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Executive Summary 
This study provides an evaluation of the potential impacts of Internet of Things (IoT) technology 
on the Los Angeles (LA) Metro Rail lines, focusing on service connectivity, accessibility, and the 
implications for inequality among transit services. It highlights the critical role of reliable, timely 
information for passengers, especially those from low-income populations who rely heavily on 
public transit and are most affected by service inconsistencies. 

The IoT technology, if implemented, is shown to potentially increase accessibility across all LA 
Metro Rail lines (A, B, C, D, and E) for the years studied (2015, 2017, and 2019). This suggests 
that technological advancements could significantly enhance service accessibility, making public 
transit more efficient and accessible. 

Despite the overall improvements in accessibility, the effects of IoT on reducing service inequality 
are inconsistent. Rail Line B experienced fluctuating accessibility values with IoT implementation, 
while Rail Line C showed persistent inequality. This indicates that while IoT can improve service 
quality, its effectiveness varies due to factors such as potential ridership and the integration process 
of IoT technologies. 

The research underscores the complexities involved in deploying technology within public 
infrastructure. The persistence of inequality in service levels, even with IoT adoption, suggests that 
a planned approach is necessary for implementing technological solutions. 

The study suggests that technology alone may not be sufficient to address systemic issues within 
public transit systems. Infrastructure readiness, the socioeconomic status of users, and strategic 
technology integration must be considered to achieve more equitable outcomes. 

The research calls for further exploration of the conditions under which IoT technologies can most 
effectively reduce service inequality. It is recommended that longitudinal studies could provide 
insights into the sustainability of improvements in accessibility and service quality over time. 
Comparative studies across different transit systems could identify best practices for IoT 
integration. 

There is a need to develop inclusive strategies that consider the diverse needs of all transit users, 
especially marginalized communities, to ensure equitable access to improved services. This involves 
technological upgrades, infrastructural improvements, policy interventions, and community 
engagement efforts to address broader issues of inequality in urban mobility. 

In conclusion, while IoT has the potential significantly to improve public transit by enhancing 
accessibility and connectivity, the uneven benefits observed across different rail lines highlight the 
need for careful consideration of factors to ensure that technology deployment contributes to more 
equitable outcomes in public transit systems. 
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1. Introduction and Background 
Literature shows that poor service reliability of transit often leads to uncertain waiting times at 
transit stations, diminishing their overall popularity and usage (Perk et al., 2008). The popularity 
of transit is often negatively impacted by poor infrastructure of other modes that also provide 
first/last mile connectivity to a transit system (Chandra et al., 2016). In addition, failure to provide 
timely information to passengers on service disruptions is also perceived as a disincentive for transit 
use (Watkins et al., 2011).  

Commuters from low-income populations who do not own private vehicles often rely heavily on 
transit. They are the most affected by a lack of information on accurate arrival and departure times 
of transit at a stop. For example, in the Southern California Region, the light rail lines of the LA 
Metro offer commuter service to passengers who are primarily from low-income populations. 
These rail lines include A Line, B Line, C Line, D Line, and E Line (see the map in Fig. 1 for 
low-income population residing around the half-mile area around each line). These light rail 
transit lines connect to Los Angeles Union Station, which is also a proposed California high-speed 
rail station (LA Union Station, 2018). However, despite serving a dense urban population, the rail 
lines have been experiencing a low ridership compared to those for other transit systems in other 
states such as New York. Data from the last seven years show a systemwide ridership decrease of 
almost 20% for the rail lines before the COVID-19 pandemic during the previous five years and 
experienced even further reductions in ridership after the pandemic in the last two years (LA Metro 
2022). Therefore, there is a need to address the low ridership that most transit systems in 
California (and elsewhere in the United States) are experiencing. 

To improve ridership, transit must be attractive and seamlessly useful for its riders through 
technology usage. For example, the Internet-of-Things (IoT) is one such innovative technology 
that ensures the fast and efficient relay of information to passengers on accurate arrival/departure 
times of rail at stations (Patel et al., 2019). This is achieved through interconnected transportation 
entities, such as train locations, commuters (mobile phones), sensors installed at stations, and 
seamless connectivity between passengers and rail (Chavhan et al., 2019). Studies show that 
technologies and smartphone applications that help improve the reliability of the information on 
transit locations are on the rise (Misra et al., 2014), especially in the smart city applications with 
connectivity and accessibility provided by smart trains (Fraga-Lamas et al., 2017; Zhao et al., 2020; 
Kyriazis et al., 2013).  

