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Executive Summary  
Commercial Motor Vehicles (CMVs) play a crucial role in the movement of goods, serving as a 
fundamental driver of the national economy. Nonetheless, the growing incidence of CMV 
accidents has raised concerns regarding road safety, emphasizing the need for a comprehensive 
examination of the underlying factors. Many studies identify roadway pavement condition as a 
potential factor that significantly impacts the frequency of accidents.  

This report presents the findings of a study that investigated the influence of pavement conditions, 
specifically the conditions measured by the International Roughness Index (IRI) and Pavement 
Condition Index (PCI) that serve as indicators of road quality and deterioration, on CMV crash 
severity in Washington, DC. Furthermore, the study evaluated the CMV crashes that occurred 
exclusively on the DC CMV routes within the years 2015–2020 with additional focus on crashes 
on DC interstate roadways. For this purpose, generalized linear models as well as machine learning 
techniques (Artificial Neural Network) were employed to model the complex relationships 
between road pavement conditions and CMV crash severity.  

e study utilized traffic crash data from the Traffic Accident Reporting and Analysis Systems 
Version 2.0 (TARAS2) database and pavement condition data maintained by the District 
Department of Transportation (DDOT) in the District of Columbia. TARAS2 contains various 
data fields that include vehicle characteristics, environmental conditions, roadway characteristics, 
traffic exposure characteristics, as well as crash location, date, time, crash type, crash severity, and 
information on the individuals involved in the crashes. e project team looked at the recent IRI 
data for the years 2016, 2017, 2019 and 2021, which were provided by officials at DDOT. DDOT 
collects pavement condition data using state-of-the-art imaging technology on more than 
4,300 lane miles of pavement surface annually on most parts of the roadway network. 

To understand the key characteristics of the dataset, descriptive statistics such as the mean, median, 
and frequency of the variables were computed and are included in the analysis results. e project 
team computed the descriptive statistics for all crashes and separately for crashes that occurred on 
interstate routes only. e spatial distribution and density of crashes were analyzed using the 
ArcGIS Pro software program.  

Binary logistic regression was utilized to investigate the link between a binary dependent variable 
and independent variables (specifically on interstate routes). In this study, the dependent variable 
signifies injury presence in CMV crashes, while the independent variables encompass several 
factors. is model yields separate coefficient estimates for each independent variable, explaining 
their correlation strength and direction with injury probability. Finally, Artificial Neural 
Network (ANN) models were developed to demonstrate varying degrees of success in classifying 
injury outcomes following a CMV crash.  
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e results of logistic regression to find the likelihood of injuries following an interstate CMV 
crash indicated that the best-performing model was not statistically significant, χ2(8) = 13.373, 
p < 0.1. However, the model explained 41.1% (Nagelkerke R2) of the variance in injury prediction 
and correctly classified 78.9% of CMV crash occurrences. is model contained both the IRI and 
PCI datapoints as independent variables. 

e ANN results showed that after the training of the developed models and evaluating them with 
the test dataset, their accuracy ranged between 46% to 60%. One of the models (Model No. 7) 
produced the best classification with an accuracy of 60%, F-measure (0.52), and sensitivity (0.47). 
Another model (Model No. 5) was found to be the most precise model with a precision of 0.67.  

ese outcomes emphasize the influence of road pavement conditions in shaping CMV crash 
severity. e study not only sheds light on the correlation between road pavement conditions and 
CMV crash occurrences but also determines the practical implications for road safety measures. 
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1. Introduction 
Road safety is a critical concern for any country, as traffic crashes can lead to significant human, 
property, and economic losses. In the United States, Commercial Motor Vehicles (CMVs) play a 
vital role in the transportation of goods and are an essential part of the nation's economy. However, 
the increasing number of CMV crashes raises concerns about road safety and necessitates an in-
depth analysis of the contributing factors. Roadway pavement conditions have been identified in 
multiple studies as a potential critical variable that influences the occurrence of crashes. 

The International Roughness Index (IRI) and Pavement Condition Index (PCI) are widely 
recognized and standardized measures used to assess the condition of road pavements. The IRI 
quantifies the roughness of a road surface based on iterative assessments using computer 
algorithms, whereas the PCI provides a subjective rating of pavement condition based on distresses 
such as cracks, potholes, and rutting. Both these indices serve as indicators of road quality and 
deterioration, directly impacting the safety and performance of CMVs. 

On average, CMVs account for approximately 15% of the total traffic volume in the District of 
Columbia (DC). Trucks and buses make up approximately 5% and 10% of the overall traffic in 
DC, respectively. Crashes involving CMVs, such as trucks or buses, resulting in fatalities, injuries, 
property damages, or the need for a tow, are required to be reported to the Federal Motor Carrier 
Safety Administration. In 2020, truck and bus accidents accounted for nearly 8% of all reported 
crashes (including fatal, non-fatal, and property damage only incidents), based on vehicle 
classification in DC. 

This report presents the findings of a study investigating the influence of road pavement 
conditions, as measured by the IRI and PCI, on CMV crashes in the District of Columbia. By 
analyzing and interpreting comprehensive data sets, this study aims at determining patterns, 
correlations, and potential causal relationships between pavement conditions and CMV crash 
occurrences. The report presents various models designed to predict crash severity, based on 
roadway pavement condition alongside other relevant factors. 

1.1 Objective 

The primary objective of this report is to analyze the influence of roadway pavement conditions, 
specifically the conditions measured by IRI and PCI, on CMV crashes in the United States. To 
achieve this, generalized linear models were employed as well as machine learning techniques as 
powerful computational tools to model the complex relationships between road pavement 
conditions and crash severity. The research objectives are: 

1. Obtain and analyze relevant data related to CMV crashes, road pavement conditions (IRI 
and PCI), and other relevant variables from the District Department of Transportation. 
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2. Identify significant patterns and correlations between road pavement conditions and CMV 
crashes, shedding light on the extent of their influence on road safety. 

3. Develop and train models to predict CMV crash occurrences based on road pavement 
conditions and other contributing factors. 

Ultimately, the research endeavors are to offer insights and recommendations to policymakers and 
the transportation community to promote safer roads, reduce CMV crash rates, and enhance 
transportation infrastructure for the benefit of all road users. 

1.2 Report Organization 

This report is divided into six sections. Excluding the introduction, these are: 

Section 2: Literature Review – A review of the existing literature and studies related to road safety, 
CMV crashes, road pavement conditions, and applications of machine learning techniques in 
transportation research. 

Section 3: IRI, PCI and CMV Crash Data – A narrative of the data sources and the processing 
techniques applied to prepare the data for analysis and modeling. 

Section 4: Methodology – An explanation of the applied generalized linear model and machine 
learning techniques, model selection, training procedure, and evaluation metrics used to determine 
the relationship between road pavement conditions and CMV crash occurrences. 

Section 5: Results and Analysis – A presentation of the findings and thorough analysis of the 
influence of road pavement conditions on CMV crash events. 

Section 6: Discussion – A discussion of the implications of the results, potential contributing 
factors, and limitations of the study. 

Section 7: Conclusion and Recommendations – A summary of the key findings and their 
implications for road safety, along with recommendations for policymakers and future research 
directions. 
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2. Literature Review 
The increasing concern about crashes involving heavy trucks, especially CMVs, has emerged as a 
critical issue for traffic safety practitioners. In the United States, the number of registered vehicles 
reached an astounding 276,491,174 in 2019, with large trucks and buses comprising approximately 
5% (14,080,676 vehicles) of this total. Regrettably, CMVs are responsible for a significant number 
of crashes resulting in injuries and fatalities on roadways, and account for about 5% of all 
police-reported crashes nationally. 

Statistics from 2016 to 2020 reveal a worrisome trend. While the number of injury crashes 
involving large trucks and buses decreased by 4% during this period (112,000 in 2016 to 108,000 
in 2020), the number of fatal crashes involving these vehicles increased by 5% (4,396 in 2016 to 
4,588 in 2020). In the District of Columbia, on average, CMVs contribute about 15% of the traffic 
volume. In 2020, truck and bus crashes constituted nearly 8% of all accidents in the DC area, 
including fatal, non-fatal, and property damage cases, underscoring the ongoing significance of 
CMV-related crashes as a critical traffic safety concern in the District.1 This trend of CMV crash 
occurrence does not comply with the DDOT’s Vision Zero Goal, which prioritizes human life and 
health and having zero fatalities (and serious injuries) on the road every year.  

The continuing trend of CMV crashes could potentially have safety implications for the supply 
chain system, which is already under strain due to the COVID-19 pandemic. With the economy 
gearing towards post-pandemic recovery, it is imperative to prioritize the efficient and secure 
management of CMVs. As a result, researchers and practitioners across different domains, 
including academia, industry, and government, have investigated CMV crashes with the goal of 
providing measures to mitigate the risks associated with CMVs.  

2.1 CMV Crash Severity Statistics 

The National Highway Traffic Safety Administration (NHTSA) conducted an in-depth 
investigation into injury and death rates associated with crashes involving large CMVs, aiming to 
provide comprehensive insights into the prevailing safety concerns. Per the final report, the leading 
cause of death for individuals aged 3 to 33 in the United States is motor vehicle crashes.2 Another 
NHTSA report published in 2015 revealed that while motor vehicle crashes ranked 13th overall 

 
1 “U.S. Gross Domestic Product (GDP) Attributed to Transportation Functions,” Bureau of 
Transportation Statistics, https://www.bts.gov/content/us-gross-domestic-product-gdp-
attributed-transportation-functions-billions-current-dollars. 
2 “Rural/Urban Comparison of Traffic Fatalities,” Traffic Safety Fact Sheets: 2020, U. S. 
Department of Transportation, National Highway Traffic Safety Administration’s (NHTSA) 
National Center for Statistics and Analysis, (July 2022). 
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as a cause of death, when categorized according to unintentional injury deaths, they rank in the 
more alarming position of being the second leading cause of death.3 

A net decrease in deaths across several areas was observed by NHTSA in 2018; however, there was 
an unsettling increase in large-truck occupant fatalities. The 33,654 fatal motor vehicle crashes 
resulted in 36,560 fatalities. It is particularly noteworthy that urban areas accounted for 
18,285 (54%) of the fatal traffic crashes and 19,498 (53%) of the fatalities, signifying a 34% 
increase in urban fatalities from 2009 to 2018. During the same period, there was a 15% decrease 
in rural fatalities.ii Conversely, crashes involving large trucks and buses experienced a substantial 
increase of 48% in fatalities within the same period. Furthermore, based on the Large Truck and 
Bus Crash Fact report, injury-related crashes involving large trucks and buses surged by 70% 
between 2009 and 2018. Moreover, large truck and bus fatalities per 100 million vehicle-miles 
traveled increased by approximately 8% from 2016 to 2018.4 These findings emphasize concerning 
trends in crash-related fatalities involving large commercial motor vehicles and underscore the 
need for continued vigilance and targeted safety measures to effectively mitigate such risks on the 
nation's roads. 

