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Executive Summary 
The construction industry’s most important tasks are process monitoring and staying on schedule. 
However, conventional methods prove to be costly, time consuming, and inconsistent. The main 
goal of this project was to develop a method to detect, classify, monitor, and track equipment and 
other surrounding objects during the construction, maintenance, and rehabilitation of 
transportation infrastructure by using artificial intelligence and a deep learning approach. The 
main research question in this project was the following: “Can we detect and monitor various 
construction elements, including equipment, machinery, and workers by using videos captured 
during the construction, maintenance, and rehabilitation of transportation infrastructure projects 
and use the outcomes for process optimization, resource allocation, productivity analysis, improved 
work zone safety, and maximizing efficiency?” The proposed model employs Deep Learning (DL) 
and Computer Vision (CV) algorithms to increase the accuracy and speed of the object detection 
process in recorded videos. 

Our research project aimed to develop and deploy a robust algorithm that can identify, detect, 
classify, and track different objects in the videos and images captured from the construction and 
rehabilitation sites, which were acquired from actual construction and rehabilitation projects in 
collaboration with Caltrans. The first portion of this study was focused on preparing a 
comprehensive database of annotated images for various classes of equipment and machinery that 
are commonly used in roadway construction and rehabilitation projects. The second part of the 
project was focused on training the deep learning models and improving the accuracy of the 
classification and detection algorithms. The applications of the developed algorithms in this study 
include, but are not limited to, improving construction efficiency, advancing the construction 
monitoring process, and improving work zone safety measures. 

The dataset collected and processed in this project is one of the most unique and specialized
datasets that has been developed for the classification of highway construction machinery. The 
outcomes of the trained and improved deep learning classification model are promising in terms 
of the precision and accuracy of the model in detecting specific objects at a highway construction 
site. The model achieves high confidence scores, typically above 0.8, for diverse equipment
including mobile cranes, dump trucks, and excavators. 

Our model also demonstrates robust performance in new scenarios, maintaining high confidence 
scores on unseen images, with all images meeting a floor of 0.8 and reaching highs of 0.95 for 
graders and compactors. Judging from the precision-recall curves, the model achieves both high 
precision and high recall simultaneously, suggesting excellent practical utility for construction 
equipment detection tasks. It should be noted that the scope of this project was limited to the 
image and video data recorded from the ground level and cannot be extended to Uncrewed Aerial 
System (UAS)-based data. Identification and detection of specific construction machinery from 
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UAS footage requires a separate dataset specifically curated for aerial imagery which can be pursued 
in the future. 
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1. Introduction 
Construction is a large sector of the economy and plays a significant role in creating economic 
growth and national development (Giang et al. 2011). The global construction industry makes up 
around 13% of the world’s Gross Domestic Product (GDP) and is projected to rise. At the same 
time, construction projects create a range of job opportunities for 7% of the world’s working class 
(Barbosa et al. 2017). Salling et al. (2015) analyzed projects in Great Britain, Denmark, Sweden, 
and Norway and concluded that 77% of projects experienced cost overruns, with the average 
amount being 29% of the original contract value. The most important contributors to these 
overruns are traditional project management methods and poor labor productivity (Gonzalez et al. 
2014). 

Process monitoring and staying on the schedule are among the top priorities in the construction 
industry. Conventional methods prove to be costly, time consuming, and inconsistent. To 
overcome this issue, researchers have aimed to study innovative methods meant to address current 
construction monitoring flaws. The studies reviewed in this chapter focus on the use of artificial 
intelligence as a solution for the construction industry. Artificial intelligence has gained traction 
due to its limitless applications in various industries. One of those applications in the construction 
industry is the use of robotics and automation to collect and analyze data. It also facilitates the 
development of essential information when monitoring a project. 

During construction, resources and time are being wasted because of the lack of productivity 
management practices. Moreover, projects are cyclical and require monitoring. Current 
transportation project progress monitoring involves paper or electronic checklists, daily reports, 
verbal updates, site photographs, material delivery receipts, inventory reports, and sub-contractor 
invoices (Vik and Brilakis 2018). Thus, most of a project manager’s time is spent deciphering data 
while new project activities are being started. The following sections discuss the role of new 
technologies such as AI in the construction industry, specifically highway construction projects. 

