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Executive Summary 
The focus of this study is to evaluate and compare the performance of three different approaches 
for crash severity prediction: statistical, machine learning (ML), and deep learning (DL) models. 
The goal was to find the most effective model for each crash severity level and understand the 
strengths and limitations of each approach.  

The performance of the ordered probit model (OPM), a statistical model, is similar to the ordered 
logit model (OLM), but both struggle to correctly identify severe-injury crashes and distinguish 
between moderate-injury and property-damage-only (PDO) crashes. In the realm of ML, models 
such as random forest (RF) and XGBoost are evaluated. For DL, models such as the multi-layer 
perceptron (MLP) and TabNet are assessed. The performance of these models varied across 
severity levels, with PDO predictions being the best and severe-injury predictions performing the 
worst. In the case of severe-injury classification, the best performing model is reported to be 
TabNet with a precision of 8.45%, a recall of 45.73%, and an F1 score of 28.78%. The model with 
the best performance for predicting moderate-injury crashes is RF, with a precision of 42.77%, a 
recall of 85.53%, and an F1 score of 57.03%. For PDO classification, TabNet again performed 
best with a precision of 79.62%, a recall of 82.72%, and an F1 score of 92.10%. However, all these 
models struggled with severe-injury classification due to factors such as class imbalance or the 
complexity of the problem.  

It can be concluded that the statistical models have high precision but low recall for severe-injury 
crashes, suggesting they are confident but not comprehensive in identifying severe-injury crashes. 
The ML models offer a more balanced performance with moderate precision and recall. In 
contrast, the DL models have high recall but low precision, indicating they may incorrectly classify 
incidents as severe- or moderate-injury crashes. The choice of a model may depend on the specific 
application and the relative costs of false negatives and false positives. For example, a model with 
a high recall (such as the DL models) might be preferable in preliminary screening tools where the 
cost of a false negative is much higher than the cost of a false positive. 
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1. Introduction 
Road traffic crashes are a significant public health concern (Gopalakrishnan, 2012; CDC, 2023). 
Rain, snow, ice, and poor visibility often create unsafe road conditions for drivers (Druta et al., 
2020; Greaves et al., 2023). Recent reports published by the Federal Highway Administration 
(FHWA) indicate that nearly 5,000 people are killed and more than 418,000 people are injured in 
weather-related crashes each year (FHWA, 2020). The consequences of a driver’s failure to stop 
when confronted by either poor visible conditions or wet pavement frequently result in severe 
crashes. In order to reduce the intensity or frequency of these weather-related crashes, it is 
important to understand their contributing factors and to select and implement relevant 
countermeasures. In addition, providing an assessment of the effectiveness of statistical models, 
machine learning (ML) models and deep learning (DL) models applied to crash severity prediction 
will help researchers and practitioners know which models are most effective under specific 
conditions.  

