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Executive Summary 
Seismic events often cause disruptions to reinforced concrete (RC) bridge structures, resulting in 
significant economic and other losses. When subjected to tremendous local stress and strain, 
concrete tends to crack, and steel reinforcement rebars fracture. For these reasons, earthquakes can 
cause extensive damage to the structural integrity of RC bridges, making assessment of their 
seismic damage crucial. 

The steel reinforcement bars within RC bridge piers experience strain reversals under seismic 
loadings. Thus, bar global buckling, tensile strain damage, and low-cycle fatigue fractures are major 
causes of failure. These damage parameters are considered in this study. To assess the seismic 
performance of RC single-column pier-supported bridges, four numerical models were developed.
Finite element models were developed in the Open System for Earthquake Engineering 
Simulation (OpenSees) program for nonlinear analysis. 

These models use fiber-based, nonlinear beam-column elements and were developed with 
different considerations of low-cycle fatigue and bond-slip: Model 1 (without bond-slip and 
without fatigue), Model 2 (without bond-slip and with fatigue), Model 3 (with bond-slip and 
without fatigue), and Model 4 (with bond-slip and with fatigue). The models underwent nonlinear 
time-history analyses. The models consider different damage parameters such as low-cycle fatigue, 
tensile strain damage, global buckling of longitudinal steel bars, cracking and spalling of cover 
concrete, and bond-slip between concrete and longitudinal steel bars. 

The RC cross section is divided into cover concrete, core concrete, and reinforcing steel. The cross 
sections are made up of fiber cells which are assigned uniaxial constitutive models that have 
nonlinear material properties representing stress-strain hysteresis behavior. The fibers in OpenSees 
are titled “concrete02” to represent the concrete and the Hysteretic material model to represent
the reinforcing steel which can record the stress-strain hysteresis behaviors. Model 2 and Model 4 
had an additional damage fatigue parameter attached to the Hysteretic material to observe its 
effect. It should be noted that shear failure is assumed not to be governed. The bridge column in 
this study is assumed to be flexural failure. The bridge pier was modeled with finite element nodes 
and elements in between the nodes. Model 3 and Model 4 were given a zero-length section 
element at the base of the RC bridge column to observe the bond-slip effect. The bridge pier of 
all four numerical models was represented with nonlinear fiber-based and displacement-based 
beam-column elements with distributed plasticity which allows for nonlinearities to occur 
anywhere along the member. This allows the user to precisely record its seismic response. 

The four proposed models underwent nonlinear time-history analyses, where their stress and 
strains were recorded for each fiber. This allowed for continuous monitoring of cover concrete 
spalling and reinforcing steel damage states. The simulation results of the four proposed models 
are compared with experimental test results. Based on the simulation results, the various damage 
indices of the RC bridge column are calculated, falling in a range between 0.0 and 1.0, which 
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corresponds to the structural damage condition based on National Cooperative Highway Research 
Program (NCHRP ) Synthesis. 

The proposed numerical models increase the accuracy of the nonlinear, flexural failure behaviors 
of RC single-column pier-supported bridges under seismic ground motions. The damage indices 
are in accordance with the experimental results, making the models useful for those performing
non-linear analysis and performance assessment of RC bridge structures. 
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1. Introduction 
During the 1971 San Fernando earthquake in California, more than 60 bridges on the Golden 
State Freeway in California were damaged. The San Fernando earthquake cost the state 
approximately $100 million in bridge repairs. The Loma Prieta earthquake in 1989 damaged more 
than 80 bridges in California and caused more than 40 deaths in bridge-related collapses alone. 
The cost of bridge damage by Loma Prieta earthquake was about $300 million. Earthquake-
damaged bridges have major impacts on transportation systems. Therefore, it is imperative to 
propose numerical models that can accurately predict the seismic behavior of reinforced concrete 
(RC) bridges as well as assess their damage states. 

Many seismic damage indices have been developed in literature to assess the structural damage 
induced by earthquakes [1–6]. Park and Ang’s damage model is a function of maximum 
deformation and the absorbed hysteretic energy [2,3]. Babazadeh et al. use 3D continuum-based 
finite element simulations to predict intermediate damage limit states of RC bridge columns but
do not consider bond-slip effects, as a perfect bond between the reinforcement and concrete is 
assumed [7]. 

In addition, researchers have shown that low-cycle fatigue-induced damage is a prominent mode 
of rebar failure under seismic conditions. Heo and Kunnath developed a fiber-based damage model 
which considers low-cycle fatigue in their reinforcing steel fibers, but other parameters such as 
damage caused by displacement are not included [4]. Furthermore, Kashani et al. [8] conducted 
fiber-based nonlinear analysis to predict the nonlinear responses of RC bridge piers with fewer 
computational efforts, despite considering bar global buckling and low-cyclic fatigue of 
longitudinal reinforcing steel. But they did not use any damage indices or clear damage assessment 
protocol. Tripathi M. et al. studied the combined effect of low-cycle fatigue and buckling in RC 
columns. The global buckling of reinforcing bars has detrimental effects on their fatigue life [9].
Su et al. developed fiber-based, nonlinear, finite element models of RC bridge columns to assess 
bridge column damages [6]. Five damage levels are used to measure the damage states to classify 
a bridge column’s performance levels as recommended by Stone and Taylor [10,11], Goodnight 
and Nau [12], Mckenna et al. [13], Sharifi et al. [14], and Yue et al. [15]. 