1.1 Construction Monitoring Innovations 

The following section summarizes a few studies in the literature that focus on the use of process 
automation and other innovative technologies to improve the construction monitoring process and 
enhance productivity. 

Vick and Brilakis (2018) aimed to automate the process of collecting information quickly and 
efficiently. They proposed a model-guided hierarchical space portioning data structure for 
detecting discrete regions of three-dimensional as-builts. This data structure was named BrickTree 
(Figure 2), which was used for detecting layered road design surfaces in regions of as-built cloud 
data. Researchers experimentally confirmed the results by achieving an F1 score of 95.2% on real-
world data, supporting its feasibility. 
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Seo at al. (2015) analyzed computer vision techniques for construction safety and health 
monitoring. They divided their findings into three main categories as object detection, object 
tracking, and action recognition. This approach resulted in challenges for comprehensive scene 
understanding, varying tracking accuracy by camera position, and action recognition of various 
equipment and workers. The dynamic conditions of construction sites made it difficult to detect
specific objects. 

Rehman at al. (2022) reviewed various methods that encouraged the use of automated computer 
vision (CV)-based construction progress monitoring (CPM). The CV-based process originates 
from four sub-processes: data acquisition, information retrieval, progress estimation, and output 
visualization. The researchers concluded that CV-based CPM is based on resolving technical 
feasibility studies using image-based processing of site data, which is experimental and not 
connected to its applications for construction management. 

Riyanto et al. (2021) used an Uncrewed Aerial Vehicle (UAV) to collect qualitative and 
quantitative data in real time. They applied both conventional and AI methods to measure progress 
of a local highway project during construction. The conventional approach required the use of a 
total station, where points were recorded and later translated to 2D drawings. The AI approach 
consisted of a UAV recording data points and images which were later translated to 3D images. 
The results concluded that the UAV-provided 3D photogrammetric data was faster and more 
productive than its counterpart. 

Samsami et al. (2021) focused on illustrating photometric data from an Uncrewed Aerial System 
(UAS) to building information modeling (BIM) parameters and their application for automated 
construction monitoring. The UAS collects data and images by flying over the site of interest. The 
data is later processed through Structure from Motion (SfM) photogrammetric software packages 
to create orthophotos, point clouds, and 3D models. The data is used as an input for feature 
extraction to produce geometry parameters. Their findings indicated that UAS visual data and 
analysis is a fast and cost-effective method for tracking construction progress. The next section 
summarizes some of the applications of AI in construction monitoring and management. 

1.2 Role of Artificial Intelligence (AI) in the Construction Industry 

In this section, the integration between AI and the construction industry is explored. First, artificial 
intelligence must be introduced and explained. When discussing AI for construction engineering 
and management (CEM), five topics apply: knowledge representation and reasoning, computer 
vision, natural language processing, intelligence optimization, and process mining. All these topics 
involve AI technology and its functions. 

Knowledge representation and management is an early form of AI, which consists of a symbolic
representation of domain knowledge and predefined rules to create a knowledge-based system. 
Computers can rationally understand the available knowledge, facts, and beliefs from the real world 
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to draw valid conclusions and communicate logic in an efficient manner. Applications in CEM 
include probability-based reasoning, rule-based reasoning, and the fuzzy cognitive map (FCM). 
Probability can be associated with risk analysis where the fault tree analysis can apply. Rule-based 
reasoning deploys a set of rules in the “if <conditions>, then <conclusion>” format. Other 
commands like AND, OR, NOT, and others would apply. A fuzzy cognitive map is developed 
from data or expert opinions. By combining fuzzy logic and a cognitive map, the fuzzy graph 
structure interprets complex relationships which provide immediate identification of root causes 
of a risk event under complex conditions. 

