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Executive Summary 
California has been in a transportation crisis for a long while. In this crisis, the economy is 
significantly affected due to the substantial impact on goods transportation and residents’ hindered 
mobility and safety. Two urgent issues in the transportation crisis are congestion and traffic safety. 
A common situation is that congestion leads to traffic accidents, and traffic accidents, in turn, 
cause more severe congestion. The dynamic nature of traffic requires traffic management solutions 
that can monitor, analyze, and intervene in real time. The objection of this project is to tackle 
transportation challenges with the help of ad hoc networks of vehicles and roadside infrastructure 
so as to achieve efficient, real-time, intelligent traffic management.. 

The research team proposed an approach to controlling traffic signals that makes them dynamically 
adaptable to varying traffic conditions such that traffic congestion can be significantly alleviated. 
This system utilizes the data collected from existing infrastructures, including sensors and cameras, 
to make informed decisions about traffic signal phases. By utilizing deep reinforcement learning 
algorithms, especially deep Q-network (DQN) algorithms, coupled with an auto-encoder, the 
system can dynamically adjust signal timings in real time to improve traffic flow and efficiency. 

As a result of this work, the research team has made the following discoveries: 

• The deep reinforcement learning method can significantly improve traffic flow in multiple 
evaluation metrics. 

• The proposed DQN + auto-encoder approach with the HyperOPT optimizer can quickly 
find the optimal solution for controlling traffic signals. 

• The selection of the reward function for the deep Q-network algorithm can significantly
affect its performance and impact multiple evaluation metrics. 

• Coordinating multiple intersections that utilize the DQN algorithm can achieve more 
improvements than a single intersection case. 

This project has led to three peer-reviewed papers included in conference proceedings: 

• Anurag Balakrishnan, Satyam Pathak, Pedro Herrera, and Tairan Liu. “Addressing Urban 
Traffic Congestion: A Hybrid DQN-Autoencoder Model with HyperOPT Tuning.” 
In International Conference on Transportation and Development 2024, pp. 739–749. 2024. 

• Pedro Herrera, Avi Jagdish, and Tairan Liu. “Dynamic Signal Timing Optimization for 
Left-Turn Maneuvers via V2I and V2V Communication.” IEEE International 
Conference on Green Energy and Smart Systems. 
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• Avi Jagdish and Tairan Liu. “Impact of Reward Function Selection on DQN-Based Traffic 
Signal Control.” IEEE International Conference on Green Energy and Smart Systems. 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  2 



 

    

  
   

 

   
 

 

1. Introduction 
1.1 Background and Motivation 

Urban traffic congestion remains one of the most pressing challenges facing cities worldwide, 
profoundly impacting the economy, environment, public health, and overall quality of urban life. 
The persistent traffic jams on city roads not only symbolize the complexity of urban mobility but 
also spotlight the intricate relationship between transportation infrastructure and urban 
development. City planners, traffic engineers, and technological innovators have long struggled 
with congestion, seeking effective strategies to untangle the knots of stalled traffic that frustrate 
commuters, impede emergency services, and pollute city environments. Despite advances in 
technology and urban design, the problem persists, underscoring the need for innovative and 
integrated solutions that can adapt to the dynamic nature of urban growth and mobility patterns. 

The adverse effects of traffic congestion extend beyond mere inconvenience. Economically, it 
represents a significant drain on productivity, as countless hours that could be spent on work or 
leisure are lost to the inertia of gridlock. The cost of congestion, therefore, is not just measured in 
the time wasted but also in the increased operational costs for businesses whose deliveries and 
services are delayed. Small businesses, in particular, suffer from delayed supplies and reduced 
customer services, further amplifying the economic toll. Environmentally, the implications are 
equally severe. Congested lines of vehicles emit a vast number of pollutants, contributing to poor 
air quality and exacerbating public health issues. The health impacts are not limited to respiratory 
problems alone; the stress and frustration associated with prolonged commutes are also responsible 
for decreases in mental well-being. Long-term exposure to high levels of pollution can lead to 
chronic health conditions, placing a further burden on healthcare systems. 

Moreover, the challenge of traffic congestion is intertwined with broader urban planning and 
societal issues. It reflects and exacerbates inequalities, with less affluent communities often bearing 
the brunt of pollution and having limited access to efficient transportation alternatives. These 
communities frequently reside in areas with higher traffic volumes and fewer green spaces, 
compounding the health risks associated with poor air quality. The sprawling expansion of urban 
areas, driven by the quest for more livable space, further complicates the scenario, stretching the 
capacity of existing road networks and public transportation systems. This sprawl often leads to a 
car-dependent culture, increasing the number of vehicles on the road and making it harder to 
implement public transport solutions that are both efficient and economically viable. Therefore, 
addressing traffic congestion requires a holistic approach that considers urban design,
environmental sustainability, and social equity to create cities that are not only more navigable but 
also more livable for all residents. 

Traditional responses to congestion, while well-intentioned, often address the symptoms rather 
than the root causes of the problem. Expanding road infrastructure, for example, can lead to 
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induced demand, where increasing road capacity encourages more car use, thus returning
congestion levels to their original state or worse. This phenomenon highlights a paradox where 
efforts to alleviate congestion through road expansion inadvertently exacerbate the problem.
Similarly, while enhancing public transportation is crucial, it requires substantial investment and 
coordination across various stakeholders to increase coverage and service quality to levels that can 
effectively attract commuters away from private car use. Investments in public transportation need 
to be strategic, ensuring accessibility, reliability, and affordability, to genuinely compete with the 
convenience of private vehicles. 

These traditional methods, constrained by physical, financial, and societal limitations, underscore 
the need for innovative solutions that can adapt to and address the dynamic nature of urban traffic. 
The rapid growth of urban populations and the evolving demands on urban infrastructure call for 
a shift in how we conceive and manage urban mobility. This situation has set the stage for the 
exploration of intelligent traffic management systems, which promise a more adaptive, efficient, 
and sustainable approach to alleviating urban congestion. By leveraging advanced technologies and 
data analytics, these systems aim to optimize the flow of traffic in real time, reducing bottlenecks 
and improving the overall efficiency of the urban transportation network. Intelligent traffic 
management systems can include synchronized traffic signals, real-time traffic monitoring, and 
dynamic toll pricing, all of which help manage traffic flow and reduce congestion. 

As cities continue to grow and evolve, the quest to mitigate traffic congestion becomes increasingly 
urgent. It is clear that solving this issue requires a multifaceted approach that not only incorporates 
technological innovation but also rethinks urban planning practices and transportation policies. 
Urban planners need to consider mixed-use developments that reduce the need for long commutes, 
promote walking and cycling, and create efficient transit-oriented developments. Policies should 
encourage carpooling, the use of electric vehicles, and the implementation of congestion pricing to 
manage demand during peak hours. Furthermore, public engagement and behavior change
initiatives are essential to shift cultural attitudes about car ownership and use. 

