibilities for automating the 
recognition and mapping of traffic signs. 

The research specifically delves into the detection of traffic signs using Mobile LiDAR point cloud 
data. The intensity-based sign extraction method efficiently identifies traffic signs, traffic signals, 
and other retro-reflective objects, providing valuable insights for transportation asset management. 
The workflow begins with the management of the LiDAR Aerial Survey (LAS) dataset, 
encompassing tasks such as merging/splitting, gridding, and detecting high-intensity features. 
Subsequently, the identified signs are placed in Google Earth Pro, enabling their seamless display 
in Geographic Information Systems (GIS). 

Furthermore, the study explores point density analysis, establishing a connection with potential 
grid resolutions for additional extraction or analysis, such as road condition assessments or crack 
detection. 

Additionally, the research delves into the investigation of deep learning point classification and 
Hough transformation plane detection. The outcomes and limitations of these approaches are 
comprehensively summarized. 
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1. Introduction 
Various roadside infrastructures along state or local roads are routinely managed by a state’s 
Department of Transportation (DOTs). Challenges exist in collecting the data and maintaining 
the inventory. Recently, state DOTs have been adapting laser scanning technology, which digitally 
stores roadside information in the form of a massive number of three-dimensional points. Laser 
scanning refers to technology that computes three-dimensional coordinates using laser-based 
distance and direction measurements.  

Traffic sign extraction from Mobile Light Detection and Ranging (LiDAR) point cloud data has 
emerged as a crucial area of research, driven by the increasing adoption of LiDAR technologies in 
transportation applications. LiDAR, a remote sensing technology, captures highly detailed three-
dimensional point cloud data, providing a comprehensive representation of the surrounding 
environment, providing insights into the condition, placement, and visibility of traffic signs.  

Mobile LiDAR systems mounted on vehicles offer the advantage of efficient data collection for 
large-scale road networks (Williams et al., 2013; Gargoum & El-Basyouny, 2019). The 
contribution of MTLS in management of traffic signs includes: (1) Detection and Inventory, (2) 
Condition Assessment, (3) Visibility Analysis, (4) Geospatial Integration, (5) Safety Enhancement, 
(6) Automation and Efficiency, etc. 

This study focuses on the development and refinement of techniques for the extraction of traffic 
signs from Mobile LiDAR point cloud data. Accurate detection and localization of traffic signs 
play a pivotal role in enhancing road safety, navigation systems, and intelligent transportation 
solutions. The utilization of LiDAR technology in this context opens up new possibilities for 
automating the process of traffic sign recognition and mapping. 

Several studies have demonstrated the potential of LiDAR for road infrastructure analysis and 
object detection (Ghallabi et al., 2019; Zhang et al., 2019; Wu et al., 2015; Javanmardi et al., 2019). 
Our research builds upon these foundations, aiming to address the specific challenges related to 
traffic sign extraction. The three-dimensional nature of LiDAR point clouds provides valuable 
depth information, enabling a more nuanced analysis of a road’s environment (Yen et al., 2011). 

In this study, we investigated the use of point cloud data in road-side feature extraction. The main 
objectives were: laying out the workflow to handle LAS files, merging and splitting files, gridding 
the point cloud, creating an intensity map, and finally detecting traffic signs and locating them in 
the Geographic Information System. In the course of the investigation, we also tested plane 
extraction using a 2D Hough transformation and deep learning point classification.  

In section II, we introduce a general specification for Mobile Terrestrial Laser Scanning (MTLS) 
data and the proposed workflow. In section III, Results and Analysis, we demonstrate the point 
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density and optimal gridding resolution analysis on aerial laser scanning data, on the ground 
detection, and on traffic signs from MTLS, along with the traffic sign extraction results. In 
Appendices A and B, we summarize the plane extraction method and a deep learning classification 
test. 
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2. Mobile Terrestrial Laser Scanning Data 
Mobile Terrestrial Laser Scanning (MTLS) data refers to three-dimensional point cloud 
information obtained through the use of terrestrial laser scanners mounted on mobile platforms, 
such as vehicles, together with other sensors. Terrestrial laser scanning involves the emission of 
laser beams toward surfaces, with the reflected signals captured by sensors to create precise, high-
resolution, 3D representations of the surrounding environment. 

In the context of mobile applications, MTLS employs laser scanners mounted on moving 
platforms, typically vehicles, to rapidly collect detailed point cloud data along roadways, 
infrastructure, or other surfaces. The mobile setup allows for efficient and comprehensive data 
acquisition over large areas, making MTLS particularly useful for mapping and analyzing 
transportation networks, urban environments, and infrastructure assets. 