CV relies on data collection equipment such as Light Detection and Ranging (LiDAR), 
UAV/UAS, and others to offer remote solutions when monitoring a project. After data collection, 
data can be converted into visual information. Computer vision technology automates the task of 
collecting data and will gradually replace in-person manual observation. It can also detect unsafe 
conditions or behavior of infrastructures or construction sites. Fang et al. (2018) concluded that 
their application of computer vision in detecting improper use of personal protective equipment 
and recognizing failure in following the safety procedure was successful. In addition, 3D point 
cloud is another type of data to evaluate exact conditions of facilities with spatial information. They 
have been applied to the entire process of construction projects to either find objects or monitor 
progress. Project quality is expected to improve by using 3D model reconstruction and geometry 
(Wang et al. 2019). 

Natural language processing (NLP) and Large Language Models (LLMs) teach computers to 
understand language related data into the form of text and words, a human-like natural language 
comprehension. The traditional way of studying free-text data leaves out valuable information due 
to the large volumes of data; NLP and LLMs can address this shortcoming. Such technology has 
the potential to investigate lots of text files that can improve construction safety in the form of 
safety reports. These reports are typically unstructured or semi-structured with unimportant
information. NLP and LLMs can extract valuable information to learn incident precursors to 
improve safety and lower the chance of re-occurrence. They can also convert unstructured 
documents with different contents into visual information such as compliance checking of BIM-
based building designs recorded by Industry Foundation Classes (IFC) schema against building 
codes. 

Intelligent optimization is a task of searching for the best solution to minimize or maximize an 
objective function subjected to a set of constraints. One type of this task is the simple version where 
the aim is to name a single best alternative. Optimization is considered helpful in prioritization, 
an essential task for construction management. It can maximize labor stability, minimize 
completion time and cost, balance workload, and analyze the changing demand of the project. 
Another application is for structural design problems, where it can deal with a series of design 
constraints to find suitable structure size and shape. 
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Process mining consists of exploring event logs, the connection between event logs, and the 
operational process. It can provide transparent and fact-based insights from real event logs to 
improve project monitoring. The three major types of process mining are process discovery, 
progress conformance, and model enhancement. Event logs can learn to automatically create 
process models as a reflection of the actual process and calculate metrics. Software products create 
a visual map to clearly describe the process and later an advanced analysis can perform diagnosis, 
exploration, prediction, and other functions. As construction has process deviations, bottlenecks, 
and hidden knowledge about productivity, the full potential of a BIM event log can be used (Pan 
et al. 2021). 

Pan and Zhang (2021) reviewed the role of artificial intelligence in construction engineering and 
management (CEM). The researchers presented a systematic review using quantitative and 
qualitative analyses to illustrate the current and future state of AI adoption in CEM. Their study
explains six trendy research topics that give an advantage to AI in CEM such as knowledge
representation and reasoning, information fusion, computer vision, natural language processing, 
intelligent optimization, and process mining. The applications to CEM include smart robotics, 
cloud virtual and augmented reality (cloud VR/AR), Artificial Intelligence of Things (AIoT), 
digital twins, 4D printing, and blockchains. The study argues that different scenarios require
different AI techniques. 

Figure 1.1. Mind Map of AI Methods (Pan et al. 2021) 

1.3 Benefits of AI in Construction 

Automation processes use AI to make project management more straightforward and objective. It 
is known that conventional methods rely on manual observation and operation which include bias 
and can be confusing. For instance, on-site construction monitoring relies on cameras and sensors 
to automatically record data and take images and videos from the progress of a project. With AI, 
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data can be taken without human interference and can replace traditional methods which are 
tedious and time-consuming. As AI models can monitor, evaluate, and predict potential risks, they 
can be suitable for the task of risk mitigation. Various methods are found to learn from 
construction site data to capture relationships from accidents and their causes. It also considers the 
probability and severity of the risk (Vik and Brilakis 2018). 

Another important use of AI is the high efficiency in optimization. It aims to run the construction 
problem more smoothly and efficiently. For example, process mining is a new AI technique meant 
to create valuable insights into complex construction flows such as workflows. It guides the 
execution process to avoid any unnecessary steps and any potential future problems. AI-powered 
robots have been used to take over repetitive and routine construction tasks such as bricklaying and 
welding. For project monitoring, digitalization and computer vision play an important role in 
improving current trends. The following section focuses on the application of computer vision in 
construction monitoring. 