2.2 International Roughness Index 

The quality of road pavements plays a crucial role in ensuring safe and efficient transportation 
systems. The IRI is a known accurate and practical method for measuring pavement surface 
condition and is essential for maintaining and improving roadways. It serves as a uniform, 
calibrated roughness measurement of paved roads and is used to achieve nationwide consistency 
and comparability in pavement assessment. In accordance with American Society for Testing and 
Materials E867, roughness is defined as the deviation of a surface from a true planar surface with 
dimensions impacting vehicle dynamics and ride quality. The IRI is measured in meters/kilometer 
(or inches/mile) and is a preferred measure of roughness due to several advantages. Using IRI helps 
ensure that measurements of road roughness are reliable, meaningful, and compatible with 
international practices. IRI provides a stable and repeatable way to process road surface data, hence 
the results are credible over time. It also presents a good overall picture of how roughness affects a 
vehicle’s handling and how drivers feel while driving on the road. IRI can be used effectively 
regardless of the length of road being measured, and it's easy to calculate an average value. Lastly, 
the IRI aligns with established international standards, facilitating its correlation with other 
roughness measures. By adopting the IRI as the standard roughness index, federal agencies ensure 

 
3 “Motor Vehicle Traffic Crashes as a Leading Cause of Death in the United States: 2015,” U. S. 
Department of Transportation, NHTSA, (2018). 
4 "Pocket Guide to Large Truck and Bus Statistics 2018," United States Department of 
Transportation, Federal Motor Carrier Safety Administration, Office of Analysis, Research, and 
Technology, August 18, 2018, https://doi.org/10.21949/1502788. 



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  7 

a realistic and practical approach to measuring pavement conditions, with significant implications 
for roadway quality and safety.5 

Figure 1. Vehicle Equipped with IRI Measuring Instruments 

 

2.3 Relation of the IRI to Road Crashes 

Several studies have investigated the relationship between the IRI and crashes to understand how 
road roughness affects traffic safety. This section provides an overview of these studies.  

Elghriany et al. (2015) conducted a study to investigate the relationship between the IRI and crash 
rates over time, considering changes in pavement conditions. They compiled and analyzed data 
from various sources in Ohio, utilizing a statistical analysis approach. The study found that a 
quadratic relationship was most effective in linking crash rates with pavement roughness. The 
study suggests that an IRI value of approximately 1.50 m/km indicates a safe roadway, while values 
above 2.25 m/km suggest a roadway susceptible to much higher crash rates.6 In a similar study, 
Mamlouk et al. (2018) investigated the correlation between crash rates and pavement ride quality 
(roughness) and rut depth on highways in Arizona, North Carolina, and Maryland. The 
researchers collected two main types of data: crash data and IRI and rut depth data from each 
state's pavement management system database. Crash rates were measured as the number of 
crashes per 100 million vehicle-miles of travel which were computed using the Federal Highway 

 
5 “HPMS Public Release of Geospatial Data in Shapefile Format,” U.S. Department of 
Transportation, Office of Highway Policy Information, 2018, 
https://www.fhwa.dot.gov/policyinformation/hpms/shapefiles.cfm. 
6 Ahmed Elghriany, Ping Yi, Peng Liu, and Quan Yu, “Investigation of the Effect of Pavement 
Roughness on Crash Rates for Rigid Pavement,” Journal of Transportation Safety & Security 8, no. 
2 (2016): 164–76, https://doi.org/10.1080/19439962.2015.1025458.  
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Administration’s methodology. To analyze the relationship between crash rate and both the IRI 
and rut depth, the researchers used sigmoidal function regression analysis. The findings indicated 
that the crash rate remained relatively stable until reaching an IRI value of 210 inches/mile or a 
critical rut depth of 0.4 inches. Beyond these thresholds, an increase in the IRI or rut depth 
corresponded to an increase in the crash rate.7 Levinson et al. (2019) utilized Geographic 
Information System (GIS) data on crashes and pavement quality from the Minnesota Department 
of Transportation to examine the relationship between road quality and crashes over a 12-year 
duration. The analysis revealed that good pavement quality generally reduces crash rates, and also 
that the frequency of injury/ property damage crashes increased on hillcrests, sags, and during wet 
conditions. Poor road quality is linked to more frequent property damage and injury crashes.8 Buck 
et al. (2021) analyzed data from multiple sources in California to assess road conditions and their 
impact on traffic outcomes, including crashes and vehicle speed. The researchers merged data on 
road quality, traffic conditions, crashes, weather, and geographical features. The results show a 
positive relationship between road roughness and crash rates, as well as a negative relationship 
between road roughness and speed. These findings suggest that rougher roads lead to reduced 
traffic safety and increased delays for motorists. The study highlights the need for site-specific 
planning for pavement maintenance to optimize safety and road quality.9 

Some studies, however, determined that there is no association of crashes with pavement 
condition. For example, Baskara et al. (2019) investigated the impact of pavement condition on 
the number of crashes on a Malaysian highway. The researchers found that more than 70% of 
accidents occurred on roads in good condition (low IRI value). It should be noted, though, that 
most of the subject highways in this study were in good condition.10 In Ontario, Canada, 
researchers assessed the impact of maintenance treatments on pavement condition, measured by 
the IRI, on road safety. They used the empirical Bayes before–after methodology to estimate the 
effects on crashes for arterial and collector roads separately. The results showed statistically 
significant reductions (P < 0.05) in all crashes and property damage only (PDO) crashes, with 
approximately a 5% and 7% reduction for arterial roads and approximately an 11% and 13% 
reduction for collector roads after treating the pavement (leading to better IRI), respectively. 

 
7 Micheal Mamlouk, Mounica Vinayakamurthy, Shane Underwood, and Kamil Kaloush, 
“Effects of the International Roughness Index and Rut Depth on Crash Rates,” Transportation 
Research Record: Journal of the Transportation Research Board 2672 (2018), 
https://doi.org/10.1177/0361198118781137. 
8 David Levinson, Toshihiro Yokoo, and Mihai Marasteanu, “Pavement Condition and 
Crashes,” Findings, February 15, 2019, https://doi.org/10.32866/5771.  
 

9 S. N. Baskara, H. Yaacob, M. R. Hainin, S. A. Hassan, N. Mashros, N. Z. M. Yunus, N. A. 
Hassan, et al., “Influence of Pavement Condition towards Accident Number on Malaysian 
Highway,” IOP Conference Series: Earth and Environmental Science 220, no. 1 (2019): 012008, 
https://doi.org/10.1088/1755-1315/220/1/012008. 
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However, there were no significant changes in fatal plus injury crashes for both road types. The 
findings highlight the importance of considering site-by-site planning for specific pavement 
maintenance treatments to improve both IRI levels and safety outcomes (Anarkooli et al.).11  

Although pavement conditions have been found to significantly influence the severity and 
frequency of crashes, their impact on CMVs is not as pronounced as it is for passenger vehicles.13 
This could be attributed to the fact that CMVs are generally less sensitive to pavement conditions 
compared to most passenger vehicles.14 Moreover, CMV drivers typically perform maneuvers more 
proactively and avoid sudden actions, unlike passenger vehicle drivers. It is also worth noting that 
pavement conditions have minimal impact on freeway crashes. This finding is likely due to the 
well-maintained nature of most freeway pavements, and the dataset used for analyzing freeway 
crashes does not exhibit significant variation in terms of pavement quality.xii Further research is 
required to gain more insight into how pavement conditions directly translate to CMV safety. 

2.4 Other Crash Contributing Factors 

The studies mentioned above primarily focused on the impact of IRI values on crashes. However, 
numerous other research works have identified several factors contributing significantly to CMV 
crashes. Thus, it is evident that no single set of factors can be solely responsible for these incidents. 
The factors contributing to CMV crashes encompass human elements, environmental conditions, 
temporal characteristics, vehicle condition, and more. For instance, one study revealed that 
temporal characteristics, driver/passenger attributes, and road and environmental factors had the 
most influence on large truck crashes.15 Another study also identified human error or driver 

 
10 Jafari Anarkooli, Iliya Nemtsov Alireza, and Bhagwant Persaud, "Safety Effects of 
Maintenance Treatments to Improve Pavement Condition on Two-Lane Rural Roads—Insights 
for Pavement Management," Canadian Journal of Civil Engineering 48, no. 10 (2021): 1287–
1294. 
11 Margaret Bock, Alexander Cardazzi, and Brad R. Humphreys, “Where the Rubber Meets the 
Road: Pavement Damage Reduces Traffic Safety and Speed,” NBER Working Papers (2021).  
12 Yingfeng Li, Chunxiao Liu, and Liang Ding, “Impact of Pavement Conditions on Crash 
Severity,” Accident; Analysis and Prevention 59 (2013): 399–406, https://doi.org/ 
10.1016/j.aap.2013.06.028. 
13 Sikai Chen, Tariq Usman Saeed, and Samuel Labi, “Impact of Road-Surface Condition on 
Rural Highway Safety: A Multivariate Random Parameters Negative Binomial Approach,” 
Analytic Methods in Accident Research 16 (2017): 75–89, https://doi.org/ 
10.1016/j.amar.2017.09.001. 
14 Mouyid Islam, and Salvador Hernandez, “Large Truck-Involved Crashes: Exploratory Injury 
Severity Analysis,” Journal of Transportation Engineering 139, no. 6 (2013): 596–604, 
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000539.  
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behavior as the foremost contributors of CMV crashes.16 Deliberate actions, such as speeding and 
the failure to comply with right-of-way rules, have also been recognized as common contributors 
to CMV crashes.17 It is important to acknowledge that each location or jurisdiction has its unique 
characteristics that impact the occurrence and nature of CMV crashes. The following paragraphs 
provide summaries of various studies that have been conducted to identify the other significant 
causes of CMV crashes.  