Researchers in the past adopted statistical methods such as binary logistic regression models, 
multinomial logit models, OPMs, and random parameter logit models to evaluate crash severity 
(Penmetsa & Pulugurtha, 2017, 2019; Penmetsa et al., 2018a; Chen et al., 2019; Tagar & 
Pulugurtha, 2021; Fanyu et al., 2021; Hou et al., 2022). Historically, statistical models have been 
widely utilized for crash severity prediction based on weather variables. Researchers employed 
regression techniques to establish linear relationships between weather conditions and crash 
outcomes (Mao et al., 2019; Abdulhafedh, 2022). Although these models provided initial insights, 
they often failed to capture intricate nonlinear interactions and complex patterns in the data. The 
emergence of ML techniques revolutionized crash severity prediction by enabling the development 
of more sophisticated models. Decision trees, random forests (RFs), and support vector 
machines (SVMs) were among the first algorithms employed in the context of crash severity 
analysis (Theofilatos et al., 2019; Hadjidimitriou et al., 2019; Mokhtarimousavi et al., 2020). 
These models introduced the concept of feature importance, enabling researchers to identify the 
most influential weather-related variables affecting crash severity. DL, a subset of ML, has gained 
substantial popularity in recent years due to its ability to automatically learn hierarchical 
representations from raw data. Convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs) have been leveraged to extract intricate patterns from weather data, empowering 
more accurate crash severity predictions. These models excel at handling complex temporal and 
spatial dependencies within weather variables, capturing subtle nuances that were previously 
overlooked. A few studies were conducted to evaluate the performance of statistical models, ML 
models, and DL models in weather-severity crash severity prediction. These studies often 
employed large datasets encompassing diverse weather conditions and incorporating a range of 
evaluation metrics such as accuracy, precision, recall, and F1 score. The results varied across these 
studies, with each modeling technique demonstrating its strengths and limitations.  
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A diverse set of models were chosen to comprehensively assess their effectiveness in predicting 
weather-related crash severity. OLM and OPM were chosen due to their established use in similar 
research and their interpretability, which is well-suited for ordinal crash severity data. ML 
techniques such as RF and XGBoost were chosen for their robustness in handling noisy data, 
capturing intricate interactions, and providing feature importance insights. These models strike a 
balance between accuracy and interpretability. In the realm of DL, the multi-layer perceptron 
neural network (MLP NN) and TabNet were chosen, leveraging their capacity to extract complex 
non-linear patterns from weather data, particularly adept at handling the temporal and spatial 
dependencies within weather variables. TabNet, designed for tabular data, offers feature selection 
capabilities. By including this array of models, the study aims to offer a comprehensive 
understanding of their strengths and limitations, thereby providing valuable insights for predicting 
crash severity under various weather conditions. These models are designed to forecast the level of 
traffic crash injuries, specifically factoring in prevailing weather conditions as one of their inputs. 
In other words, these models aim to estimate the severity of injuries resulting from a traffic crash, 
and they consider the weather conditions at the time of the crash as a significant factor in making 
these predictions. 

1.1 Organization of the Report 

The remainder of the report comprises four chapters. Chapter 2 presents and analyzes the literature 
of weather-related crashes, including the methods. Chapter 3 describes the data, study area, and 
method used for crash severity analyses in this study. Chapter 4 presents and analyzes the results 
from this study, and Chapter 5 summarizes the conclusions and scope for future work. 
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2. Literature Review 
2.1 Overview of Weather-related Crashes 

Weather-related crashes pose significant risk to road users and have been a subject of extensive 
research in the transportation safety domain. Numerous studies were conducted to investigate the 
relationship between weather conditions and crash occurrence (Zhao et al., 2019; Al-Mistarehi et 
al., 2022; Wei et al., 2022). Adverse weather factors such as rain, snow, fog, and icy roads have 
been found to significantly increase the likelihood of crashes (Hammad et al., 2019; Robins & 
Fotio, 2020; Das et al., 2020; Zhang et al., 2021). For instance, studies have reported higher crash 
rates during rainfall or heavy precipitation events (Das et al., 2020). Additionally, reduced visibility 
due to fog or mist has been linked to an increased crash risk (Robins & Fotio, 2020). 
Understanding the specific weather variables and their impact on crash occurrence is essential for 
developing targeted interventions.  

Weather conditions play a critical role in determining crash severity. Several studies have explored 
the association between weather variables and the severity of crashes (Xing et al., 2019; Abohassan 
et al., 2021; Yang et al., 2022). Harsh weather conditions, including heavy rain, snowstorm, and 
high wind, have been linked to an increased likelihood of severe crashes (Xing et al., 2019). Poor 
road surface conditions during adverse weather, such as slippery roads or reduced tire grip, 
contribute to more severe crashes (Druta et al., 2020). Investigating the relationship between 
weather conditions and crash severity is crucial for allocating resources and implementing 
appropriate safety measures.  

Studies on weather-related crashes utilize diverse data sources, including police reports, crash 
databases, weather station data, and advanced sensor technologies (Das et al., 2020; Duddu et al., 
2020; Mathew & Pulugurtha, 2022). These datasets provide valuable information for conducting 
analyses. However, they may have limitations such as underreporting crashes or incomplete 
weather data. Addressing data limitations and improving data collection methods remain critical 
challenges in weather-related crash research. Understanding the impact of weather conditions on 
crash occurrence and severity has practical implications for road safety management.  