The pursuit of solutions to traffic congestion, therefore, is not just about easing commutes but 
about envisioning and creating cities that are more livable, equitable, and sustainable for all their 
residents. This vision encompasses a future where urban environments are designed for people, 
not just cars. It includes green spaces, clean air, and accessible transportation options that cater to 
diverse populations. By addressing traffic congestion comprehensively, cities can improve the 
quality of life for their residents, enhance economic productivity, and contribute to environmental 
sustainability. Ultimately, the challenge of urban congestion provides an opportunity to reimagine 
urban living, fostering cities that prioritize human well-being and environmental health. 
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Figure 1. An Illustrative Image of a Road Intersection 

1.2 Traditional Approaches to Alleviating Traffic Congestion 

Traffic congestion in urban areas has been a persistent challenge. Many researchers have delved 
into various methodologies and techniques to address this challenge in the past decades. 

One of the most intuitive responses to congestion has been to increase road capacity. This approach 
is grounded in the basic principle of supply and demand (Lindsey et al., 2001)—expanding roads 
should theoretically accommodate more vehicles and reduce congestion. However, Duranton and 
Turner’s work (2011) challenges this notion, demonstrating that increased capacity often leads to 
higher demand, thus failing to alleviate congestion in the long term. Their analysis of American 
cities underscores the limitations of road expansions as a sustainable solution to traffic congestion. 

Enhancing public transportation systems has been widely advocated as a means to reduce reliance 
on private vehicles and, by extension, congestion. Studies have shown that investments in bus rapid 
transit (BRT), light rail, and metro systems can significantly shift commuting patterns. Cervero 
and Guerra (2011) highlight the success of BRT systems in several American cities in improving 
mobility and reducing traffic volume on roads. However, the effectiveness of public transportation 
improvements depends heavily on integration with existing urban infrastructure and the overall 
attractiveness of the services offered. 

Congestion pricing involves charging drivers a fee to use certain roads during peak hours, aiming 
to discourage unnecessary trips and redistribute traffic load (AbuLibdeh, 2017). This approach has 
been implemented in cities such as Singapore (Li, 2002), London (Litman, 2006), and Stockholm
(Börjesson et al., 2012), with varying degrees of success. Eliasson (2014) provides a comprehensive 
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evaluation of Stockholm’s congestion charging scheme, noting significant reductions in traffic 
volumes and improvements in air quality. Nonetheless, the success of congestion pricing is 
contingent upon public acceptance and the availability of viable transportation alternatives 
(Selmoune et al., 2020). 

Travel demand management (TDM) strategies seek to reduce the need for car travel by promoting 
alternative modes of transportation, flexible work schedules, and telecommuting (Bianco, 2020;
Gärling, 2007). Calthrop et al. (2000) explore various TDM measures, emphasizing the 
importance of policy incentives and employer participation in reducing peak-hour congestion.
While TDM can be effective in certain contexts, its success is highly dependent on cultural factors 
and the availability of practical alternatives to driving. 

Traffic flow management techniques, such as signal timing optimization and the use of intelligent 
transportation systems (ITS), aim to improve the efficiency of existing road networks. Studies have 
highlighted the potential of ITS to reduce congestion through real-time traffic monitoring and 
adaptive signal control (Ren et al., 2016; Mannion et al., 2016). The approaches include but are 
not limited to traffic adaptive control (Spall, 1997), genetic algorithms (Teklu, 2007; Park, 1999), 
max pressure strategies (Varaiya, 2013), and adaptive traffic-responsive strategies (Baldi et al., 
2015). The use of reinforcement learning (RL) algorithms in traffic management has gained a lot 
of attention in the past two decades, with pioneering work utilizing RL to minimize overall waiting 
times by adapting dynamically to fluctuating traffic scenarios (Wiering, 2000). A major leap 
forward occurred in 2017 when deep learning was integrated with RL algorithms in traffic control, 
enhancing the capabilities of traffic data processing and signal management (Gao et al., 2017). 
This integration, especially with advanced technologies such as graph convolutional neural 
networks, has facilitated a more in-depth understanding of traffic dynamics across various 
intersections. A graph convolutional neural network approach was developed to automatically
extract features of multi-intersection road networks instead of manually obtaining these features 
(Nishi, 2018). Lin (2018) introduced an RL algorithm that is capable of tackling complex traffic 
problems at multiple intersections, which makes substantial progress towards practical traffic 
management problems. A method combining speed guidance systems with RL-based traffic signal 
control, tailored for future traffic conditions, was introduced to minimize the total queue length 
and reduce traffic congestion (Maadi, 2022). Tunc (2023) introduced a novel approach, which 
blends fuzzy logic with deep Q-learning, merging the adaptability of RL with the robustness of 
fuzzy logic, to address the challenges of complexity and uncertainty in traffic networks (Tunc, 
2023). A cooperative multi-objective architecture was recently proposed to address the challenges 
(e.g., suboptimal, unstable) in RL, as well as link carbon emissions and global traffic throughput 
(Tang, 2023). In summary, RL-based algorithms have been widely studied, which provide a 
significant advantage over traditional approaches in terms of handing complex traffic problems. 

Vehicle-to-Everything (V2X) communication technology represents a significant leap forward in 
the quest to mitigate urban traffic congestion and enhance road safety (Zhang et al., 2018). The 
recent progress in sensing, communication, and computing technologies has paved the way for a 
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viable solution to the challenge of vehicle coordination. V2X technology enables vehicles to 
interact with a variety of entities in their surroundings, making this coordination feasible. Key 
components of V2X technology encompass vehicle-to-vehicle (V2V), vehicle-to-infrastructure 
(V2I), vehicle-to-device (V2D), and vehicle-to-cloud (V2C) (Zhang, 2018). By gathering data 
from different road elements, vehicles can make better-informed choices, such as modifying speed 
for traffic optimization, reacting to changes in traffic signals, and maneuvering safely in complex 
road scenarios. V2X is instrumental in enhancing road safety, offering preemptive alerts about risks 
such as abrupt traffic deceleration or nearby emergency vehicles. Additionally, by promoting 
smoother traffic flow and improved control of traffic lights, V2X can effectively alleviate 
congestion and enhance travel efficiency. While V2X technology plays a pivotal role in the 
evolution of intelligent transportation systems, the challenge of efficiently utilizing collected data 
for vehicle coordination is complex. This complexity stems from the necessity to process and 
interpret large volumes of data in real time for precise and prompt decision-making. Additionally, 
achieving compatibility and integration of V2X systems across diverse vehicle models and 
infrastructures presents a considerable challenge. The technology must be adaptable to different 
traffic conditions and environments, demanding sophisticated algorithms and robust system
designs. 

1.3 Role of Traffic Management System in Alleviating Traffic Congestion 

Traffic Management Systems (TMS) embody a modern approach to resolving the long-existing
problem of urban traffic congestion. By integrating state-of-the-art sensory technology, real-time 
data analytics, and strategic traffic engineering, TMS offers a comprehensive solution to improve 
traffic flow, reduce bottlenecks, and enhance the overall efficiency of urban transportation
networks. The core of TMS’s strategy in combating congestion lies in its ability to monitor, 
analyze, and adapt to traffic conditions on the fly. 