MTLS systems are often integrated with other sensors such as cameras, Global Navigation 
Satellite System (GNSS) receivers, and Inertial Measurement Units (IMUs) to enhance the 
accuracy and richness of the collected data. This integrated approach enables the simultaneous 
acquisition of geometric, visual, and positional information, making MTLS data valuable for 
applications such as road asset management, urban planning, and environmental monitoring. 
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Figure 1. A Photo of theRiegl VMX-1HA Scanner 

 

Figure 1 shows a photo of an MTLS system, a VMX-1HA scanner. This scanner measures 1.1 
million points per second, with the point density near the scanner reaching up to 7,000 points/m2. 
The average point density on the road is more than 4,000 points/m2 (Yu, 2014). This point density 
translates to around 400 points/ft2.  

In typical MTLS systems, four components are integrated into the system to obtain accurate 
geo-referenced point cloud data:  

1. LiDAR: generates XYZ 3D points. The points not only have XYZ positional information 
but also intensity, color (RGB), and GNSS time tags etc., depending on the extent of 
processing. 

2. Image or video: a 360-degree panoramic camera or multiple cameras. 

3. Global Navigation Satellite System (GNSS): GNSS contains the position of the vehicle at 
the time of data acquisition. When combined, it provides the trajectory of the vehicle. 

4. Inertial Measurement Unit (IMU): IMU provides the orientation or attitude of the vehicle. 
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Examining the point cloud data reveals the potential of extracting road-side features such as: 

• Traffic signs 

• Median divider 

• Road markings 

• Road condition 

• Cross section 

This information can be used for inventory mapping (Duffel and Rudrum, 2005).   

Figure 2. Example of Traffic Signs and a Concrete Median Divider in Google  
Street Map (Left) and MTLS Point Cloud Data (Right) 

  

The points in Figure 2 (right) are displayed by height (from blue to red) and intensity. Traffic 
signs, which are the objective of this study, and the concrete divider are clearly visible.  
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Figure 3. Example of Road Marks on Google Street Map (Left) and  
MTLS Point Cloud Data (Right) 

  

Standard solid lines, dashed skip lines, and arrow paints are clearly visible in the point cloud 
data (Figure 3). Point density of 400–500 points/ft2, which is a common specification for MTLS 
used in transportation projects, enables a 2 cm resolution grid and can effectively extract the 
condition of the road marks.  

Figure 4. Example of the Road Condition on Road Marks in the Google Street Map  
(Left) and MTLS Point Cloud Data 

  

The point density is the function of scan speed, vehicle speed, and pulse repetition rate. When the 
speed is decreased to half of specified speed, one can achieve a higher point density than average 
point density. Figure 4 shows nearly 1,000 points/ft2. This density of points provides the resolution 
of 1 cm or less, where road cracks can be clearly observed. The increased point density in the 
dataset is believed to be the results of the vehicle reducing its speed when passing a traffic signal. 
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Figure 5. Example of a Cross-Section in an MTLS Point Cloud (Upper) and  
a Detailed Surface Contour Representation 

 

 

Median structure, slopes in both lanes, and road marks are clearly visible in the cross-section 
(Figure 5). The contour interval of 0.1 ft can reveal the detailed slope (Figure 6) and condition of 
the road’s surface. 

Figure 6. Example of Measuring theDimensions of a Concrete Median Structural Barrier 
Left: Photo of a Type 60 Median Barrier. Right: Extracted Lines and theIntersection  

of Those Lines for Dimension Calculations 
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2.1 MTLS Dataset 

The dataset was obtained on Highway 76, located between Los Angeles and San Diego, covering 
approximately 8.2 miles of road (Figure 7). The scans were executed multiple times, covering both 
the main highway (four times each direction) and arterial offshoots (two times each direction) 
(Figure 7). When combined, the total distance covered represents about 173 miles. 

There is a total of 68 LAZ (compressed LAS) files: 8 files for main roads and 60 files for arterial 
roads. The total file size is 39.4 GB. 

• 8 main roads: 4,404,701,236 points (4.4 billion) 

• 60 secondary roads: 1,304,700,884 points (1.3 billion) 

• Total number of points: 5,709,402,120 points (5.7 billion) 

Figure 7. Trajectory Plot of MTLS Data on Highway 76 
TheTotal Length is Approximately 8.2 Miles 
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2.2 Workflow 

Figure 8. Workflow of Traffic Sign Extraction 

 

 

The method to extract traffic signs consists of three major steps (see Figure 8): pre-processing, 
main-processing, and post-processing. In pre-processing, (1) merging multiple scans minimizes 
occluded area, (2) splitting the total length into 221 small rectangle boundaries eases 
computational load, and (3) filtering removes erroneous points or outliers. These steps in the pre-
processing prepare the Mobile Terrestrial Laser Scanning data (MTLS) into manageable sizes, 
facilitating the detection of traffic sign areas.  