Human factors, including demographic, behavioral factors and physiological factors, contribute to 
crashes. The American Transportation Research Institute Crash Predictor Report utilized data 
from the Motor Carrier Management Information System and the Commercial Driver's License 
Information System to forecast the likelihood of future truck crashes. The updated 2018 report 
includes an examination of the impact of a driver’s age and gender on the probability of violations, 
crashes, and convictions. The findings reveal that drivers with reckless driving and failure to yield 
violations face a higher risk of crashes. Additionally, prior convictions for failures to signal and 
failures to stay in the proper lane are linked to increased crash probability. The report also indicates 
that drivers with a history of past crashes have a 74% higher likelihood of experiencing a future 
crash. Moreover, the report highlights that male drivers and those younger than 40 or older than 
85 are more prone to being involved in crashes. In another study, the researchers examined the 
connection between crash rates and the sociodemographic characteristics of the zip codes where 
at-fault drivers lived, focusing on crashes involving CMVs and automobiles separately. They 
discovered that various socioeconomic factors, such as household income, education level, poverty 
level, employment status, driver's age, and rurality, played a significant role in predicting at-fault 
involvement in CMV-related crashes.18 

Other studies have linked environmental conditions to CMV crashes. One such study conducted 
by Nail et al. (2016) investigated the impact of weather-related elements on injury severity in 
single-vehicle truck crashes. They analyzed 1,721 police-recorded single-vehicle truck crashes in 
Nebraska. The findings revealed that injury severity in single-vehicle truck crashes was influenced 
by wind speed, rain, humidity, and air temperature. Specifically, higher wind speeds were 
associated with increased injury severity. Additionally, rain and warmer air temperatures were 

 
15 Majbah Uddin, and Nathan Huynh, “Factors Influencing Injury Severity of Crashes Involving 
HAZMAT Trucks,” International Journal Transportation Science Technology 7, no. 1 (2018): 1–9, 
https://doi.org/10.1016/j.ijtst.2017.06.004. 
16 Sunanda Dissanayake, and Siddhartha Kotikalapudi, “Characteristics and Contributory Causes 
Related to Large Truck Crashes (Phase II) – All Crashes,” Res. Innov. Technol. Adm. (2012).  
17 Shraddha Sagar, Nikiforos Stamatiadis, Samantha Wright, and Aaron Cambron, “Identifying 
High-Risk Commercial Vehicle Drivers Using Sociodemographic Characteristics,” Accident 
Analysis & Prevention 143 (2020): 105582, https://doi.org/10.1016/j.aap.2020.105582. 
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linked to more severe crash injuries in single-vehicle truck accidents, while higher humidity levels 
were associated with less severe injuries.19 

Two significant factors affecting CMV crashes are vehicle size and weight and vehicle 
maintenance. Large CMVs, such as tractor-trailers and buses, are challenging to maneuver and 
take longer to stop, making them prone to rollover accidents. Studies have shown that CMVs 
involved in crashes are often heavier than non-crash-involved vehicles. Poor vehicle maintenance 
can also lead to crashes as it increases the likelihood of mechanical failures, such as faulty brakes, 
tire blowouts, and steering problems. 

2.5 Methodologies Used to Model CMV Crashes 

Crash modeling practices have been conducted using several methodologies, including spatial 
analysis, generalized linear modeling, and machine learning techniques. This section presents a 
summary of these three methodologies. 

Spatial Analysis of CMV Crashes: Crash spatial analysis is a process that involves the use of GIS 
and spatial analysis techniques to examine the spatial patterns and distributions of traffic crashes. 
It is a method used to study the locations and characteristics of crashes on road networks, highways, 
or specific regions. For example, Shafabakhsh et al. (2017) investigated accident patterns in 
Mashhad over a 12-month period (March 2011 to March 2012) using GIS-based geoprocessing 
and spatial temporal analysis methods. They employed kernel density estimation, neighbor 
analysis, and K-function to identify crash hotspots. The Spatial Analysis on a Network toolbox in 
the ArcGIS operational environment was used to analyze fatal, injury, and PDO crashes for the 
presence of clusters. The researchers geocoded crash incidents and examined the spatial 
distribution of crash data to determine if it followed a random pattern or exhibited a systematic 
clustered or regular pattern.20 Also, according to Zhao et al. (2018), Texas had had the highest 
number of fatal crashes involving large trucks in the United States since 1994. In response to this 
finding, the researchers decided to investigate the risk factors associated with Texas roadways to 
improve their safety and suitability for large trucks. To achieve this, they conducted a risk analysis 
using historical large-truck crash data from five years (2011 to 2015) obtained through the Texas 
Department of Transportation’s Crash Records Information System. The crash data were analyzed 

 
18 Bhaven Naik, Li-Wei Tung, Shanshan Zhao, and Aemal J. Khattak, “Weather Impacts on 
Single-Vehicle Truck Crash Injury Severity,” Journal of Safety Research 58 (2016): 57–65, 
https://doi.org/10.1016/j.jsr.2016.06.005.  
19 Gholam Ali Shafabakhsh, Afshin Famili, and Mohammad Sadegh Bahadori. “GIS-Based 
Spatial Analysis of Urban Traffic Accidents: Case Study in Mashhad, Iran,” Journal of Traffic and 
Transportation Engineering (English Edition) 4, no. 3 (2017): 290–299, 
https://doi.org/10.1016/j.jtte.2017.05.005.  
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using GIS, and a crash diagram was created to identify hotspots where similar large-truck crashes 
occurred frequently.21 

Generalized Linear Modeling (GLM) of CMV Crashes: GLM is a statistical framework used for 
modeling the relationship between a response variable and one or more predictor variables. It is a 
generalization of linear regression, allowing for more flexibility in handling data that may not meet 
the assumptions of traditional linear models. GLM can be applied to a wide range of data types 
and response distributions. Examples of GLMs include Binary Logistic Regression, Poisson 
Regression, and Multinomial Logistic Regression. Hao et al. (2016) examined the impact of injury 
severity in truck crashes on highway-rail crossing accidents. The authors employed an ordered 
probit model to analyze the factors influencing injury severity of truck drivers in highway-rail grade 
accidents. Two ordered Probit models were estimated based on vehicle type: one for the truck 
group and another for the non-truck group. The ordered Probit approach was chosen because the 
dependent variable had multiple categories (PDO, injury, and fatality) with a natural order. The 
study utilized ten years of crash data from the Federal Railroad Administration's accident database, 
starting in 2002. The results indicated that the injury severity models for truck and non-truck 
drivers differed significantly with a confidence level exceeding 99.5%.22 

Machine Learning Techniques in Modeling CMV crashes: In addition to conventional modeling 
approaches for crashes, numerous studies have delved into employing machine learning techniques 
to build crash prediction models. Traditional regression methods often rely on predefined 
assumptions, which may hinder their capacity to effectively capture and interpret the relationships 
between independent and dependent variables. Consequently, researchers have turned to machine 
learning techniques, specifically unsupervised learning, known for their ability to robustly identify 
patterns in unlabeled or unseen data and make predictions about future states or conditions. For 
example, Arhin and Gatiba (2019) employed Artificial Neural Networks (ANNs) to predict injury 
severity resulting from angle crashes at unsignalized intersections. Their study utilized a dataset of 
3,307 crashes that occurred between 2008 and 2015 to develop 25 distinct ANN models. The most 
accurate model achieved a rate of 85.62% accuracy and was constructed with three hidden layers 
containing 5, 10, and 5 neurons, respectively.23 While similar studies have explored the application 

 
20 Qun Zhao, Tyrie Goodman, Mehdi Azimi, and Yi Qi, “Roadway-Related Truck Crash Risk 
Analysis: Case Studies in Texas,” Transportation Research Record 2672, no. 34 (2018): 20–28, 
2018, https://doi.org/10.1177/0361198118794055.  
21 Wei Hao, Camille Kamga, Xianfeng Yang, JiaQi Ma, Ellen Thorson, Ming Zhong, and 
Chaozhong Wu, “Driver Injury Severity Study for Truck Involved Accidents at Highway-Rail 
Grade Crossings in the United States,” Transportation Research Part F: Traffic Psychology and 
Behaviour 43 (2016): 379–386, https://doi.org/ 10.1016/j.trf.2016.09.001. 
22 Stephen A. Arhin, and Adam Gatiba, “Predicting Injury Severity of Angle Crashes Involving 
Two Vehicles at Unsignalized Intersections Using Artificial Neural Networks,” Engineering, 
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of ANN to model crashes, few, if any, have specifically applied it to CMV crashes and the IRI 
within a highly urbanized setting. Further, Liu et al. (2022) explored the application of machine 
learning methods to predict the severity of large-truck crashes in the state of Texas using crash 
records from 2016 to 2019 obtained from the Texas Crash Records Information System. Six 
machine learning (ML) methods were selected for the prediction task, including four classification 
tree-based models (Extreme Gradient Boosting tree, Adaptive Boosting tree, Random Forest, and 
Gradient Boost Decision tree), and two non-tree-based models (Support Vector Machines and K-
Nearest Neighbors). The study compared the accuracy levels of all six methods, and the tree-based 
models demonstrated better performance than the non-tree-based ones. Among the six models, 
the Gradient Boost Decision tree showed the best prediction performance. While a wide range of 
ML techniques was employed, the study suggests that exploring other robust models such as tree-
based model ANNs could be beneficial.24 

Summary 

As the review of the literature attests, crashes involving CVMs continue to be a significant 
proportion of crashes in the United States. The IRI serves as a reliable method for measuring 
pavement surface condition and achieving nationwide consistency in pavement assessment. Several 
studies have explored the relationship between IRI values and crashes, revealing that higher IRI 
values are associated with roads susceptible to higher crash rates, while lower values indicate safer 
roadways. Generally, good pavement quality reduces crash rates. Further research is needed to 
understand how pavement conditions directly affect CMV safety. 

 
  

 
Technology & Applied Science Research 9, no. 2 (2019): 3871–80, 
https://doi.org/10.48084/etasr.2551. 
23 Jinli Liu, Yi Qi, Jueqiang Tao, and Tao Yueqing, “Analysis of the Performance of Machine 
Learning Models in Predicting the Severity Level of Large-Truck Crashes,” Future 
Transportation 2, no. 4 (2022): 939–55, https://doi.org/10.3390/futuretransp2040052. 
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3. Research Methodology 
This chapter of the report presents the methodology used in analyzing the influence of the IRI on 
CMV crashes that occur on designated CMV routes in the District of Columbia. Figure 2 shows 
an overview of the methodology. The details of each step are provided in the following sections of 
this chapter. 

Figure 2. Crash Analysis Methodology 
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3.1 Description of Study Jurisdiction 

This study is based on crash data and pavement condition data (IRI data) collected in DC, which 
is divided into four unequal quadrants: Northwest (NW), Northeast (NE), Southeast (SE), and 
Southwest (SW). DC consists of eight wards. As of 2020, the city's population was approximately 
689,545, which is a reduction of about 2.9% from the previous year (Census Bureau) (DC Policy).25 
This reduction is attributable to the movement of people out of the city due to the COVID-19 
pandemic. Highly urbanized, DC is ranked as the sixth most congested city in the United States, 
with each driver spending an average of 63 hours stuck in traffic annually. Covering an area of 
68.34 square miles, the city has a vast network of 1,503 miles of roads, comprised of local roads, 
collector roads, minor arterials, principal arterials, freeways, and interstates.27 It is concerning to 
note that the American Society of Civil Engineers' 2017 infrastructure report card reveals that 
around 95% of the roads in DC are in poor condition.28 Figure 3 presents a map of DC while 
Figure 4 presents the network of designated CMV routes in DC. 