One primary method by which TMS alleviates congestion is through real-time traffic monitoring. 
Utilizing an array of sensors, cameras, and GPS data, TMS can paint a detailed picture of traffic 
patterns across an urban area, identifying congestion points as they arise. This capability allows for 
immediate responses to traffic fluctuations, such as rerouting traffic, adjusting signal timings, or 
dispatching traffic management teams to address issues directly. 

Adaptive signal control technology stands out as a hallmark feature of TMS. It allows traffic lights 
to adjust dynamically based on actual traffic demand rather than on preset schedules. This 
adaptability significantly reduces unnecessary waiting at intersections, one of the chief contributors 
to urban congestion. By optimizing signal timings, TMS ensures that traffic moves more smoothly 
and efficiently, decreasing the overall time vehicles spend idling and contributing to better air 
quality. 

Moreover, TMS employs predictive analytics to forecast traffic conditions, enabling pre-emptive 
measures to counteract anticipated congestion. For events known to increase traffic volume, such 
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as concerts, sports games, or major public gatherings, TMS can adjust the entire network to 
accommodate increased demand, thereby smoothing traffic flow and preventing congestion from 
taking hold. 

Incident management is another crucial aspect of TMS. Quick detection and resolution of traffic 
incidents, such as accidents or breakdowns, are vital in maintaining steady traffic flow. TMS 
facilitates rapid emergency response and communicates with drivers in real time to advise on 
alternative routes, greatly minimizing the congestion that accidents can cause. 

In essence, TMS leverages sensory technology and data to create a more responsive and efficient 
urban traffic network. By addressing congestion through real-time monitoring, adaptive signal 
control, predictive planning, and effective incident management, TMS plays a pivotal role in 
enhancing urban mobility around the globe. 

1.4 Role of V2X Technology in Alleviating Traffic Congestion 

V2X significantly contributes to alleviating traffic congestion by facilitating the real-time exchange 
of traffic information among vehicles and infrastructure. For example, V2I communication allows 
traffic signals to interact with approaching vehicles, adjusting signal timings based on actual traffic 
conditions and reducing unnecessary stops. This dynamic adjustment of traffic lights according to 
real-time demand ensures that intersections, often chokepoints for congestion, become areas of 
fluid movement. 

Moreover, V2V communication can dramatically improve traffic efficiency by enabling vehicles to 
maintain optimal speeds and safe distances from each other, effectively reducing the stop-and-go 
driving patterns that exacerbate congestion. By sharing information about speed, direction, and 
intended actions, vehicles can synchronize their movements, allowing for smoother flows and more 
cohesive traffic patterns. 

V2X also enhances traffic management by providing precise, real-time data on traffic conditions, 
surpassing the capabilities of traditional sensor-based systems. This rich data environment allows 
for more accurate traffic forecasting and modeling, enabling city planners and traffic managers to 
implement more effective congestion mitigation strategies. 

Additionally, V2X plays a critical role in incident detection and management. By immediately 
broadcasting alerts about accidents or road hazards, V2X can swiftly redirect traffic away from 
affected areas, minimizing the cascading effect of congestion that such incidents often trigger. 

As urban areas continue to grow and evolve, the implementation of V2X communication 
technology stands as a beacon of hope for resolving traffic congestion. Its ability to connect all 
elements of the urban transportation ecosystem offers a path towards not only more efficient and 
less congested roads but also safer and more sustainable urban environments. Through the 
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innovative use of V2X, the future of urban mobility looks brighter, promising a smoother journey 
for all road users. 

1.5 Research Objectives 

The overarching goal of our research is to explore and quantify the effectiveness of Traffic 
Management Systems (TMS) and Vehicle-to-Everything (V2X) communication technologies in 
mitigating urban traffic congestion. By delving into these advanced transportation solutions, the 
research aims to provide a comprehensive understanding of their potential impacts, identify better 
practices for implementation, and offer actionable insights for urban planners and policymakers. 
The specific objectives of this research are as follows: 

1. Evaluate the Current State of Traffic Congestion: The first objective is to assess the extent 
and nature of traffic congestion in selected urban areas. This involves collecting and 
analyzing data on traffic volume, travel times, peak congestion periods, and identifying 
major congestion hotspots. Understanding the current traffic congestion landscape is 
crucial for benchmarking and later evaluating the impact of TMS and V2X interventions. 

2. Investigate the Effectiveness of TMS in Reducing Congestion: This objective focuses on 
analyzing how various components of TMS—including adaptive signal control, real-time 
traffic monitoring, and incident management strategies—contribute to alleviating
congestion. The research will examine case studies where TMS has been implemented, 
evaluating changes in traffic flow, reductions in travel times, and improvements in air 
quality. 

3. Explore the Potential of V2X Communication Technologies: The research aims to explore 
the role of V2X technologies in enhancing traffic efficiency and safety. This includes 
examining how V2V, V2I, V2D, and V2C communications can reduce congestion,
facilitate smoother traffic flow, and improve emergency response times. Special attention 
will be given to the integration of V2X with autonomous vehicles and its potential to 
transform urban mobility. 

1.6 Scope of Work 

The scope of this research encompasses a comprehensive examination of TMS and V2X 
communication technologies as innovative solutions to urban traffic congestion. The work is 
structured to cover a broad range of aspects related to these technologies, from their theoretical 
underpinnings and technical mechanisms to real-world applications, challenges, and outcomes. 
Here is a summary of the key areas that will be covered within the scope of this research: 
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• TMS, especially traffic signal control; 

• V2X communication integrated into traffic signal control in solving the congestion
challenge. 

1.7 Overview of the Report 

The report is organized as follows. In Section 1, we present an introduction to the work in the 
report. The methodology of the work is presented in Section 2. In Section 3, we show the 
effectiveness of our methodology in three case studies: single-intersection traffic light control, 
multiple-intersection traffic light control, and protected left-turn traffic light control. Section 4 
summarizes and concludes the work in this report. 
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2. Methodologies 
2.1 Fundamental Methods 

This report focuses on using reinforcement learning algorithms to optimize traffic signal timings. 
The aim is to dynamically determine the optimal duration for each phase of the traffic light (green, 
yellow, red) based on real-time observations, improving vehicular flow and throughput in urban 
areas. Incorporating average speed into the observation space marks a distinct strategy compared 
to previous studies. This addition provides the reinforcement learning model with an expanded set 
of data to learn from and observe. Consequently, this enhancement empowers the model to make 
more informed and effective decisions relevant to the specific environment it is tasked with in the 
context of reinforcement learning. HyperOPT was utilized to navigate the hyperparameter space 
effectively to find the optimal solution. This approach is effective in identifying one set of the 
settings for our reinforcement learning algorithm, thereby enhancing our capability to refine and 
advance the traffic signal control system. 

Reinforcement Learning 

Reinforcement learning is a type of machine learning where an agent learns decision-making by 
interacting with its environment, executing actions, and receiving feedback in the form of rewards . 
The central goal of RL is to derive an optimal strategy, termed a policy, instructing the agent on 
actions to maximize cumulative rewards over time. This process involves crucial components such 
as the agent (decision-maker), the environment (external influence), states (representations of the 
environment), actions (agent decisions impacting the environment), rewards (scalar feedback for 
actions), and the policy (strategic guide for decision-making). The interplay between these 
elements characterizes the dynamics of reinforcement learning. 