The main steps involve: (1) separating ground and non-ground points to enforces the constraints 
that the traffic signs are located on non-ground points, (2) height filtering to remove points with 
a certain height above the specified traffic sign height, and (3) creating an intensity map. 3D points 
are grided in 2D to detect high intensity line segments that belongs to traffic signs.  

Finally, extracting points on traffic signs and calculating their central locations are performed. The 
locations of signs can be placed on the map and saved as a Keyhole Markup Language (KML) file 
which stores locations, image overlays, and modeling information such as shapes in programs such 
as Google Earth Pro. (see post-processing in Figure 8) 

In the following three sections, these three steps are further explained with details. 
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2.2.1 Pre-Processing 

The objective of pre-processing is to prepare the LiDAR dataset into a manageable size.  

Figure 9. Illustration of Subset Rectangular Boundaries of LAS Files 

 

To minimize computational load, a total of 221 rectangular boundaries were generated to cover 
the whole length of the data (see Figure 9). 

The width (distance across the road) was set to 250 ft to cover not only the lanes but also the 
roadside features. Multi-scans are required to minimize shadow effects in the point cloud data and 
to increase the point density. 
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Figure 10. Example of a Shadow Effect in theLiDAR Scan. Left Lane Scan  
with Shadowed Right Lane (Left), Right Lane Scan With Shadowed Left  

Lane (Middle) and Combined Point Cloud (Right)  

 
 

Figure 10 illustrates the shadow effect, where laser pulses are blocked by obstacles such as a median 
structure or other vehicles in the data-acquisition stage. When multi-scan data are merged, blocked 
areas are filled from other scans. Furthermore, merging increases the density of points, which 
increases the spatial resolution of the point cloud data  

Figure 11. Screenshots of A Merged Subset (Left), and theRotated Subset (Right) 

  

The points within the rectangular boundary subsets were extracted from all 68 files and merged 
into single files. These subsets were also shifted and rotated so that they have local coordinates 
with smaller gaps outside of their boundaries (Figure 11). 

These subset data contain 20–40 million points, which is manageable on an regular desktop 
computer. 
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2.2.2 Main-Processing 

Main-processing consists of ground/non-ground point separation, filtering for high intensity, 
generating an intensity map, thresholding to binarize the intensity map, and, finally, detecting 
elongated shapes. 

Ground/Non-Ground Point Segmentation 

Traffic signs are usually located in the middle or at the edge of the road, at a height ranging from 
5 ft to 7 ft above the ground. However, in some instances, a “one way” arrow sign may be elevated 
only 1 foot from the ground. Regardless of the specific height, it is advantageous to have ground 
and non-ground points separated (refer to Figure 12). The MATLAB built-in function, 
“segmentGroundSMRF,” was used.  

Figure 12. Original Mobile LiDAR Subset (Left), Ground Points (Middle),  
and Non-Ground Points (Right)  

 

Intensity Map vs Digital Elevation Model 

Traffic signs are manufactured to be retro-reflective to fulfill readability requirements during 
daytime and nighttime; this is known as “retro-reflectivity.” The Federal Highway Administration 
(FHA) provides a standard in the Manual on Uniform Traffic Control Devices (MUTCD) that 
requires agencies to maintain traffic signs to a minimum retro-reflectivity. This highly reflective 
surface on signs plays an important role in separating points on signs from other points.  
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Figure 13. Intensity Map (Left) and Elevation Map (Right). theLeft Panel Shows  
High Intensity, Colored Yellow, on Traffic Signs Whereas theElevation Map Does  

Not Show Strong Discernment 

  

Figure 13 shows an intensity map and an elevation map. The point clouds were gridded with 
intensity and elevation with a resolution of 1.5 centimeters. 

Figure 14. Histogram of Point Cloud Intensity 

 

Figure 14 shows a small peak at the end of the intensity range. The points at this peak have the 
intensity value of 65,535 which is the maximum value of a 16-bit unsigned integer. This gives a 
good separation between points on traffic signs and others. 
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After analyzing point cloud density on roads and traffic signs (see Section III, Results and 
Analysis), the intensity maps were created with 0.05 ft (1.524 cm) resolution. Simple thresholding 
was enough to separate the regions of the signs, and minimum bounding rectangles were able to 
detect elongated rectangle shapes by checking their semi-major and semi-minor axis lengths. 