  

 
24 “The District of Columbia Gained More Than 87,000 People in 10 Years,” American Counts 
Staff, United States Census Bureau, August 25, 2021, 
https://www.census.gov/library/stories/state-by-state/district-of-columbia-population-change-
between-census-decade.html. 
25 Sunaina Bakshi Kathpalia, "Charts of the Week: A Pandemic-Induced Exodus Has Broken 
the District’s Population Boom” D.C. Policy Center, March, 25, 2022, 
https://www.dcpolicycenter.org/publications/census-shows-pandemic-exodus-has-broken-dc-
population-growth/.  
26 “2016 District of Columbia Infrastructure Report Card,” ASCE, 2017, 
https://2017.infrastructurereportcard.org/state-item/district-of-columbia/. 
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Figure 3. Map of DC 

 

  

N 
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Figure 4. Designated CMV Routes in DC 

 

3.2 Crash and IRI Data Sources and Management 

Crash prediction models heavily rely on the data they are built upon, making the accuracy of these 
models contingent on the quality of available data. To ensure the development of a reliable model, 
this study utilized traffic crash data from the Traffic Accident Reporting and Analysis Systems 
Version 2.0 (TARAS2) database and pavement condition data maintained by the District 
Department of Transportation (DDOT) in DC. These data sources are described below.  

N 
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3.2.1 Crash Database (TARAS)  

The District of Columbia Metropolitan Police Department (DCMPD) electronically records 
traffic crash information at crash scenes using the Police Department Form number 10 crash 
reporting form. Subsequently, this crash data is transferred from the DCMPD to the DDOT's 
database through dedicated servers. In TARAS2, an Oracle-based application, the data is 
processed and made available for analysis. TARAS2 contains various data fields that can be broadly 
categorized into vehicle characteristics, environmental conditions, roadway characteristics, and 
traffic exposure characteristics, as well as crash location, date, time, crash type, crash severity, and 
information on the individuals involved in the crashes. For the purposes of this research, data was 
collected for CMV crashes that occurred on designated CMV routes from the years 2016 to 2020. 
Crash data were obtained in the form of GIS shapefiles.29  

3.2.2 Pavement Condition Data 

Recent IRI data for the years 2016, 2017, 2019, and 2021 were obtained from the DDOT for this 
study. The DDOT collects pavement condition data using state-of-the-art imaging technology on 
more than 4,300 lane miles of pavement surface annually on most parts of the roadway network. 
It should be noted, however, that data was not collected for the year 2018. IRI data were obtained 
in the form of GIS shapefiles. 

3.2.3 Crash and IRI Data Management 

To efficiently manage the data integration and analysis, the research team employed QGIS, an 
open-source geographic information system known for its powerful geospatial capabilities. The 
system is capable of handling various types of geographical data and performing spatial analysis. 
The crash data consist of point data while the pavement condition data consist of segment data. 
These two datasets were matched and aligned. Thus, the crash points/locations were superimposed 
on their corresponding mile sections of pavement condition data. The output of this process file is 
a comma-delimited file containing crash data merged with IRI data.  

3.2.4 Data Processing 

The data obtained from QGIS were further processed by identifying and removing duplicate and 
incomplete crash records as well as irrelevant data fields. It should be noted that the dataset 
contained CMV crashes on interstate and non-interstate CVM designated routes. There were two 
datasets that were obtained from the data processing. The first data set contains all crashes on both 
interstate and non-interstate CVM designated routes, while the second dataset contains crashes 
on interstate routes only. Literature has shown that the standard speed at which IRI data are most 

 
27 “Traffic Data,” Metropolitan Police, Washington, DC (n.d.), 
https://mpdc.dc.gov/page/traffic-data. 
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accurate is about 50 mph. This is because the IRI is sensitive to the same profile wavelengths that 
cause vehicle vibrations in normal highway conditions.30 Additionally, visual inspection of the data 
revealed several inconsistencies between PCI data and IRI data at low speeds (< 50 mph), 
corroborating the literature. Because of this, while the first dataset was used to understand the 
overall characteristics of CMV crashes, only the second dataset was used in model development, 
as explained in the following sections.  

3.3 Descriptive Statistics 

To understand the key characteristics of the dataset, descriptive statistics such as the mean, median, 
and frequency of the variables were computed and are included in the results of analysis. These 
statistics assist in interpreting the data before further analysis is conducted. Descriptive statistics 
were computed for all crashes and separately for CMV crashes that occurred on DC interstate 
routes only.  

3.4 Spatial Analysis 

The spatial distribution and density of crashes were analyzed using the ArcGIS Pro software 
program. ArcGIS Pro is a geographic information system tool used for creating maps with 
geographical data and for analyzing mapped information. The coordinates of each crash location 
are provided in the dataset. These coordinates, together with existing base maps/layers, were used 
to perform a spatial analysis, including a spatial distribution analysis of crashes based on injury 
severity and a kernel density analysis for injury crashes. 

3.5 Binary Logistic Regression 

Binary logistic regression is a statistical method employed to explore the relationship between a 
binary dependent variable and one or multiple independent variables. In the context of this study, 
the dependent variable is the occurrence or otherwise of an injury within CMV crashes, while the 
independent variables include multiple factors, which are described in the following subsection. 
Through the logistic regression model, distinct coefficient estimates are generated for each 
independent variable, indicating the strength and direction of the correlation between the predictor 
(independent variable) and the probability of injury (dependent variable). As explained in 
Subsection 3.2.4, only crashes that occurred on interstate routes were used for this statistical 
analysis. 

 
28 Michael W. Sayers, Thomas D. Gillespie, and Cesar A. V. Queiroz, The International Road 
Roughness Experiment: Establishing Correlation and a Calibration Standard for Measurements 
(University of Michigan, Ann Arbor: Transportation Research Institute, 1986).   
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3.5.1 Description of Variables 

The variables used to develop the models were chosen based on which predictors are identified as 
significant in previous literature. The crash severity (Injury/No Injury) following a CMV crash is 
the dependent variable, and the independent variables used in the study include the following: 

Month: The crash database contains records of CMV crashes occurring in every month for 
the 5-year period (2016–2020). The results have detailed the monthly crash frequencies. 

Period of the Day: For the purposes of the analysis, the time of reported crashes was 
categorized into five periods: AM Peak (6 AM–10 AM), Off Peak (10 AM–3 PM), 
PM Peak (3 PM–7 PM), Night (7 PM–12 AM), and Dawn (12 AM–6 AM).  

Day of the Week: This variable contains the day of the week on which a CMV crash 
occurred.  

Lighting Type: The status of the streetlights for every CMV crash record was categorized 
into four categories: on, off, other, and unknown. 

Lighting Condition: This variable describes the lighting conditions at the time of the CMV 
crash. These conditions are Daylight, Dark-Lighted, Dark-Not Lighted, Dawn, Dusk, 
Other, and Unknown. 

Road Condition: This variable describes the pavement condition at the time of the CMV 
crash. For the purposes of the study, two main pavement condition categories were 
identified: wet and dry conditions.  

Speed Limit: The CMV crash dataset contains the speed limit of the road at the crash 
location. These speed limits were segmented into three categories: low (≤ 25 mph), 
medium (25–55 mph), and high (> 55 mph). 

International Roughness Index (IRI): This is a numerical measure of the roughness of the 
road as measured with an instrumented vehicle.  

International Roughness Index (IRI) Category: This variable is a grouping of the PCI values 
into three categories, namely, rough, marginal, and smooth.  

Pavement Condition Index (PCI): This is a numerical index value ranging between 
0 and 100 indicating the general condition of the roadway pavement section on which the 
CMV crash occurred.  

Pavement Condition Index (PCI) Category: This variable is a grouping of the PCI values 
into five categories, namely, poor, fair, satisfactory, good, and excellent. 
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3.5.2 Model Evaluation for Binomial Regression Analysis 

The goodness-of-fit was used to assess the model’s predictive performance. Specifically, the 
Deviance and Pearson chi-square tests and the Hosmer-Lemeshow goodness-of-fit test were used 
to evaluate the regression model. 

Deviance and Pearson chi-square tests: 

The frequencies of the observed values and the predicted values were compared to determine the 
overall fit of the regression model. The deviance chi-square test measures the goodness-of-fit based 
on the difference between the observed and expected frequencies, while the Pearson chi-square 
test measures the goodness-of-fit based on the difference between the observed and expected 
frequencies divided by the expected frequencies. 

Hosmer-Lemeshow goodness-of-fit test: 

The goodness-of-fit indicates how well the data fits the model. In this test, the data sample is 
divided into multiple groups based on their predicted probabilities, after which the observed and 
expected frequencies are compared in each group. The chi-square obtained is evaluated to 
determine if the logistic regression model has a good fit. A large chi-square value indicates a poor 
fit while a small chi-square value indicates a good fit. 

3.6 Artificial Neural Network 

The concept of an Artificial Neural Network (ANN) is fundamental in machine learning. ANNs 
are inspired by the structure and function of biological neural networks in the human brain and 
are widely used for various machine learning tasks, including classification, regression, pattern 
recognition, and more. They consist of interconnected nodes, often referred to as neurons or units, 
organized into layers. Each neuron processes and transmits information to other neurons based on 
a set of learned weights and biases. The method by which the weights and bias levels of a network 
are updated is determined by the learning rule used, which in this study is the multilayer 
perceptron (MLP). The MLP basically consists of three layers: the input layer, the hidden layer, 
and the output layer. It is a feedforward learning rule in which information flows from the input 
layer through the hidden layer to the output layer to produce the outcome or results. The following 
steps provide a detailed description of how models for classifying CMV crash injury severity were 
developed using an ANN. 
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Step 1: Selection of Neural Network Architecture  

For the first step of the neural network training, a MLP feedforward ANN was set up with at least 
an input layer, a hidden layer, and an output layer. Each layer comprises interconnected nodes or 
neurons, and the hidden and output layer neurons possess nonlinear activation functions. The 
architecture also includes varying numbers of hidden layers and neurons, which were adjusted until 
the configuration which yielded the optimal results was obtained. Figure 5 is a depiction of the 
MLP ANN architecture used in developing the models. 