1.4 Computer Vision Techniques 

Seo at al. (2015) categorize computer vision methods into three groups: object detection, object 
tracking, and action tracking. Object detection can be applied to the visual data collected during 
the construction process and later be analyzed. They found that a 3D-based data has higher
accuracy than a simple 2D approach. 3D models are less sensitive to light or color variances, hold 
geometrical cues, and provide better separation from the background. To make computers
understand a dynamic scene like a construction site, it is necessary to label the types of project-
related objects such as workers, equipment, and materials on the scene. The detection process starts 
with dividing the image into small spatial regions to extract features from the local windows and 
then classify the object of interest through supervised learning. 
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Figure 1.2. BrickTree Structure (Vick and Brilakis 2018) 

Object tracking has the advantage of not relying on sensors since cameras can cover a large field of 
view of the construction sites, and multiple project objects such as workers and equipment can be 
tracked simultaneously (Chi et al. 2020). This method can create a temporary trajectory of the 
detected objects as they move on site (Yilmaz et al. 2006). Once the object tracker is initialized at 
the first frame of video, it streams through an object detection algorithm. This algorithm tracks 
the 2D images of the objects by assigning labels to the tracked objects in a sequence of images. 

For 2D vision tracking, three types of methods have been commonly used: point tracking, kernel 
tracking, and silhouette tracking. Point tracking uses feature points standing for objects and detects 
the object by matching those points in every frame. Kernel tracking tracks an object by computing 
the motion of the kernel that is the object shape and appearance in consequent frames. Silhouette 
tracking uses the color histogram and object edges from the object silhouette to track the object by 
matching said features in each frame. Applications of these techniques in construction include 
triangulation-based 3D positioning using various cameras (Brilakis et al. 2011) and object tracking 
using 3D range sensors (Shin et al. 2016). 

Action recognition is beneficial when information is not sufficient to allow comprehensive
understanding of the scene. This method requires image representation and action classification. 
Image representation types include global, local, and application-specific representations. Global 
representation encodes the human body, while local representation uses a collection of 
independent local patches. Application-specific representation uses joint locations or joint angles 
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from human body pose and accelerations of motion. The most common approach of image
representation in construction is global representation. 

Figure 1.3. General Framework of Computer Vision Techniques (Seo et al. 2015) 

Rehman et al. (2022) summarize the task of construction monitoring with computer vision as data 
acquisition, information retrieval, progress estimation, and output visualization. Data acquisition 
methods include the use of uncrewed aerial vehicles, handheld devices, camera systems mounted 
on camera stands, and surveillance cameras. 

Following the review of literature related to the use of AI and computer vision in construction 
monitoring, the following chapter discusses the goals and scope of the current project and a 
summary of approach to achieve the results. 
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2. Project Goal and Scope 
2.1 Project Goal 

The main goal of this project is to develop a method to detect, classify, monitor, and track the 
equipment, workforce, and other surrounding objects during the construction, maintenance, and 
rehabilitation of transportation infrastructure by using artificial intelligence and a deep learning 
approach. The main research question in this project is: “Can we detect and monitor various 
construction elements, including equipment, machinery, and workers by using videos captured 
during the construction, maintenance, and rehabilitation of transportation infrastructure projects 
and use the outcomes for process optimization, resource allocation, productivity analysis, improved 
work zone safety, and maximizing efficiency?” The proposed model employs Deep Learning (DL) 
and Computer Vision (CV) algorithms to increase the accuracy and speed of the object detection 
process in recorded videos. 