Ding et al. [16] conducted experimental and numerical investigations on RC bridge piers,
considering global buckling and low-cycle fatigue. The experimental study consisted of seven 1/5
scaled rectangular RC bridge piers which were tested under constant axial load and horizontal 
quasi-static cyclic loading. Their results found that increasing the slenderness ratio intensified the 
pinching effects of reinforcing steel under cyclic loading. Global buckling and low-cycle fatigue 
properties of longitudinal bars are the main factors that cause damage failure of RC piers and, thus,
have a great impact on the ductility of RC piers. Kashani et al. [17] studied the effect of inelastic 
buckling on low-cycle fatigue life of steel reinforcing bars by conducting experimental testing on 
ninety reinforcing bars of sizes 12 mm and 16 mm with different buckling lengths and strain 
amplitudes. The inelastic buckling has a great influence on the stress–strain relationship of 
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reinforcing bars. Additionally, when they increased the buckling length of the bars, the low-cycle 
fatigue life decreased, which indicates that their energy dissipation capacity under cyclic loading 
also decreased. Moreover, the 16 mm diameter bars reached a fractured state earlier than the 
12 mm diameter bars, suggesting that the bar diameter also affects the low-cycle fatigue life of 
reinforcing bars. Su et al. [18] studied the seismic behavior of RC bridge piers and the influence
of low-cycle fatigue damage of reinforcing bars under spectrally equivalent short- and 
long-duration ground motions. They developed finite element models that considered global
buckling and low-cycle fatigue of longitudinal bars that underwent nonlinear dynamic analysis.
They concluded that the low-cycle fatigue damage of reinforcing bars is a significant cause of 
failure in RC bridge columns and should be considered in the seismic design. 

Near-fault earthquakes are a concern as they produce pulse-like velocity waveforms that are 
destructive to structures. There have been experimental testing and numerical simulations of RC 
bridge columns under near-fault earthquakes [19–26]. Chang et al. [19] conducted pseudo-
dynamic testing of three RC bridge piers under cyclic loading to estimate their shear strength, 
flexural strength, and ductility. Pang et al. [25] evaluated the seismic performance of bridge piers,
considering both flexural and brittle failure mechanisms at different damage states under both 
far-field and near-fault ground motions. The study developed a 3-D finite element model for an 
RC bridge pier to perform nonlinear time history analysis. It selected 30 near-fault and 30 far-
field ground motions and compared the results. The results concluded that the near-fault records 
increased the seismic demands when compared to far-field earthquakes. 

Phan et al. [27] studied the characteristics of near-fault earthquakes on RC bridge columns by
designing two large-scale columns and testing them under a near-fault ground motion on a shake 
table. The results found that near-fault earthquake records tend to contain an asymmetrical, high-
amplitude velocity pulse that causes whiplike behavior in columns and causes large displacements 
in one direction. As a result, significant residual displacement is developed. Todorov et al. [28] 
developed a fiber-based, nonlinear, finite element model of a bridge pier to evaluate the damage 
potential of different near- and far-field earthquakes. The study found that bridge piers under 
pulse-like motions tend to collapse much earlier before reaching their collapse limit state. 

However, numerical models proposed by prior researchers have not been developed to deal 
explicitly with various combined damage mechanisms observed through the experimental tests for 
RC bridge columns, especially the combination of low-cycle fatigue and global buckling of 
longitudinal reinforcing bars with bond-slip effect. The proposed research study will fill the gaps 
by considering various damage parameters to assess the seismic performance of RC bridges as well 
as the near-fault ground motion effects. 

Earthquakes can cause RC bridges to collapse due to the concrete cracking and fracture of the steel 
reinforcement rebars when they are subjected to tremendous local stress and strain. The fracture 
of longitudinal reinforcing steel due to low-cycle fatigue is one of the main causes of failure in RC 
structures under earthquake loading. Therefore, the purpose of this research is to investigate the 
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effects of low-cycle fatigue fracture of longitudinal reinforcing steel bars on the seismic 
performance of RC bridge piers as well as to assess the seismic damage of bridge columns. 

Plastic deformation in each cycle and low-cycle phenomenon (materials have finite endurance for 
this type of load) are the characteristics of low-cycle fatigue. The term “cycle” refers to repeated 
applications of stress that lead to eventual fatigue and failure. “Low-cycle” pertains to a long period 
between applications. The low-cycle fatigue assessment results will allow us to better understand 
the behavior of RC bridges under seismic motions. 

The aim of this research is to evaluate the seismic performance of RC single-column pier-
supported bridges and the influence from low-cycle fatigue of longitudinal reinforcing bars. To 
obtain a greater understanding of the low-cycle fatigue failure of steel reinforcement of RC bridge 
piers subjected to seismic loadings, low-cycle fatigue failure was also studied by considering the 
slenderness ratio to observe its effects on the behaviors of the steel material. The slenderness ratio 
are functions of unsupported length, the diameter of the circular cross section of the longitudinal 
reinforcing bars, and the spacing of transverse reinforcing bars. The seismic performance of RC 
single-column pier-supported bridges with flexural failure under near-fault ground motion was 
assessed with the use of damage indices. The damage indices numerically assess the damaged state 
of RC bridge piers and show the gradual accumulation of damage. Four numerical models were 
developed with fiber-based, nonlinear, beam-column elements to simulate the damage
accumulation on RC bridge piers under seismic loadings, considering the low-cycle fatigue, tensile 
strain damage, global buckling of longitudinal steel bars, cracking and spalling of cover concrete, 
and the bond-slip between concrete and longitudinal steel bars. The four numerical models were 
developed with different considerations of low-cycle fatigue and bond-slip: Models 1 (without 
bond-slip and without fatigue), Model 2 (without bond-slip and with fatigue), Model 3 (with 
bond-slip and without fatigue), and Model 4 (with bond-slip and with fatigue). 