Q-Learning 

Q-learning aims to learn the optimal action-value function �∗(�, �), which represents the expected 
return of taking an action � in the state � and following the optimal policy thereafter. The update 
rule for Q-learning is: �(�, �) ← �(�, �) + �[� + � ���"!�(�#, �#) − �(�, �)], where � is the 
learning rate, � is the immediate reward after taking the action a, � is the discount factor, �′ is the 
subsequent state after the current state �, and �# is the subsequent action. 

Deep Q-Network 

We employed the Deep Q-Network (DQN) , an adaptation of the traditional Q-learning 
algorithm, for our study’s objective. DQN seamlessly integrates deep neural networks to 
approximate Q-values, offering enhanced capabilities in handling large-scale and intricate 
challenges such as optimizing traffic light control in urban settings. Noteworthy features of DQN 
include its utilization of a neural network as a function approximator, adeptly generating Q-values 
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for diverse actions in each state. Experience replay is employed, allowing the algorithm to break 
correlations between consecutive experiences by randomly sampling batches from a replay buffer. 
DQN further enhances stability by incorporating a target network, periodically updated with the 
primary network’s weights. The training process involves minimizing the squared difference 
between predicted and target Q-values, encapsulated in the concise loss function �(�) = 

Ε$%,"',%!(~*(,)[(� + � ���"# �(�#, �#; �.) − �(�, �; �))/]. These features make DQN a robust 
choice for addressing complex problems in reinforcement learning. 

Auto-Encoder 

Auto-encoders , a neural network variant, specialize in unsupervised learning tasks, notably 
excelling in data compression and de-noising. Their primary objective is to learn efficient 
encodings of input data, often employed for dimensionality reduction. The auto-encoder 
comprises key components: the encoder, responsible for compressing input into a reduced-
dimensional latent-space representation; the decoder, which reconstructs the input from this 
representation; and the bottleneck, representing the minimum dimensionality. The network’s 
performance is evaluated by the reconstruction loss, typically measured using mean squared error, 
assessing the disparity between the original and reconstructed data. The latent space representation 
encapsulates the compressed data produced by the encoder. Activation functions, such as ReLU 
or Sigmoid, introduce the non-linearity crucial for handling complex data structures in encoding 
and decoding processes. 

Our Approach 

The foundation of our RL system was formed by combining the capabilities of DQN architecture 
with auto-encoders. This integration allows the auto-encoder to effectively represent and compress 
the state space, ensuring that the DQN operates optimally with the environment’s high-
dimensional data. With this framework established, our focus shifts to adjustments (tunings) to 
adapt the DQN and auto-encoder model to the specific challenges of our traffic signal control 
problem. 

Observation Space 

Each traffic signal agent’s observation is stacked as a vector: 

��� = [�0 , �1, �2 , �3, �3] 

where: 

• �0 is a one-hot encoded vector highlighting the currently active green phase. 
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• �1 is a binary variable that indicates if the minimum green time duration has been 
surpassed for the ongoing phase. 

• �2 is the average speed of all the vehicles at the intersection. 

• �3 represents the density of vehicles in an incoming lane �; it is calculated as the ratio of 
the total number of vehicles in the lane to its maximum capacity. 

• �3 indicates the queue density in an incoming lane �, determined by the proportion of
vehicles with a speed below 0.1 m/s to the lane's total capacity. 

Action Space 

The action space for this reinforcement learning task is discrete and corresponds to selecting the 
next green phase that will be open for a specified duration. The action space is represented as an 
integer, where each value from 0 to the number of green phases minus 1 corresponds to a specific 
green phase. This is used as an index to keep track of the current green phase of the traffic signal. 
In traffic signal systems, different phases represent different sets of lights being green to control 
traffic flow. For example, � = {1, 2, 3} indicates the set of all traffic signal phases (i.e., 1, 2, and 3 
indicating green, yellow, and red, respectively). Taking an action “� ∈ �” means selecting an 
appropriate traffic signal phase for the next time step, which will be “Keep” or “Switch,” such that 
if the agent chooses a set of non-conflicting phases to be assigned the green light, then it will be 
“Keep”; otherwise, a mandatory yellow phase will be enforced before the “Switch.” This discrete 
action space allows the agent to control the traffic signal’s behavior by determining which direction 
of traffic should have the right of way at any given moment. 

Reward Function 

The agent’s learning and decision-making are molded by the reward functions: 

1. Diff-Waiting-Time Reward: A function evaluating the disparities in waiting times across 
traffic phases. The aim is to ensure uniform waiting times, thus facilitating smooth traffic 
flow. The reward is given by: 

��(�, �, �#) = F�24"
.5 − F�24" 

Here, �24" denotes the waiting time of a vehicle, which is the number of seconds the vehicle has a 
speed less than 0.1 m/s at an intersection. As the delay increases over time, the reward is always a 
negative value as we are looking to decrease Δ�. 

2. Average-Speed Reward: This reward emphasizes the average speed of vehicles, giving 
preference to scenarios where vehicles maintain a decent pace. This reward is expressed as: 
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∑ �6�(�, �, �#) = �
6 

Here, �6 refers to the speed of the vehicles, and � represents the number of lanes. 

3. Queue Reward: This reward focuses on curtailing the number of halted vehicles, signaling 
that traffic is flowing without extended stops, which is given by: 

�(�, �, �#) = −� 

Here, � represents the number of vehicles that are waiting at the intersection. 

4. Pressure Reward: This reward quantifies the difference between outgoing and incoming 
vehicles, advocating for a balanced distribution of vehicles across lanes. It is expressed in 
the following form: 

�(�, �, �#) = F�074 − F�63 

074 63 

Here, �63 represents the number of vehicles coming into an intersection, and �074 represents the 
number of vehicles going out of the intersection. 

5. Average-Speed-Maximization Reward: This function is intricately tied to the vehicles’ 
average speed, which is given by: 

∑6 �6max_� = � 

A higher mean speed leads to a better reward, symbolizing efficient traffic movement. 

Epsilon-Greedy Strategy with DQN + Auto-Encoder 

The intricate combination of our DQN and auto-encoders, augmented by an epsilon-greedy 
strategy, forms the core of our learning mechanism. Central to this framework is the auto-encoder, 
which is pivotal in efficiently compressing and representing the state space effectively, equipping 
the DQN to process high-dimensional data. Upon observing the current state, �, the agent either 
opts for a random action � with a likelihood �, or, drawing from its learned experiences, selects 
the action that maximizes its Q-value: �∗ = ������"�(�, �; �). 

Following the action and transitioning to the new state, �, the agent logs the reward � and refines 
the DQN parameters: �(�, �; �) ← � + � ���"!�(�#, �#; �). 