Our research project aims to develop and deploy a robust algorithm that can identify, detect, 
classify, and track different objects in the videos and images captured from the construction and 
rehabilitation sites, which will be crowdsourced from actual construction and rehabilitation 
projects in collaboration with Caltrans. Due to the lack of a comprehensive image database 
specifically developed for transportation infrastructure construction projects, we will focus the first 
portion of this study on preparing a comprehensive database of annotated images for various classes 
of equipment and machinery that are commonly used in roadway construction and rehabilitation 
projects. The second part of the project will focus on training the deep learning models and 
improving the accuracy of the classification and detection algorithms. The applications of the 
developed algorithms in this study include, but are not limited to, improving construction 
efficiency, advancing the construction monitoring process, and improving work zone safety 
measures. 

2.2 Project Scope 

In this study, we will evaluate the performance of AI and deep learning algorithms to compare
their performance in detecting and classifying equipment in various construction scenes. Several 
edge cases with crowded scenes, where the target objects are occluded with other objects, will also 
be investigated. The detection accuracy and performance of the preliminary model will be 
improved once the proposed image database is developed in this study. We will provide a list of 
various roadway construction equipment and categorize them by activity type. Once the process of 
training and validation of the proposed models is complete, the algorithm will be able to detect 
and classify the most critical objects. Based on the availability of actual construction data, the 
applicability of the algorithm to both stationary and moving video sources will be evaluated. The 
models will be calibrated based on the properties of each image and video frame source. It should 
be noted that although higher video quality (i.e., higher resolution and number of frames per 
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second) can improve the detection accuracy and tracking capabilities of the model, it will require 
advanced computational power and may introduce a lag in real-time tasks. Our goal is to find the 
optimized balance between the model capabilities in object detection and memory processing 
requirements. 
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3. Image Database Collection and Preprocessing 
3.1 Introduction 

In computer vision, the quality and accuracy of labeled datasets are critical for training models that 
perform tasks such as object detection, image classification, and semantic segmentation. The 
process of annotating images involves marking regions of interest and labeling objects, which 
provides the ground truth data required by machine learning algorithms. With the increasing 
demand for large, accurately labeled datasets, efficient annotation tools are essential to streamline 
the labeling process and ensure consistency. Roboflow and CVAT (Computer Vision Annotation 
Tool) are two widely adopted platforms designed to simplify and optimize dataset annotation. 
Both tools serve distinct but complementary purposes in the data preparation pipeline for computer 
vision projects. 

Roboflow offers a comprehensive platform that allows users to upload images, perform image 
augmentations, and annotate datasets with ease. It integrates seamlessly with various machine 
learning frameworks, making it ideal for both beginners and experienced practitioners looking for 
a smooth workflow from dataset creation to model deployment. Roboflow also provides features 
for organizing and managing datasets, and its cloud-based nature allows users to collaborate and 
share datasets effortlessly. 

CVAT is an open-source, web-based tool specifically tailored for detailed and precise annotation 
tasks. It supports a wide range of labeling options, including bounding boxes, polygons, key points, 
and even instance segmentation. CVAT is highly customizable and designed to handle large
datasets, making it a preferred choice for projects that require high levels of precision and complex 
annotations. Its ability to support multiple users working simultaneously ensures that even large-
scale annotation projects can be handled efficiently. 

3.2 Image Data Collection 

When collecting data for this project, images were carefully selected to clearly showcase the 
equipment of interest as the primary subject, ensuring that its features, components, and relevant 
details were prominent and easily identifiable. In addition to capturing the machine in high clarity, 
some degree of background “noise” was also desirable. This background complexity—such as 
varied lighting, environmental textures, and incidental objects—adds realistic variability that helps 
models generalize better to real-world conditions. The inclusion of controlled background
elements challenges the model to differentiate between the machine and other surroundings,
making it more robust and effective in diverse environments. By combining clear foreground focus 
with background complexity, the dataset aims to support the development of computer vision 
models that can reliably identify the target machine in a range of settings and contexts. A series of 
example images are shown below. 
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Figure 3.1. Example of Ideal Images for Annotation and Training 

3.3 Data Labeling 

Labeling images in CVAT (Computer Vision Annotation Tool) begins with setting up a new 
project or task and uploading the required images, which can come from local files, cloud storage, 
or URLs. We will then define the labels needed for this project, such as “Excavator” or “Loader” 
and select the correct annotation tools for each label, such as bounding boxes for object detection 
or polygons for segmentation tasks. 