2.2.3 Post-Processing 

Once high-intensity elongated-shaped pixels are extracted, a minimum length of 2.25 ft is applied 
to filter out some outliers. Then, all the points within that region of interest (ROI) are extracted. 
When the shape of a sign is a rectangle, one can go further to find the bottom and top of the sign 
by finding a height where the number of points abruptly jumps.  

Best fitting planes using RANdom SAmple Consensus (RANSAC) provides points on the sign’s 
plane. See the red 3D boxes in the point cloud display in the figures below. 

Figure 15. High Intensity Rectangle Feature (Left), Actual Traffic Sign (Middle), and  
Extracted Point Cloud (Right) for Five Signs 
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Figure 15 shows five traffic signs extracted from Subset 16. All the signs were extracted; however, 
it is observed that traffic signals were also extracted (Figure 16), since they pass the intensity 
filtering, shape filtering, and the height threshold condition. While they were not one of the 
objectives of this research, this study shows the possibility of detecting signals with pole structures 
from the Mobile LiDAR point data set. Figure 16 shows what traffic signals look like in intensity 
maps and the points extracted. 

  



 

M I N E TA  T R A N S P O R TAT I O N  I N S T I T U T E  18 

Figure 16. Extracted Traffic Signals 
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3. Results and Analysis  
In this study, point density of aerial and mobile LiDAR data is analyzed to find the optimal 
resolution that can be produced from the points. The point density is a good indicator of the 
resolution of a grid map, which is simply a grid cell size. The equation (Hu, 2023) that defines the 
grid’s resolution given the point density, for the Digital Elevation Model (DEM), is: 

𝐷𝐸𝑀	𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 	/!
"

 ---- (1) 

where N is the point density, i.e., the number of points per unit area. For example, when there is 
1 point per square meter, the optimal DEM resolution will be 1 meter (Garzon et al., 2021). 

3.1 Aerial LiDAR vs. Mobile LiDAR 

While aerial LiDAR data has relatively constant point distribution and point density over the area, 
Mobile Terrestrial Laser Scanning (MTLS) data has different distribution patterns. Simply, point 
density varies spatially, depending on the distance from the scanner, location, multi-scan pattern, 
and orientation of the targets.  

First, aerial LiDAR data were downloaded from open topography (https://opentopography.org/), 
which is a public LiDAR data repository. It is 2014 USGS QL2 LiDAR, with 49,468 points. 

Figure 17. Sample of Aerial LiDAR Data 
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Figure 18. Point Density Map, Number of Points (Upper) and  
Resolution Map (Lower) 

 

Figure 17 is the 3D plot of aerial LiDAR data. It shows that there is some amount of strip overlap 
on the left side of the figure.  

Figure 18 shows a point density map where the pixels indicate the number of points in a cell. The 
cell size is 1 x 1 meter and most of the area has 1–4 points in a cell. Using equation 1, the grid 
resolution is calculated (Figure 18, lower). It shows that the 1-meter resolution (yellow color cell 
in Figure 18, lower) grid can be created. Figure 19 shows the Digital Elevation Model and 
Intensity map with 1 meter resolution. Smaller than 1 meter resolution will result in gaps and 
extrapolation effects.  
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Figure 19. 1 Meter, Surface Map (Upper) and Intensity Map (Lower) 

 

3.2 Point density on the road surface in Mobile LiDAR data 

One subset from the Caltrans MTLS LiDAR data (250 ft ´ 250 ft) was examined for density 
analysis. To analyze point density on the road surface, ground points were extracted (Figure 20). 

Figure 20. Density Analysis, Mobile LiDAR Data 
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e number of points in the Mobile LiDAR data is 23,948,821 points and the area is 35,000 ft2 (yellow 
rectangle). e average point density is therefore 684.25 points/ft2 when divided by the area. 
The points are assigned to a 1 x 1 foot bin, and the number of points is counted. Since the data 
from multiple lanes are combined, the point density is not spatially consistent.  

Figure 21. Point Density: Number of Points Per Sq. Ft. 

 

The yellow color in Figure 21 indicates that there are more than 2,000 points, but overall, the 
density is 500–1,000 points. It is believed that the scanner vehicle reduced its speed at the sight of 
a traffic signal. At normal speed, the Mobile LiDAR would receive 400–500 points per square feet. 
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Figure 22. Resolution Map 

 

Based on the number-of-points map (Figure 21), one can produce a resolution map (Figure 22), 
which provides the optimal resolution of the surface from the Mobile LiDAR data. Note that 
locations with a bin of 2,000 or more points have a resolution of 0.5 cm, and for most of the road, 
2 cm resolution surface can be generated. 