The proposed numerical models developed are based on a single RC bridge column that is fixed 
at the base and free at the top, as shown in Figure 1. The RC bridge column is assessed with the 
use of damage indices. The proposed models consider the bond-slip effect between the concrete 
and the longitudinal reinforcing bars [29–31], buckling of the longitudinal reinforcing bars [32–
34] concrete cracking and spalling [34–35], and low-cycle fatigue of longitudinal reinforcing bars
[16–18]. The simulation results of the four proposed models were compared with experimental 
test results by Chang et al. [19] to predict the seismic behavior of RC bridges and assess the damage 
states of RC bridges. This experimental data was selected as it includes comprehensive
experimental investigation of the seismic response of the scaled modern RC bridge column. 
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Figure 1. RC Single Column Bridge Pier 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  6 



 

    

    
   
  

  
   

 

 
 

 
    

  
  

  
 

 

  

 

 
  

  

2. Specimen and Testing Method from
Experimental Study 

The RC bridge column selected was Specimen B from Chang et al.’s pseudo-dynamic tests and 
represents an as-built RC bridge column. Specimen B is a scaled RC bridge column at a 
2/5 reduction and was designed using 1995 Taiwan Bridge Design Code, which is based on the 
1992 AASHTO specifications. 

The height of the bridge columns was 3.25 m, and the cross section was 0.75 m by 0.60 m, which 
includes a 25 mm concrete cover. The longitudinal reinforcement consisted of 32 No. 6 bars placed 
evenly along the column’s height, with a reinforcement ratio of 1.95%. The longitudinal
reinforcement’s design’s yield strength was fy = 420 MPa (with an exact yield strength of 500 MPa), 
and its concrete compressive strength was f’c = 21 MPa at 28 days (with an exact strength of fy =23 
MPa). The transverse reinforcement consisted of No. 3 stirrups spaced at 100 mm, with a design
yield strength of fy = 280 MPa (and an exact strength of fy = 350 MPa) and a reinforcement ratio 
of 1.04%. In addition, the transverse reinforcement included five confining crossties. The hoops 
were anchored at their two ends at 90°. The crossties were anchored at their two ends at 135°. The 
bridge column was subjected to an axial compressive load of 680 kN. 

Specimen B was subjected to the Taiwan 1999 Chi-Chi earthquake’s horizontal ground
acceleration whose ground motion was acquired from station TCU075, and the peak ground 
acceleration (PGA) was scaled up to 0.8 g. The maximum force, maximum lateral displacement, 
and ductility capacity were recorded. Specimen B underwent pseudo-dynamic loading to attain the 
precise seismic demands and responses of RC bridge columns under near-fault ground motion. 
The pseudo-dynamic results of Specimen B were calibrated with the simulation results of the 
proposed four numerical models. 
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3. Low-Cycle Fatigue Effects on Steel 
Reinforcing Materials 

In OpenSees [13], the fatigue effect could be considered by different approaches. One approach is 
to adopt the ReinforcingSteel material with the consideration of fatigue, which is denoted at the 
end of the command as -CMFatigue. Another approach is to wrap Fatigue material to Hysteretic 
material for steel material. “Wrap” is defined as integrating the new material with the parent
material. The Fatigue material “wraps” around the Hysteretic material and does not influence the 
stress-strain (or force-deformation) relationship of the parent material. A modified rainflow cycle 
counter was implemented to track strain amplitudes. This cycle counter was used in concert with 
a linear strain accumulation model (i.e., Miner’s Rule), based on the Coffin-Manson log-log 
relationships, describing low-cycle fatigue failure. 

The fatigue modeling in OpenSees uses the Coffin-Manson fatigue life relationship based on 
strain amplitude and number of cycles: 

εp = Cf (2Nf)-α (1) 

where Cf is the Coffin-Manson constant, α is the cyclic strength reduction constant, εp is the 
plastic strain amplitude, and 2Nf represents the number of half-cycles to failure corresponding to 
the plastic strain amplitude. Miner's linear damage rule was then applied to determine the 
cumulative damage in reinforcing steel. 

To demonstrate the fatigue effects on steel reinforcing materials, the ReinforcingSteel material 
with -CMFatigue in OpenSees was adopted. The fatigue command requires parameters 
Cf (ductility constant used to adjust the number of cycles to failure), α (Coffin-Mason constant), 
and Cd (strength reduction constant). Combinations of these parameters are shown in Figure 2 to 
compare the strength degradation of reinforcing steel bars due to Cf, α, and Cd values. Figure 2a 
keeps α and Cd as constants with a varied Cf value to observe the effect of Cf. Figure 2b compares 
the fatigue property change with a varied Cd value while keeping α and Cf as constants. Figure 2c 
demonstrates the effect of α values on the fatigue property with Cf and Cd as constants. The results 
demonstrate that each fatigue parameter influences cyclic behavior of steel rebar. 
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Figure 2. Comparison of Fatigue Parameters: (a) Varied Cf; (b) Varied Cd; (c) Varied α 
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(c)
Furthermore, in this research, the proposed fiber-based damage models also considered the effect 
of global buckling with various slenderness ratios of longitudinal reinforcing bars (L/D)
incorporated in the fatigue modeling by wrapping Fatigue material to Hysteretic material for steel 
material. 

