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Executive Summary 
With the increasing adoption of electric vehicles (EVs) in the transportation sector, range anxiety 
has become pervasive among EV drivers. A poor lithium-ion battery used in EVs will reduce the 
rated cruise range, cause safety issues and worsen traffic congestion. To address these challenges 
without imposing additional costs on customers for battery replacement, the integration of an 
efficient Battery Management System (BMS) emerges as a viable solution to alleviate range anxiety 
and prolong battery lifespan. The core function of BMS is the state-of-charge (SOC) estimation 
to monitor the battery status and provide feedback information to the central control unit. In 
pursuit of enhanced BMS efficiency, the research team proposes a new equivalent circuit model 
(ECM) to the lithium-ion battery, an approach designed to identify its parameters. Leveraging
this ECM, the research team estimates SOC from measured terminal voltage data using a voltage-
and-current-based moving horizon estimator (VC-MHE). Compared with existing approaches, 
the advantage of the proposed method is that it does not need the SOC-OCV curve a priori and,
thus, can be applied in any circumstances. 

Our research methodology involves the collection and processing of an open-source test dataset 
for the commonly used Sanyo battery 18650 3.7V 2.6Ah. The software platform for battery
modeling and VC-MHE is MATLAB with various state-of-the-art optimization solvers, such as 
SCIP and IPOPT, to ensure optimality in the moving horizon estimator (MHE). To enable 
hardware-in-the-loop simulation for practical BMS development, the research team implements 
a classical SOC algorithm on an FPGA board and provides a comprehensive guide for software 
and hardware setup. 

The work yielded the following discoveries: 

• New functional features can be introduced into the ECM and refined by the least absolute 
shrinkage and selection operator (LASSO) method to improve the data-driven model 
accuracy. 

• The VC-MHE performs better than the voltage-based method for the battery status, such 
as SOC and estimation accuracy. 

• The MATLAB/SIMULINK can convert the high-level software programming to the 
hardware description language (HDL) coding of FPGA, significantly reducing the 
development period. 

This research not only provides new EV battery modeling techniques but also shows the potential 
of using FPGA to implement advanced algorithms for real time battery management. 
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1. Introduction 
This project aims to develop a more efficient battery management system (BMS) for electric 
vehicles (EVs) and their charging infrastructure based on real-time monitoring, machine learning, 
and optimal control. The research team conducts algorithm development and hardware-in-the-
loop simulation. It also trains students from the electrical and chemical engineering departments 
at California State University, Long Beach in battery energy storage for transportation
applications. 

The proposed project has significant potential for knowledge advancement. Our study will deliver 
three modules: (1) a new equivalent circuit model (ECM) for lithium-ion battery fast charging 
through feature selection, (2) a new state-of-charge (SOC) estimation algorithm, and (3) an on-
board field-programmable gate array (FPGA) implementation of the SOC estimation. Our 
research will answer the following two questions: (1) how to integrate advanced optimization
technology and empirical battery models to improve the SOC estimation and (2) how to develop 
an on-board FPGA platform for hardware-in-the-loop simulation. Compared with existing
battery monitoring techniques, the proposed approaches establish a more efficient way to identify 
ECM and estimate SOC. Even though it is more computationally demanding, the FPGA can 
provide sufficient computational power for implementation. 

The proposed research also has broad societal impacts. It aligns with SB1 objectives in a 
multifaceted manner. First, EVs with a more efficient BMS can improve their cruise range, and 
thus reduce energy consumption and traffic congestion. Second, the BMS algorithms resulting 
from this research can be applied in the solar power and battery-assisted charging stations to make 
infrastructure environmentally cleaner. Third, the developed system and software promises to be 
useful in the zero-emission vehicle (ZEV) workforce training. Finally, the SOC estimation 
algorithms will be deployed on a FPGA board using the MATLAB/SIMULINK platform, which 
enables industry-level management system development. 

1.1 Project Motivation and Background 

The Bipartisan Infrastructure Law, CHIPS & Science Act, and Inflation Reduction Act combined 
will spend more than $135 billion to form the USA’s electric vehicle future (White House, Oct 
19, 2022). Within the state, the California government set an ambitious goal of 5 million ZEVS 
on the road by 2030, but only 862,874 cumulative ZEV sales were achieved through the first 
quarter of 2021 (Alexander et al., 2021). One of the barriers to EV adoption is the limitation of 
traveling range on one charge, which is highly reliant on the battery performance and its 
management strategy. The Department of Energy (DOE) thus recently awarded $2.8 billion to 
the study of battery development and battery management systems. Because the battery conditions 
cannot be directly measured in real time, a BMS is necessary to estimate battery pack performance 
and control the charging/discharging rate for energy efficiency improvement and safety
enhancement. It is worthwhile to note that the BMS is not only applicable for EVs, but it can also 
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be used in any energy storage infrastructures, such as solar-power-assisted charging stations. The 
integration of BMSs and infrastructure will promote more efficient and cleaner energy solutions 
within the transportation system. Even though many BMSs have been commercialized, the 
limitations of existing BMSs are still significant, including the following issues: 

1. The cycle-adaptive model for lithium-ion battery is absent. 

2. The big data-driven SOC estimation is still unsatisfactory due to the limitation of model 
structure. 

3. The energy-effective control system for fast charging is not well-developed. 

The proposed research project conducts the preliminary studies on the key technologies of BMS, 
including battery modeling, state estimation, and hardware implementation. A typical structure 
and function of a BMS are shown in Fig 1. Due to the project time limitation, cell balancing and 
thermal management are not discussed in this report. 