The tuning of reward functions, the integration of the epsilon-greedy strategy, and the DQN-
auto-encoder architecture together form a robust and adaptable reinforcement learning framework. 
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In the illustrated framework (as shown in Figure 2), we show the architecture of the RL-based 
traffic signal control system. The model integrates a DQN with an auto-encoder, a neural network 
structured to encode and reconstruct high-dimensional input data into a lower-dimensional 
encoded format. Situated in a standard urban traffic intersection, the agent leverages the auto-
encoder to transform complex traffic parameters such as lane density, queue length, and average 
speed into simplified representations. The DQN then processes this condensed representation, 
guiding the agent to make informed decisions about adjusting traffic light timings for optimized 
traffic flow. Upon executing a decision, the agent receives feedback from a reward system that 
quantifies the effectiveness of its actions based on metrics such as waiting times and vehicle speeds. 
An auxiliary HyperOPT module fine-tunes the system’s hyperparameters, ensuring its precision 
and adaptability. 

Figure 2. Workflow of the Proposed Method 
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3. Case Studies: Applying the Proposed Method on
Traffic Signal Timing Optimization 

3.1 Scenario 1: Single-Intersection Traffic Light Control 

This section presents a case study of our method as applied to a single intersection scenario to 
validate the effectiveness of this method. 

3.1.1 Simulation Environment Configuration 

The simulations for this case study were conducted on a MacBook Pro featuring an M1 chip with 
an 8-core CPU, 14-core GPU, and a 16-core Neural Engine, coupled with 16 GB of memory. In 
the simulation, we employed the Simulation of Urban MObility (SUMO) to model a two-way 
single intersection scenario as shown in Figure 3. With the road network, the flow of vehicles is 
configured as follows: 

• From north to south and from north to west, 300 vehicles per hour were generated. 

• From north to east, the flow is slightly lower as 250 vehicles per hour were generated. 

For the deep learning aspect, we utilized the capabilities of PyTorch and implemented the DQN
algorithm, an established RL algorithm. 

To capture an extended temporal perspective, we set the simulation time to 40,000 seconds, 
allowing us to observe and evaluate traffic dynamics effectively over a prolonged period. In terms 
of training hyperparameters, we adjusted the learning rate to 0.01, optimizing the learning process 
for our DQN model. 
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Figure 3. Two-Way Single-Intersection Road Network 

3.1.2 Results and Comparative Analysis 

Our extensive analysis, conducted over 400 episodes using the SUMO traffic simulation, focused 
on evaluating the effectiveness of three distinct methodologies in managing traffic congestion, as 
measured by the average waiting time of vehicles. These methodologies include a pre-existing 
implementation of traffic management (DQN), our innovative approach that employs the DQN 
with an auto-encoder, and a naïve method devoid of deep learning techniques, wherein the traffic 
signals have been programmed with a fixed time interval for each of the phases. The timings have 
been set based on real-world traffic signals, where the signals change every 30 seconds. 

In our research, we carried out two types of simulation tests using SUMO. The first type of test 
looked at how well two different traffic control methods improved as they were trained over time. 
The second type of test checked how reliable these methods were. We ran each method five times 
in simulations that lasted 40,000 seconds each. This was done in a virtual environment that mimics 
a two-way road with a single intersection. By doing this, we wanted to make sure that the results 
we obtained were not just a one-time thing but could be repeated reliably. 

Convergence Test 

As shown in Figure 4, the baseline method shows a gradual decrease in mean waiting time as the 
number of episodes increases, suggesting that the method is learning and improving over time. 
However, the improvement is slow, and the waiting times remain relatively high, averaging around 
300 seconds even after 400 episodes. In our test, we noticed that the computational speed of the 
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training process became very slow after the initial convergence. This indicates that while the 
baseline method is making progress, it is not very efficient. The decision to stop the baseline 
method training due to slow progress in training the DQN model, with each episode needs several 
hours. Even though with longer training, the DQN could potentially reach a smaller value of the 
average waiting time, the slow training speed would request an extended period of time. 

On the other hand, the DQN + auto-encoder method shows a very different pattern. Initially, 
there is a significant spike in mean waiting time, but this quickly drops and begins to stabilize. 
After this initial fluctuation, the waiting times reduce dramatically to about 186 seconds within 50 
episodes, suggesting that the method starts to converge to a more effective strategy much faster 
than the baseline method. Despite some variability, the general trend for the DQN + auto-encoder 
method is towards lower waiting times, with episodes leveling out at a much lower mean waiting
time compared to the baseline method. This indicates a more efficient learning process and a 
quicker convergence towards an optimized solution for traffic management. 

The sharp peak in the beginning for the DQN + auto-encoder method could be due to the initial 
exploration phase, which is common in reinforcement learning algorithms where the system tries 
out different strategies to learn which one works better. After this phase, the algorithm starts to 
exploit the best-known strategies, leading to the observed improvement and stabilization in 
performance. 

Figure 4. Comparative Analysis Between the Baseline Method and Our 
DQN + Auto-Encoder Approach 

Repeatability Test 

The assessment was also carried out through a repeatability test, each conducted 5 times and lasting 
40,000 seconds based on the policy of the 400th episode, in a two-way single intersection scenario. 
The result is shown in Table 1. 
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Table 1. Average Waiting Time at a Two-way Single Intersection for Different Methods 

Method Mean (seconds) Standard Deviation (seconds) 
Naïve 1132 135 
Baseline 340 37 

DQN + Auto-Encoder 212 12 

The naïve approach registered the highest mean duration at 1,132 seconds, accompanied by a 
substantial standard deviation of 135 seconds. This significant deviation underscores a variability
in performance and shows potential inconsistencies in the application of this method. 

The baseline method exhibits a notable enhancement in efficiency, providing a mean duration of 
340 seconds, noticeably lower than the naïve approach. Its standard deviation, positioned at 37 
seconds, also indicates improved consistency in performance compared to the naïve method. 

Our method, the integration of DQN with auto-encoders, outperformed both preceding methods. 
This approach achieved an impressive mean duration of 212 seconds, significantly reducing the 
waiting time. Furthermore, it maintained a standard deviation of 12 seconds, the lowest among 
the evaluated methods. This minimal deviation is indicative of a high level of consistent 
performance, reinforcing the method’s reliability. 

3.1.3 Conclusion and Discussion 

This work shows that the DQN + auto-encoder approach is effective in reducing the average 
waiting time of vehicles at intersections. The integration of DQN and auto-encoder not only
accelerates the processing time but also ensures consistent performance, proving to be an optimal
solution for traffic management in a two-way single intersection environment within SUMO. 

The inclusion of average speed into the observation space distinguishes the approach from previous 
approaches. This integration of a DQN with an auto-encoder represents a considerable 
advancement in the reinforcement learning models’ ability to react, anticipate, and adapt to 
emerging patterns in traffic congestion management. The model resulted in reduced average
waiting times and improved consistency. This method surpassed traditional DQN 
implementations and significantly outperformed the naïve method. 