The low-cycle fatigue of reinforcing bars including the effects of global buckling can be evaluated 
by Equation (2), where the fatigue life coefficients can be obtained using Equation (3) and 
Equation (4): 

εp = E0(2Nf)m (2) 

λ = L/D$fy/100 (3) 

E0 = (-λ/350) + 0.20; m = -(λ/1200 + 0.441) (4) 

In Equation (2), the εp, E0, m, and 2Nf represent the plastic strain amplitude, fatigue ductility 
coefficient, fatigue ductility exponent, and number of half cycles to failure, respectively. The effect 
of global buckling is included by expressing the fatigue coefficients (E0, m) as a function of global 
buckling parameter (λ), defined in Equation (3) [33]. The global buckling parameter is an 
expression between the slenderness ratio and yielding stress. 
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4. Material Damage Models and Finite Element Models
with Low-Cycle Fatigue 

4.1 Definitions of Damage Indices and Performance Assessment 

The damage indices of RC bridges, as shown in Figure 3, are numerically determined in a range
of 0.0 to 1.0. This range corresponds to the structure damage, as seen in Table 1 [11] and is derived 
from the NCHRP Synthesis [36]. The damage value for each damage level is adopted for the 
numerical models proposed in this study. The damage level of RC bridges can be assessed and 
measured as shown in Table 2 [36]. There are five distinct levels of qualitative and quantitative 
performance characterizations used to measure the RC bridge performance. The qualitative
descriptions for RC bridge columns include crack widths and lengths. The tensile strain of 
longitudinal bars is the reason for concrete crack widths. The onset of yielding in longitudinal steel 
bars is the first major sign of damage in RC bridge columns. This yielding is the marker of Level II 
and corresponds to damage values between 0.1 and 0.2. The next sign of damage in RC bridge 
columns is the onset of cover concrete spalling, which is equivalent to the crack length extending 
to one-tenth of the section depth in Level III. In Level IV, significant spalling corresponds to 
concrete crack widths larger than 2 mm that extend over half of the cross section. In Level V, the 
last sign of damage is the buckling of main reinforcement and the crushing of the core concrete. 

Table 1. Assessment of Bridge Performance [11] 

Level Performance level Qualitative performance characterization Quantitative performance
characterization 

I Cracking Onset of hairline cracks Cracks hardly visible 
II Yielding Theoretical first yielding of longitudinal

reinforcement 
Crack widths <1 mm 

III Initiation of local 
mechanism 

Initiation of inelastic deformation, onset 
of concrete spalling, development of
diagonal cracks 

Crack widths of 1–2 mm,
length of spalled region
>1/10 of the cross-section’s 
depth 

IV Full development
of local 
mechanism 

Wide and extended cracks, significant 
spalling over local mechanism region 

Crack widths >2 mm,
diagonal cracks extend over
2/3 of the cross-section’s 
depth
Length of spalled region >1/2
of the cross-section’s depth 

V Strength 
degradation 

Buckling of main reinforcement,
Rupture of transverse reinforcement,
Crushing of core concrete 

Crack widths >2 mm 
in core concrete 
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finite element analysis 

Concrete compression strain 

Concrete s1lalling 

Percent of concrete spalling 

Cover concrete damage index (De) 

Longitudinal bar tensile strain 

Steel sh·aiu damage 
incle:x (D«) 

l 
Steel low-cycle 
fatigue damage 

index (D~,) 

( Steel damage index (Ds) ] 

Section damage inclex (Dsectior1) 

Table 2. Damage Index Levels Classifications [36] 

Level Damage
Classification 

Damage
Value 

Description Performance 
Condition 

I None D < 0.1 Onset of hairline cracks Fully operational 
II Minor 0.1 ≤ D< 0.2 Crack widening, first

yielding of reinforcement 
Operational 

III Moderate 0.2 ≤ D< 0.4 Onset of cover concrete 
spalling 

Limited damage 

IV Major 0.4 ≤ D< 0.6 Significant spalling Life safety 
V Local 

Failure/Collapse 
0.6 ≤ D< 1.0 Buckling of reinforcement,

crushing of core concrete 
Collapse 

Figure 3. Definitions of Damage Indices 
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Figure 5. Concrete and Steel Fiber Numbering in the Cross Section 
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4.1.1 Fiber-Based Material Damage Models 

To perform nonlinear time-history analyses and assess the damage states of RC bridge columns, 
the proposed fiber-based damage models were coded in the OpenSees program [13]. The RC 
bridge column and its cross sections were divided into fiber cells and were allocated uniaxial 
constitutive models with nonlinear material properties, which can depict the stress-strain hysteresis 
models for concrete and longitudinal rebar. The RC cross section was divided into cover concrete, 
core concrete, and reinforcing steel sections. For cover concrete and core concrete in the proposed 
numerical models, the Concrete02 material [37] in OpenSees was used. To simulate the 
longitudinal reinforcing bars in the bridge columns, the uniaxial bilinear material Hysteretic in 
OpenSees was adopted. The steel material took into account the mechanical effects of low-cycle 
fatigue, strain softening, compression global buckling, and tensile fracture of the reinforcement 
bars. Fatigue material was wrapped to Hysteretic material for steel material. The fatigue material 
model in the OpenSees program is a fatigue life model based on the Coffin-Manson log-log 
relationships, which utilizes the modified rainflow cycle counting algorithm to track the 
accumulated damage in the steel material. 