Figure 23. Intensity Maps From MTLS Data. Resolution of 2 Cm (Upper),  
1 Cm (Middle), and 0.5 Cm (Bottom) 
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Figure 23 shows intensity maps with 2 cm, 1 cm, and 0.5 cm grid resolution. The bin where there 
are 2,000 points or more can generate a 0.5 cm resolution grid. Seven hundred points and more 
makes a 1 cm grid (right lane in figure 23), and most of the road can be covered by a 2 cm grid. 
Note that, when needed, a 0.5 cm resolution area will show the road condition better, such as 
cracks and detailed surfaces. 
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3.3 Point density on traffic signs 

The mobile scanner scans along the road multiple times to avoid shadow effects where laser signals 
are blocked by obstructions such as median structures or other vehicles. This multiple-scan 
property inevitably results in inconsistent point density. This applies to traffic sign cases.  

Depending on incident angles, distance from the scanner to the targets, target sizes, and the speed 
of the scanner vehicle, each traffic sign has a different number of points. Three signs were extracted 
and analyzed for their point densities. 

Figure 24. Point Density of Sign I 

 

Sign I has dimensions of 30”´30” (762mm´762mm), a square sign (Figure 24). There are 2,600 
points on the target whose area is 6.45 ft2. The density is therefore 416 points/ft2 (4476 points/m2). 
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Figure 25. Point Density of Signs II and III 

 

Sign II is 24”´24” in size and Sign III (consisting of two signs) has 30”´30” and 30”´18” 
dimensions (Figure 25). When divided by the number of points, the point densities are 416 
points/ft2 and 550 points/ft2, respectively.  

3.4 Traffic sign extraction 

The traffic sign extraction procedure described in Figure 8 in Section 2.2 is applied to the merged 
subsets. First, Subset 16, where various signs were observed, was tested. 
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Figure 26. Ground Truth Signs In Subset 16 

 

Figure 27. Extracted Signs, Subset 16 

 

Figure 26 shows manually identified signs, and Figure 27 shows extracted traffic signs using 
intensity-based extraction.  
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Figure 28. Display of KML Files on Google Earth Pro of Subsets 10–20 

 

The coordinates of the MTLS point clouds are in the State Plane Coordinate System (SPCS), 
California Zone 6, in survey feet. To be able to place extracted signs on Google Earth Pro, it is 
necessary to convert SPCS to geographic latitudes and longitudes (Figure 28). 

Figure 29. Front View of Extracted Traffic Signs and  
Traffic Signals in Subsets 10–20 
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Figure 30. Side View of Extracted Signs and Traffic Signal in Subset 10–20 

 

Figures 29 and 30 show the results of processing 10 subsets, subset 11 to subset 20. A total of 57 
signs are extracted.  

Table 1. Traffic Sign Extraction Results, Subsets 11–20 

 

Table 1 shows existing signs and extracted signs for the subset 11–20. There are 28 traffic signs in 
total, and all the signs were extracted. The column “Extracted features” indicates the number of 
features extracted, which include: (1) points on a vehicle, (2) traffic signals, and (3) miscellaneous, 
such as a water tank on the road median.  

  

Existing
 Signs

Extracted
 Features

Extracted 
Signs Vehicle

Traffic 
Signals

Misc 
(Water 
Tank)

Sign 
Success

Subset 11 1 1 1 100
Subset 12 2 3 2 1 100
Subset 13 2 2 2 100
Subset 14 4 4 4 100
Subset 15 0 0 0 100
Subset 16 5 8 5 2 1 100
Subset 17 8 18 8 1 8 1 100
Subset 18 1 1 1 100
Subset 19 3 3 3 100
Subset 20 2 2 2 100

Total 28 42 28
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Figure 31. Colors on Traffic Signs 

 

When black and white paint occurs on signs, it is observed that black paint reflects less intensity 
back, whereas high intensity is reflected back from white paint. In this case, the shape, such as the 
shape of arrows or often letters, can be identified. Note that the intensity of red paint is similar to 
white paint. Figure 31 (A) and (B) show a “no-left turn/no U-turn” sign. It is seen that the black-
colored arrow has low intensity, providing a visually identifiable shape. (C)/(D) and (E)/(F) are 
“one-way” signs that have only black and white colors with large letters on them. The density of 
400–500 points/ft2 on the sign is enough to read it.  
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4. Summary and Conclusion 
This research explores the detection of traffic signs using Mobile LiDAR point cloud data. The 
intensity-based sign extraction method effectively identifies traffic signs, traffic signals, and other 
retro-reflective objects, offering valuable insights for transportation asset management. The 
workflow initiates with the management of the LAS dataset, involving tasks such as 
merging/splitting, gridding, and detecting high-intensity features. Subsequently, the identified 
signs are placed in Google Earth Pro, facilitating their seamless display in Geographic Information 
Systems (GIS). 

