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Executive Summary 
We experimentally investigated the transient wind generated from the passing of a vehicle near a 
wall and a set of columns for potential electric power generation. Capturing this energy would add 
to California’s renewable energy portfolio for various commercial and transportation-related 
applications. Our current experimental and past numerical investigations have shown that, in the 
context of freeway applications, where the frontal shape of the vehicle is the most effective in 
generating wind, a wind equivalent to the vehicle’s speed is generated at a distance equivalent to 
the 50% width of the vehicle in the spanwise direction and maintains uniformity in a vertical 
spacing up to the top of the vehicle. Under freeway overpasses, near a wall or a column, the wind 
generated is contained and has a more uniform energy potential for electric power generation. 
With an optimized wind turbine system, this energy potential can be harnessed to generate
electricity for lighting freeways for improved safety and powering signs and notification systems. 

Our research and development over the past decades have resulted in a high-efficiency vertical-axis 
wind turbine system with a power coefficient of nearly 0.4 over a large range of tip-speed ratios. 
The wind turbine system comes with backup battery storage, a voltage regulator, and an optional
inverter. It can be scaled to different sizes for different levels of power generation. Depending on 
the blade surface area and stacking and the type of generator used, the power output ranged from 
100 watts to more than 2 kilowatts. With an appropriate adjustment to this system, we believe we 
will be able to develop an effective wind farm along the freeway for significant electric power 
generation. 
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1. Introduction 
Experimental investigations [1] of the wind load generated by vehicles on road signs have shown 
that the force acting on these signs during the passage of a vehicle differs with respect to the 
aerodynamics of the vehicle and the location of the sign. The greatest force on the road sign is 
imposed by the front of the vehicle, and the amount of the load depends on the distance between 
the vehicle and the sign. Depending on the force’s amplitude and its duration, the impact on the 
road sign could result in dynamic reactions and material fatigue. 

Other investigations [2–9] on load-induced on-road signs and vehicle-induced gusts have provided 
similar results, though they include additional details of the wind profiles around vehicles. A study 
[10] on the effect of natural wind on road signs has shown a reduced mean drag coefficient as 
compared to the corresponding value published by the American Association of State Highway 
and Transportation with its variations depending on the aspect and depth ratios of the sign. 

Recent unsteady numerical simulations of an Ahmed body under a freeway overpass [11, 12] have 
shown that when the vehicle is at a distance of 0.75 W from the bridge column, where W is the 
width of the vehicle, gusts of up to 23 meters per second (m/s), i.e., 51.5 miles per hour (mph) or 
82.4 kilometers per hour (km/h), are generated near the bridge column. In this area, turbulent 
kinetic energy and vorticity are reduced indicating reduced fluctuations in the wind generated. On 
the top of the vehicle near the end, the wind speed is higher than 24 m/s, which decreases 
downstream. As the vehicle passes the columns, in the vehicle's wake, vortices are increased and 
expanded, and the turbulent kinetic energy is amplified. 

The bridge’s constraints cause changes in the baseline vehicle pressure which affects the transient 
vehicle's drag coefficient. The transient wind generated at the columns is mostly caused by the 
front of the vehicle and ranges from 6 m/s to 10 m/s. The circumferential pressure distributions 
on the referenced column show that the stagnation point changes with the passing of the vehicle 
with a maximum differential pressure coefficient of 0.2. The ground effects are seen up to 5 m 
elevations where the pressure coefficient changes from positive to negative with the passing of the 
vehicle, with a maximum difference of 0.17. 

The present investigations are continuations of our previous numerical investigations [11, 12]
which experimentally investigated the wind generated from passing vehicles near freeway walls and 
poles, with a goal of determining its potential for electric power generation. 
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2. Experimental Investigations 
2.1 Wind Tunnel Experiments 

The experiments were conducted in the Center for Energy and Environmental Research & 
Services’s low-speed open-circuit wind tunnel which consists of six main components: the motor, 
blower, diffuser, settling chamber, contraction, and test section. Air is driven through the tunnel 
by a 3750 CFM backward airfoil centrifugal blower, powered by a 3 HP electric motor. The 
diffuser is a two-part diffuser expanding from 43.2 by 63.5 cm to 76.2 by 76.2 cm over a distance 
of 91.4 cm. Boundary layer control is provided by a screen with an open area ratio of 62.4% paced 
across the flow in the middle of the diffuser. The diffuser section is followed by the settling
chamber which has a hexagonal honeycomb (3.8 cm deep with 3.2 mm cells) and three screens 
with open area ratios of 62.4%, 59.1%, and 59.1%, respectively. Following the settling chamber is 
a 3-D contraction with a 10:1 area ratio over a distance of 91 cm. From the contraction, the flow 
is passed through a two-dimensional diffuser to a cross-sectional area of 38.1 by 30.48 cm. The 
diffuser is followed by an open working area with a 1.27 cm thick polished wooden flat plate of 
122 cm width and 244 cm length, which is aligned with the bottom surface of the diffuser. At the 
diffuser’s outlet, in the range of 3 to 35 m/s, the mean velocity varies by less than 0.5%, and at all 
speeds; the background intensity is less than 0.2%. 