IoT is a network of interconnected, uniquely identifiable devices, such as a mobile phone, which 
exhibits communications capable of being used and embedded at any scale within the 
transportation system (USDOT 2016). With IoT-based Intelligent Public Transportation 
Systems (IoT-IPTS), service reliability and heterogeneity among connected objects or modes are 
improved for a multimodal transport system, enhancing connectivity and accessibility to stations.  
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Waiting at stations or stops is often perceived as a deterrent to riding transit (Taylor et al., 2009), 
and it can thus be eliminated with IoT-IPTS to help transit agencies attract the much-needed 
ridership. However, the question arises of how well all these enhancements affect the equity goals 
of a transit agency that facilitates travel for low-income commuters. 

The primary purpose of improving rail service (through technology deployments) is to attract 
ridership (Chandra and Mazin, 2020). Investments through new technology implementation in 
transit are justified if improvements are observed in two popular transit performance measures—
connectivity and accessibility (Chandra et al., 2018). Connectivity conveys how well two places are 
connected, whether from improvements in transportation infrastructure or from service 
improvements between regions, cities, or points of interest; and accessibility is expressed as travel 
time, distance, or cost requirements to access a destination (Karou and Hull, 2014). However, 
these two measures rarely have been evaluated when incorporating IoT benefits—particularly for 
equity assessments for connected and accessible transit for low-income riders.  

Low-income populations have been a focus of various equity-related studies, emphasizing the 
impacts of transport connectivity and accessibility (Bröcker et al., 2010). In one study, scholars 
found that accessibility increased among low-wage workers compared to medium and high-wage 
workers after implementing the light rail line service (Fan et al., 2012). In all the connectivity and 
accessibility-related findings, assessing inequality impacts can be a challenge—but for this, 
suggestions have been made to use spatial impact analysis derived from changes to the distribution 
of accessibility in the specific urban agglomerations of rail projects (Monzón et al., 2013). Thus, 
the presence of rail stations, proximity to population centers, and the quality of the overall 
transportation system impact the inequality implications. With the deployment of innovative 
technologies such as IoT-IPTS and measuring the resulting connectivity and accessibility of 
transit, the usefulness of such technologies can be better understood to make policy decisions that 
meet the equity goals of transit agencies.  

Light rail transit is often seen to play an essential role in attenuating regional inequalities between 
places that are far apart—mainly by providing transport solutions to commuters from poor and 
disadvantaged communities (Wu et al., 2020). Light rail can potentially address accessibility 
concerns for underprivileged communities (Constantin et al., 2021). However, this may not always 
be true, and realizing any benefits through IoT-IPTS deployment in enhancing connectivity or 
accessibility could be complex or even contrary to expectations. For example, past studies have 
shown that an increase in disparities can also result from an increase in infrastructure 
connectivity—when the more prominent locations draw increased resources from the other 
locations (Fujita and Thisse, 1996). This entails studying rail connectivity and accessibility impacts 
on inequality with IoT-IPTS implementation, especially for stations and rail lines that serve low-
income commuters.  
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To measure the inequalities by rail, three commonly used measures can be deployed, and these 
include dispersion indices such as coefficient of variation (Gutiérrez, 2001), Gini coefficient based 
on Lorenz curve [25], and entropy index such as the Thiel’s index [24]. While measuring 
inequality, it is important to consider how attractive a rail transport system is for a broad societal 
range and whether it can maintain a sustained level of ridership. This is especially needed in nations 
like the USA where rail ridership has been particularly low post COVID-19 [26].  

This research proposes new connectivity and accessibility measures for passenger rail 
transportation, considering the impacts of IoT-IPTS. Subsequently, a customized inequality 
formulation will be developed to imbibe the two measures. Analysis of these measures will be 
conducted with the light rail lines of LA Metro used as an example. Further, a performance 
persistence analysis (PPA) will be conducted using ‘with’ and ‘without’ IoT-IPTS implementation 
for the light rail lines. PPA has been used in a variety of transit-related studies [27]. It will identify 
winners and losers of rail lines, indicating if LA Metro needs to increase its frequency of service to 
any specific rail line to meet equitable connectivity and accessibility goals to serve low-income 
riders.  