Figure 5. Multilayer Perceptron Artificial Neural Network Model  

 

Step 2: Training of Neural Network 

To train the neural network using backward propagation, the following sequence of sub-steps was 
followed. 
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Step 2a: Input of Training Dataset into the Network – The training dataset was imported into 
the network to begin training. The vector of independent variables was fed into each input 
neuron, which was then connected to the neurons of the first hidden layer. Note that, as 
explained in Subsection 3.2.4, only crashes that occurred on interstate routes were used for 
model development. The training process was initiated by randomly selecting weights for 
all interconnections between the neurons of the input and hidden layers. 

Step 2b: Forward Computation – After initializing the weights, forward propagation is 
executed by multiplying the weights by the input neuron values, and the resulting sum 
products are saved in the corresponding hidden layer neurons. The weighted sums are then 
passed through an activation function and, based on the output of the function, the 
activation of hidden neuron.  

Step 2c: Computation of Error – The error of the j-th neuron of the n-th iteration is then 
computed as the difference between the target and the observed output.  

Step 2d: Backward Computation – The weights in the network are adjusted based on a local 
gradient, which is a function of the error computed in step 2c. 

Step 2e: Iteration – The procedures in steps b, c, and d are repeated for batches of 
three observations per iteration until the stopping criterion of 100 epochs is met. 

The training process is presented in Figure 6. 

Figure 6. ANN Training Processxxii 
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where, 

𝑉!" is the weighted sum in j-th neuron of the l-th hidden layer,  

𝑤!#" 	is the weight coefficient of the j-th neuron of the l-th layer that is fed from the i-th 
neuron in layer l-1,  

𝑥#
("%&) is the output of the i-th neuron in the previous layer l-1,  

𝑦!" 	is the output of the of the j-th neuron in layer l-1,  

Ф( is the activation function which is a rectilinear unit function in the hidden layers and a 
sigmoid function in the output layer. Thus, k=1 in the hidden layer and k=2 in the output 
layer, and 

𝑂) is the output of the n-th iteration. 

The ANN training procedure is illustrated in Figure 7. 
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Figure 7. ANN Training Process 

 

Step 3: Testing and Evaluation of Model 

Once the network is trained for the designated number of epochs (100), the model is evaluated 
using the test dataset. To assess the accuracy of the model, a confusion matrix (CM) was used. A 
CM contains details on the actual and predicted classifications made by a classification system (in 
this case, the ANN model). In the CM, each row denotes the instances of an actual class, while 
each column denotes the instances of a predicted class. Table 1 illustrates the CM for a two-class 
classifier.  
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Table 1. Confusion Matrix (CM) 

Total No. of Observations 
Predicted 

Negative Positive 

Actual 

Negative 
True Negative (TN): 

Instances that are negative and 
correctly classified as negative 

False Positive (FP): 
Instances that are negative 
and wrongly classified as 

positive 

Positive 
False Negative (FP): 

Instances that are positive and 
wrongly classified as negative 

True Positive (TP): 
Instances that are positive 
and correctly classified as 

positive 

 

Based on the CM, the measures shown in Table 2 were computed to evaluate the models 
developed. Following the evaluation, the number of hidden layers and neurons in the network 
architecture is modified based on the model’s performance, and the training process is repeated. 
This iterative process is repeated until the best-performing model is achieved based on the choice 
of parameters such as learning rate, number of neurons/layers, and data quality/quantity. 

Table 2. Measures for Evaluation 

Measure Description Computation 

Accuracy (AC) The accuracy is the proportion of the total 
number of predictions that were correctly 
classified. 

𝑇𝑁 + 𝑇𝑃
𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃

 

Error Rate (ER) The error rate is the rate at which predictions 
were misclassified. 

1 – 𝐴𝐶 

Precision (P) This is the proportion of the predicted positive 
cases that were correct. 

𝑇𝑃
𝐹𝑃 + 𝑇𝑃

 

Sensitivity (S) This is the proportion of positive cases that were 
correctly identified. 

𝑇𝑃
𝐹𝑁 + 𝑇𝑃

 

F-measure (F) This is a measure of the accuracy of the test model 
computed using Sensitivity and Precision. The 
value of F ranges from 0 to 1, where 1 shows an 
excellent model and 0 show a bad model. 

2	
𝑆. 𝑃
𝑆 + 𝑃
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3.6.1 Analysis Software 

The ANN algorithm was implemented using Python, a high-level general-purpose programming 
language. The Anaconda Python distribution, which is an open-source distribution with standard 
libraries for data processing, analysis, and machine learning, was used. Anaconda also offers several 
Integrated Development Environments (IDE), including Jupyter, Notebook, and Spyder. In this 
study, the Spyder IDE (a powerful Python IDE with advanced editing, interactive testing, 
debugging, and introspection capabilities) was utilized. To simplify data preprocessing, the study 
imported the following libraries: 

NumPy: A package for array processing that can efficiently manipulate large 
multi-dimensional arrays of data. 

Pandas: An open-source library designed for high-level data manipulation. 

Furthermore, the study imported the following libraries to develop models: 

TensorFlow: A system developed by Google Brain that accelerates numerical computations 
and machine learning. 

Keras: A high-level application program interface for neural networks that operates on the 
backend of TensorFlow. It also assists with the development of ANN models. 

In addition to Spyder IDE, IBM Statistical Software for Social Scientists (SPSS) was used for 
binomial regression analysis. 
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4. Results 

4.1 Summary Statistics 

This section presents an overview of the CMV crash trends in the designated CMV routes in the 
District of Columbia for the years 2016 through 2020 and includes a summary of comparative 
crash statistics.  

4.1.1 CMV Crash Statistics 

A summary of the CMV crashes reported in DC on CMV routes from 2016 through 2020 is 
presented in Table 3. Figure 8 represents the collision severity distribution of the CMV crashes. 
It should be noted that these crashes represent only the CMV crashes occurring on designated 
CMV routes and not the entire DC road network. 

Table 3. DC CMV Crashes Quick Facts for 2016–2020 

Year 2016 2017 2018 2019 2020 
Total Collisions 936 887 609 735 437 
Fatal Collisions 0 1 0 0 0 
Injury Collisions 243 156 58 139 86 

Property Damage Only (PDO) Collisions 693 730 551 596 351 
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Figure 8. Crash Severity Types for 2016 through 2020 

 
  

There was a noticeable decline of approximately 40% in the total CMV collisions in 2020 
compared to 2019 that occurred specifically on CMV routes, as presented in Table 3. However, 
the documented injury count to collision ratio in 2020 was higher than that of 2019. The most 
frequent CMV crash severity type documented in 2020 was PDO, which constitutes nearly 
80% (351) of all crashes for that year.  

4.1.2 Total Crashes from 2016 through 2020 

The trend of all CMV crashes that occurred in DC on CMV routes and corresponding injuries by 
year from 2016 through 2020 is presented in Figure 9. The figure shows that there was a reduction 
in injury counts by approximately 38% from 2019 to 2020. Figure 10 presents the overview of 
injured persons recorded by year from 2016 through 2020.  
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Figure 9. Traffic Crashes and Injury Crashes from 2016 through 2020 

 
 

Figure 10. Non-Fatal Collisions from 2016 through 2020 
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From Figure 10, it can be observed that in 2020, the number of injured people decreased by almost 
27% compared to 2019. 

4.2 CMV Crash Descriptive 

This section presents the descriptive statistics for CMV crashes reported in DC on CMV routes 
from 2016 to 2020. The analyzed characteristics included crash occurrence time, crash type, 
roadway user and vehicle contributing factors, road conditions, and geometric characteristics. 
These characteristics were present for all the CMV crash data points as reported by police officers 
present at the scene of each crash. It is important to note that these crashes do not represent all 
the CMV crashes that occurred in DC between 2016 through 2020, but only those that happened 
on designated CMV routes. 

Table 4 presents the frequency distribution of CMV crashes that occurred from 2016–2020 in DC 
on CMV routes categorized by hour. From the table, a notable number of crashes occurred 
between 9 AM–10 AM (365 collisions), with the highest number of reported injuries (122) taking 
place between 11 AM–12 PM. The only CMV-related fatality in the same duration was recorded 
for hour 23 (11 PM–12 AM). The yearly frequency of CMV collisions and the associated injuries 
by the hour of the day from 2016 to 2020 is presented in Figures 11 through 15. 
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Table 4. All Crashes by Hour of the Day in 2016–2020 

Hour Collisions Fatalities Injuries 
00 32 0 12 
01 29 0 18 
02 21 0 13 
03 23 0 8 
04 28 0 16 
05 49 0 14 
06 115 0 45 
07 221 0 81 
08 326 0 86 
09 365 0 73 
10 324 0 116 
11 300 0 122 
12 298 0 86 
13 275 0 107 
14 264 0 75 
15 213 0 70 
16 194 0 56 
17 162 0 41 
18 114 0 36 
19 80 0 23 
20 63 0 25 
21 50 0 6 
22 31 0 7 
23 27 1 3 

Total 3,604 1 1,139 
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Figure 11. Total Collisions and Injuries by Hour in 2016 

 

Figure 12. Total Collisions and Injuries by Hour in 2017 
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Figure 13. Total Collisions and Injuries by Hour in 2018 

 

Figure 14. Total Collisions and Injuries by Hour in 2019  
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Figure 15. Total Collisions and Injuries by Hour in 2020 

 

4.3 CMV Crashes and Injuries by Day of the Week 

Table 5 presents the distribution of CMV crash occurrences on DC CMV routes from 2016–
2020, categorized by day. From the table, Sundays had the lowest frequency of both CMV 
collisions and associated injuries over the 5-year duration. On the other hand, Wednesdays had 
the highest CMV-related collision counts (693), while most injuries occurred on Tuesdays (242). 
Figures 16 through 20 present the yearly trends of CMV collisions and corresponding injuries by 
day from 2016 to 2020. A five-year CMV collision frequency summary is presented in Figure 21.  