Figure 1. A Typical Structure and Functions of a Battery Management System 
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Figure 2. The BMS Architecture with FPGA Implementation 

Battery Modeling 

The traditional battery modeling approaches for SOC and SOH estimations can be categorized 
into two groups: (1) the equivalent circuit method (ECM) and (2) the electrochemical method. 
The ECM only needs to identify differential algebraic equations (DAEs) with 2-3 states and thus 
enjoys simplicity and fast execution. ECM mainly focuses on low-rate charging/discharging
dynamics but may suffer from low prediction accuracy (Smith et al., 2007). Gandolfo et al. (2015)
developed a one-resistor-based ECM for the SOC forecast of lithium polymer batteries. To 
improve the accuracy, the Thevenin ECM combining an internal ohmic resistance and a resistor-
capacitor pair is widely used to represent the battery dynamics. The electrochemical method 
develops battery models using electrochemical theories. The resulting pseudo-two-dimensional
(P2D) model is able to describe the battery dynamics under various operation conditions but may 
not be suitable for real-time computation. Hence, model reduction becomes a research hotspot. 
Dao et al. (2012) developed a simplified battery model using volume-average integration and 
Galerkin’s approximation of the concentrated solution and the porous electrode theories. Smith et 
al. (2010) first proposed 4 PDEs based on the conservation law, coupled with the Butler-Volmer 
equation describing the reaction current at the solid/electrolyte interface. Then they reduced the 
model order by lumping modes with similar eigenvalues. Cai and White (2009) used the proper 
orthogonal decomposition (POD) to simplify the full-order physical model. 

A new trend is to use machine learning for battery modeling. For example, Wang et al. (2017) 
proposed a thermal-electrical coupled model based on the neural network (NN) and validated its 
accuracy through battery tests. Dong et al. (2015) integrated the wavelet and NN to form a more 
complex data-driven model for the battery. Even though machine learning can accurately describe 
the nonlinear dynamics of a plant, its performance is highly dependent on the quality of the 
training dataset. For a time-varying system, such as a battery, making the model adaptive is still 
challenging. 
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SOC/SOH Estimation 

Once the battery model structure is determined, the SOC and SOH estimations can be conducted. 
The SOC represents the capacity of a battery during a single charge/discharge cycle. The SOH 
represents the capacity deduction after a number of charging/discharging cycles. For safety, the 
EV battery cells have reached their end-of-life when the SOH is faded to 80% of its original rated 
capacity (Etxandi-Santolaya et al., 2024; Berecibar et al., 2016). The Coulomb counting method 
is one of the most popular methods because it is model-free, integrating the discharge current to 
estimate the SOC. An enhanced Coulomb counting method was proposed by considering the 
charging and operating efficiencies (Ng et al., 2009). The Kalman filter is commonly used for 
linear battery models (Yatsui & Bai, 2011; Smith et al., 2010). An adaptive unscented Kalman 
filtering (UKF) was applied in Sun et al. (2011) to estimate SOC based on the zero-state hysteresis 
battery model with a covariances adjustment. Furthermore, He et al. (2013) investigated the 
impact of temperature, charge-discharge rate, and running mileage on the SOC and applied the 
unscented particle filter (UPF) method to overcome the parameter perturbations. Machine 
learning can be used for SOC and SOH estimation, as mentioned above. For example, Sahinoglu 
et al. (2017) applied Gaussian Process (GP) regression to estimate the SOC of Li-ion batteries. 
The GP is suitable for small datasets and predicting intrinsic uncertainties of a safety-critical
system, such as battery packs (Richardson et al., 2017). Yang et al. (2017) reported NN combined 
with the first-order ECM to predict the SOH. 

On-board BMS 

A MATLAB-to-FPGA design flow is applied in the proposed project because of its high
performance, low cost, and agile development cycle. Kumar et al. (2018) have shown that neural 
network, fuzzy logic, and a statistical controller trained by MATLAB can be deployed to the 
FPGA board for SOC/SOH estimation. The hardware description language (HDL) codes 
describing the advanced BMS functions can be loaded to the FPGA using MATLAB’s HDL 
Coder Toolbox. The battery model in MATLAB can generate the SOC data within seconds, 
rather than waiting for several hours of charging/discharging and can, thus, avoid any potential 
safety hazard. These data are transferred to FPGA for SOC/SOH estimation, and the control 
signal is sent back to MATLAB or real circuits for charging/discharging operations. This 
MATLAB-to-FPGA setting is suitable for the preliminary research without using any high-cost 
battery test system. 

1.2 Project Methods 

The project includes three specific aims. Aim one involves using open-source data to build a battery 
model. Aim two involves estimating the SOC though a current and voltage integrated approach. 
And aim three integrates a modular-based BMS on MATLAB and an FPGA board. 
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Aim One: Analyze the open-source charging/discharging datasets to build a machine learning and 
equivalent circuit hybrid model. 

An open-source dataset is collected for battery modeling. The fast-charging data for Sanyo battery 
18650 3.7V 2.6Ah is obtained from Gun et al. (2015) at the University of California Berkley under 
the CC BY 4.0 license. This dataset consists of voltage, current, and temperature of the battery 
under different c-rates of charging or discharging, which can be used for short-term dynamics
modeling. Note that the 18650 battery is reliably and consistently used for most lithium-battery-
modeling literature. 

Given the data, the research team constructs the battery model in two steps. First, the static ECM 
parameters are identified through the open-source datasets using LASSO. In the second step, the 
dynamic component of ECM is modeled as a discrete transfer function. Different from other data-
driven modeling schemes that focus on machine learning algorithms, our approach extracts and 
selects the crucial features for cycle-dependent and temperature-dependent dynamics. The input 
to any data-driven algorithm’s features plays a crucial role in impacting the model performance. 
These features usually are problem-specific and should be designed carefully. The full voltage cycle 
data, current, number of cycles, and temperature can be used as raw data feeding into a feature-
generation algorithm. The resulting feature candidates can be high-order polynomials and 
derivatives, or they can be constructed based on electrochemistry knowledge. Then a feature 
selection procedure is developed to determine a subset of features that can capture the cycle-varying 
and temperature-varying dynamics of the battery status. 

Aim Two: Estimate SOC using the MATLAB-based optimization toolbox. 