This study delves into the analysis of point density, establishing a connection with potential grid 
resolutions that allow for additional extraction or analysis, such as road condition assessments or 
crack detection. 

In addition, the research investigates deep learning point classification and Hough transformation 
plane detection (see the Appendices). The outcomes and limitations of these approaches are 
summarized. 

While detecting and localizing the traffic signs in this study show promising results, it lacks the 
ability to identify signs. Simply, point cloud solely doesn’t provide a way to read the signs. This 
limitation comes from the characteristics of point cloud and necessitates the use of image (or video) 
data for future work. 
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Appendix A 
Appendix A summarizes 1) line and plane detection from point cloud data using Hough 
Transformation and 2) the Visual C++ program that reads, writes, thresholds by elevation and 
intensity values, and detects planes.  

Hough Transform for 2D Line Detection: 

Using the parametric line equation: 

𝑟 = (𝑥 − 𝑥𝑐)𝑐𝑜𝑠𝜃 + (𝑦 − 𝑦𝑐)𝑠𝑖𝑛𝜃 

𝑟 − 𝑟𝑜	 = 	𝑥	𝑐𝑜𝑠	𝜃	 + 	𝑦	𝑠𝑖𝑛	𝜃 

𝑟𝑜 = 	𝑥𝑐	𝑐𝑜𝑠𝜃 + 𝑦𝑐	𝑠𝑖𝑛𝜃 --- (A1) 

Figure 32. 2D Hough Transformation Space 

 

The 2D Hough Space is defined as (𝜃, 𝑟)	space.  

3D Hough Transform for Plane Detection: 

Planes are commonly represented by the following parametric equations: 

𝐴𝑋 + 𝐵𝑌 + 𝐶𝑍 + 𝐷	 = 	0  --- (A2) 

Or: 

𝑍 = 𝑚#	𝑋	 +	𝑚%	𝑌	 + 	𝜌 --- (A3) 

𝜌 = 𝑋	𝑐𝑜𝑠	𝜃	𝑠𝑖𝑛	𝜑	 + 	𝑌	𝑠𝑖𝑛	𝜃	𝑠𝑖𝑛	𝜑	 + 	𝑍	𝑐𝑜𝑠	𝜑	--- (A4) 
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Where: 

𝜌 : signed distance to the origin of the coordinate system 

𝑚#	: slope in x-axis direction 

𝑚%	: slope in y-axis direction 

X, Y, Z: Cartesian point coordinates 

𝜃: The angle of the normal vector on the xy-plane 

𝜑: The angle between the xy-plane and the normal vector in the z direction 

The 3D Hough Space is defined as (𝜃, 𝜑, 𝜌)	space. 

Figure 33. Example of Plane Detection Using Hough Transformation 

 
Traffic Sign I 

 

 
 
 

 

 
Traffic Sign II 

 

 

 

 
The algorithm was effective when the 3D point cloud was defined with bounded intensity and 
elevation. Otherwise, multiple planes interfere with each other.  

Future work such as least squares adjustment for the 3D point cloud fit for the 3D plane will 
improve the results and minimize the noise of the results. Also, line intersection between planes 
will help define the traffic sign region. 
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Figure 34. Traffic LAS Visual C++ Program 

 

A Visual C++ program was developed to evaluate the potential of using LIDAR intensity to detect 
traffic signs (Figure 34). The main features of the program are as follows: 

• Read LAS files; 

• Write LAS files; 

• Set up LiDAR intensity range; 

• Set up 3D point cloud elevation range; and 

• Detect 3D point clouds that form planes. 

Future work: 

• 3D point cloud least squares adjustment for the 3D plane; 

• 3D plane intersection to define the traffic sign boundary; 

• Integrate the RGB camera data with the LIDAR intensity; and 

• Use RGB data with LiDAR intensity to enhance the traffic sign detection algorithm and 
use it for sign classification. 
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Appendix B 
In this study, Deep Learning using PointNet++ in MATLAB to classify road points was tested.  