After labeling each image, we go through the dataset to review and correct any errors, ensuring 
consistency and high-quality annotations across the entire project. Once the quality check is 
complete, the annotated dataset is saved and exported in the desired format to integrate with 
machine learning workflows. This process ensures that every image is labeled precisely, creating a 
reliable dataset that enhances the accuracy and performance of computer vision models in real-
world applications. 

Labeling images in Roboflow begins with creating a new project and uploading the dataset. Once 
the images are uploaded, we can access the labeling interface to define the classes or labels relevant 
to this project, such as “Smooth Tandem Roller” or “Padfoot Roller.” After setting up the labels, 
annotation can be started by selecting the appropriate tool for labeling needs such as bounding 
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boxes, polygons, or points, depending on the level of detail required. We will then assign the 
corresponding label from the list we defined earlier. 

Figure 3.2. Example of CVAT Annotation and Labeling Process 

Figure 3.3. Example of Roboflow Annotation Interface 
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3.4 Data Augmentation 

After labeling the data, data exportation is the next step. The dataset consists of regular images 
with no augmentations. Augmentations such as flip, rotation, shear, and noise manipulate the 
image so that the visibility of the object is less clear and defined. This process proves to be useful 
when training the model because it makes the identification task more challenging which can help 
considering that picture or video quality is not always optimal. Figure 3.4 shows an example of 
augmentations used in this project. 

Figure 3.4. Example of Data Augmentation 
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4. Model Training, Testing, and Validation 
4.1 Introduction 

In computer vision, the ability to efficiently detect and segment objects in real time is important. 
This chapter summarizes the architecture and implementation of a deep learning model to identify 
and label different construction machinery on a road construction site. This section of the report 
outlines the comprehensive architecture of the system, detailing the data flow, as well as the 
integration of the You Only Look Once (YOLO) model. We describe how our custom-built 
model facilitates efficient communication between the user and the machine learning models, 
ensuring that input data are processed with precision. 

A significant highlight is our approach to enhancing the YOLO model by incorporating new 
classes without compromising its core capabilities. By concatenating two YOLO models, we 
preserve existing weights while introducing custom weights for our new dataset. This innovative 
method allows for efficient training and accurate object recognition, even for previously untrained 
classes. Furthermore, we explore the state-of-the-art segmentation model, detailing its extensive 
training process and optimization strategies that have led to performance metrics. Our efforts in 
data manipulation and quality control underscore the importance of robust data handling in 
achieving high model accuracy. 

4.2 Model Integration 

The YOLO model component is designed to accept either image or video input from a ground-
level point of view. Upon receiving this input, the model initiates an intermediary, enabling 
seamless interaction between the user interface and the trained machine learning models. The deep 
learning model processes the input data using the respective algorithms. The output generated by 
the model is then captured by the backend system. 

Traditionally, when training the YOLO model on new data with pre-trained weights, the model 
tends to forget its old labels unless the new data includes them. To retrain the entire model on all 
its 80 classes, including the new classes we added for our project, one would typically need to 
retrain the model on the entire original dataset alongside the new dataset we collected in this 
project. However, this approach could be more efficient, as retraining the original model would 
require a significant amount of time due to the large size of the dataset. A simpler alternative would 
be to use a mini dataset which would have significantly less data than the original dataset for object 
detection. However, the drawback with this approach is that the models will not be as accurate as 
the YOLO model trained on the original dataset. Therefore, we needed to find a method to add 
new classes to the model while preserving the existing weights, without training on the original 
dataset. Our solution to this problem was as follows: 
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We essentially concatenated two YOLO models together. This approach preserves the old YOLO 
weights while allowing us to train custom weights for the new classes. YOLO has two outputs: 
one represents the class of the image and the data for the bounding box. This explains why the 
normal YOLO model with the original weights has an output of (N, 84, 6300) since it contains 
80 classes and there are 4 coordinates to make the bounding box. The model utilized a library and 
employed the medium version of the YOLO model. Concatenating two models is a complex
process, which will be discussed in the next section. 