The proposed SOC estimation is based on a new Coulomb counting method (current-based) and 
MHE using the voltage-based ECM model. Because the ECM and Coulomb counting
parameters are characterized through LASSO offline, the SOC calculation can be cast as an online 
model-based optimization problem over the estimation horizon. MHE aims to match the 
measured terminal voltage influenced by the SOC, internal resistance, and hysteresis (Plett, 2004) 
while weighting the SOC change calculated by the proposed new Coulomb counting model in the 
objective function. 

Aim Three: Implement algorithms on the FPGA. 

The proposed hardware-in-the-loop BMS platform has the architecture shown in Figure 2. The 
battery model and SOC estimation algorithm are designed, interacted, and simulated in 
MATLAB. The battery measurement data will be sent to the FPGA for on-board battery model 
and SOC algorithm implementation. Finally, the estimated SOC data from FPGA will flow back 
to Simulink for comparison. 
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2. Battery Modeling and SOC Estimation 
2.1 Battery Modeling 

ECM uses Li-ion battery cells’ characteristics with the combination of the use of resistors, 
capacitors, and voltage sources for modeling and can be applied to many different applications. In 
a paper for 18659 3.03Ah LiNiCoAlO2 (NCA) battery modeling (Widanage et al. 2016), the 
results showed that the Root Mean Square Error (RMSE) and peak error (pk-error) of nonlinear 
methods compared to the linear method was improved by 13%-25% for RMSE and 52%- 62% for 
pk-error. It varies because that paper used four different temperatures: 10 ⁰C, 15 ⁰C, 25 ⁰C, and 
45 ⁰C, under five different SOC percentages of the battery: 10%, 20% 50% 80%, and 95%. Liaw 
et al. (2004) presented a variation of the equivalent circuit model where all the ohmic resistant 
components lumped into resistor 1 and faradic non-linear components into the RC circuit. The 
battery used was 18650 cell and consisted of the following components: a MAG-10 graphite-
negative electrode, a LiNi0.8CO0.15Al0.05O2-postive electrode, and 1.2 M LiPF6 in ethyl
carbonate/ethyl methyl carbonate (3:7 wt. % ratio). The paper stated that their current model, the 
behavior of the resistor with SOC, seems to be composed of at least two independent
contributions. The contribution dominating in the higher SOC region follows a “power law,” 
whereas the “exponential law” dominates the lower SOC region. 

In this subsection, a new ECM will be developed without knowing the OCV-SOC curve a priori. 
The conventional Thevenin ECM is plotted in Figure 3. 

Figure 3. The Thevenin Equivalent Circuit Model 
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(1)�!(�) = �"#$(�) − �(�)�% − �&(�), 

'(! '(!�&(�) = ��� , -�&(� − 1) + �& 01 − ��� , -1 �(�), (2)
)!#! )!#! 

where �!(�) is the terminal voltage at time instant k; �& is the first-order diffusion voltage; � is 
the charging/discharging current; and �"#$ is the open-circuit voltage, which depends on the 
temperature and SOC while showing electro-chemical hysteresis. Here we temporarily omit the 
time index k and assume the non-diffusion voltage has the following structure: 

when � > 0, 

�"#$(�) − �(�)�%
(+) = �-

(+) + �(+)� + �/
(+)���(−�) + �0

(+)���(1 − �) + �1
(+)���(�) +. 

(+) . 

3 

(+)�/ +�2 + �4
(+)� + �5

(+)���(−�)� + �6
(+)�����(−�) + �7

(+)����(�) + �.-

(+) 89:;'
"#$(&)( 

(+) 89:;'
"#$(&)(< <( ( (3)� + �./ 

(+)(� − 0.5)/
3 = 

+ �.0 ,.. 

when � ≤ 0, 

�"#$(�) − �(�)�%
(') = �-

(') + �.
(')� + �/

(')���(−�) + �0
(+)���(1 − �) + �1

(+)���(�) + 
(+) . 

3 

(+)�/ +�2 + �4
(+)� + �5

(+)���(−�)� + �6
(+)�����(−�) + �7

(+)����(�) + �.-

(+) 89:;'
"#$(&)( 

(+) 89:;'
"#$(&)(< <( ( (4)� + �./ 

(+)(� − 0.5)/
3 = 

+ �.0 ,.. 

where �>
(+) and �>

(') are the model coefficient for discharging and charging, respectively; � 
represents the cell SOC; and � is the temperature. 

Several points about these two equations are noteworthy. First, we identify the charging and 
discharging models of non-diffusion voltage separately owing to the electro-chemical hysteresis. 
Second, the terms associated with �-, �., ⋯ , �4 are widely used for the OCV-SOC curve 
approximation in literature. However, our study shows that merely using these terms is not 
sufficient to approximate the voltage if the OCV-SOC curve is not known a priori. In fact, the 
OCV-SOC curve is temperature-dependent and can be impacted by the charging/discharging 
rate. Therefore, we integrate more functional features to enrich the representativeness of the 
model. Third, conventional OCV-SOC modeling methods rely on least squares to determine 
model parameters. Alternatively, the research team proposes using LASSO to identify model 
parameters while selecting functional features in Equations (3) and (4). By omitting the superscript 
(+) and (−), the formula of LASSO is the following: 

. .0@∑A∈@�"#$(�) − �(�)�% − �=(�)�C + �∑>C.�> (5)
/|@| 
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where � represents the charging or discharging dataset, |∙| is the operator of cardinality, and � 
represents the feature vector associated with � in Eqs. (3) and (4). 

.� = H1; �(�); ���@−�(�)C; ��� ��� @1 − �(�)C; ��� ��� @�(�)C ; 
3(A) 

; �(�); � ∙ 

���@−�(�)C; �(�) ∙ �(�) ∙ ���@−�(�)C; �(�) 

89:;'"#$"#$ *&(+), ( 
89:;'"#$"#$ *&(+), (< <( ( (6)��� ��� @�(�)C; �/(�); ; ; (�(�) − 0.5)/ J

3(A) =(A) 

� is a non-negative regularization parameter that can be tuned by cross-validation through
MATLAB’s LASSO function. The working principle of LASSO is conducting both feature 
selection and regression simultaneously to achieve better prediction accuracy and reduce the chance 
of over-fitting. This is important because we do not know how these functional features impact 
the model performance before the data fitting. Some of the features contribute to the charging 
model but may be redundant to the discharging data fitting or vice versa. The LASSO provides a 
flexible framework for the analysis of any battery test datasets and enables integrating more features
in future work. 