4.1.2 Cover Concrete Damage Index 

The cover concrete damage of RC bridge columns is associated with the extent of cover concrete 
spalling because of the deterioration in its RC cross sections. The section damage of cover 
concrete is determined as: 

�/�" ∗ �#", � < �" 

�! = +�#!" + (� − �")/(�$ − �") ∗ (�#!$ − �#!"), �" < � ≤ �$ (5) 
�#!$ + (� − �$)/(�% − �$) ∗ (�#!% − �#!$), �$ < � ≤ �% 

The variable p represents the percentage of cover concrete spalling. The damage indices Dsc1 to 
Dsc3 are 0.2, 0.4, and 0.6, respectively. A compression strain of -0.005 identifies the onset of 
cover concrete spalling. The cover concrete damage was evaluated in every time step of ground 
motion recorded to be in either onset spalling, significant spalling, or full spalling, as shown in 
Figure 4. The percentage, p1, was computed as the number of fibers that reached or surpassed the 
strain threshold of -0.005 during the onset of spalling over the total number of fibers. The 
percentages of the RC rectangular section were determined to be p1 = 50%, p2 = 72%, and p3 = 
100%. 

4.1.3 Steel Strain Damage Index 

The strain-based damage of longitudinal reinforcing steel bars was computed as: 
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&! ∗ �#", ε# < ε'⎧ &" 

⎪ ⎪ �#" + ;ε# − ε'</(ε!" − ε') ∗ (�#$ − �#"), ε' ≤ ε# < ε!" 

�## = �#$ + (ε# − ε!")/(ε!$ − ε!") ∗ (�#% − �#$), ε!" ≤ ε# < ε!$ (6) 
⎨�#% + (ε# − ε!$)/(ε(( − ε!$) ∗ (�#) − �#%), ε!" ≤ ε# < ε((⎪ ⎪ �#) + (ε# − ε!%)/(ε* − ε(() ∗ (�#+ − �#)), ε(( ≤ ε# < ε* 

⎩ �#+, ε# ≥ ε* 

The ultimate strain of the longitudinal steel, εu, was fixed to 0.10 for the proposed numerical 
models. Goodnight et al. [12] determined that the steel strain values, εc1 = 0.01 and εc2 = 0.02 
correspond to longitudinal bars with crack widths of 1 mm and 2 mm. The damage classifications, 
Ds1 to Ds5, were set as 0.1, 0.2, 0.4, 0.6, and 1.0, respectively. In addition, the buckling strain was 
determined as: 

-"# /ε(( = 0.03 + 700�#, − 0.1 (7) 
.$ -0%1& 

4.1.4 Steel Low-Cycle Fatigue Damage Index 

The reinforcing steel bars in bridge piers are prone to fracture due to low-cycle fatigue for flexural 
members in seismic areas [38]. In OpenSees, the fatigue effect is included by wrapping Fatigue 
material to the Hysteretic material. The fatigue modeling uses the Coffin-Manson fatigue life 
relationship based on strain amplitude and the number of cycles: 

εp = Cf (2Nf)-α (8) 

Cf is the Coffin-Manson constant, α is the cyclic strength reduction constant, εp is the plastic 
strain amplitude, and 2Nf represents the number of half-cycles to failure corresponding to the 
plastic strain amplitude. Miner's linear damage rule was then applied to determine the cumulative 
damage in reinforcing steel: 

Di = 1/2Nf = (εpi / Cf)1/α (9) 

Dsf = Ʃ Di (10) 

4.1.5 Section Damage Index 

The steel damage index Ds is the maximum value between the steel low-cycle fatigue damage index 
Dsf and the steel strain damage index Dss, as indicated in Equation (11). The section damage index 
of the RC bridge column was selected as the greater value between the cover concrete damage
index Dc and the steel damage index Ds, as expressed in Equation (12) and Figure 3. 
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�# = ���{ �##, �#2} (11) 

= ���{ �#, �!}�#3!4567 (12) 

4.2 Finite Element Models 

The development of the fiber-based, finite element models was formed by using the OpenSees 
program. The rectangular cross section of the RC bridge column was comprised of the following 
segments: confined core concrete fibers, unconfined cover concrete fibers, and longitudinal
reinforcing steel fibers, as shown in Figure 5. The confined and unconfined concrete segments
accounted for the effect of closed steel hoops (transverse reinforcing bars) on the concrete. The 
unconfined concrete fibers were discretized in 36 locations, and the steel fibers were discretized in 
16 locations, as shown in Figure 5. 

The bridge column of all models consisted of uniaxial nonlinear fibers labeled as 
“UniaxialMaterial” to depict the stress-strain hysteresis behaviors of concrete and longitudinal 
reinforcing steel. The cross section aggregate with elastic shear for concrete was ignored, as it was 
assumed that flexural failure governed over shear failure. The models were composed of finite 
element nodes, where extra nodes were added between nodes to refine the element length. Since 
strong seismic loadings were used to predict the bridge column’s yielding and damage, nonlinear 
fiber-based and displacement-based beam-column elements were used between nodes to represent 
the bridge columns for the proposed four numerical models. To allow for the growth of 
nonlinearities anywhere along the member, nonlinear fiber-based and displacement-based 
beam-column elements with distributed plasticity were adopted. The “Recorders” in OpenSees
monitored and recorded the seismic responses of RC bridge columns. 