While significant effort has been made in crash severity analysis, there is a clear need for more 
comprehensive studies that build on identifying the best method in analyzing weather-related 
crash severity. This study compares a broader range of statistical, ML, and DL models on the same 
representative crash dataset. This research could provide greater understanding of the intricate 
relationship between weather conditions and crash severity, and ultimately contribute to the 
development of more effective strategies for enhancing road safety during adverse weather 
conditions. 
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2.2 Previous Research on Crash Severity Prediction 

Crash severity prediction is a critical area of research that aims to identify factors and develop 
models to accurately predict the severity of traffic crashes. Accurate crash severity prediction can 
aid in emergency response planning, resource allocation, and the development of effective 
countermeasures to reduce crash severity. Numerous studies were conducted to investigate the 
factors influencing crash severity (Zhao et al., 2019; Das et al., 2020; Al-Mistarehi et al., 2022; 
Wei et al., 2022; Yang et al., 2022). These factors can be broadly categorized into three main 
groups: driver-related, vehicle-related, and environmental-related factors (Robins & Fotio, 2020; 
Hou et al., 2022; Yang et al., 2022). Driver-related factors include driver age, gender, impairment 
(e.g., alcohol or drug use), distraction, and fatigue (Dingus et al., 2016). Vehicle-related factors 
encompass vehicle type, size, and safety features. Environmental-related factors consist of road 
conditions, weather conditions, lighting, and traffic characteristics. Understanding the impact of 
these factors is crucial for developing effective crash-severity prediction models. The selection of 
predictor variables significantly impacts the accuracy and interpretability of crash-severity 
prediction models (Sattar et al., 2023). Previous research has identified a wide range of potential 
predictor variables, including driver characteristics (e.g., age and gender), roadway attributes (e.g., 
speed limit and road type), environmental conditions (e.g., weather and lighting), and 
crash-specific variables (e.g., crash type and time of day) (Duddu et al., 2019; Shi et al, 2019; Yuan 
et al., 2019; Islam & Mannering, 2020). Feature selection techniques such as stepwise regression, 
principal component analysis, or recursive feature elimination have been employed to identify the 
most influential variables for crash-severity prediction. 

Evaluation metrics play a crucial role in assessing the performance of crash-severity prediction 
models. Commonly used metrics include accuracy, precision, recall, F1 score, and area under the 
curve—receiver operating characteristic curve (AUC-ROC) (Yuan et al., 2019). Additionally, 
confusion matrix analysis provides insights into model performance across different severity levels. 
Studies have compared the performance of different models and techniques, highlighting the 
strengths and limitations of each approach. Higher accuracy and AUC-ROC values indicate better 
model performance (Ke et al., 2017). Accurate crash-severity prediction models have practical 
implications for road safety management. For instance, emergency response systems can use 
predicted severity levels to dispatch appropriate medical personnel and resources. Transportation 
agencies can prioritize road safety improvements and allocate funding based on predicted crash 
severity hotspots (Jamal et al., 2021). Furthermore, crash-severity-prediction models can aid in the 
development of intelligent transportation systems and advanced driver-assistance systems to 
prevent or mitigate crashes. 

2.3 Methods in Crash Severity Analysis 

Researchers have widely used statistical models in the past to determine the effect of factors 
affecting crashes on injury severity levels. Amongst statistical models, discrete choice models are 
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widely employed in the existing literature considering the discrete nature of variables in crash 
datasets (Penmetsa & Pulugurtha, 2018b; Yan et al., 2021). Logistic regression techniques are 
widely used in cases when the dependent variable is discrete or ordinal. Several researchers used 
different models such as the OLM (Ayuso and Santolino, 2007), OPM (Abdel-Aty 2003; Gray 
et al., 2008; Garrido et al., 2014; Penmetsa et al., 2017), Bayesian OPM (Xie et al., 2009), probit 
or logit models with random parameters (Behnood and Mannering 2015; Behnood and 
Mannering 2016; Behnood and Mannering 2017), hierarchical OLMs, and OPMs (Chen et al., 
2016; Fountas and Anastasopoulos, 2018). Advanced statistical models provide flexibility to 
account for heterogeneity due to unobserved variables as well as account for random or hierarchical 
components (Duddu et al., 2018; Duvvuri et al., 2022).  

Traditional OLMs and OPMs are used in this study since they are computationally efficient and 
do not account for any random component in modeling. Traditional models also provide flexibility 
to compare the accuracy matrix with an ML or DL model, with results employed on the same 
dataset. 