Table 5. Crashes by Day of the Week for 2016–2020 

Day Collisions Fatalities Injuries 
Sunday 86 0 23 
Monday 586 0 191 
Tuesday 673 1 242 
Wednesday 693 0 201 
Thursday 645 0 196 
Friday 656 0 204 
Saturday 265 0 82 

Total 3,604 1 1,139 
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Figure 16. Total Collisions and Injuries by Day in 2016 
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Figure 17. Total Collisions and Injuries by Day in 2017 

  

Figure 18. Total Collisions and Injuries by Day in 2018 
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Figure 19. Total Collisions and Injuries by Day in 2019  

 

Figure 20. Total Collisions and Injuries by Day in 2020  
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Figure 21. Total Collisions and Injuries by Day 2016–2020  

 

4.4 CMV Crashes and Injuries by Month of the Year 

Table 6 presents the frequency of the 2016–2020 DC CMV crashes by month. From the table, it 
can be observed that May 2017 had the highest number of CMV collisions on the designated 
CMV routes (102), whereas the highest number of CMV-related injuries took place in 
October 2019. Figure 22 presents a 5-year compilation of all the monthly CMV crashes and the 
related injuries. 
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Table 6. CMV Crashes by Month for 2016–2020 

Year 2016 2017 2018 2019 2020 

Month Collisions Injuries Collisions Injuries Collisions Injuries Collisions Injuries Collisions Injuries 

January 77 20 75 35 48 11 65 17 53 7 

February 64 18 70 16 54 9 49 15 40 20 

March 64 31 90 28 63 4 52 24 34 15 

April 75 63 69 3 49 19 78 11 21 5 

May 70 28 102 25 48 0 62 23 33 18 

June 93 40 83 18 47 0 51 11 30 5 

July 98 58 93 28 43 3 62 19 38 20 

August 87 34 82 26 56 7 69 26 38 4 

September 69 40 82 25 65 14 64 25 32 7 

October 97 48 42 15 72 20 83 26 38 20 

November 66 14 69 33 39 14 50 11 40 13 

December 76 21 30 4 25 1 50 15 40 9 

Total 936 415 887 256 609 102 735 223 437 143 

 
Figure 22. Total Collisions and Injuries by Month 2016–2020 
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4.5 CMV Crashes and Injuries by Quadrant 

Table 7 presents the number of collisions and injuries that occurred in the CMV routes in all 
four DC quadrants. From the table, the Northwest quadrant had the highest number of 
collisions (49%) as well as injuries (39%), while the Southwest quadrant had the lowest number of 
collisions and injuries (7% and 13%, respectively). Figures 23 and 24 present the yearly CMV 
crashes and the total number of injuries caused by CMV collisions that occurred in all 
DC quadrants.  

Table 7. CMV Crashes by Quadrant for 2016–2020 

Quadrant Collisions Collision 
Percentage 

Fatalities Injuries Injury 
Percentage 

NW 1,767 49% 0 444 39% 
NE 1,095 30% 1 339 30% 
SW 261 7% 0 152 13% 
SE 481 13% 0 204 18% 

Total 3,604 100% 1 1,139 100% 
 

Figure 23. Total Collisions by Quadrant 2016–2020 
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Figure 24. Total Injuries by Quadrant 2016–2020 

 

4.6 CMV Crashes and Injuries by Road Type 

Table 8 presents the frequency distribution of all CMV collisions that occurred in the two types 
of roadways (interstate and non-interstate) from 2016–2020. Only 4.08% of the collisions occurred 
on the interstates. The injuries associated with these CMV crashes on different road types are 
presented in Figure 25. It must be noted that the District of Columbia has only about 16 miles of 
roadways classified as interstate or freeway. 

Table 8. CMV Crashes by Road Type 2016–2020 

Road Type Collisions Percentage 

Interstate 147 4.07 

Non-Interstate 3,457 95.93 

Total 3,604 100.00 
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Figure 25. Total Collisions and Injuries by Hour 2016–2020 

 

4.7 CMV Crash Occurrence Type 

Table 9 and Figures 26 and 27 provide the summary of the cumulative CMV crash count, 
categorized by crash type from 2016 through 2020. The tally of associated injuries, as well as the 
PDO CMV crashes, are included in the table. It can be observed that sideswipe crashes in the 
same direction were the prevailing type of CMV collision (1,769), overall accounting for 49% of 
all CMV crashes. Additionally, the same crash type resulted in the highest number of PDO 
crashes (1,516) within the five-year duration. Rear to rear crashes were the least frequent type of 
CMV collisions (37), and they led to the fewest injuries (10). Most injuries resulted from 
front-to-rear collisions resulting in 438 injuries in 2016–2020. A front-to-rear crash was also 
responsible for the one fatality that occurred during the study’s time span.  
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Table 9. CMV Crash Occurrence Types 2016–2020 

Type of Crash Total Crashes Fatal Crashes Injuries PDO Crashes 

Angle 256 0 108 200 
Front to Front 126 0 54 96 
Front to Rear 740 1 438 514 
Other 212 0 71 169 
Rear to Front 181 0 37 154 
Rear to Rear 37 0 10 28 
Rear to Side 85 0 17 67 
Sideswipe, Opposite 
Direction 

107 0 26 89 

Sideswipe, Same Direction 1,769 0 361 1,516 

Unknown 91 0 17 80 
Total 3,604 1 1,139 2,913 
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Figure 26. Types of CMV Collisions 2016–2020 
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Figure 27. CMV Crash Type Frequency, Injuries, and PDO Collisions 2016–2020 
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4.8 CMV Crashes by Vehicle Classification 

The frequency of the different types of CMVs that were involved in the CMV collisions from 
2016–2020 is presented in Table 10. Figures 28 and 29 display the percentages of the involved 
CMVs in collisions and associated injuries, respectively, in pie charts.  

Table 10. Summary of CMV Crashes by Vehicle Type 2016–2020 

Year 
 

Construction/ 
Industrial Equipment 

Large/ 
Heavy Truck 

Trailer Total 

2016 Collisions 6 882 48 936 
Fatalities 0 0 0 0 
Injuries 2 386 27 415 

2017 Collisions 9 834 44 887 
Fatalities 0 1 0 1 
Injuries 0 242 14 256 

2018 Collisions 6 572 31 609 
Fatalities 0 0 0 0 
Injuries 0 94 8 102 

2019 Collisions 7 683 45 735 
Fatalities 0 0 0 0 
Injuries 1 206 16 223 

2020 Collisions 3 409 25 437 
Fatalities 0 0 0 0 
Injuries 0 142 1 143 

Total 34 4,451 259 4,744 
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Figure 28. Collisions due to CMV Type 2016–2020 
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Figure 29. Injuries Resulting from Different CMV Types 2016–2020 

  

4.9 CMV Crash Contributing Factors 

A comprehensive overview of the contributing factors reported for CMV crashes in DC from 2016 
to 2020 is presented in Table 11 and Figure 30. Excluding the categories "None" and "Unknown;" 
the most prominently reported CMV crash-contributing factors during the five-year interval were 
"backup, due to regular congestion" and "workzone (construction/maintenance)." 
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Table 11. CMV Crash Contributing Factors 2016–2020 

Contributing 
Factors 2016 2017 2018 2019 2020 TOTAL 

Overall 
Percentage 

Backup, Due to 
Prior Crash 

3 3 3 1 0 10 0% 

Backup, Due to 
Prior Non-
Recurring 

7 6 1 1 0 15 0% 

Backup, Due to 
Regular Congestion 39 32 34 25 5 135 4% 

Debris 0 0 0 1 0 1 0% 
Non-Highway 
Work 2 4 0 2 0 8 0% 

Obstruction in 
Roadway 

8 3 1 2 2 16 0% 

Other 8 5 5 1 6 25 1% 
Road Surface 
Condition (wet, icy, 
snow) 

25 14 7 5 4 55 2% 

Rut, Holes, Bumps 1 3 0 0 0 4 0% 
Shoulders (low, 
soft, high) 

2 0 0 1 0 3 0% 

Traffic Control 
Device Inoperative 

1 0 0 0 0 1 0% 

Workzone 
(construction/maint
enance) 

33 17 12 15 14 91 3% 

Unknown 220 255 185 241 163 1,064 30% 
None 587 545 361 440 243 2,176 60% 

Total 936 887 609 735 437 3,604 100% 
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Figure 30. CMV Crash Contributing Factors 2016–2020 
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4.10 Binary Logistic Regression  

Of the 3,604 CMV crash data points that were recorded on DC CMV routes, the project team 
filtered the crashes that could be associated with the IRI and PCI dataset. A total of 2,390 data 
points were obtained. Since the project also involves assessing the quality of road surfaces as a 
factor for evaluation, the analysis focused exclusively on the IRI data. It should be noted that IRI 
values are obtained when the measuring-device-equipped vehicle operates at speeds greater than 
50 mph. As a result, only crashes that occurred on interstates were filtered for binomial logistic 
regression. There were 147 CMV crashes that occurred on DC CMV routes that were also 
interstates. The following subsections provide a description of those crash data points. 

4.10.1 CMV Crashes in DC Interstates by Month 

Table 12 presents the distribution of injury and non-injury CMV crash occurrences on interstates 
from 2016–2020, categorized by month. Figures 31 presents a bar graph of these CMV collisions. 
From the bar graph, it can be seen that most of the CMV crashes occurred in the months of 
March, April, and July, collectively constituting almost one-third of the total number of crashes. 
June had the lowest instances of CMV crashes in the five-year duration. 
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Table 12. CMV Interstate Crashes 2016–2020 by Month 

 Non-Injury Injury 

January 7 0 

February 8 4 

March 11 5 

April 10 6 

May 10 4 

June 3 2 

July 10 6 

August 11 2 

September 5 5 

October 10 4 

November 10 5 

December 4 5 

Total 99 48 

 
Figure 31. Interstate CMV Crashes 2016–2020 by Month 
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4.10.2 CMV Crashes in DC Interstates by Day of the Week 

Table 13 presents the distribution of injury and non-injury CMV crash occurrences on interstates 
from 2016–2020, categorized by day. From the table, it can be seen that Sundays had the lowest 
frequency of CMV collisions, and these resulted in the lowest non-injury (2) as well as injury (1) 
counts. On the other hand, Tuesdays had the highest CMV collision injury (11) and non-injury 
counts (23). Figures 32 presents a pie chart of these CMV collisions by day from 2016 to 2020.  

Table 13. CMV Interstate Crashes 2016–2020 by Day 

Row Labels Non-Injury Injury 

Sunday 2 1 

Monday 18 8 

Tuesday 23 11 

Wednesday 12 9 

Thursday 20 8 

Friday 17 10 

Saturday 7 1 

Total 99 48 

 
  



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  55 

Figure 32. Interstate CMV Crashes 2016–2020 by Day 

 
 

4.10.3 CMV Crashes in DC Interstates by Period of the Day  

Figures 33 and 34 present the CMV injury and non-injury crashes and total percentage 
distribution of CMV crashes, respectively, by period of the day. The AM Peak (7 AM–10 AM), 
Off-Peak (10 AM–4 PM), PM Peak (4 PM–7 PM), and Night (7 PM–7 AM) details are 
provided. It should be noted that the Off-Peak is twice as long as the AM and PM Peaks, and 
Night is twice as long as Off-Peak. 
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Figure 33. Interstate CMV Crashes with and without Injuries (2016–2020) 

 

Figure 34. Interstate CMV Crashes by Time of Day 
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From the figures, it can be seen that almost half of all CMV crashes that occurred on interstates 
happened during the Off-Peak (10 AM–4 PM). The lowest incidences of injury crashes occurred 
during the PM Peak (4 PM–7 PM) and Night (7 PM–7 AM) as observed in Figure 34. 