To concatenate the models, we first froze all the weights of the pre-trained YOLO model and 
froze the first 22 layers of our new model. This involved iteratively going through all the layers in 
the YOLO model and freezing each layer for both the pre-trained and our new model. While 
freezing the layers prevents their weights from being updated, the batch normalization statistics 
still get updated during training. This is why we needed a callback function to be added to put the 
frozen layers in eval mode to prevent the batch normalization values from changing. We performed 
this for every epoch since the model returns to training mode after the validation step, which 
undoes our changes. Figure 4.1 shows an example of two different kinds of machinery detected in 
a construction scene. 

Figure 4.1. Example of Detected Construction Machines in an Image 

We also utilized a state of the art deep-learning-based segmentation model that can identify and 
segment different construction machinery in images and videos of highway construction sites. The 
results of implementing this model on sample images are shown in Figure 4.2. 
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Figure 4.2. Performance of the Segmentation Model on Sample Images 

4.2 Model Training 

Our current model underwent an extensive training process, utilizing a robust dataset comprising 
over 10,000 diverse images. The training regimen consisted of 1000 epochs, a significant increase 
from our previous iterations. This extended training duration allowed the model to iterate through 
the entire dataset multiple times, facilitating deeper learning and pattern recognition. The large-
scale dataset provided a wide array of scenarios and object variations, contributing to the model's 
ability to generalize effectively across different contexts. 

To accelerate the training process, we implemented a dedicated GPU (Graphics Processing Unit) 
setup. This hardware optimization resulted in a remarkable 14-fold increase in processing speed 
compared to our previous training iterations. The substantial reduction in computational time 
allowed us to explore more complex model architectures and hyperparameter configurations. This 
efficiency gain was instrumental in achieving higher confidence scores and improved accuracy in 
object detection tasks, as it enabled us to conduct more extensive experiments and fine-tuning 
within a given timeframe. 

The combination of an extensive dataset, increased training epochs, and accelerated processing 
capabilities led to significant improvements in our model's performance metrics. We observed 
notable enhancements in confidence scores, indicating the model's increased certainty in its 
predictions. Additionally, the accuracy of object detection showed marked improvement, with the 
model demonstrating a higher rate of correct identifications and classifications across various object 
categories and environmental conditions. 

To streamline our data management processes, we developed several specialized scripts. These 
tools were designed to automate and optimize various aspects of data preprocessing and 
organization. One key script focuses on mapping classes, ensuring consistent and accurate labeling 
across the entire dataset. This is particularly crucial when dealing with large-scale datasets where 
manual classification can be prone to errors or inconsistencies. Another critical script in our toolkit 
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is designed to detect images lacking proper labels. This quality control measure is invaluable when 
working with datasets comprising thousands of images. By automatically identifying unlabeled or 
mislabeled images, we can maintain the integrity of our training data. This process helps prevent 
the introduction of noise or inconsistencies into the model training, which could otherwise lead to 
reduced performance or biased outcomes. 

The implementation of these automated scripts significantly enhanced our ability to handle and 
process large volumes of data efficiently. This scalability is crucial in the context of deep learning, 
where the quantity and quality of training data directly impact model performance. Our approach 
not only improved the accuracy of our dataset but also reduced the time and resources required for 
data preparation, allowing us to focus more on model development and optimization. 
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5. Results, Discussion, and Conclusions 
This chapter summarizes the results of model performance based on the dataset collected in this 
project. We will then provide conclusions and recommendations for future research. 

The performance of a deep learning classification model is usually evaluated using F1-Confidence 
curves by balancing precision and recall across different confidence thresholds, making them 
particularly valuable for evaluating object detection systems. These curves help identify optimal 
operating points and reveal model behavior across varying confidence levels. 