4.2.1 Model 1 (without bond-slip and without fatigue) 

Uniaxial concrete material Concrete02 in OpenSees was used to represent the confined and 
unconfined concrete. The longitudinal reinforcing steel bars in the RC fiber section were modeled 
by using uniaxial, bilinear material Hysteretic after calibration with ReinforcingSteel. 

The following conditions were used for the confined concrete material. The concrete compressive 
strength at 28 days was f’cc = -24.8 MPa, the concrete strain at maximum strength was εcc = 0.0061, 
the initial slope for compressive stress–strain curve was Ec = 5000√f′c� = 24,900.0 MPa, the 
concrete crushing strength was fcu = 0.4f’cc = 9.9 MPa, the concrete strain at crushing strength was 
εcu = -0.014, the ratio between unloading slope at εcu and initial slope was λ = 0.1, the tensile 
strength of the concrete was ft = 0.59√f′cc = 2.94 MPa, and the tension softening stiffness (slope 
of the linear tension softening branch) was Ets = Ec/10 = 2490.0 MPa. 

The following conditions were used for the unconfined concrete material. A concrete compressive 
strength at 28 days of f’c = -23.0 MPa, the concrete strain at maximum strength was ε0 = -0.002, 
an initial slope for the compressive stress-strain curve of Ec = 4700√f′c = 22,540.0 MPa, concrete 
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crushing strength, fcu = 0.0 MPa, the concrete strain at crushing strength, εcu = -0.004, the ratio 
between unloading slope at εcu and initial slope was λ = 0.1, the tensile strength of the concrete is 
ft = 0.59√f′c = 2.83 MPa, the tensile strain of 0.00012 at ft, and the tension softening stiffness was 
Ets = Ec/10 = 2254.0 MPa. 

The following conditions were used for the longitudinal reinforcing rebars of the ReinforcingSteel 
material. The yield strength in tension was fy = 420 MPa, the ultimate strength was fu = 1.19fy, the 
strain corresponding to initial strain hardening was εsh = 0.008, the strain at peak stress was 
εsu = 0.14, the initial elastic tangent modulus was Es = 200, 000.0 MPa, and the tangent at initial 
strain-hardening modulus was Esh = 7000.0 MPa. 

The buckling simulations of the longitudinal rebars were adopted from Gomes and Appleton [32]
and Dhakal and Maekawa [33]. The slenderness ratio was defined as lSR = 1.5 * Lu/db = 1.5 * s/db. 
The Lu, db, and s variables are the unsupported length, the diameter of the circular cross section of 
the longitudinal reinforcing bars, and the spacing of transverse reinforcing bars, respectively. The 
buckled stress σb is expressed as: 

8! : ; √%$σ( = γf* – (γf* − σ ); Ω( = β (13) 
":; =%> ?'( @&$A&"B 

where amplification factor β = 1.0, a buckling reduction factor r = 0.0, and a buckling constant 
γ = 0.5; the variables σb is the buckled stress, εy is the yield strain, and fu is the ultimate strength 
of the ReinforcingSteel material in tension. 

After the calibration of the Hysteretic material with the ReinforcingSteel material by considering 
global buckling of longitudinal reinforcing bars, the Hysteretic command was assigned to the steel
fibers. The Hysteretic material uses six stress and strain points as inputs along with pinching 
constants, damage due to ductility and energy, and degradation unloading stiffness based on 
ductility. 

Furthermore, nonlinear fiber-based and displacement-based beam-column elements were used 
instead of a lumped plastic hinge to consider the spread of plasticity along the element. Six 
displacement-based beam-column elements were the most fitting choice after performing the 
element refinement studies and convergence tests. The integration along the element follows the 
Gauss-Lobatto quadrature rule. 

4.2.2 Model 2 (without bond-slip and with fatigue) 

Model 2 was set up like Model 1, but with the inclusion of low-cycle fatigue of longitudinal 
reinforcing bars. After the calibration of the Hysteretic material with the ReinforcingSteel material 
by considering both global buckling and low-cycle fatigue of longitudinal reinforcing bars, the 
Hysteretic command was assigned to the steel fibers. The Hysteretic material uses six stress and 
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strain points as inputs along with pinching constants, damage due to ductility and energy, and 
degradation unloading stiffness based on ductility. 

Furthermore, in this research, Model 2 also considered the effect of global buckling with various 
slenderness ratios of longitudinal reinforcing bars (L/D) incorporated in the fatigue modeling by 
wrapping Fatigue material to Hysteretic material for steel material. 

The fatigue properties were calculated as described in Section 3. The fatigue properties applied 
were for L/D = 7, which equate to E0 = 0.159 and m = -0.453. 

The low-cycle fatigue of reinforcing bars including the effects of global buckling were evaluated in
Equation (2), where the fatigue life coefficients were obtained using Equations (3) and (4). 