With the advancement of computational power and data availability, ML models have started to 
gain attention in traffic crash-severity prediction. These models include decision trees, RFs, 
SVMs, and gradient boosting machines, among others. Zeng et al. (2019) employed a DL 
approach, specifically a long short-term memory (LSTM) model, to predict crash severity. Their 
study demonstrated that LSTM, a type of recurrent neural network, is well suited to handling 
time-series data and can effectively model the temporal dependencies of various factors 
contributing to crash severity. Chen et al. (2016) used a decision tree model and found it to 
outperform logistic regression in terms of prediction accuracy. However, the model might overfit 
the data if not properly tuned. Wang et al. (2019) showed that SVMs, combined with an effective 
feature selection strategy, provided highly accurate predictions and outperformed traditional 
logistic regression models. Santos et al. (2020) compared various ML models, including decision 
trees, RFs, and XGBoost, for crash severity prediction and found XGBoost to deliver the best 
performance. Tang et al. (2020) reviewed the use of RF models for crash severity prediction and 
highlighted their superior performance over traditional statistical models, particularly in handling 
high-dimensional and non-linear data. Nevertheless, the interpretability of RF models remains a 
challenge. 

Deep learning (DL) models for crash severity prediction have been used in a limited number of 
studies (Abdelwahab & Abdel-Aty, 2001; Alkheder et al., 2017; Das et al., 2018; Zheng et al., 
2019; Ma et al., 2021; Rahim & Hassan, 2021; Khan & Ahmed, 2022). Abdelwahab & Abdel-
Aty (2001) employed multi-layer perceptron (MLP) and fuzzy adaptive resonance theory (ART) 
to develop driver-injury severity models. Their DL models outperformed OLMs, achieving an 
accuracy of 65.6% and 60.14% on the training and testing datasets, respectively. Alkheder et al. 
(2017) also demonstrated the superiority of DL models, specifically artificial neural networks 
(ANNs), over the OPM. Their ANN-based model achieved an accuracy of 81.6% and 74.6% on 
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the training and testing datasets, respectively. Das et al. (2018) introduced "DeepScooter," a deep 
learning framework based on MLP, for predicting crash severities involving at-fault motorcycle 
riders. Remarkably, their framework achieved unprecedented accuracies of 100% and 94% on the 
training and testing datasets, respectively. Ma et al. (2021) proposed an analytic framework 
utilizing a DL model. Their model achieved a recall value of 0.82–0.85 for geographical clusters 
of fatal and serious injury crashes. In contrast to the aforementioned studies, Zheng et al. (2019), 
Rahim & Hassan (2021), and Khan & Ahmed (2022) utilized CNN-based models to predict crash 
severity levels. Zheng et al. (2019) developed a novel CNN-based model named "TASP-CNN" 
for crash-severity prediction. Their model achieved a recall of 6.3% on fatal crashes (16.7% and 
93.2% for slight and serious injury crashes, respectively) and an overall F1 score of 87%. Rahim & 
Hassan (2021) proposed a CNN-based framework for predicting crash severity in highway work 
zones, utilizing the EfficientNet model (Tan et al., 2019). They achieved the highest recall of 67% 
for fatal crashes. More recently, Khan & Ahmed (2022) developed a crash-severity-prediction 
model for rural mountainous freeways, employing the ResNet18 algorithm. This model achieved 
a recall of 99.3% for fatal crashes. It is worth noting that, unlike the other mentioned studies, their 
study focused solely on predicting crash severity in adverse weather conditions. 

Despite the extensive literature on traffic crash-severity prediction using statistical, ML, and DL 
models, there is still a lack of studies that thoroughly compare these models in the same context, 
using the same dataset. Therefore, a comprehensive comparison study is necessary. This study aims 
to fill these gaps by conducting a comprehensive comparison of different models in terms of various 
performance metrics. This study will provide a more complete picture of the strengths and 
weaknesses of different models- and potentially contribute to the development of more effective 
and efficient traffic safety strategies.  
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3. Methodology 
3.1 Data Source 

The data used in this study were obtained from the Highway Safety Information System (HSIS) 
database. Crashes that took place between January 1, 2015 and December 31, 2017 were extracted. 
Crashes are reported using case numbers and observations with the same number indicating that 
the vehicles involved are part of the same crash incident. To gain a thorough understanding of the 
crash occurrence process, Washington and Haque (2013) argued that crashes due to different 
causes should be modeled separately. Hence, only weather-related crashes were extracted, while 
crashes occurring under clear weather conditions were excluded to obtain a final dataset. The final 
dataset only included crashes that happened under non-clear weather conditions (i.e., with cloudy, 
rain, fog/smog, sleet/hail/freezing rain/drizzle, severe crosswinds, or blowing sand conditions 
described in the crash reports).  