Figure 5.1. F1-Confidence Curve for All Three Models 

Comparison of the F1-Confidence curves between Model 1 and Model 2 reveals substantial 
improvements in detection performance. Model 2 achieved a higher overall F1 score of 0.96 at an 
optimal confidence threshold of 0.514, compared to Model 1's F1 score of 0.80 at an optimal
confidence threshold of 0.435. The improved model demonstrates more consistent performance 
across different construction equipment classes, as evidenced by the tighter clustering of class-
specific curves, suggesting enhanced generalization capabilities across various equipment types. 

A normalized confusion matrix (Figure 5.2) visualizes the model's classification performance by 
showing the proportion of predicted classes (rows) versus true classes (columns), where perfect 
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classification would result in values of 1.0 along the diagonal and 0.0 elsewhere. Each cell 
represents the fraction of predictions, with darker blues indicating higher values. The diagonal 
elements show strong performance with most classes achieving 0.98–0.99 classification accuracy, 
indicating excellent class discrimination. 

The background class shows some interesting interactions, with minor misclassifications across 
several equipment types, notably a 0.16 rate with mobile cranes, meaning 16% of background 
regions were incorrectly classified as mobile cranes. Some minimal confusion (0.01–0.02) exists 
between functionally similar equipment pairs, such as wheel loaders with dozers and compactors, 
which is expected given their similar visual characteristics. The dump truck class shows slight 
confusion with the background (0.28), suggesting challenges in distinguishing these vehicles in 
complex scenes. Overall, the matrix demonstrates robust classification performance with minimal 
cross-class confusion, which is particularly impressive given the visual similarities between some 
construction equipment categories. The predominantly diagonal pattern, with very few off-
diagonal elements exceeding 0.05, indicates strong class separation and reliable detection 
capabilities. 

Figure 5.2. Confusion Matrix for Model 3 

5.1 Sample Model Output 

These visualizations present quantitative detection results demonstrating the model’s real-world 
performance on diverse construction site imagery. They aim to validate the quantitative metrics 
and illustrate the model's practical applicability across varying real-world scenarios and challenging 
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conditions. Our first example shows test images with numeric class labels and colored bounding 
boxes, highlighting the model’s ability to detect equipment in complex environments. 

Figure 5.3. Sample Output for a Highway Construction Site 

Tower cranes (labeled “8,” green boxes) are consistently identified across multiple viewpoints, 
while various ground equipment such as graders and compactors (labeled “3” and “1”) are accurately 
detected in diverse settings. The model successfully handles multiple equipment instances in single 
frames and maintains performance across different lighting conditions and perspectives. Figure 5.4
depicts a set of images that validate results with confidence scores and class labels, showing strong 
detection performance across various equipment types. 

Figure 5.4. Performance of the Model in Detecting Different Construction Equipment 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  22 



 

    

 

 

 

 

 

 

 

 

 

 

    

 

 

 

  

The model achieves high confidence scores, typically above 0.8 for diverse equipment including 
mobile cranes, dump trucks, and excavators. Lastly, the third set shows performance from random 
images concatenated together (Figure 5.5). The model demonstrates robust performance in new 
scenarios, maintaining high confidence scores on unseen images with all images meeting a floor of 
0.8 and reaching highs of 0.95 for graders and compactors. 

Figure 5.5. Construction Machinery Detection in Mixed Scenes 

5.2 Conclusions 

The dataset collected and processed in this project is one of the most unique and specialized 
datasets that has developed for classification of highway construction machinery. The outcomes of 
the trained and improved deep learning classification model are promising in terms of the precision 
and accuracy of the model in detecting specific objects at a highway construction site. It should be 
noted that the scope of this project was limited to the image and video data recorded from the 
ground level and cannot be extended to UAS-based data. Identification and detection of specific 
construction machinery from UAS footage requires a separate dataset specifically curated for aerial 
imagery which can be pursued in the future. 

5.3 Recommendations for Future Research 

Building upon these advancements, future research can focus on further refining the data 
processing pipelines and exploring more sophisticated model architectures. The focus will be to 
implement adaptive learning rates and advanced regularization techniques to push the boundaries 
of our model's performance. Additionally, future research can investigate transfer learning
approaches to leverage pre-trained models, potentially accelerating the training process for specific 
object detection tasks while maintaining high accuracy levels. 
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