Knowing winners and losers will help planners and policy-makers channel appropriate capital 
investments to rail lines of LA Metro and increase its connectivity and/or accessibility to minimize 
their disparities. Compared to all the past research, our methodology is unique as it will deploy 
socioeconomic data, station-level connectivity and accessibility of the rail lines incorporating IoT-
IPTS to deduce percentage changes in inequality. This approach encompasses sensitivity both 
from the disparity and performance measures perspectives of rail transit.  

Further, the methodology developed in this research can be adopted by any transit system 
incorporating IoT in their operations.  
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Figure 1. Spatial Distribution of Low-Income Workers Residence Along LA Metro 
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2. Methodology  
We begin by adapting a conventional formulation for connectivity and accessibility, incorporating 
them into the inequality formulation. Centrality, a key topological feature in network analysis, is 
employed for the connectivity aspect, a concept extensively utilized in various fields like physical 
networks, computer science, and epidemiology (Mishra et al., 2012). While connectivity captures 
a network's topological characteristics, accessibility serves as another frequently employed metric 
for assessing passenger flow (Liu et al., 2020). 

Using the two measures of connectivity and accessibility, the topology and the passenger flow were 
simultaneously considered (Sun et al., 2018). Though various forms of these two measures exist in 
the literature, none we came across was sensitive to the train's scheduled arrival or departure times 
within a network. Therefore, both connectivity and accessibility measures were developed to be 
time-sensitive and reflect trains’ schedule effects. Some of the key methodological steps discussed 
in the next sections have been adopted from Chandra and Narayanaswami (2024). 

2.1 Connectivity  

The “degree centrality” formula has been modified to develop the connectivity measure. The 
degree centrality of a node is the number of edges it has (Golbeck, 2013). It is usually deployed to 
identify the most important node in a network and indicates the number of neighboring stations 
directly next to a station (Chen et al., 2022). This means that the higher the centrality of the node, 
the more central and connected it is to the other nodes. In the formulation for centrality presented 
here, we use the centrality measure as a station's connectivity.  

The connectivity formula (denoted using ) for a node or a station i on transit line l in the year 

y is expressed as: 

𝐶!,#
$ = ∑ $ %

&!,#
$ %'%

()%          (1) 

where, 𝐼!,(
$ 	is the impedance in the year y between station i and closest station j (with 𝑖 ≠ 𝑗), and 

𝐽# 	is the number of neighboring stations in the transit line l. 

2.2 Accessibility  

Accessibility derived from a transportation facility (such as rail) is often used as a surrogate for a 
region’s economic potential and attractiveness (Chandra and Vadali, 2014). With a focus on the 
accessibility (or attraction) of a station on a transit line, a formula is proposed for its accessibility, 
𝐴!,#
$ , for a station i on the line l in the year y and is expressed as: 

,
y
i zC
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𝐴!,#
$ = ∑

*#
$

&!,#
$

'%
()%           (2) 

where, 𝑃(
$is the low-income population (as potential ridership) around the station j in the year y,  

𝐼!,(
$ 	is the impedance in the year y between station i and a closest station j (with 𝑖 ≠ 𝑗), and 𝐽# 	is the 

number of neighboring stations on the transit line l. The impedance is determined for the ‘with’ 
and ‘without’ IoT deployment cases. For the ‘without’ IoT case, the impedance consists of the sum 
of the waiting time and the travel time to the next station on the same line. The waiting time is 
zero in the impedance calculated for the ‘with’ IoT case.  

2.3 Generalized Connectivity-accessibility Index 

For a rail passenger, although a station with the largest connectivity would be attractive, there is a 
possibility that this may not be true when travel times from one station to the other stations are 
high—since connectivity expressed in Eq. (1) does not take into consideration the travel time 
between stations. Alternatively, accessibility—involving station/city population and travel times 
between stations—presents a more holistic measure of the attractiveness for rail passengers 
(Chandra and Vadali, 2014).  