Crash severity is defined in the HSIS database at five different levels: fatal crashes, injury type class 
A, injury type class B, injury type class C, and no injury/property damage only (PDO). For this 
analysis, the crash severity was re-categorized into three levels, i.e., severe injury (fatal and injury 
type class A), moderate injury (injury type class B and injury type class C), and PDO/no injury. A 
total of 238,252 weather-related crashes were recorded within the study period with 2,952 severe 
crashes, 71,688 moderate crashes, and 163,612 PDO crashes. 

Table 1 presents the summary statistics providing information about the various categories and 
variables associated with weather-related crashes. It shows the count and percentage of severe, 
moderate, and PDO crashes for each category, such as weather condition, contributing factor of 
the crash, road surface condition, functional class of the road, location type, light condition, road 
characteristic, driver gender, driver age, speed limit class, crash type, work zone area, vehicle type, 
seasonal factors, road terrain, time of day, day of the week, locality, and more.  

The summary statistics give information about the counts and percentages of different types of 
weather conditions for severe, moderate, and PDO injury cases. Cloudy weather is the most 
common weather condition in all three categories, with 63.4% of severe crashes, 57.6% of 
moderate-injury crashes, and 56.6% of no-injury crashes occurring under cloudy conditions. Rain 
is the second most common weather condition, followed by snow, fog, smog, and smoke. Sleet, 
hail, and freezing rain/drizzle are less common, with blowing sand and dirt being the least common 
weather condition for all three severity types.  
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Table 1. Summary Statistics  

Variable Category Description Severe Injury Moderate Injury PDO 
Count % Count % Count % 

Weather 
condition 

1 Cloudy 1871 63.4 41293 57.6 92663 56.6 
2 Rain 893 30.3 26828 37.4 60374 36.9 
3 Snow 41 1.4 1085 1.5 4296 2.6 
4 Fog, smog, smoke 104 3.5 1247 1.7 2786 1.7 
5 Sleet, hall, freezing 

rain/drizzle 
39 1.3 1196 1.7 3324 2 

6 Severe crosswinds 3 0.1 31 0.04 132 0.08 
7 Blowing sand, dirt 1 0.03 8 0.01 37 0.02 

Contributing 
factor of the 
crash 

1 No contributing 
factors 

1191 40.3 32095 44.8 75111 45.9 

2 Disregarding signs or 
signals 

98 3.3 2124 3.0 2492 1.5 

3 Exceeded safe 
speed/speed limit or 
failed to reduce speed 

548 18.6 17302 24.1 41651 25.5 

4 Improper turn or 
right turn on red 

17 0.6 730 1.0 1979 1.2 

5 Crossed centerline, 
improper lane change, 
or use of an improper 
lane 

222 7.5 2135 3.0 6102 3.7 

6 Overcorrected, 
oversteered, improper 
passing, or improper 
backing 

77 2.6 1503 2.1 3019 1.8 

7 Failing to yield to the 
right-of-way, or 
driver inattention 

267 9.0 9147 12.8 18870 11.5 

8 Operating too closely, 
aggressive driving, or 
alcohol use 

429 14.5 3768 5.3 6578 4.0 

9 Visibility obstruction, 
or defective 
equipment 

16 0.5 471 0.7 1275 0.8 

10 Other/unable to 
determine 

87 2.9 2413 3.4 6535 4.0 

Road surface 
condition 

1 Dry 1290 43.7 27329 38.1 60413 36.9 
2 Wet, presence of 

water 
(standing/moving) 