Eq. (1) shows that the measurement �!(�) consists of two components: diffusion part �&(�) and 
non-diffusion �"#$ . LASSO can be applied in modeling �"#$ . Eq. (2) shows that �&(�) is a first-
order, discrete dynamic variable with input � and output �&, which can be constructed through 
MATLAB System Identification App. Hence, the primary task is to decompose the measured 
terminal voltage into two parts: diffusion and non-diffusion components. To this end, we propose 
an iterative scheme shown in Fig 2. 
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Figure 4. An Iterative Scheme for Battery Model Identification 

Several points about the identification scheme are presented below. First, the input variables, 
current, and temperature are always measurable. Second, the output variable, OCV, or diffusion 
voltage should be estimated during the identification. Third, we initially assume the estimated 
diffusion voltage �& to be zero in order to obtain the model of �"#$. Then the estimated OCV 
will enable us to reconstruct the diffusion voltage by building a single-input-single-output (SISO),
first-order z-transfer function (z-TF) model: 

-.)!E.'89:;' <F 
D! /!0! (7)= -.% .'89:;' <G12/!0! 

Here the input is the current I, and the estimated diffusion voltage derived by �! − �K"#$ + ��L% is 
the output for z-TF modeling. Note that we use a single z-TF to model both discharging and 
charging because the input-output data used in the standard transfer function identification 
method should be an uninterrupted time series. Fourth, once the z-TF model is obtained, we need 
to re-estimate the OCV and RI because the diffusion voltage has changed. We repeat this LASSO 
and z-TF identification procedure iteratively while maintaining a solution pool because the model 
mean absolute error (MAE) may not be monotonically reduced during the iteration. When a 
predetermined number of iterations, denoted as N, has been achieved, we screen the pool and 
choose the model with minimal MAE. 
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2.2 SOC Estimation 

A New Coulomb Model 

Coulomb counting is one of the most common methods for SOC estimation based on the current 
integration. The mathematical formula of this method is: 

�(�) = �(� − 1) − 
� 

���,� 
O
(! 

-

where �� is the sampling time interval, � is the nominal capacity, and � is the Coulomb efficiency. 
HGiven the input current and output SOC, the parameter 
I 

can be identified through the data 
fitting. However, the sensitivity of the resulting model is the main issue, especially under the low-
current scenario. Hence, a new Coulomb model is proposed in this report: 

�(�) = �(� − 1) − �-|�(� − 1)| − �.�(� − 1) − �/�/(� − 1) − �0�(� − 1) − �1 (9) 

where �-, �., �/,�0, �1 are model parameters for the SOC change during consecutive time instants. 
Compared with the modified Coulomb method (Chang, 2013), our model integrates more terms 
and relies on LASSO to select suitable features in the model. For different batteries, the selected 
feature set can be adjusted by applying LASSO on the battery test datasets. If the initial SOC is 
known and the current measurement is accurate, then the Coulomb method is the most convenient 
way of performing SOC estimation. In the case study, we will show that the proposed new 
Coulomb model leads to more accurate SOC estimation than the conventional one. 

Moving Horizon Estimator for SOC 

Different from commonly used filter methods, we employ an optimization-based framework, 
MHE, to estimate the SOC. MHE minimizes the estimation error of observation over a backward 
sliding window and moves one step forward at each time instant. The advantages of MHE include
the following: (1) automatically determining the initial SOC, (2) fewer parameters to tune, and 
(3) explicitly handling the non-linearity of the battery model. On the other hand, it needs to solve 
an optimization problem online, which requires more powerful computational resources than 
filter-based approaches. To our best knowledge, fee works have considered MHE in the battery 
SOC estimation. 

In terms of voltage-based MHE, the SOC can be estimated purely based on the voltage model 
using MHE, denoted as V-MHE. Note that diffusion voltage usually is significantly smaller than 
the non-diffusion counterpart, and Eq. (2) is mainly driven by the input current. We can assume 
�&(�-) = 0 at the initial time instant �-, and the diffusion voltage estimation �K&(�) can be 
derived independently since it only needs the current input �. Then the non-diffusion voltage 
�!(�) − �K&(�), as the observation, will be used in the MHE to determine SOC. The optimization 
formula of V-MHE at time instant � is: 
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L∑MC-@�!(� − �) − �K&(� − �) − �=(� − �|�)(∙)�(∙)C
/ (V-MHE) 

������� ��: ��. (6) 

�̂(� − �|�) ≥ �̂(� − � − 1|�), �� �(� − � − 1) < 0, (10) 

�̂(� − �|�) ≥ �̂(� − � − 1|�), �� �(� − � − 1) ≥ 0, (11) 

�̂(� − �|�) ∈ [0,1], ∀� ∈ {0, 1, 2, … , �}, (12) 

�=(� − �|�)(∙)�(∙) + �(� − �)�%
(∙) ∈ i�"#$ , �"#$j, ∀� ∈ {0, 1, 2, … , �}, (13) 

where � is the estimation horizon, and �̂(� − �|�) represents the estimated SOC at time instant 
� − �, given the latest measurement at time instant �. The objective function in V-MHE 
minimizes the squared summation of estimation error along the horizon. The parameters �(∙)and 
�%
(∙) are identified using methods in Section 2.1. Here the superscript (∙) can be (+) or (−), 

determined by the current sign. Similarly, Eqs. (10) and (11) are also dependent on the current 
sign. The SOC should increase when �(� − � − 1) < 0, representing charging at time instant � − 

� − 1. Otherwise, SOC should be reduced during the discharging time interval. The upper and 
lower bounds on SOC and voltage are enforced in Eq. (12) and (13). Solving V-MHE will 
generate a sequence of estimated SOC: �̂(� − �|�), �̂(� − � + 1|�), … , �̂(�|�). Only the last 
one, �̂(�|�), will be kept as the latest SOC for real-time decisions. 