The experiments were performed at a free-stream mean velocity of 23 m/s. Five PVC pipes with 
outer diameters of 6 cm and 90 cm long were placed on a flat plate platform adjacent to the 
wind-blowing domain in the streamwise direction at 2 diameters from each other. Figure 1 shows 
the experimental setup and the Ahmed body. The pipes simulate the columns under a freeway 
overpass. A scaled Ahmad body with dimensions of 17.36 cm height, 15.67 cm width, and 
52.7 cm length was used as the vehicle. 

Figure 1. The Ahmed Body and the Vertical Columns 

The spanwise distance between the Ahmad body and the tubes was 0.75 w where w is the width 
of the vehicle. Previous numerical studies have shown that the 0.75 w distance is effective in 
generating high transient wind potential near freeway columns. The middle pipe was used as a 
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reference pipe for circumferential and vertical pressure measurements (Figure 2). Axial pressure 
taps were placed on the surface across the mid-section plane of the vehicle to investigate the change 
in vehicle pressure distribution and form drag due to flow constraints caused by the tubes. The 
static pressure taps had an inner diameter of 1 mm and an outer diameter of 2 mm. For the 
monitoring tube, there were 36 circumferential static pressure taps at 10-degree spacing, placed at 
half the height of the vehicle from the floor of the wind tunnel (Figure 2). 

Figure 2. Circumferential Pressure Measurements and the Vehicle 

There were 13 vertical pressure taps at the 90-degree angle location. The first tap was at 0.058 h 
from the ground, where h is the height of Ahmed's body. The rest were spaced covering 1.82 h 
vertical distance (Figure 3). 

Figure 3. Locations of Vertical and Circumferential Static Pressure Measurements 

(a) 

(b) 
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All pressure taps were connected to two 16-channel Scanivalve DSA 3200 and 5000 systems 
connected to a laptop computer. Two thousand and forty-eight samples were collected at a rate of 
2,048 samples per second for each pressure tap and averaged for static pressure measurements. 
The streamwise locations of the vehicle were according to our previous transient numerical 
simulations as the vehicle approached and passed the columns at 0.1–0.5 seconds (Figure 4). 

Figure 4. Vehicle Locations at Different Time Steps 

0.04 s. 

0.16 s. 

0.27 s. 

0.3 s. 

0.4 s. 

0.5 s. 

2.2 Field Tests 

The field tests were conducted using a scaled model of the Ahmed body mounted on a 
radio-controlled car frame which is capable of moving the vehicle at up to 30 mph (Figure 5). The 
Ahmed body’s dimensions were 35.6 cm in width, 30.48 cm in height, and 101.6 cm in length. 
The spacing between the ground and the vehicle was 2.86 cm. 
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Figure 5. The Field Test With the Ahmed Body 

A wooden board of approximately 122 cm in width and 178 cm in length was used as the wall. 
The wall had axial and vertical pressure taps for monitoring static pressure from the passing
vehicles. The pressure taps were stainless steel tubes of 1.34 mm outside diameter (O.D.) and 
1.65 mm inside diameter ( I.D.). The wall had eight horizontal static pressure taps at half the 
height of the vehicle. The first tap was 26 cm from the leading edge of the wall, and the following 
six taps were spaced evenly 15.24 cm apart. The last tap was placed 163.2 cm from the wall's 
leading edge. The vertical static pressure taps were 127 cm from the wall's leading edge. Five static 
pressure taps were used for vertical static pressure measurements. The taps were at 0.5 cm, 1.5 cm, 
2 cm, 4 cm, and 8.5 cm from the ground, respectively. Three 90-degree total pressure tubes were 
also installed in the vertical direction at the same axial location as the vertical pressure taps at a 
spacing of 1 cm, 2.5 cm, and 5.5 cm, respectively, from the ground. They were installed to monitor 
wind velocity gradient in the vertical direction. The spacing between the tip of the probes and the 
wall was 2.54 cm. 