PointNet++ 

PointNet represents a deep-learning model designed for processing point cloud data, exhibiting 
proficiency in three distinct classification tasks: classification, part segmentation, and semantic 
segmentation. In the context of classification, PointNet excels at categorizing objects into specific 
groups, distinguishing, for instance, between individuals and vehicles. Part segmentation involves 
dissecting a singular object into its various components, exemplified by the ability to identify 
windows, tires, and bodies when classifying a car. Semantic segmentation, akin to part 
segmentation, deals with point clouds lacking clear boundaries; however, it is specifically applied 
to categorize elements within the background environment. This includes identifying features such 
as traffic lights, asphalt roads, sidewalks, and vegetation. 

Point Cloud Data Pre-Processing 

CloudCompare, open-source point cloud processing software, was used to test PointNet 
classification. Multi-lane data were combined into one file. This helps minimize gaps in the data. 

Most of the point cloud classification research uses Airborne point cloud data. Airborne point 
cloud data has the advantage that it can cover an area quickly and with spatial consistency, but it 
sacrifices details. On the other hand, Mobile LiDAR data can provide better details but the point 
distribution and density vary. Viewing angle from a vehicle also has adverse effects on manually 
making a training dataset for Deep Learning. Large file size also limits using PointNet as it is. 
Therefore, outliers are manually filtered and points are averaged so that similar point density is 
maintained over the test area. Below is the summary method of pre-processing the point cloud 
data. 

1. Combine point cloud files using CloudCompare. 

2. Average point cloud density using ‘Remove Duplicate Point Cloud’ with a minimum 
distance of 0.05 ft. 

3. Delete insufficient point cloud data in the file. 

An example is shown in Figure 35. The left image is an example of what needs to be deleted. The 
right image is an example of what remains after deleting all the unnecessary data. 
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Figure 35. Example of Manual Filtering Pre-Process. Left Panel Indicates Area of  
Filtering and Right Panel Shows the Results After Filtering 

 

Classify data  

Define categories. 

• Use the segment function in CloudCompare to isolate point clouds based on the defined 
categories. It is hard to isolate a clean object. It usually requires users to repeat this process 
many times from different points of view until a clear object from the environment has 
been achieved. 

• Mark all the point clouds with a value under the SF label Classification. This value 
represents the category (or class) of the point cloud. 

Figure 36. Example of Manual Definition of Categories. Traffic Light and Pole are  
Delineated and Labeled 
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Coding Configuration 

PointNet was originally implemented in Python. Some of the components need to be run on the 
Linux system. MATLAB has a copy version of PointNet++ that can run on the Windows 
operating system. For more detail please reference the example Aerial LiDAR Semantic 
Segmentation Using PointNet++ Deep Learning https://www.mathworks.com/help/lidar/ug/aerial-
lidar-segmentation-using-pointnet-network.html .  

The details and the key terms will be explained. The code in Semantic Segmentation Using 
PointNet++ Deep Learning can be broken down into seven parts. Load Dayton Annotated LiDAR 
Earth Scan (DALES) Data, Pre-Process Data, Create Datastore Object for Training, Define 
PointNet++ Model, Specify Training Options, Train Model, Segment Aerial Point Cloud, and 
Evaluate Network. 

The first code is Load DALES Data. This is the code that will load the point cloud file and display 
the classification. If the file or the classification cannot be displayed, it indicates the file is not in a 
format that the code can read. This needs to be fixed before proceeding. There are variables that 
are important in Load DALES Data. They are dataFolder, trainDataFolder, testDataFolder, and 
classNames. The variable dataFolder is the directory that includes the other two folders 
trainDataFolder and testDataFolder. trainDataFolder is the directory that includes all the labeled 
data sets that can be used for the training. testDataFolder is the folder that includes other sets of 
labeled data that can be used to verify the model. className is the label for the classifications. If 
everything is correct, the result should display the classified point cloud data. An example is below 
(Figure 37). If the label of the color is not correct, try to inverse the order of the classNames. 

Figure 37. Labeled Point Cloud Data Sets in MATLAB 

 

The second code, Pre-Process Data, in the Matlab example has a variable named blocksize. The 
code will process one file at a time but point cloud file is usually large and will take a lot of memory. 
The solution to this is to separate one large file into many small blocks. The variable ‘blocksize’ is 
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used to define the block size. For a regular ground surface point cloud, the Z direct size is usually 
infinity. Users only need to define the X and Y dimensions. For example, to define an area of 51 
times 51 will be blocksize = [51 51 Inf]. 

For the code, Create Datastore Object for Training, Define PointNet++ Model, and Specify 
Training Options, nothing needs to be changed. 