4.2.3 Model 3 (with bond-slip and without fatigue) 

Model 3 was modified from Model 1 by adding a zero-length section at the base of the bridge 
column to include the bond-slip effect. The concrete material within the zero-length section was 
identical to the concrete material used in the fiber-based beam-column elements. The reinforcing 
steel in the zero-length section applied the Bond_SP01 uniaxial material in OpenSees to mimic 
the bond-slip effects at the column-to-footing intersection [31]. The monotonic bar stress (σ)
versus loaded-end slip (S) response curve in Bond_SP01 was expressed in Equations (14) and (15) 
as: 

��, �� � ≤ �' +
)
,
* 

)� = T ; �Y = *
* (14) 

-�Y x ;�* − � '< + � ' , �� � > �' [( *)/% ]-//%+.!)
/%:(+,

)
) 

where b is the stiffness reduction factor, which expresses the ratio of the initial slope of the 
curvilinear portion at the onset of yielding to the slope in the elastic region, K. The variable 
�Y = (σ - σy)/(σu - σy) is the normalized bar stress, (�\) = (S - Sy)/Sy is the normalized bar slip, 
µ = (Su-Sy)/Sy is the ductility coefficient, The variable σy is the yield strength, and σu is the ultimate 
strength of the bar reinforcement. Sy and Su are the loaded end-slip corresponding to the bar stress 
σy and σu, respectively. Sy is computed as follows: 

HIS' = 0.4 ̂
G! (2α + 1)a

"/K 

+ 0.34 (mm, Mpa) (15) 
) @20% 

The coefficient Rc generates the shape of the reloading curve in the hysteretic responses of bar 
stress versus loaded-end slip, and typically Rc ranges from 0.5–1.0. A lower Rc value generates 
significant pinching behavior, while a value of 1.0 will render no pinching effect. The following 
parameters were adopted for Bond_SP01: the local bond-slip relation (α = 0.4), rebar slips at the 
loaded end at the bar fracture strength (Su = 30Sy), coefficient to reflect the pinching
effect (Rc = 0.23), and the stiffness reduction factor (b = 0.05). 
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4.2.4 Model 4 (with bond-slip and with fatigue) 

Model 4 was the combination of Models 2 and 3. Both bond-slip and low-cycle fatigue of 
longitudinal rebars were considered in Model 4. 

A zero-length section was added at the base of the bridge column to include the bond-slip effect. 
Furthermore, after calibration of the Hysteretic material with the ReinforcingSteel material by 
considering both global buckling and low-cycle fatigue of longitudinal reinforcing bars, the 
Hysteretic command was assigned to the steel fibers. The Hysteretic material uses six stress and 
strain points as inputs along with pinching constants, damage due to ductility and energy, and 
degradation unloading stiffness based on ductility. 

Furthermore, in this research, Model 4 also considered the effect of global buckling with various 
slenderness ratios of longitudinal reinforcing bars (L/D) incorporated in the fatigue modeling by 
wrapping Fatigue material to Hysteretic material for steel material. 

The low-cycle fatigue of reinforcing bars including the effects of global buckling were evaluated in
Equation (2), where the fatigue life coefficients were obtained using Equations (3) and (4). The 
fatigue properties were calculated as described in Section 3. The fatigue properties employed were
L/D = 7, which equates to E0 = 0.159, and m = -0.453. 
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5. Numerical Investigations on the Seismic Performance
of RC Bridge Pier 

The proposed four numerical models were subjected to nonlinear time-history analyses due to 
horizontal ground acceleration with a constant axial compressive load. The proposed four 
numerical models were developed as a single degree of freedom structure with constant axial 
compressive load of P = -680 kN. The near-fault Taiwan 1999 Chi-Chi earthquake from station 
TCU075 was selected for the nonlinear time-history analysis of Specimens B from 
Chang et al. [19]. The TCU075 earthquake was documented in the following way: Chi-Chi, 
Taiwan, record sequence #: 1510, event name: RSN1510_CHICHI_TCU075-E, 
unscaled PGA: 0.233 g, and unscaled time duration: 90 s. The simulation results of the proposed 
finite element models were calibrated with the experimental test results of Specimen B. 

The recorded time history of ground acceleration (g), ground velocity (cm/sec.), and ground
displacement (cm) of scaled TCU075 are shown in Figures 6. The peak ground acceleration of 
TCU075 was scaled up to 0.8 g. Subsequently, the time of duration was compressed due to the 
similitude law. The scaled-up ground acceleration was implemented with a damping ratio of 5%. 
Notably, the selected near-fault ground motions revealed that they have pulse-like velocity
waveform and a large pulse near the beginning of the velocity time history in Figure 6b. Near-fault 
ground motions often contain some special characteristics including the high permanent ground 
displacement and long-period velocity pulses. Therefore, near-fault ground motions have the 
potential to cause severe damage to RC bridges. 
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The fatigue properties applied were E0 = 0.159 and m = -0.453 for a slenderness ratio (L/D) of 7. 
The numerical simulation results were compared with experimental data by Chang et al. to validate 
the proposed numerical models and to calculate the corresponding damage indices. Comparisons 
of hysteresis curves between nonlinear time-history analysis results and experimental tests of 
Specimen B from Chang et al. are shown in Figures 7a–7d. Experimental results detected some 
flexural cracks and some concrete cover spalling. Overall, Specimen B was not severely damaged. 
The proposed numerical models were compared with experimental testing results. All four 
numerical models are optimal to assess the seismic performance of RC single-column 
pier-supported bridges. The proposed damage indices can reflect the damage states in accordance 
with the experimental results. 

Models 1 (without bond-slip and without fatigue) and 2 (without bond-slip and with fatigue) 
demonstrated hysteresis curves that aligned well with the experimental results, but they have 
slightly higher predicted stiffness, as shown in Figures 7a and 7b. 

Model 3 (with bond-slip and without fatigue) developed a symmetrical hysteresis curve, as shown 
in Figure 7c. In addition, Model 3 had a stronger pinching effect due to bond-slip in comparison 
to Model 1 (without bond-slip and without fatigue). 