As for voltage-and-current-based MHE, the SOC can be also estimated based on the voltage and 
current (improved Coulomb) models using MHE, denoted as VC-MHE. The improved Coulomb 
method utilizes the current to model the change of SOC, but it is unable to identify the initial 
SOC value. The V-MHE determines SOC to match the observed terminal voltage and is not 
dependent on the initial SOC. Integrating these two approaches may provide a more accurate 
estimation. To this end, we redesign the objective function of the MHE: 

L ∙)C
/ L∑MC-@�!(� − �) − �K&(� − �) − �=(� − �|�)(∙)�( + �N ∑MC.(�̂(� − � + 1|�) − 

�(� − �|�) + �-|�(� − 1)| + �.�(� − 1) + �/�/(� − 1) + �0�(� − 1) + �1)/ 

(VC-MHE) ������� ��: ���. (6), (12), (13) 

There are two terms in the objective function of VC-MHE. The first term is the same as the 
objective function of VC-MHE, which minimizes the discrepancy between the voltage
measurement and value derived from the battery model. The second term minimizes the difference 
between SOC change derived from the current measurement (9) and its counterpart in the SOC 
estimation. The weighting parameter Qc is introduced to balance the influence from the voltage 
and current approaches. Here the SOC dynamics have already been incorporated into the objective 
function by following Eq. (9). Hence, we do not enforce Equations (10) and (11) in VC-MHE. 
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2.3 Simulation Results 

In this section, we use the Sanyo 18650 3.7V 2.6Ah battery test data in [3] for modeling and SOC 
estimation. In the beginning, several constant current constant voltage (CCCV) cycles were run at 
gradually increasing C-rates, with variable temperature ranging from 21 to 40 degrees Celsius. 
Then Multistage Constant Current (MCC), Constant Power-Constant Voltage (CP-CV), and 
Boostcharge cycles were conducted subsequently at various C-rates. Finally, 1C CCCV baseline 
tests were executed. The sampling time interval is ∆� = 0.1 second. To solve the MHE, we use a 
nonlinear program (NLP) solver IPOPT within the MATALB OPTI platform. 

Battery Modeling and Validation 

The entire dataset is divided into two parts: training and validation. The training part is utilized 
for model development. The validation part is purely used for the model performance evaluation. 
The pre-determined iteration number is set as � = 7. Here the best model among all iterations is 
selected by minimizing the MAE: 

∑67 VDW[4](A)'D.(A)V+82 .�∗ = ��� ���P∈{.,/,…,S} X7 

(14) 

where �Y is the total data number in the training datasets and is the estimated terminal voltage in 
�!Z iteration. In Table 1, we list the MAE on training datasets in all 7 iterations. The model 
derived in the second iteration yields the best performance and should be adopted. The parameter 
values on Table 2 show that discharging and charging may have different characteristics. In 
addition, LASSO does not choose the feature ��� (�) for the discharging model. The z-TF 
identified through MATLAB App is shown in (15); its parameters can be used to derive �& and 
�& in Eq. (2). The model’s predicted output and real measurement on the training set are 
illustrated in Figure 3 for comparison. In addition, we also plot the predicted output and real 
measurement on the validation set in Figure. 4. Here we can see that the MAE on the validation 
set is slightly higher than on the training set but is still at a low level. 
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Table 1. MAE on Training Datasets in Each Iteration and Validation Set 

Iterations MAE 
1 0.01079 
2 0.01075 
3 0.01078 
4 0.01083 
5 0.01086 
6 0.01086 
7 0.01087 

Validation 0.02060 

!! #.%&'×#%"# 
(15)= 

" #)%.**+',"$ 

Table 2. Battery Model Parameters 

Parameter index 
�%
�& 

(+) Discharging 
2.7133 
0.0169 

(-) Charging 
4.3847 
0.0023 

�' 0.0039 -0.5709 
�(
�)
�* 

0.0093 
0 

-0.00001 

0.0027 
0.1508 
-0.0006 

�+ -0.0056 0.0044 
�,
�-

-0.2602 
0.0242 

0.0135 
0.0013 

�.
�&%
�&& 

0.0824 
0.3619 
0.4988 

-0.0170 
0.0048 
-0.0476 

�&' 
�&(
�/ 

0.2526 
0.6060 
0.3191 

0.00005 
-0.1032 
0.0046 
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Figure 5. The Battery Model Output vs. Measurement on Training Set 

Figure 6. The Battery Model Output vs. Measurement on Validation Set 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  15 



 

    

  

 
  

 
  

 
  

   
 

  

 

 
 

   

  

0.9 

0.8 

0.7 

0.6 

0 0.5 
Cl) 