For future research, the focus could shift to include vehicle-to-vehicle (V2V) and 
vehicle-to-infrastructure (V2I) communications. V2V and V2I communications implemented in 
the traffic management systems can help create a more connected and efficient transportation 
network. By enabling vehicles to share important information such as their location, speed, and 
planned routes in real time, a more cooperative traffic network can be developed. Upcoming studies 
could also work on creating new algorithms that use V2V and V2I communications to improve 
how vehicles change lanes and merge on ramps. These improvements are crucial to helping vehicles 
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work together better when merging, which can help keep traffic flowing smoothly and reduce road 
congestion. Research in this area has the potential to greatly improve the safety and effectiveness 
of our highway systems. It could lead to better coordination between vehicles, making overall 
traffic movement smoother and reducing delays. 

3.2 Scenario 2: Multi-Intersection Traffic Light Control 

This section’s objective is to test our method on a multiple-intersection scenario and validate its 
effectiveness. 

3.2.1 Simulation Environment 

The simulation environment used in this scenario is a four-by-four road network, as shown in 
Figure 5. 

Figure 5. A Four by Four Road Network Used in Simulation 

3.2.2 Results and Analysis 

Our algorithm, though it was designed for single intersections, was also applied to this 
four-by-four road network, and we observed a significant improvement in vehicles’ waiting time 
and speed. Besides, the method can also lead to a fast convergence in the training process. As 
shown in Figure 6, the system’s mean waiting time quickly converges with very small fluctuations. 
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Figure 6. The System Mean Waiting Time Quickly Converges in the 
Training Process of the Multiple-Intersection Scenario 

We also compared the performance of the trained controller with a fixed timing controller (a 
pre-timed traffic signal controller where each phase has a predetermined length) in terms of 
vehicles’ average waiting time and speed. As shown in Figures 7 and 8, vehicles’ average waiting 
time and speed are mostly in the range of 0 to 16 seconds and 4 to 8 m/s, respectively, with the 
fixed-timing controller. The average value is 7.01 seconds and 6.20 m/s, respectively. With the 
trained controller, the vehicles’ average waiting time and speed can be significantly improved, 
where the average waiting time was reduced to 0.59 seconds, and the average speed was increased 
to 7.77 m/s (as shown in Figures 9 and 10). These results indicate that the proposed method also 
works for multiple intersection scenarios and can achieve better performance compared to the 
traditional fixed-timing traffic signal controllers. 
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Figure 7. System's Mean Waiting Time with Fixed-Timing Controller
The Dashed Line is the Average Value 

Figure 8. System’s Mean Speed with Fixed-Timing Controller 
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Figure 9. System's Mean Waiting Time with Our Trained Controller
The dashed line is the average value. 

Figure 10. System's Mean Speed with Fixed-Timing Controller
The dashed line is the average value. 
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3.3 Scenario 3: Dynamic Signal Timing Optimization for Left-Turn Maneuvers via
Vehicle-Infrastructure Communication 

3.3.1 Problem Statement of Left Turn Maneuvers 

In urban areas with high population density, left-turn movements at intersections present a 
significant challenge since they cross opposing traffic lanes. This requires drivers to judge the speed 
and distance of oncoming vehicles and make decisions about the appropriate timing of their turns. 
Left-turn maneuvers impact the flow of both vehicles and pedestrians, often leading to unsafe 
situations. Adding the unpredictability of human factors further complicates this scenario. Some 
examples include drivers under time stress due to traffic signal timing (TST) (Pawar, 2022), 
impaired visibility, and judgment errors. For instance, challenges arising from impaired visibility 
account for 20% of the critical reasons for accidents, while judgment errors, such as failing to 
estimate a safe gap distance and making false predictions about others’ actions, account for 
approximately 34% (National Motor Vehicle Crash Causation Survey, 2008). These factors 
contribute to the complexity of the decision-making process that results in the execution of a left 
turn maneuver. Given these factors, it becomes increasingly essential to devise a strategy that 
effectively coordinates vehicles, particularly in scenarios where automated vehicles (AVs) and 
human-driven vehicles coexist. 

While V2X technology plays a pivotal role in the evolution of intelligent transportation systems, 
the challenge of efficiently utilizing collected data for vehicle coordination is complex. This 
complexity stems from the necessity to process and interpret large volumes of data in real time for 
precise and prompt decision-making. Additionally, achieving compatibility and integration of 
V2X systems across diverse vehicle models and infrastructures presents a considerable challenge. 
The technology must be adaptable to different traffic conditions and environments, demanding 
algorithms and robust system designs. 

Several studies have been conducted to address these challenges. Lu (2023) undertook an empirical 
study using deep learning models to improve the reliability of autonomous driving systems through 
V2X, particularly in high-speed and dynamic environments. Jiang (2020) studied an improved
layout for intersections integrating real-time V2X communication to optimize traffic signal timing 
and improve traffic flow for left-turn intersections in unsaturated traffic conditions. Zhang (2022b) 
studied cooperative control methods in intelligent connected vehicle environments to address the 
challenges in heterogeneous traffic flow. Vehicles equipped with a stack of perception technology 
use sensor measurements to establish a vehicle’s state and environmental information, which is 
crucial for the safe navigation of intersections (Emamifar, 2023). Regarding traffic safety, Xiang 
(2022) studied V2X communication-aided message dissemination to resolve the delay of warning 
information received by vehicles. To tackle the potential privacy concerns in sharing data in V2X 
communication, Song (2023) proposed a pipeline for applying federated learning for intelligent 
transportation systems. Du (2023) explored the optimization of left-turn maneuvers with vehicles 
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equipped with safety measuring sensors, seeking to reduce potential collisions among opposing 
vehicles in the network. 

This study proposes an innovative approach that employs V2I and V2V communication to 
dynamically optimize signal timings for intersections featuring both protected and unprotected left 
turns. Our work seeks to utilize the information provided by advanced technologies, such as AVs 
equipped with sensing technology and cooperative communication devices (e.g., cameras, lidar 
systems, and dedicated short-range communications (DSRC)), to improve visibility and 
coordination between vehicles. The contributions of this work are as follows. 

1. We propose an approach for the implementation of protected left turns by incorporating 
reinforcement learning algorithms in traffic signal timing for V2I/V2V traffic networks. 

2. Our approach improves the efficiency and safety of protected left-turn signal phases while 
improving traffic flow for all signal phases. 

3. We show the effectiveness and applicability of reinforcement learning algorithms in 
dynamic TST adjustments for improved traffic flow (higher speed). 

3.3.2 System Architecture for Detection and Communication in Mixed Traffic Environments 

The design and operation of the system are tailored to facilitate interaction and connectivity among 
infrastructures, connected and automated vehicles (CAVs), and manually operated vehicles in 
mixed-traffic situations. At the heart of the system’s architecture lies the communication module, 
tasked with managing V2X communications. DSRC components are utilized to transmit 
information crucial for trajectory planning. This enables CAVs to merge and slow down effectively 
when approaching intersections. Employing this method of communication has demonstrated 
enhancements in the performance of individual vehicles and has positively impacted on the overall 
traffic flow within the network. 