4.10.4 Street Lighting Type and Lighting Conditions  

Figure 35 presents the distribution of street lighting types in injury and non-injury interstate CMV 
crashes. The lighting condition during CMV crashes is shown in Figure 36. 

 
Figure 35. Street Lighting Type during Interstate CMV Crashes  
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Figure 36. Street Lighting Conditions during Interstate CMV Crashes 

 
 

As shown in the figures, most CMV crashes occurred during the daytime when the streetlights 
were off. From Figures 34 through 36, typically most crashes were common during the day 
(Off-Peak), which is counterintuitive to expectations of crashes occurring in poorly lit 
conditions/during peak periods with heavy vehicular volume. 

4.10.5 Road Condition for CMV Crash Data Points  

The frequency of crashes on different road types, divided into the crashes that involved injuries 
and those that did not, is shown in Figure 37. Most crashes (87%) occurred on dry roadways. 
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Figure 37. Injury Counts in Interstate CMV Crashes (by Road Condition) 

 
 

From the Figure, it can be seen that the observed injury to non-injury ratio for CMV crashes 
occurring on dry roads was approximately 1:2, while the ratio for crashes recorded on wet roads 
was about 1:4. 

4.10.6 Speed Limit during CMV Crashes 

The 147 CMV crashes that were recorded on DC interstates were further categorized by speed 
limit. Figure 38 presents a pie chart of the CMV crash frequency distribution by speed limit. The 
speed limit categories are: low (≤ 25 mph), medium (25–55 mph), and high (> 55 mph). The 
associated injury and non-injury counts are presented in Table 14.  

Table 14. Speed Limit Details in Interstate CMV Crashes 

Row Labels Non-Injury Injury 

High 9 4 

Low 28 8 

Medium 62 36 

Total 99 48 
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Figure 38. Interstate CMV Distribution by Road Speed Limit 

 
 

4.10.7 IRI Data for Interstate CMV Crashes 

The IRI data was obtained for the DC interstates that were geospatially associated with individual 
CMV crash events. IRI scores can be broadly categorized into Rough (< 2.5), Marginal (2.6–3.4), 
and Smooth (> 3.5) based on the measured values for the road segment. The IRI categories 
associated with all interstate CMV crashes are presented in Figure 39. Figure 40 presents the 
corresponding injury and non-injury numbers in relation to the different IRI categories. 
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Figure 39. Interstate CMV Crash Distribution by Different Road IRI Categories 

 

Figure 40. Injury Details in Interstate CMV Crash Distribution by Different  
Road IRI Categories 
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4.10.8 PCI Data for Interstate CMV Crashes 

PCI data was also obtained for DC interstates and were geospatially associated with all the CMV 
crash events. There are five categories for PCI scores, which range from Poor to Excellent. The 
PCI categories associated with all interstate CMV crashes are presented in Figure 41. Figure 42 
presents the injury and non-injury numbers corresponding to the different PCI categories. 

Figure 41. Interstate CMV Crash Distribution by Different Road PCI Categories 
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Figure 42. Injury Details in Interstate CMV Crash Distribution by Different  
Road PCI Categories 

 

4.11 Binary Logistic Regression Output 

This section presents the outcomes of the regression analysis conducted in SPSS to predict the 
incidence of injuries from CMV crashes that occurred on interstates. The analysis is based on the 
different IRI categories (from one dataset) that were associated with the individual CMV crash 
incidence from another dataset by matching the coordinates. The “Enter Variable Selection 
Method” was used to determine the influence of different predictor variables in the regression 
equation. For instance, Block 1 contains variables that were specifically associated with each 
individual CMV crash (month/time of day/road condition, etc.), while Block 2 contains the IRI 
condition of the road during the year in which the CMV crash in question occurred. An additional 
block with PCI data (Block 3) was also evaluated. Table 15 presents the model summary table for 
all three blocks. 

Table 15. Logistic Regression Model Summary 

Block -2 Log likelihood Cox & Snell R-
Square Nagelkerke R-Square 

1 184.878 0.006 0.008 
2 144.167 0.246 0.343 
3 134.341 0.295 0.411 
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Cox & Snell R-square and Nagelkerke R-square metrics can be used for comparing different 
logistic regression models or assessing the goodness-of-fit of a single model. Both values can range 
from 0 to 1, with higher values indicating a better fit between the model and the observed data. 
From Table 15, for Block 1, the explained variation (the model’s ability to predict outcomes) in 
the dependent variable, after the logistic regression, range from 0.6% (0.006 for Cox & Snell 
R-square) to 0.8% (0.008 for Nagelkerke R-square). Hence, the results indicate a low level of 
goodness-of-fit. This range of values suggests that the model is not a good fit for the data, and it 
accounts for only up to a 0.8% proportion of the variability in the response variable. However, by 
adding variables, such as IRI values (continuous values) and IRI categories (nominal values), to 
Block 2, the outcome prediction rose to 34% (Nagelkerke R-square value of 0.343). Moreover, the 
addition of PCI values and PCI Categories in Block 3 indicated the higher predictability of the 
model (41%). Hence, the addition of road pavement condition variables indicates a stronger 
relationship or a better predictability than Blocks 1 and 2. This interpretation is also supplemented 
by conducting the Hosmer-Lemeshow test to assess whether there are significant discrepancies 
between the observed and predicted outcomes. 

The results of Hosmer-Lemeshow Test are presented in Table 16. 

Table 16. Hosmer-Lemeshow Test 

Block Chi-square df Sig. (p-values) 
1 7.02 8 0.534 
2 2.735 8 0.95 
3 3.373 8 0.1 

 

The Hosmer-Lemeshow test is a commonly used diagnostic tool in logistic regression analysis, 
which is used to assess the fit of the model and the observed data set. From Table 16, none of the 
blocks were found to be statistically significant (since the obtained p-values > 0.05, hence not 
significant). Hence, the results of the Chi-square test suggest that there is no statistically 
significant difference between the expected and predicted frequencies.  

Following the Hosmer-Lemeshow test, the results of the probability estimation of an event for 
binomial logistic regression are presented in Table 17. The prediction pertains to the occurrence 
of injury after a CMV crash. 
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Table 17. Classification Table 

Block 1 
INJY_CRSH_ 

0 89 10 89.9 
1 26 22 45.8 

Overall Percentage     75.5 

Block 2 
INJY_CRSH_ 

0 88 11 88.9 
1 24 24 50 

Overall Percentage     76.2 

Block 3 
INJY_CRSH_ 

0 90 9 90.9 
1 22 26 54.2 

Overall Percentage     78.9 

 

From Table 17, it can be observed that the model was able to correctly predict the likelihood of 
the injury following a CMV crash approximately 75.5% of the time when no pavement condition 
variables were present (Block 1). By adding variables IRI and IRI category, the prediction of the 
model rose to almost 76.2% (Block 2). The inclusion of PCI and PCI category increased the overall 
correct prediction percentage to nearly 78.9% (Block 3).  

The contribution of each independent variable, or predictor, to the regression model along with 
the statistical significance of Block 3 (highest overall prediction percentage) has been presented in 
Table 18. 
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Table 18. Variables in the Equation 

 B S.E. Wald df Sig. (p-
value) 

Exp(B) 95% C.I. for EXP(B) 
Lower Upper 

Step 1a April   10.216 11 .511    
August -3.448 1.405 6.021 1 .014 .032 .002 .500 

December .543 1.146 .225 1 .636 1.722 .182 16.282 
February -1.577 1.172 1.812 1 .178 .207 .021 2.053 
January -22.477 13194.781 .000 1 .999 .000 .000 . 

July -1.107 1.009 1.204 1 .273 .331 .046 2.389 
June .943 1.398 .456 1 .500 2.568 .166 39.747 

March -.803 .987 .662 1 .416 .448 .065 3.098 
May -.807 1.056 .585 1 .444 .446 .056 3.532 

November -.577 1.110 .270 1 .603 .561 .064 4.949 
October -.461 1.030 .200 1 .655 .631 .084 4.751 

September .478 1.103 .188 1 .665 1.613 .186 14.029 

AM Peak   8.565 4 .073    
Dawn 3.238 1.633 3.930 1 .047 25.483 1.037 626.013 
Night 1.515 1.356 1.249 1 .264 4.552 .319 64.950 

Off Peak -.416 .602 .476 1 .490 .660 .203 2.148 
PM Peak -2.220 1.096 4.103 1 .043 .109 .013 .931 

Friday   7.302 6 .294    
Monday -.747 .814 .843 1 .359 .474 .096 2.335 
Saturday -3.554 1.835 3.752 1 .053 .029 .001 1.043 
Sunday -.477 1.589 .090 1 .764 .620 .028 13.973 
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 B S.E. Wald df Sig. (p-
value) 

Exp(B) 95% C.I. for EXP(B) 
Lower Upper 

Thursday -.867 .790 1.205 1 .272 .420 .089 1.976 
Tuesday -.449 .794 .320 1 .571 .638 .135 3.024 

Wednesday .767 .951 .650 1 .420 2.152 .334 13.870 

Other   1.153 2 .562    
Street L 1.375 1.371 1.006 1 .316 3.955 .269 58.108 

Unknown 1.593 1.529 1.086 1 .297 4.920 .246 98.427 

Dark-Li   1.308 6 .971    
Dark-No -1.933 2.363 .669 1 .413 .145 .001 14.866 

Dawn -22.876 18238.576 .000 1 .999 .000 .000 . 
Daylight .722 1.085 .443 1 .505 2.059 .246 17.258 

Dusk -20.505 19211.640 .000 1 .999 .000 .000 . 
Other 19.781 40192.969 .000 1 1.000 389867878.327 .000 . 

Unknown .250 1.843 .018 1 .892 1.284 .035 47.571 

Road Condition (1) -1.360 .820 2.752 1 .097 .257 .051 1.280 

High (Speed Limit)   7.582 2 .023    
Low (Speed Limit) -.874 .923 .896 1 .344 .417 .068 2.549 

Medium (Speed Limit) .924 .833 1.232 1 .267 2.520 .493 12.892 

Marginal   1.124 2 .570    
Rough .548 .765 .513 1 .474 1.729 .386 7.741 
Smooth 1.285 1.753 .538 1 .463 3.616 .116 112.272 

IRI -.002 .004 .365 1 .546 .998 .990 1.005 

PCI -.018 .035 .262 1 .609 .983 .918 1.051 
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 B S.E. Wald df Sig. (p-
value) 

Exp(B) 95% C.I. for EXP(B) 
Lower Upper 

Excellent   7.789 4 .100    
Fair -1.385 1.401 .977 1 .323 .250 .016 3.901 

Good 1.010 .919 1.208 1 .272 2.746 .453 16.636 
Poor -.742 2.389 .096 1 .756 .476 .004 51.472 

Satisfactory .426 1.311 .106 1 .745 1.532 .117 20.011 

Constant -.240 4.064 .003 1 .953 .787   

 

 



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  69 

From Table 18, only the independent variable Speed Limit had a significance value (or p-value) 
of less than 0.05 (0.023), indicating that it was a statistically significant predictor of the occurrence 
of injury following a CMV crash in the DC interstate road network.  