--True SOC 
0. 1 -- Standard Columb 

NewColumb 
0 '-'==========='-_j_----=--------1---=---'------>.l-_L_ _ ____>,._j 

0 1 2 3 4 
Time instant 

5 6 7 8 

x10 5 

Figure 7. SOC Estimation Based on Coulomb Approaches 

SOC Estimation Results 

The battery test data also contains the real-time SOC. We use the training dataset to build and 
compare the standard and new Coulomb models. For the standard Coulomb method, we identify 
the parameter in Eq. (8) as � = 2.90 × 10'1. For the proposed new Coulomb method, Table 3 
shows battery model parameters in Eq. (9). In Figure 5, both standard and new 
Coulombapproaches are applied to estimate the SOC on one of the validation datasets by assuming 
the zero initial condition. Here we can see that the proposed new model is more accurate at high 
SOC, whereas the standard Coulomb has better prediction in the low SOC range. However, both 
methods fail to estimate the initial SOC condition and are less accurate when the charging or 
discharging current is low. Hence, we use V-MHE or VC-MHE to estimate the initial condition 
and apply them in a hybrid manner. Once the initial SOC condition is determined by MHE, we 
may still use it when the current is less than 1 A. Otherwise, the new Coulomb method is applied 
instead. Due to the intensive computation of the MHE-based algorithm, only a few test points, 
shown in Table 4, are studied with the weighting parameter �N = 101. The estimated SOC and 
the true SOC profiles are plotted on Figures 8 and 9 for comparison. Here we can see that during 
the battery charging process (starting point at 40500), both VC-MHE and V-MHE obtain a 
similar estimation, which is only a 1% difference from the true SOC. However, V-MHE shows 
considerably larger fluctuations in the estimated SOC. For the battery discharging process, VC-
MHE is far more accurate than the V-MHE approach. As shown in Table 4, VC-MHE is only 
0.7% different from the true SOC, whereas the V-MHE has a 27% difference. The reason is that 
V-MHE is only based on the voltage that has a flat stage when SOC is not significantly high or 
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low. During that stage, we cannot determine the SOC purely using the terminal voltage 
measurement. 

Table 3. Improved Coulomb Model Parameters 

�% 

−5.04 × 100, 
�& 

1.11 × 100* 
�' 

1.26 × 100, 
�( 

3.85 × 100-
�) 

−8.59 
× 100, 

Table 4. SOC Estimation Results at Sampled Periods 

Starting points Length MAE (VC-
MHE) 

MAE (V-MHE) 

40500 500 0.01267 0.01452 
99900 500 0.00732 0.27404 

Figure 8. SOC Estimation Based on VC-MHE and V-MHE (Starting: 40500) 
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Figure 9. SOC Estimation Based on VC-MHE and V-MHE (Starting: 99900) 
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3. Field-Programmable Gate Array Implementation 
The proposed SOC estimation method is computationally expensive, and thus we consider its 
FPGA implementation. In this chapter, the primary objective is to validate and execute the SOC 
estimation method on an FPGA board using MATLAB/SIMULINK. While numerous tutorials 
and videos are available for the implementation process, adapting them to specific needs can pose 
challenges. To facilitate understanding, the method is delineated into distinct sections, 
encompassing equation analysis, MATLAB representation, conversion from floating point to 
fixed point, FPGA initialization, and the final FPGA implementation. 

3.1 Analysis of the Coulomb Counting Equation 

SOC estimation is a complex problem that exists in many battery-related applications, depending 
on multiple parameters and operating conditions. Simultaneously, this complexity is mitigated 
through the utilization of predefined functions, commonly referred to as “built-in functions.” It 
is essential to emphasize that transitioning from an equation to a function necessitates a 
comprehensive understanding of the intended equation and a sound grasp of its underlying theory. 
Here let us consider a standard Coulomb counting equation for SOC estimation: 

���(�) = ���(� − 1) + � ∗ 1.21898986449179�'2 (16) 

where � represents the time step and � is the charging/discharging current. Equation (16) is a first-
order differential equation. At each step, the SOC is updated by using the current multiplying a 
constant 1.21898986449179�'2, which is identified from the dataset discussed in Chapter 2. 
We will use a technique called “z-transform” to alter the form. By doing this, the z-transform 
function formula is as follows: 

���(�) = �'.���(�) + �(�) ∗ 1.21898986449179�'2 (17) 

Let us treat SOC as output and � as input values. Then the resulting discrete transfer function 
model �(�) can be defined in (18). 

../.6764117.57819�(�) = (18)
(.'G12) 

3.2 Implementation on MATLAB/SIMULINK 

Before the FPGA implementation, we first deploy this function in MATLAB/SIMULINK.
The resulting built-in function is shown in Figure 10. 
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Figure 10. SIMULINK Build-in Function 

where 

• �(�): “From Workspace” is a built-in function block to supply current signal 

• 1.218986449179�'2 : “Gain” is a built-in function block to represent the constant value 

• + : “Add” and “Add1” are the adder built-in function block that combines �(�), �(�) and 
�'.�(�) 

• 0 : “Constant” is a built-in function block that represents the initial value of SOC 

• �'. : “Delay” is a built-in function block 

• Out: “To Workspace” is a built-in function block to represent the result. 

For the goal to implement the Coulomb Counting Equation on a FPGA board, the SIMULINK 
model must be converted to follow the functionality of the hardware. First, the built-in function 
blocks should have the sample time of 0.01, matching the real data sampling rate. Next, we create 
a subsystem called “SOC estimation” with “Convert” blocks, shown in Figure 11. 

Figure 11. SIMULINK SOC Subsystem with Convert Blocks 
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The data type in the convert blocks should be specified by the “fixdt” function. Then we select the 
SOC estimation subsystem and choose “Create Subsystem from Area” to generate HDL code, as 
shown in Figure 12. Once completed, the “Command Window” will display the process for 
MATLAB to create the HDL code. In that history of the process, the location of the file can be 
shown. It is important to remember where the file is located and to make sure it is saved on the 
same path that MATLAB is using. The file that will be used is the “Subsystem.vhd.” 

Figure 12. SIMULINK HDL Code Generation 

3.3 FPGA-in-the-Loop Simulation 

For initialization of the FPGA, the FPGA board Basys3 and additional software are utilized. To 
execute the function on the board, “JTAG” must be applied. This is done manually by changing 
the “JP1” pin to “JTAG” and having a proper USB cable. The required software(s) are listed below: 

• Vivado 2022.1 

• MATLAB R2023.b or older 

• HDL Coder 

• HDL Verifier 

• Fixed-point Designer 
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New FPGA Board Wizard X 

Steps 

-> Basic Information 

Interfaces 

FILl/0 

Turnkey 1/0 

Validation 

Actions 

This wizard creates an FPGA board definition file for your custom FPGA board, You can then use 
this custom board for FPGA-in-the-Loop {FIL) and the FPGA Turnkey Workflow, Any custom FPGA 
boards you add with this wizard will appear in the board lists in both the AL Wizard and the HDL 
Workflow Advisor, 
In this step, specify the name of your FPGA board and the FPGA device on your board, 

Board Name: Basys3 ------------------------------
Device Information 

Vendor: Xilinx v Family: -A_rt_i_x7 _________ v_, Device: -x_c7_a_3_S_t ____ v_ 

Package: cpg236 v Speed: -1 v JTAGChain Position: 1 v ~----------

• HDL Coder Support Package for Xilinx FPGA Boards 

• HDL Verifier Support Package for Xilinx FPGA Boards 

The built-in command “hdlsetuptoolpath” on MATLAB enables Vivado and MATLAB to 
communicate: 

hdlsetuptoolpath('ToolName','Xilinx
Vivado','ToolPath','C:\Xilinx\Vivado\2022.1\bin\vivado.bat'). 