As evident from this research, both connectivity and accessibility are equally important for enjoying 
the benefits of rail transportation (Zhou et al., 2018). To account for both centrality (i.e., 
connectivity) and accessibility measures, we develop a generalized measure (𝛺!,+

$ ) for a station i line 
l for the year y expressed as: 

𝛺!,+
$ = /

𝐶!,#
$

 if connectivity is sought
𝐴!,#
$

 if accessibility is sought
       (3) 

Therefore, the generalized connectivity and accessibility index, 𝛺#
$, for a line (with stations) is the 

average of 𝛺!,#
$  of all the stations contained in that zone.  

2.4 Inequality Measurement  

The inequality is measured for a transit line based on the connectivity and accessibility of all the 
stations on the line. Analyzing inequality or disparity among lines at the spatial scale can reveal 
gaps in transit connectivity and accessibility which can further justify and guide future transit-level 
investments. Thus, historically, lines with stations that may or may not have benefitted from IoT 
deployment are identified with the disparity analysis. A disparity analysis can reflect any 
modifications, expansions, or adjustments in schedule needed in operating transit service with IoT, 
to provide a more efficient connectivity and accessibility to the low-income population.  
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In this paper, we use a modified form of entropy index (Theil’s T index) as a decomposable measure 
of inequality that can be disintegrated into population groups, income sources, or other dimensions 
(Theil, 1967; Cowell, 2006).  

The modified Theil T index (𝑇#
$), representing inequality, for a transit line l in year y incorporating 

the generalized connectivity-accessibility index of a station is expressed as:  

𝑇#
$ = %

,%
1

-!,%
$

-. %
$ ln 4

-!,%
$

-.%
$5

,%

!)%

        (4) 

where, 

𝑛#= number of stations on a transit line l (assumption is that the total number of stations remains 
constant during each analyzed year y)  

𝛺!,#
$ = measure of the connectivity or accessibility of station i on line l in year y 

𝛺7#
$= mean connectivity or accessibility for all the stations on line l in year y.  

Henceforth, we utilize the inequality formulation above to evaluate the performance of transit lines 
for connectivity and accessibility, as described in the next section. 

2.5 Performance persistence analysis  

A nonparametric method is utilized to assess the performance of a transit line both ‘with’ and 
‘without’ IoT deployment. The aim is to analyze connectivity and accessibility. The performance 
analysis guides stakeholders to achieve regional and social inequality by directing investments in 
public transport (Zhao and Li, 2019; Luo and Zhao, 2021; Kim and Yi, 2019).  

Transit-level performance analysis should be conducted to understand how lines might have 
improved in inequality over the years, if IoT was deployed. Therefore, we classify lines into winners 
and losers based on their performance, assessed through inequality improvement ‘with’ or ‘without’ 
IoT deployment. A similar performance assessment has been adopted by Zhou et al. (2018) for 
rail transit.  

Utilizing the fundamentals of the theory of performance persistence analysis (PPA) by Agarwal 
and Naik (2000), the formulation for the percentage change in inequality between ‘with’ and 
‘without’ IoT for a transit line is developed to determine the winning and losing lines. The 
inequality used here can be derived interchangeably from connectivity or accessibility using Eq. (3) 
and (4).  
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The percentage change in inequality (𝐸#
$) is expressed as,  

𝐸#
$ = /%

&',$0/(
&,$

/%
&',$)*           (5) 

where,  

𝑇#
12,$ is the inequality for the ‘without’ IoT case for year y, and 

𝑇#
1,$ is the inequality for the ‘with’ IoT case for year y. 

A winning transit line is decided if	𝐸#
$ > 0, otherwise the line is classified as a losing line. 

Furthermore, a cross-product ratio is evaluated to indicate the odds ratio of the number of repeat 
performers (i.e., win–win and lose–lose) to the number of others (i.e., win–lose and lose–win) for 
the two cases considered across two consecutive years.  

Once the winner/loser zones are determined, the cross-product ratio is computed using the odds 
ratio of the number of repeat performers, whether winners or losers, in two consecutive years. The 
formula for the odds ratio, Oy-1,y, is expressed as:  

𝑂$0%,$ = 433$)*,$×55$)*,$
35$)*,$×53$)*,$

5        (6) 

where, 

𝑊𝑊$0%,$= number of lines that are categorized as winners for two consecutive analysis periods/ 
years (y-1 and y),  

𝐿𝐿$0%,$= number of lines that are categorized as losers for two consecutive analysis periods/years 
(y-1 and y), 

𝑊𝐿$0%,$= number of lines that are categorized as winners in the analysis period/year y-1 and losers 
in the analysis period/year y, and  

𝐿𝑊$0%,$= number of lines that are categorized as losers in the analysis period/year y-1 and winners 
in the analysis period/year y. 