Recognizing that conventional vehicles will remain prevalent (Mahdinia, 2021), our system design 
incorporates these human-driven vehicles into a unified communication network with CAVs. 
When in proximity to a CAV platoon, human-operated vehicles can engage in the communication 
chain, using the DSRC module to share traffic information, thereby enhancing collaborative 
driving dynamics. Our system’s architecture is geared towards refining existing frameworks 
(Eskandarian, 2019) by focusing on detection, communication, and adaptive traffic management 
strategies. This approach aims to bolster safety and efficiency in an era characterized by a mix of 
autonomous and human-driven vehicles. Traditionally, platoons were formed by synchronizing 
traffic signal timings. However, with the advent of AVs equipped with DSRC modules, a more 
dynamic organization of vehicle batches at intersections is possible, facilitating smoother collective 
crossing (Gholamhosseinian, 2022). Moreover, the concept of vehicle platooning extends beyond 
intersections. Organized traffic flows have been observed to alleviate congestion across various road 
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networks, including highways. Additionally, these systems can be tailored to prioritize emergency 
vehicles, further enhancing traffic management and response times (Michaud, 2006). 

Figure 11. Concept of a Platoon of Automated Vehicles Relaying Information 

The primary control objective of each vehicle in a platoon is to maintain a safe following distance 
from the leading vehicle (Timmerman, 2021). A platoon of automated vehicles refers to a group
of vehicles, typically equipped with automated driving systems and V2V communication, that 
travel closely together in a coordinated, cooperative manner, usually in a single lane and often at 
highway speeds. The concept of a platoon of automated vehicles relaying information is shown in 
Figure 11.By using the platoon-leading vehicle as a reference, the velocity is set and tracked by the 
following vehicles, creating a group of vehicles in a platoon of cooperative cruise control (Badnava, 
2021). The proposed algorithms synchronize the formation of platooning AVs and adjust
individual vehicle behaviors based on real-time traffic conditions, improving traffic congestion, 
and enhancing the safety of the unprotected left-turn maneuver. 

Platoon Merging and Coordination 

We propose algorithms that synchronize the formation of platooning autonomous vehicles. The 
formation of a platoon is defined in the simulation by four types of vehicles. The leading vehicle 
is defined with a minimum gap distance of 1.5 meters between the trailing vehicles. The three 
following vehicles are defined with a minimum gap distance of 0.7 m and an increased rate of 
permitted acceleration by 20%. With varying velocity rates, which are dependent on the vehicle’s 
position in the platoon, the behavior results in a smooth flow of traffic. 

This study develops an algorithm that enables the compatibility of vehicles equipped with a DSRC 
module to merge multi-lane platoons into a single lane consisting of platoons of left-turning 
vehicles. AVs seeking to join the platoon from an adjacent lane ease congestion by using all 
available lanes during periods of high congestion. The vehicles seeking to merge abide by protocols 
set by the algorithm to execute the merging maneuver. The algorithm defines a specific gap 
between vehicles. This merging scenario of AVs into the turning lane mitigates congestion by 
using all three available lanes, as opposed to forming a lengthy queue waiting to turn left. In this 
merging scenario, a zipper merger is executed with multiple entry points along the left-turning 
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lane. Human-driven vehicles in adjacent lanes benefit from the reduction of bottlenecks typical of 
a first-in-first-out traffic system (Woo, 2021), thereby reaching the intersection more efficiently. 

The individual vehicle behaviors of the vehicles in platoons adjust based on real-time traffic 
conditions. Through broadcasted vehicle data (vehicle speed and vehicle position), vehicle arrivals 
at intersections arrange themselves through relative position and speed, with speed adjustment as 
the key feature (Ghoul & Sayed, 2021). Through the training and adjustment, emergent behaviors 
of the platoons occurred concerning queuing and batching for the crossing maneuver at the 
intersection. Safe utilization of road space is prioritized, while overall waiting time was reduced. 

3.3.3 Modified Method 

In this case study, we modified the method proposed in Section 2 specifically for both unprotected 
and protected left-turning vehicles in a synthetic network road environment using SUMO. The 
model responds to varying traffic conditions, helping autonomous vehicles in platoons and human-
driven vehicles by increasing throughput during protected and unprotected left turn signal phases. 
The architecture of the Deep Q-network is shown in Figure 12. 

Figure 12. Diagram of the Deep Q-Network Architecture for Left-Turn Maneuvers 
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The DQN model continuously analyzes real-time traffic data, taking inputs on the presence and 
characteristics of the vehicles that are part of a platoon. Using V2X communication, platoons are 
detected and then prioritized during the unprotected signal phase. Platoon movement is 
streamlined, leading to improvements in traffic flow and time metrics. The DQN’s memory feature 
enables adaptations over time, fine-tuning the decision-making process based on traffic data and 
time metrics. The improvements in traffic pattern recognition optimized the management of 
traffic signal timings. 
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State Space 

The state space represents the different parameters and conditions of the traffic environment at a 
given time. This involves analyzing the positions and velocities of individual vehicles, the state and 
timing of traffic lights, tracking the presence of vehicle platoons, and additional measurements 
such as vehicle count, density, and the flow rate of traffic segments traveling in different directions. 
Each state of space � per traffic simulation episode can be defined as the set of all possible states. 
Each state � ∈ � is a vector representing different aspects and parameters of the traffic environment 
at a given time. A simplified model, where states are defined by the positions and velocity of each 
vehicle, can be represented as (�, �, �), where � and � are the coordinates of each vehicle and � is 
the speed. The complete state space is the cartesian product of all individual vehicle states 
represented as � = {(�5, �5, �5), (�/, �/, �/), … , (�3, �3, �3)}, where � is the number of vehicles in 
the simulation. 

Action Space 

In the SUMO environment, a component utilized by the reinforcement agent decision-making 
process is the action space. The space defines the set of actions the algorithm can take and adjust 
to influence the traffic environment. The agent can decide the duration of each signal timing 
(green, red, or yellow), adjusting based on the network traffic conditions. Algorithm 1 (next page)
determines this action by creating custom signal phases prioritizing platooning vehicles, improving 
efficiency and safety for the platoon by creating a longer permissive turning phase for the vehicles. 
By broadcasting data to nearby vehicles, movements are coordinated by the provided updates. By 
adjusting parameters for vehicle platoons, behaviors of individual vehicles are altered for route 
choice. 

Reward Function 

The reward function is given by (Alegre, 2019) 

�� = −(∆�4) = �4 − �495 

where �� is the reward at the time step �. ∆�4 is the change in cumulative vehicle delay. The reward 
at each time step is based on the change in cumulative delay relative to the previous time step � − 

1. ∆�4 = �495 − �4. This approach rewards actions that reduce the overall waiting time of vehicles 
in the network. If the cumulative delay decreases (i.e., traffic flow improves), the agent receives a 
positive reward, encouraging it to take similar actions in future time steps. Conversely, if the 
cumulative delay increases, a negative reward is received, discouraging it from taking similar actions 
in the future. The agent’s policy is continuously updated based on these rewards to optimize traffic 
flow over time. 
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Algorithm 1. Pseudocode for TST Control for Platoons 

Function adjust_traffic_signals_for_platoons(vehicle_ids) 

Initialize an empty list: platooning_vehicles_for_left_turn 

For Each vehicle_id in vehicle_ids 

If is_platooning_vehicle(vehicle_id) and is_making_left_turn(vehicle_id) 

Add vehicle_id to platooning_vehicles_for_left_turn 

If platooning_vehicles_for_left_turn is not empty 

// Set a custom traffic signal phase for platooning vehicles 

// This phase gives protected left turns to north and south directions 

Return "rrrGrrrrrrrGrrrr" # 'G' for green in specific lanes, 'r' for red in others 

Else 

// Set the default traffic signal phase 

// This phase allows regular traffic flow with unprotected left turns 

Return "GGGgrrrrGGGgrrrr" # Regular traffic signal phase 

End Function 

Neural Network Layers 

The neural network structure was defined with an auto-encoder for dimensionality reduction of 
traffic data. This unconventional method has two main parts: an encoder and a decoder. The input 
captures non-linear features of the traffic data, such as traffic flow patterns, and congestion
dynamics. 