Here the path shows where the Vivado is located in the computer. Next, we initialize the FPGA 
board to MATLAB by executing the built-in command called “filWizard.” This should open an 
“FPGA-in-the-Loop Wizard” window. Here we need to make sure that the following conditions 
are fulfilled: 

• “FIL simulation with” is on “Simulink” 

• “FPGA-in-the-loop connection” is on “JTAG” 

• “Advanced Options” is on “FPGA system clock frequency (MHz) to 25” 

Because MATLAB does not have the Basy3 in their “FPGA Board List,” we have to add the 
board manually. To this end, we select “Launch Board Manager” in the “Board Options” section
and then go to “Create Custom Board.” This will open the “New FPGA Board Wizard” window. 
The following information shown in Figures 13 and 14 is filled to add Basys3 board. 

Figure 13. Introduce Board Name: Basys3 
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New FPGA Board Wizard 

steps Actions 

Specify the board interface. To enable FPGA-in-the-1..oop, select the •FIL Interface• parameter. To enable FPGA. Turnkey, 
Basic Informatioo select the 1.Jser-defined 1/0• parameter. 

Specify the dock and reset pin numbers. Parameter "Clock Frequency" must be between 5 and 300. FOf Ethernet 
interface, the suggested clock frequencies are 50, 100, 125, and 200MHz. Parameter •clock Pin Number" must be 
specified. lea>Je the parameter 9R.eset Pin Number• empty if )OU do not ha>Je one. Here is an example of pin number 

-> Interfaces assignment: NlO. 

FILI/0 

TLKnkeyl/0 

Validation 

FPGA.--in-the--1..oop Interface 

■ FIL Interface 

PHY Interface type: 

0 JTAG 

0 Gigabit Ethernet - GMII 

Q Gigabit Ethernet - RGMII 

0 Gigabit Ethernet - Xilinx SGMll 

0 Gigabit Ethernet Xilinx SGMll with 625MHz Reference Clock 

Q Ethernet - RMII 

Q Ethernet - MII 

Q Ethernet - MII with 25MHz Output 

Note: FPGA.-in--the-1..oop requires an HDL Verifer license. FPGA.-in--the--1..oop uses an Ethernet PHY chip or JTAG 
connectOf on the FPGA. board to communicate with the host PC. 

FPGA. Turnkey Interface 

User-defined 1/0 

Note: FPGA Ttxnkey requires an HDLCoder lic~nse. FPGA. TtKnkeysupports user--defined 1/0 ports such as LED, UART, 
and push buttons. 

FPGA Input Clock 

Clock Frequency: 100 MHz Clock Type: Single--Ended 
----

Clock Pin Number: w5 

Clock IO Standard: LVCMOS33 ----------
Reset (Optional) 

X 

Figure 14. FPGA-in-the-Loop Interface 

Note that if errors occur, the help documentation is a powerful tool to address the issue. Sometimes
the error could be due to the absence of a license for Vivado or a USB port mismatch. If each step 
goes well, we should save the file (Basys3.xml) in a folder that is part of the path of the MATLAB 
file. Then we should be able to view the Basy3 board on “FPGA Board Manager.” 

The FPGA-in-the-Loop wizard leads us to embed FPGA with our SIMULINK file. The Basys3 
board is selected, and the connector is JTAG, as shown in Figure 15. 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  23 



 

    

  

 

 
  

  

FPGA-in-the-loop Wizard 

Steps 

-> FILOptions 

Source Files 

DlJT 1/0 Ports 

Output Types 

Build Options 

Actions 

Specify options for FPGA-in-the-Loop, 

FIL simulation with 

0 MATLABSystemObject 

0 Simulink 

Board Options 

Board Name: Basys3 v Launch Board Manager ~--------------------~ 
FPGA De>iice: Artix7 XC7A35T-1-CPG236 

FPGA-in-the-Loop Connection: )TAG V -------------~ 

• Advanced Options 

FPGA system clock frequency {MHz) 25 
---

Status 

Help cancel Next> 

X 

Figure 15. FPGA-in-the-Loop (FIL) Options 

The source files shown in the top left corner of the wizard should be the “Subsytem.vhd.” Recall 
the location of the file and add the file. Then make sure to mark “Top-level,” as in Figure 16. 
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FPGA-in-the-loop Wizard 

Steps 

FIL Options 

-> Source Files 

DlJT 1/0 Ports 

Output Types 

Build Options 

Actions 

Specify the source files for the HDLdesign, The FIL Wizard will attempt to identify the file type; change the 
file type in the File Type column if it is incorrect. 
Enter a check next to the file name that contains the top-level module. Change the module name if it is 
incorrect in the Top-level module name field, The Tel scripts and QSF files will be sourced in the order they 
are listed. 

Source Files: 0 Show full paths to source files 

File 

Subsystem.vhd 

File Type Top-level Add ... 