The odds ratio in Eq. 6, if above 1, indicates a positive association between an outcome (e.g., being 
a winner or loser) in one time period/year and the same outcome in the subsequent period/year. 
Alternatively, the odds ratio, if less than 1, indicates a negative association, which means that the 
outcome in the following period is more likely to be the opposite of the outcome in the previous 
period.  
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3. Analysis and Results 
The results presented in the tables provide a comparison of accessibility values for rail lines ‘with’ 
and ‘without’ the implementation of Internet of Things (IoT) technology, as well as the 
corresponding inequality values derived from these accessibility metrics. Data for the years 2015, 
2017 and 2019 are used for demonstration and analysis with LA Metro rail lines: A-E. Data 
sources for the analysis are shown in Table 1. Low-income populations are those with household 
income less than $1,250 per month. 

Table 1. Data Used for Analysis 

Data Type Sources Input for? 
Schedule/Travel time (A Line, B 
Line, C Line, D Line, and E Line) 
 

LA Metro Maps and Schedules* Connectivity Measure 
Accessibility Measure 

Low-income Employment Data and 
Distance traveled  

Center of Economic Studies, 
Longitudinal Employer-
Household Dynamics (LEHD), 
2019. 
 

Accessibility Measure 
Inequality Measure 

Transit Lines, Stops and Stations  GIS Data LA Metro** Connectivity and 
Accessibility Measures 

* https://www.metro.net/riding/schedules/  
** https://developer.metro.net/gis-data/ 
 

The charts in Fig. 2 and Fig. 3 show the accessibility values for rail lines without and with IoT, 
respectively. Higher accessibility values indicate better service or performance. Comparing the two 
tables, it is evident that IoT implementation has resulted in higher accessibility values across all 
rail lines and years. For instance, Rail Line A shows an increase from 374 to 969 in 2015 with IoT, 
suggesting a significant improvement in accessibility due to IoT.  

Similar trends can be observed in other rail lines, although Rail Line B shows a marked decrease 
in accessibility from 2015 to 2019 even with IoT, indicating that other factors may have affected 
its performance. 
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Figure 2. Accessibility of LA Metro Rail Lines ‘without’ IoT Considering Ridership  
from Low-Income Population 

 

 

Figure 3. Accessibility of LA Metro Rail Lines ‘with’ IoT Considering Ridership  
from Low-Income Population 
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The charts in Fig. 4 and Fig. 5 present the inequality values calculated using the accessibility of 
the rail lines without and with IoT, respectively. These values represent the disparity in service 
levels, with lower values indicating more uniform service across the network. Notably, Rail Line 
C has the highest inequality values without IoT, which decrease marginally with IoT. This 
suggests that while IoT has improved overall accessibility for Rail Line C, it has not significantly 
affected the service disparity. Conversely, Rail Line B sees a reduction in inequality from 0.17 in 
2015 without IoT to 0.11 with IoT, indicating that IoT implementation has contributed to a more 
equitable service. 

 

 

Figure 4. Inequality Values Using Accessibility of The Rail Line ‘without’ IoT 
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Figure 5. Inequality Values Using Accessibility of The Rail Line ‘with’ IoT 
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Table 3 categorizes the rail lines as 'winners' or 'losers' based on the values from Table 2, with 
'winners' having positive values (indicating worse performance with IoT) and 'losers' having 
negative values (indicating improved performance with IoT). Therefore, the following is deduced 
from Table 3: 

• Rail Line A is consistent in being a 'loser', which in the context of these tables means it
benefits from IoT with improved performance.

• Rail Line B oscillates between 'winner' and 'loser', suggesting it may not have consistently
leveraged IoT for performance gains.

• Rail Line C is mostly a 'winner', except in 2019, when it becomes a 'loser', reflecting a
positive impact of IoT in the final year.

• Rail Line D is a consistent 'winner', meaning that IoT did not improve performance, or
possibly even degraded it.