An equilateral triangular aluminum rake with ten total pressure tubes measured wind velocity in 
the spanwise direction. Figure 6 shows the rake. The aluminum rake was 2.6 mm thick. The tubes 
were spaced such that they could measure total pressure without interference from the other tubes. 
The approximate spacing between the tubes was 1.4 cm and between the wall and the furthest tube 
was 13.41 cm. 
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Figure 6. Rake for Spanwise Velocity Measurements 

To maintain a distance of 0.75 w between Ahmed's body and the wall, the vehicle was attached to 
two arms with guide rails on the side of the vehicle. The guide rails were placed inside an aluminum 
rail that forced the vehicle to move in a straight line. The vehicle was placed approximately 10 m 
upstream of the wall and moved at a speed of 10 m/s. The speed was monitored by a handheld 
speed gun with an accuracy of 0.44 m/s. 

The same Scanivalve systems were used to measure static and total pressure measurements. 
Transient pressure measurements were made at 2,048 samples/s. 
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3. Results and Discussions 
3.1 Wind Tunnel Results 

Figure 7 shows the variation of the circumferential pressure coefficient at different time steps 
corresponding to the locations of the front of the vehicle at the reference location. All pressure 
differential values have been normalized by the wind tunnel’s dynamic pressure to obtain the 
pressure coefficients. At 0.1 second, the front of the vehicle is at -15.6 cm distance from the 
reference plane, and the corresponding distances at 0.2, 0.25, 0.265, 0.28, 0.29, 0.3, 0.4, and 0.5 
seconds are -5.2, -2.5, -1.25, 0, 1.25, 2.5, 26.5, and 58 cm, respectively, where a negative distance 
indicates that the front of the vehicle has not passed the reference plane. 

At 0.1 seconds, the pressure coefficient was 0.023 at 30 degrees, reduced to -0.13 at 160 and 
180 degrees, and at other locations mostly fluctuated around zero. At this time, the location of the 
vehicle is far from the reference pipe and the flow movement around the reference pipe is limited. 

Between 0.2–0.5 seconds, the maximum differences in pressure coefficient ranged between 0.08 at 
0.2 seconds to higher than 0.1 at 0.3 seconds. At 0.29 seconds, the vehicle’s leading edge was at 
the reference pipe, and at 0.3 seconds, it just passed the reference pipe, which indicates that the 
vehicle's leading edge is mostly responsible for the changes in the circumferential pressure and the 
gust generated at this location. 

Figure 8 shows the variation of the vertical pressure coefficient at different time steps. The vertical 
distance Y was normalized by the height of the vehicle. To obtain the pressure coefficients, the 
vertical pressure differential values were normalized by the wind tunnel dynamic pressure. At 
0.1 seconds, as the vehicle approaches the reference column, the vertical pressure fluctuates 
between zero and a minimum pressure of -0.3 at the mid-section plane and above the vehicle. The 
pressure fluctuations are reduced with the approaching of the vehicle and between 0.25 to 
0.4 seconds, while the variations are similar to the corresponding variations at 0.1 seconds, but are
reduced to a minimum pressure of -0.2. These variations correspond to the passage of the vehicle 
and the near wake area. At 0.5 seconds, the pressure coefficient approaches zero. 

Reviewing the vertical pressure variations, it is noticeable that the pressure coefficients are negative 
between the ground and the top of the vehicle at all times, corresponding to air movements from 
the passing of the vehicle at these locations. This means that to extract wind energy from the 
passing of vehicles, the wind turbine system should be placed between the ground and the top of 
the vehicle. 
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Figure 7. Variations of the Circumferential Pressure Coefficient at Different Time Steps 

Figure 8. Variations of the Vertical Pressure Coefficient at Different Time Steps. 
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Figure 9 shows the variation of the axial pressure coefficient at the mid-section plane of the vehicle 
at different time steps. The results also include the pressure distribution for the vehicle without 
the poles for comparison. All pressure differentials have been normalized by the corresponding 
stagnation pressure differential to obtain the pressure coefficients. For all cases, the pressure drops 
to a minimum from the stagnation point due to fluid acceleration. The lower pressures are 
associated with time steps 0.28 and 0.3 when the vehicle's leading edge is near or at the reference 
pole location. The pressure drop is the lowest at the 0.1 second time step. The pressure coefficients 
then increase and become zero at X/L = 0.2, where X is the axial distance and L is the length of 
the vehicle. Between X/L = 0.0 and 0.2, for time steps 0.28 and 0.5, there are decreases and 
increases in pressure. The pressure remains zero in all other cases. Between X/L = 0.6 and 0.8, the 
pressure coefficient is zero in all cases. 

The pressure coefficient decreases at X/L = 0.8, which corresponds to the start of the slanted 
surface near the back of the Ahmed body. The slant is at 30 degrees in the clockwise direction and 
terminates at the back of the vehicle. This location is the start of flow separation. The lowest 
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pressures are at X/L = 0.85, and the least pressure is exerted at the 0.3 second time step. The 
pressure coefficients increase thereafter and approach zero at the back of the vehicle. 