VHDL VD 
Remove 

Up 

Down 

Top-level module name: Subsystem -----------
Status 

Help cancel < Back Next> 

Figure 16. FPGA-in-the-Loop (Source Files) 

In the next window “DUT I/O Ports,” we manually change the ports by selecting “Manually enter 
I/O port information,” select “ce_out,” and click “remove,” as shown in Figure 17. 
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Steps 

FIL Options 

Source Files 

-> DlJT 1/0 Ports 

Output Types 

Build Options 

Actions 

Specify port type for all 1/0 ports in the top-level DlIT. If necessary, add, remove, or modify other port information such as name, direction, and width. 

0 Automatically generate 1/0 port name, direction and width from top-level module 

0 Manually enter 1/0 port information 

DUT 1/0 Ports: 

elk 
reset 

elk enable 

inl 

in2 

out! 

Port Name 

Reset asserted level: 

Stat~ 

Active-high 

Port Port 
Direction Width 

In 
In 

In 
In 

In 
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32 

32 

32 

Port Type 

Clock 
Reset 

Clock enable 

Data 

Daca 

Data 

v Clock enable asserted level: Active-high 

Add ... 

RemoYe 

Enter 1/0 port information of the top-level module in the table. Make sure the information matches the top-level module definition in the top-level source file. 

cancel < Back 

X 

Figure 17. FPGA-in-the-Loop (DUT I/O Ports) 

In next window, “Output Types,” the following parameters are required: 

• “Bit Width” is 32 

• “Data Type” is “Fixedpoint” 

• “Sign” is “Signed” 

• “Fraction Length" is 30 

The option “Build Options” allows us to determine the location of the file. If the file is left in the 
current location, MATLAB will ask to overwrite the existing file. After clicking “Build,” it will 
generate a process to construct a special built-in function block. This built-in function is where 
MATLAB will perform the functions on the FPGA. The next step is to remove and delete 
“subsystem” in the original SIMULINK and modify it with the generated FIL block 
“Subsystem1,” as show in Figure 18. 
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Figure 18. Reconstruct SOC Estimation Block with FIL 

Then we open the “Subsytem1” and load the FPGA bitstream. Finally, the model is ready to be 
simulated. Note that the stop time should be set to 8000 to match total data length. The resulting 
SOC estimation is shown in Figure 19. 

Figure 19. SOC Estimation Results via FIL 
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4. Summary & Conclusions 
In this project, the research team proposes a new SOC estimation methodology for lithium-ion 
batteries, based on an open-source test dataset with a one-battery model. The proposed modeling 
scheme first develops a new static ECM by using a data analysis technique called LASSO to select 
important features. Secondly, the dynamic component of the ECM is modeled as a discrete, first-
order transfer function. By repeatedly applying LASSO and transfer function identification, the 
data fitting error is minimized. Once we have the ECM model, we integrate it with the Coulomb 
counting method within both voltage-based MHE (V-MHE) and voltage-and-current-based 
MHE (VC-MHE) frameworks. Through simulations, we compare these two schemes and 
conclude that the VC-MHE is superior to V-MHE because the estimation error can be reduced 
significantly. The research team also implements the basic Coulomb counting method on an 
FPGA board within the MATLAB/SIMULINK platform to demonstrate a real-time, hardware-
in-the-loop simulation for battery management system (BMS) development. The discoveries in 
this project can be applied in electric vehicles for battery maintenance and fast charging. 
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Glossary 
BMS Battery management system 

CCCV Constant current constant voltage 

CP-CV Constant Power-Constant Voltage 

DAE Differential algebraic equations 

ECM Equivalent circuit method 

EV Electric vehicle 

FIL FPGA-in-the-loop 

FPGA Field-programmable gate array 

GP Gaussian Process 

HDL Hardware description language 

JTAG Joint test action group 

LASSO Least absolute shrinkage and selection operator 

Li-Ion Lithium-ion 

MAE Mean absolute error 

MCC Multistage constant current 

MHE Moving horizon estimator 

NCA Lithium nickel cobalt aluminum oxides 

NLP Nonlinear program 

NN Neural network 

OCV Open circuit voltage 

P2D Pseudo-2-dimensional 
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PDE Partial differential equation 

POD Proper orthogonal decomposition 

RC Resistor-capacitor 

RMSE Root Mean Square Error 

SOC State of charge 

SOH State of health 

UKF Unscented Kalman filtering 

V-MHE Voltage-based MHE 

VC-MHE Voltage-and-current-based moving horizon estimator 

ZEV Zero-emission vehicle 
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Retired Transportation Executive 

David S. Kim 
Senior Vice President 
Principal, National Transportation 
Policy and Multimodal Strategy 
WSP 

Therese McMillan 
Retired Executive Director
Metropolitan Transportation 
Commission (MTC) 

Abbas Mohaddes 
CEO 
Econolite Group Inc.

Stephen Morrissey 
Vice President – Regulatory and 
Policy 
United Airlines 

Toks Omishakin* 
Secretary 
California State Transportation 
Agency (CALSTA) 

April Rai 
President & CEO 
Conference of Minority 
Transportation Officials (COMTO)

Greg Regan* 
President 
Transportation Trades Department,
AFL-CIO 

Rodney Slater 
Partner 
Squire Patton Boggs 

Paul Skoutelas* 
President & CEO 
American Public Transportation 
Association (APTA) 

Kimberly Slaughter 
CEO 
Systra USA 

Tony Tavares* 
Director
California Department of 
Transportation (Caltrans) 

Jim Tymon* 
Executive Director
American Association of 
State Highway and Transportation 
Officials (AASHTO)

Josue Vaglienty 
Senior Program Manager 
Orange County Transportation 
Authority (OCTA) 

* = Ex-Officio
** = Past Chair, Board of Trustees 
*** = Deceased

Directors 

Karen Philbrick, PhD 
Executive Director

Hilary Nixon, PhD 
Deputy Executive Director

Asha Weinstein Agrawal, PhD 
Education Director
National Transportation Finance 
Center Director

Brian Michael Jenkins 
National Transportation Security 
Center Director

https://transweb.sjsu.edu/mctm
https://transweb.sjsu.edu/mceest
https://transweb.sjsu.edu/csutc

	Untitled