• Rail Line E, like B, shows variability in its performance impact from IoT, ending as a 'loser'
in 2019, thus benefiting from IoT implementation that year.

From the perspective of performance persistence analysis, we would expect a rail line that is well-
managed and leverages IoT effectively to show consistently as a 'loser' in these tables, indicating 
sustained performance improvements. The variability in 'winner' and 'loser' status for some lines 
may suggest either a fluctuation in the effective use of IoT or the influence of external factors not 
controlled by IoT implementation. Consistent 'winner' status, paradoxically, might indicate 
challenges in adapting to or integrating IoT technologies effectively to improve performance. 

Table 2.  Differences in Inequality Values (scenario ‘without’ IoT minus ‘with’ IoT) 
for Rail Line for Years 2015, 2017, and 2019 

Rail Line 2015 2017 2019 

A -13.96 -12.93 -13.67
B 38.64 -2.21 5.49
C 58.85 5.07 -0.26
D 10.33 10.27 9.10 
E 8.11 8.66 -0.42
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Table 3. Potential Winners (+ve value in Table 2) and Losers (-ve value in Table 2) 

 Rail Line 2015 2017 2019 

A Loser Loser Loser 
B Winner Loser Winner 
C Winner Winner Loser 
D Winner Winner Winner 
E Winner Winner Loser 

The odds ratio for the winners and losers was found to be infinity from 2015 to 2017 and 0.5 for 
the years 2017 to 2019, thus indicating that a winning (or losing) rail line remained a winner from 
2015 to 2017, while a winning rail line became a losing line (and vice-versa) from the year 2017 to 
2019. 

From the charts and tables above, we can infer that IoT has had a positive impact on accessibility 
and has the potential to reduce inequality in service levels. However, the performance persistence 
analysis suggests that the benefits of IoT are not uniform across all rail lines or over time. Rail Line 
B’s fluctuating accessibility values with IoT and Rail Line C’s persistent inequality despite IoT 
adoption illustrate that the integration of technology does not automatically translate to consistent 
improvements in service equity. These disparities could be due to a range of factors, including the 
initial state of infrastructure, the effectiveness of IoT integration, and external influences not 
captured by the data. 
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4. Summary & Conclusions  
This study presented a comprehensive analysis of the LA Metro Rail lines, focusing on the 
potential impact of IoT technology on service connectivity and accessibility and on inequality in 
transit services. It demonstrated that IoT implementation would result in higher accessibility 
values across all rail lines over the years studied (2015, 2017, and 2019), indicating significant 
improvements in service accessibility due to technological advancements. 

However, taking into consideration the low-income population residing close to the transit rail 
line station, the effects of IoT on reducing service inequality were not uniform across all lines or 
over time. Notably, Rail Line B showed fluctuating accessibility values with IoT, and Rail Line C 
exhibited persistent inequality if IoT deployment was undertaken. These variances suggest that 
while IoT has the potential to enhance service quality, its effectiveness could be influenced by a 
myriad of factors including the potential ridership (through population residing close to transit 
stations) and the integration process of IoT technologies. 

The findings underscore the potential of IoT technologies to improve public transit by making it 
more accessible and efficient. Yet, the uneven benefits observed across different rail lines highlight 
the complexities involved in technology deployment in public infrastructure. The persistence of 
inequality in service levels, even with IoT adoption, calls for a planned approach to implementing 
technological solutions. 

The disparity in the impact of IoT suggests that technology alone may not suffice to address 
systemic issues within public transit systems. Factors such as infrastructure readiness, 
socioeconomic conditions of the transit system's users, and the strategic integration of technology 
must be considered to achieve more equitable outcomes. 

Further research should explore the conditions under which IoT technologies can most effectively 
contribute to reducing service inequality. Longitudinal studies could provide deeper insights into 
the sustainability of improvements in accessibility and service quality over time. 

Comparative studies across different transit systems could highlight best practices for IoT 
integration in public transit. Understanding the role of infrastructure, user engagement, and policy 
frameworks in mediating the benefits of technology could guide more effective implementations. 

There is a need for developing inclusive strategies that consider the diverse needs of all transit 
users, particularly marginalized communities, to ensure equitable access to improved services. This 
involves not only technological upgrades but also infrastructural improvements, policy 
interventions, and community engagement efforts to address broader issues of inequality in urban 
mobility. 
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