At code, Train Model, the boolean variable ‘doTraining’ decides the code operation. If variable 
doTraining is false, it will load the model and perform segmentation on the test data set and return 
the statistic of its accuracy. If variable doTraining is true, it will use training datasets to train a new 
model.  

Analysis 

Our classification includes seven categories. They are Others, Vehicle, Asphalt_Road, 
Traffic_Sign, Sign_on_TL, Traffic_Light, and Lamp. We feed six files to train the model. Figures 
38 to 40 show the results we obtained from the training, whereby IoU (Intersection over Union) 
is a performance metric commonly used in object detection. 

Figure 38. Trained Result Based on Our Labeled Data 1 
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Figure 39. Trained Result Based on Our Labeled Data 2 

 

 

Figure 40. Trained Result Based on Our Labeled Data 3 

 

Upon analyzing the statistical outcomes, it is evident that PointNet++ is effective. Notably, the 
segmentation of asphalt roads achieves the highest accuracy, surpassing 80% according to 
verification statistics. However, the accuracy of other categories appears to be less consistent, 
possibly attributed to insufficient training data. This observation aligns logically with the fact that 
asphalt roads constitute a significant portion of the point cloud data, resulting in a larger pool of 
training data compared to other categories.  

Conclusion 

In conclusion, PointNet++ demonstrates effectiveness when sufficient training data is available, 
leading to accurate results. However, it does have certain limitations. Achieving a 95% accuracy 
level necessitates a substantial amount of training data. Additionally, the program only supports 
training in a single session and lacks the capability to incrementally train a new model based on an 
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existing one with a new dataset. Given the reliance on extensive data, this limitation can pose 
challenges. 

For future enhancements, it is recommended that the program be updated to allow users to train 
a new model based on the progress of the old model with new datasets. Another potential 
improvement involves tailoring the deep learning model to better suit road environments, aiming 
to deliver accurate results with a reduced dependency on extensive training data. 
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Founded in 1991, the Mineta Transportation Institute (MTI), an organized research and training unit in partnership with the Lucas 
College and Graduate School of Business at San José State University (SJSU), increases mobility for all by improving the safety, 
efficiency, accessibility, and convenience of our nation’s transportation system. Through research, education, workforce development, 
and technology transfer, we help create a connected world. MTI leads the Mineta Consortium for Transportation Mobility (MCTM) 
and the Mineta Consortium for Equitable, Efficient, and Sustainable Transportation (MCEEST) funded by the U.S. Department of 
Transportation, the California State University Transportation Consortium (CSUTC) funded by the State of California through 
Senate Bill 1 and the Climate Change and Extreme Events Training and Research (CCEETR) Program funded by the Federal Railroad 
Administration. MTI focuses on three primary responsibilities:

MINETA TRANSPORTATION INSTITUTE

Research
MTI conducts multi-disciplinary research focused on surface 
transportation that contributes to effective decision making. 
Research areas include: active transportation; planning and policy; 
security and counterterrorism; sustainable transportation and 
land use; transit and passenger rail; transportation engineering; 
transportation finance; transportation technology; and 
workforce and labor. MTI research publications undergo expert 
peer review to ensure the quality of the research.

Education and Workforce Development
To ensure the efficient movement of people and products, we 
must prepare a new cohort of transportation professionals 
who are ready to lead a more diverse, inclusive, and equitable 
transportation industry. To help achieve this, MTI sponsors a suite 
of workforce development and education opportunities. The 
Institute supports educational programs offered by the Lucas 
Graduate School of Business: a Master of Science in Transportation 
Management, plus graduate certificates that include High-Speed 
and Intercity Rail Management and Transportation Security 
Management. These flexible programs offer live online classes 
so that working transportation professionals can pursue an 
advanced degree regardless of their location. 

Information and Technology Transfer
MTI utilizes a diverse array of dissemination methods and 
media to ensure research results reach those responsible 
for managing change. These methods include publication, 
seminars, workshops, websites, social media, webinars, 
and other technology transfer mechanisms. Additionally, 
MTI promotes the availability of completed research to 
professional organizations and works to integrate the 
research findings into the graduate education program. 
MTI’s extensive collection of transportation-related 
publications is integrated into San José State University’s 
world-class Martin Luther King, Jr. Library.

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the information presented herein. 
This document is disseminated in the interest of information exchange. MTI’s research is funded, partially or entirely, by grants from the U.S. 
Department of Transportation, the U.S. Department of Homeland Security, the California Department of Transportation, and the California 
State University Office of the Chancellor, whom assume no liability for the contents or use thereof. This report does not constitute a standard 
specification, design standard, or regulation.
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