Compared with the pressure distribution of the vehicle without the poles, the presence of the poles 
causes changes in the flow conditions across the vehicle when the vehicle approaches and passes 
the poles, resulting in a slight increase in the vehicle’s drag coefficient. 

Figure 9. Variation of the Pressure Coefficient Across the Axial Mid-Section of the Vehicle 
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3.2 Field Tests 

Figure 10 shows variations of the transient axial pressure coefficient caused by the passage of the 
vehicle at different axial locations. The static pressure differentials with the moving vehicle have 
been divided by the corresponding values without the vehicle in place to obtain the pressure
coefficients. The leading edge of the vehicle reaches the first static pressure tap at approximately 
0.45 seconds with a peak Cp of 0.2 followed by a drop in pressure coefficient to less than -0.2 
before recovering to a value less than 0.2 at about 0.455 seconds. The pressure coefficient drops 
again to an approximate value of -0.3 before it increases again and approaches zero at 
0.457 seconds. These variations correspond to the passage of the vehicle with positive pressure 
corresponding to the leading edge and immediate tail of the vehicle and negative pressures 
corresponding to the passage of the body and the wake area. The total difference in pressure 
coefficients is approximately 0.5. Similar variations in the pressure coefficient are seen for other 
horizontal pressure taps with delayed times. 

Figure 11 shows transient variations of the vertical pressure coefficient at different vertical 
locations. When the vehicle passes the reference column, for all pressure taps, the pressure
coefficient peaks at 0.2 before it drops to -0.6, then it increases again to a Cp of 0.2, before it drops 
again, but remains on the positive side. Between 4.35% to 11.6% of the vehicle’s height, the 
pressure coefficient shows an additional peak of higher than 0.2, before it decreases and approaches 
zero. The passage of the vehicle changes the vertical pressure coefficient with a maximum 
difference of slightly higher than 0.8. Beyond 24.6% of the vehicle’s height, we did not observe 
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Figure 11. Transient Vertical Pressure Coefficient 

 

    

  

 
   

   
   

    

  

 

 

  

 
 
 
 
 
 
 
 

much difference in the vertical static pressure coefficient which means the ground effect has 
disappeared at elevations beyond 25% of the vehicle’s height. 

Figure 12 shows the spanwise variation of the mean velocity U from the passing of the vehicle 
calculated from the rake pressure measurements. Here Z is the spanwise distance normalized by 
the width of the vehicle. There is an approximate linear increase in the mean velocity with 
increased distance from the wall and at approximately 50% of the width of the vehicle, the mean 
velocity is higher than 12 m/s, which is higher than the speed of the vehicle. These results show 
that the wind energy potential is high at the mid-section height of the vehicle and at about 50%
of the vehicle’s width, with a maximum static pressure coefficient of 0.8. 

Figure 10. Transient Axial Pressure Coefficient 

0.4 

0.44 0.45 0.46 0.47 0.48 

x/L = 0.918 
x/L = 0.660 
x/L = 0.575 
x/L = 0.489 
x/L = 0.403 
x/L = 0.318 
x/L = 0.232 
x/L = 0.146 

0.2 

0.0 

C
p -0.2 

-0.4 

-0.6 

-0.8 

Sec. 

0.4 

0.2 

0.0 

-0.2 

Y/h = 0.0145 
Y/h = 0.0435 
Y/h = 0.0580 
Y/h = 0.116 
Y/h = 0.246 

C
p 

-0.4 

-0.6 

-0.8 
0.435 0.440 0.445 0.450 0.455 0.460 0.465 0.470 0.475 

Sec. 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  11 



 

    

 

 

 

  

• 12 

• 10 • - • UJ -E 8 • -:::::, • 6 

4 • • • • 
2 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 

ZIW 

Figure 12. Spanwise Velocity from Passing of the Vehicle 
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4. Summary & Conclusions 
The goal of the investigations was to experimentally investigate the wind energy potential from 
the passage of a vehicle and compare the results with corresponding numerical results to identify 
an optimum location for generating electricity. The study used a scaled Ahmad body for both wind 
tunnel measurements and field tests. Results confirmed our previous numerical investigations of 
the existence of significant wind energy potential from the passage of vehicles on freeways and 
highways. The maximum wind gust generated was equivalent to the speed of the vehicle up to 
0.5 w spanwise distance from the vehicle. At this location, the wind speed was sustained in the 
vertical direction from above the ground to the top of the vehicle. These results agree with our 
previous numerical simulations using a scaled Ahmed body traveling at 23 m/s on a California 
freeway. 
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