Encoder Layer 

�(�) = �"(�:;(�/�"(�:;(�5� + �5)) + �/)), 

where �5 and �/ are the weights of the neural network, �5 and �/ are the biases, �:; represents
batch normalization, and �" is the ReLU activation function. 
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Decoder Layer 

�(�(�)) = �"(�:;(�<�"(�:;(�=�(�) + �=)) + �<)), 

where � and �< are the weights of the neural network, and �= and �< are the biases.= 

Batch normalization helps normalize the input layer by adjusting and scaling the activations. The 
/formula is as follows: �Z6 ← 

>".

$

?

9

#

B
, where �6 is the input to a neuron, �C is the mean of a batch, �C@A# 

is the variance of the batch, and � is a small number to prevent division by 0. 

3.3.4 Configuration of Simulation Environment 

In the simulated road network (as shown in Figure 13), we configured vehicle flow to emulate a 
congested city by adjusting probabilities of vehicle generation over a set period of 5,000 seconds. 
The probability of the routes each vehicle took is shown in Table 2. Vehicles with a 20% probability 
of being generated travel horizontally on the route and do not turn left. The route directions with 
the protected and unprotected left turn maneuver travel from north to east and south to west. The 
most congested portion of the road network is the lane traveling from south to west, consisting of 
vehicles in platoons turning left and vehicles in adjacent lanes merging into the turning lane. 30% 
of vehicles in the simulation are part of a platoon, and the other 70% use a human-driven model 
for control. The platoons use a specialized flow where the leader and following vehicles are defined 
independently. This configuration was designed to serve as a stress test for the algorithms, with 
the objective of providing insights into real-world applicability. 
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Figure 13. Sketch of the Two-Way Single-Intersection Used in Protected-Left 
Turn Simulation 

Table 2. Configuration of Traffic Flows in the Simulation 

Type Probability (%) Route 
Passenger 10% East – West 
Passenger 10% West – East 
Passenger 10% South – East (right turn) 
Passenger 10% North – West (right turn) 
Passenger 10% South – North 
Passenger 10% North – South 
Passenger 10% North – East (left turn) 
Platoons 30% South – West (left turn) 

3.3.5 Data Representation and Interpretation 

After the network undergoes optimization through reinforcement learning, the efficiency of 
vehicle platoons traversing the intersection improves, resulting in higher speeds and throughput. 
As depicted in Figure 14, there is a notable increase in the system’s mean speed (the average speed 
of all vehicles in the simulation) around the 50th episode of the learning process. Following this, 
the system’s mean speed fluctuates based on traffic conditions but does not show significant
variation. The reward function, illustrated in Figure 15, also indicates stabilization after the 
50th episode. A comparison of our trained model (Figure 16(b)) with a simulation without any 
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algorithmic intervention (Figure 16(a)) reveals a clear boost in terms of the system’s mean speed. 
In saturated traffic conditions, our model achieved a system mean speed of 3.39±0.06 m/s,
compared to 2.49±0.03 m/s in the non-algorithmic scenario, representing a 36% increase in the 
system mean speed. 

Figure 14. System Mean Speed of Each Episode in the Learning Process 

Figure 15. Reward Function of the Learning Process 
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Figure 16. System Mean Speed of Non-Algorithmic Method and Our Method 

(a) Non-algorithmic (b) Our Method 

The green line represents the mean value; the pink region is the confidence interval; the black 
dashed line is the mean value for the time between 1,000 and 5,000 seconds. 

3.3.6 Conclusions and Discussions 

The unprotected left-turn maneuver is often a source of stress for drivers, demanding rapid 
decision-making and sharp perception skills, as highlighted by Park et al. (2017). The integration 
of reinforcement learning techniques into congested road environments presents a promising 
avenue to alleviate the risks and difficulties associated with these maneuvers. Our findings
demonstrate a substantial improvement in the system’s mean speed, showing a 36% increase 
compared to intersections operating without any algorithmic assistance. This enhancement is not 
only reflected in faster traffic flow but also suggests a potential reduction in the stress and 
complexity involved in executing unprotected left turns, thereby contributing to more efficient 
road conditions. 

In our research, the traffic generated was defined in a certain direction of the network to create a 
mixed traffic scenario. Further investigation will be conducted into the introduction of 
human-driven vehicles into platoons and the introduction of more uncertainty in traffic flows. 
Further experimentation with autonomous vehicles traveling in different directions on the network 
will also be explored. Autonomous vehicles are often praised for their ability to perform well in 
different driving maneuvers, however, recent legislative actions in California have cast doubt on 
their readiness for real-world challenges (Tabarrok, 2023). The legislation has barred companies 
such as GM’s Cruise and Google’s Waymo from operating in the state, citing safety concerns. This 
development underscores the need for researchers to consider real-world applicability further in 
the future. 
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4. Summary and Conclusions 
In this project, we proposed a deep reinforcement learning-based approach to the traffic congestion 
problem. Utilizing one or more traffic signals being controlled by a DQN algorithm coupled with 
an auto-encoder, we were able to achieve significant performance improvement in terms of 
vehicles’ average waiting time or speed. Our simulation results demonstrate that the proposed 
approach outperformed traditional traffic signal control methods. Future work may involve 
exploring other RL-based frameworks or algorithms for improved performance and robustness, 
testing the algorithm in more complex traffic scenarios and integrating it with real-time traffic 
data, and incorporating additional environmental factors, such as weather conditions and 
pedestrian movements, could further enhance the robustness of the system. Collaboration with 
city planners and transportation authorities will be essential to facilitate real-world implementation 
and to ensure that the system can adapt to varying urban layouts and traffic patterns. Another 
promising direction for future research is the integration of vehicle-to-everything (V2X) 
communication technologies. By enabling direct communication between vehicles or between 
vehicles and traffic infrastructures, we can achieve even more responsive and efficient traffic 
management. This could include real-time adjustments to signal timings based on the density and 
flow of traffic, potentially reducing congestion and improving overall traffic flow. 

In summary, our deep reinforcement learning-based approach to traffic signal control has shown 
great potential in reducing traffic congestion and improving vehicle flow. However, continued 
research and collaboration with various stakeholders will be crucial for the successful real-world 
implementation of this technology. 
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