In Figure 7d, the overall hysteresis curve of Model 4 (with bond-slip and with fatigue) aligned well 
with experimental data for Specimen B, especially in the predictions of strength and stiffness. The 
predicted hysteresis curve demonstrated a slight pinching effect due to bond-slip and could capture 
strength/stiffness degradation due to the low-cycle fatigue of longitudinal steel rebars. However, 
it is noted that the simulation results of Model 4 showed strong strength/strength degradations 
closer to the end of the ground motion time duration. 
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6. Numerical Simulations of Damage Indices and
Performance Assessments 

The numerical simulations of damage indices corresponding to Figures 7a, 7b, 7c, and 7d are 
illustrated in Figures 8, 9, 10, and 11, respectively. 

Figure 8 shows the cover concrete damage index Dc. Models 1 and 2 show similar results in which 
the 2 curves almost overlap. Models 3 and 4 show different results. Notably, Model 3 shows small
Dc values. Model 4 shows similar results to Models 1 and 2 up to around t = 44 sec. Model 4 shows 
Dc = 1.0 at around t = 48 sec., which is closer to the end of the ground motion time duration. 

The steel strain damage index Dss is shown in Figure 9. Models 1 and 2 show similar results in 
which the 2 curves almost overlap. Models 3 and 4 show different results. Model 4 shows similar 
results to Models 1, 2, and 3 up to around t = 39 sec. Model 4 shows Dss = 1.0 at around t = 39 sec. 
It is noted that Dss of Models 1 and 2 have larger values than those of Models 3 and 4 mainly due 
to bond-slip effect. 

Figure 10 demonstrates the steel low-cycle fatigue damage index Dsf. Dsf of Model 2 shows a larger 
value than that of Model 4. It is noted that Model 4 shows Dsf = 1.0 at around t = 39 sec. 

The section damage index Dsection is shown in Figure 11. Models 1 and 2 show similar results in 
which the two curves almost overlap. Model 4 shows similar results to Models 1, 2, and 3 up to 
around t = 39 sec. Model 4 shows Dsection = 1.0 at around t = 39 sec. It is noted that the section 
damage index Dsection of Models 1, 2, and 3 is governed by Dss. The section damage index Dsection of 
Model 4 is governed by Dc. 

The simulated section damage index Dsection of all four numerical models is between 0.1 and 0.2 for 
Specimen B. According to Table 2, the bridge column is classified as “minor damage” and could
remain operational. All four numerical models align well with the experimental test results. 

The effects of bond-slip, cover concrete damage, steel strain damage, global buckling, and 
low-cycle fatigue damage of steel rebars would impact and influence the seismic behavior of RC 
bridge columns. 
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7. Summary & Conclusions 
This study investigated the effects of low-cycle fatigue fracture of longitudinal reinforcing steel 
bars on the seismic performance of reinforced concrete bridge piers. Detailed understandings of 
low-cycle fatigue failure of steel reinforcement of RC bridge piers subjected to seismic loadings 
were achieved by also incorporating the effect of inelastic buckling in terms of slenderness ratio. 

Damage indices were utilized to assess the seismic performance of RC single-column 
pier-supported bridges with flexural failure under near-fault ground motion. The damage indices 
can numerically assess the damaged state of RC bridge piers and show the gradual accumulation 
of damage. Four numerical models were developed with fiber-based, nonlinear beam-column 
elements to conduct the seismic assessments. 

The four numerical models were developed with different considerations of low-cycle fatigue and 
bond-slip: Models 1 (without bond-slip and without fatigue), 2 (without bond-slip and with 
fatigue), 3 (with bond-slip and without fatigue), and 4 (with bond-slip and with fatigue). The 
models considered various damage parameters such as the low-cycle fatigue, tensile strain damage, 
global buckling of longitudinal steel bars, the cracking and spalling of cover concrete, and the 
bond-slip between concrete and longitudinal steel bars. 

According to the simulation results of this study, the simulated section damage index Dsection of all 
four numerical models align well with both experimental test results and the National Cooperative 
Highway Research Program Synthesis 440 [36] for bridge performance assessment. Furthermore, 
the predicted seismic responses of all four numerical models are in good agreement with 
experimental test results. The proposed damage indices can reflect the damage states in accordance 
with the experimental results. Thus, all four numerical models are optimal to assess the seismic 
performance of RC single-column pier-supported bridges. 

It is shown that the proposed numerical models effectively capture the damage states and failure 
of RC single-column pier-supported bridges when compared with experimental testing results. 
Moreover, the damage values reflect the damage development states in accordance with the 
experimental test results. Based on the simulation results of this study, bond-slip, cover concrete 
damage, steel strain damage, global buckling, and low-cycle fatigue damage of steel rebars 
demonstrated strong impact and influence on the seismic behavior of RC bridge columns. 

The proposed numerical models have demonstrated to be capable of capturing the damaged
evolution of RC bridge piers under seismic events, can help predict the damage states and seismic 
behavior of RC bridge columns, and could be a boon to those performing non-linear analysis and 
performance assessment of RC bridge structures. 

Far too many bridges and the transportation system have been damaged by earthquakes. This study 
is expected to advance the state of bridge and highway engineering and will provide improved tools 
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to assess the vulnerability of bridges and highway systems in a cost-effective, timely, and efficient 
way. This study will mitigate risk and improve earthquake resilience for RC bridges. Therefore, 
this study will not only benefit the engineering community, but also the publicwith enhanced 
safety, economy, and transportation security. 

The proposed numerical models with low-cycle fatigue fracture could also provide future 
applications for non-linear analysis of other types of RC bridges and RC building structures for 
the purpose of damage assessment. 
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