Hence, the results of the logistic regression performed to find the likelihood of injuries following 
an interstate CMV crash indicate that the best-performing model (Block 3) is not statistically 
significant, χ2(8) = 13.373, p < 0.1. However, the model can explain 41.1% (Nagelkerke R-square) 
of the variance in injury prediction and correctly classified 78.9% of CMV crash occurrences. The 
details of the individual variable contribution have been provided in the Appendix. 

4.12 Geospatial Visualization 

This section of the report presents the visual depiction of all CMV crashes that occurred on DC 
CMV routes throughout the study period (2016–2020), as well as the CMV crashes that occurred 
only on interstates. A Geographic Information System (GIS) software, ArcGIS, was used to 
superimpose all the CMV crash locations onto a map of DC. The software was used to filter injury 
and non-injury crashes by year, time of day, and road condition to better understand crash patterns 
and identify high-frequency crash zones in DC. All CMV crashes occurring on DC CMV routes 
from 2016–2020 have been presented in Figure 43. A heatmap was also generated and is displayed 
in Figure 44. By visually examining the CMV crash data locations, it is possible to gain insights 
into how the patterns of activity have changed over time. Moreover, it helps identify problematic 
areas in need of intervention. 
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Figure 43. ArcGIS Map of All CMV Crashes on CMV Routes 2016–2020 
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Figure 44. ArcGIS Heatmap of All CMV Crashes on CMV Routes 2016–2020 
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Figures 45 and 46 show that the frequency of CMV crashes resulting in injuries over the study 
duration is concentrated near the lower part of the Northwest Quadrant, which happens to be 
around the downtown area of DC. ArcGIS was also used to plot and generate a heat map of all 
CMV crashes that resulted in one or more injuries.  

Figure 45. ArcGIS Map of All CMV Injury Crashes on CMV Routes 2016–2020 
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Figure 46. ArcGIS Heatmap of All CMV Injury Crashes on CMV Routes 2016–2020 
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The heatmaps displaying 5-year CMV crashes during various times of the day are depicted in 
Figures 47 through 50. Respectively, the heatmaps for the AM Peak (7 AM–10 AM), 
Mid-Day Peak (10 AM–4 PM), PM Peak (4 PM–7 PM), and Night Time (7 PM–7 AM) CMV 
crashes have been presented. 

Figure 47. ArcGIS Heatmap of 2016–2020 CMV Crashes (AM Peak) 
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Figure 48. ArcGIS Heatmap of 2016–2020 CMV Crashes (Mid-Day Peak) 
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Figure 49. ArcGIS Heatmap of 2016–2020 CMV Crashes (PM Peak) 
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Figure 50. ArcGIS Heatmap of 2016–2020 CMV Crashes (Night Time) 
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The CMV crashes occurring exclusively on interstates were also filtered for geospatial analysis. 
Figures 51 and 52 present the GIS scatterplot and heat map of these crashes, respectively. 

Figure 51. ArcGIS Scatterplot of 2016–2020 CMV Crashes Occurring on DC Interstates  
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Figure 52. ArcGIS Heatmap of 2016–2020 CMV Crashes Occurring on DC Interstates  
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4.13 ANN Results 

The results of the classification of crashes using an ANN are presented in this section. Ten distinct 
ANN models were developed using the training dataset. Each model was trained with batches of 
three observations per iteration until the stopping criterion of 100 epochs was met. The 
performance of each model was then evaluated using the test dataset (which constitutes 25% of 
the total dataset). The performance of the models after training and testing are presented in 
Figure 53, which shows the number of models developed, the structure of the neural network 
architecture, and the confusion matrix of each model. The performance measures (accuracy, error 
rate, sensitivity, precision, and F-measure) of each model were computed using the equations 
presented in Table 2. 

The architecture of Model numbers 1 and 2 consists of three layers: 1 input layer, 1 hidden layer, 
and 1 output layer. The number of neurons in the hidden layer ranges from 5 to 200. The 
architecture of Model numbers 3 and 4 consists of four layers: 1 input layer, 2 hidden layers, and 
1 output layer. The number of neurons in the hidden layers ranges from 5 to 30. The architecture 
of Model numbers 5 and 6 consists of 5 layers: 1 input layer, 3 hidden layers, and 1 output layer. 
The number of neurons in the hidden layers ranges from 5 to 10. The architecture of 
Model numbers 7 and 8 consists of 6 layers: 1 input layer, 4 hidden layers, and 1 output layer. The 
number of neurons in the hidden layers ranges from 5 to 100. The architecture of Models number 9 
and 10 consists of 7 layers: 1 input layer, 5 hidden layers, and 1 output layer. The number of 
neurons in the hidden layers ranges from 5 to 200.  

The indices in the confusion matrices of each model in Figure 53 are arranged in accordance with 
the convention shown in Table 1. The top row values are the number of true negative (TN) and 
false positive (FP) predictions, respectively, while the values in the bottom row are the false 
negative (FN) and true positive (TP) predictions, respectively. The accuracy, sensitivity, precision, 
and F-measure performance measures range from 0 to 1, with a value closer to 1 showing models 
with better performance and conversely a value closer to 0 showing worse performance.  

The results of the analysis tabulated in Figure 53 show that, after the models’ training and 
evaluating with the test dataset, the models’ accuracy ranges from 46% to 60%. Model number 7 
produced the best classification: accuracy (60%), F-measure (0.52), and sensitivity (0.47). With 
regards to the precision measure, Model number 5 was the most precise model with a precision of 
0.67. The variation of performance measures with varying models is shown in Figure 54. 
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Figure 53. ANN Performance Measure 
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Figure 54. Variation of ANN Performance Measure 
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5. Discussion 
The primary objectives of this study are to understand the relationships between road pavement 
conditions and CMV crash occurrences, develop predictive models for crash severity, and provide 
recommendations for improving road safety measures. This section presents a discussion on the 
findings and insights derived from the analysis conducted. 

The analysis revealed a significant decline of approximately 31.6% in the total CMV collisions in 
2020 compared to 2019. However, a contrasting trend was observed in the number of fatalities, 
which increased by almost 36% in 2020. Most crashes resulted in property damage only, 
accounting for nearly 74%, while injury and fatality collisions constituted about 26% and 0.2%, 
respectively. Furthermore, it was observed that the occurrence of CMV crashes varied significantly 
between different types of roadways. Specifically, only 4.08% of crashes occurred on interstates, 
while the majority were on non-interstate roadways. 

Based on the literature, accurate measurements of CMV crashes are obtained when 
measuring-device-equipped vehicles operate at speeds greater than 50 mph. Due to this, to 
investigate the influence of roadway pavement condition on CMV crashes, the analysis in this 
study was based on crashes that only occurred on interstate routes. Firstly, a binary logistic 
regression was conducted to develop a generalized linear model to predict the severity of crashes. 
Using the “Block Entry” technique, variables were included in the model in batches. This allowed 
for the observation of the change in variance explained by the model with the variable’s addition. 

It was observed that the inclusion of road pavement condition variables (IRI and PCI) significantly 
improved the model's goodness-of-fit. The Cox & Snell R-square and Nagelkerke R-square 
metrics indicated that these variables contributed to explaining a notable proportion of the variance 
in CMV crash injury severity prediction. Without the inclusion of pavement condition variables, 
the explained variation (the model’s ability to predict outcomes) was only 0.8%, while with the 
inclusion of IRI and PCI, the explained variance increased significantly to 41% (as presented in 
Table 13). Additionally, the results indicate that the model was able to correctly predict the 
likelihood of an injury following a CMV crash approximately 79% of the time. However, it is 
important to note that while IRI and PCI strengthened the predictive power of the model, the 
overall model fit was not statistically significant, suggesting that other contributing factors also 
play a role in CMV crash severity. These results corroborate the findings of other literature that 
suggest that pavement conditions have minimal impact on freeway crashes due to the 
well-maintained nature of most freeway pavements, and the dataset used for analyzing freeway 
crashes does not exhibit significant variation in terms of pavement quality.xii The results indicated 
that an ANN model consisting of 4 hidden layers with 20, 60, 80, and 20 neurons, respectively, 
exhibited the best classification performance with an accuracy of 60% and an F-measure of 0.52.  
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These findings demonstrate the potential of machine learning techniques to contribute valuable 
insights into the complex relationships between road pavement conditions and CMV crash 
occurrences. 
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6. Conclusions and Recommendations 
This study examines the influence of roadway pavement conditions, particularly measured by the 
International Roughness Index (IRI) and Pavement Condition Index (PCI), on commercial motor 
vehicle (CMV) crashes in the District of Columbia. More specifically, the study focuses on the 
CMV crashes that occurred in DC on CMV routes. Findings from the study underscore the 
significance of road pavement conditions in determining the likelihood of injury following a CMV 
crash. Two analyses were considered: binary logistic regression and artificial neural network. The 
logistic regression models indicate that incorporating road pavement conditions significantly 
improve the predictive accuracy of injuries in the occurrence of CMV crashes. The inclusion of 
IRI and PCI variables increases prediction accuracy by a considerable margin, highlighting the 
notable relationship between road pavement conditions and CMV crash severity. Furthermore, 
the ANN models predicted the severity of CMV crashes with an accuracy of up to 60%. This 
suggests that artificial neural networks have the potential to predict the relationship between road 
pavement conditions and CMV crash severity. The study not only sheds light on the impacts of 
road pavement conditions on CMV crashes but also informs the practical implications for road 
safety measures. 

Based on the finding of this research, the following recommendation are offered: 

• Policymakers and the transportation community must prioritize the maintenance and 
improvement of the road pavement conditions of CMV routes to reduce the severity of 
CMV crashes when they occur. By fostering quality and safer road infrastructure, the 
collective losses due to CMV crashes can be reduced. 

• Continue supporting research initiatives aimed at understanding the complex relationship 
between road pavement conditions and CMV crashes. Encouraging innovation in road 
construction materials and maintenance techniques can lead to long-term improvements 
in road safety. 

• Greater investments in robust data collection and analysis systems to monitor road quality 
can guide evidence-based policy decisions.  

• Conduct road safety awareness campaigns to educate drivers on how road quality affects 
crash likelihood and severity to encourage them to adapt their driving behavior accordingly. 
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