1577 53.4 41617 58.1 93882 57.4 

3 Ice, snow, slush 81 2.7 2708 3.8 9248 5.7 
4 Sand, mud, dirt, 

gravel, fuel, or oil 
4 0.1 34 0.05 69 0.04 

Functional 
class of road 

1 Principal arterial: 
interstate, freeways 
and expressways 

402 13.6 12617 17.6 35002 21.4 

2 Principal arterial: 
other 

682 23.1 22955 32.0 50092 30.6 

3 Minor arterial 693 23.5 18303 25.5 39919 24.4 
4 Major collector 789 26.7 11795 16.5 24314 14.9 
5 Local 386 13.1 6018 8.4 14285 8.7 

Location type 0 Non-intersection 2516 85.2 57486 80.2 13867
7 

84.8 

1 Intersection 436 14.8 14202 19.8 24935 15.2 
Light condition 1 Daylight 1727 58.5 51558 71.9 11808

4 
72.2 

2 Dusk, and dawn 163 5.5 3582 5.0 7799 4.8 
3 Dark lighted 

roadway/unknown 
lighting 

244 8.3 7146 10.0 15206 9.3 

4 Roadway not lighted 818 27.7 9402 13.1 22523 13.8 
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Variable Category Description Severe Injury Moderate Injury PDO 
Count % Count % Count % 

Road 
characteristic 

1 Straight-leveled road 1675 56.7 50437 70.4 11841
7 

72.4 

2 Straight-grade / 
hillcrest / bottom 

485 16.4 12319 17.2 27794 17.0 

3 Curve-leveled / grade 
/ hillcrest 

788 26.7 8876 12.4 17221 10.5 

4 Not stated / unknown 4 0.1 56 0.1 180 0.1 
Driver gender 1 Male 2006 68.0 38058 53.1 92305 56.4 

2 Female 946 32.0 33630 46.9 71307 43.6 
Driver age 1 15–19 years 262 8.9 7105 9.9 16690 10.2 

2 19–69 years 2505 84.9 60725 84.7 13876
2 

84.8 

3 ≥70 years 185 6.3 3858 5.4 8160 5.0 
Speed limit 
class 

1 ≤20 mph 5 0.2 415 0.6 1482 0.9 
2 20–30 mph* (30 mph 

included) 
17 0.6 1064 1.5 3042 1.9 

3 30–40 mph 302 10.2 15354 21.4 35896 21.9 
4 40–50 mph 860 29.1 28690 40.0 62077 37.9 
5 50–60 mph 1495 50.6 20053 28.0 42518 26.0 
6 >60 mph 273 9.2 6112 8.5 18597 11.4 

Crash type 1 Ran off-road 113 3.8 2524 3.5 5590 3.4 
2 Jackknife, 

overturn/rollover 
124 4.2 1191 1.7 1276 0.8 

3 Pedestrian/pedal 
cyclist 

186 6.3 484 0.7 53 0.0 

4 Animal or movable 
object 

26 0.9 727 1.0 9287 5.7 

5 Parked vehicle or 
fixed object 

664 22.5 9296 13.0 22011 13.5 

6 Rear-end collision 395 13.4 29527 41.2 67554 41.3 
7 Left-/right-turn 

crashes 
340 11.5 9243 12.9 15346 9.4 

8 Head-on collision 416 14.1 1534 2.1 763 0.5 
9 Sideswipe or angle 

collision 
599 20.3 15879 22.2 37251 2.8 

10 Other 89 3.0 1283 1.8 4481 2.7 
Work zone area 0 No 2880 97.6 69872 97.5 15938

5 
97.4 

1 Yes 72 2.4 1816 2.5 4227 2.6 
Vehicle type 1 Passenger car/taxi 1331 45.1 40185 56.1 90650 55.4 

2 Pickup, light truck, 
sports utility, or van 

1228 41.6 28305 39.5 65899 40.3 

3 Commercial bus, 
school bus, activity 
bus, other bus 

13 0.4 255 0.4 593 0.4 

4 Single-unit truck, 
truck/trailer, 
truck/tractor, tractor 
doubles, semitrailer, 
farm equipment, or 
other heavy trucks 

192 6.5 1847 2.6 5557 3.4 

5 Motor scooter, 
moped, pedal cycle, or 
motorcycle 

179 6.1 876 1.2 185 0.1 

6 Other 9 0.3 220 0.3 728 0.4 
Seasonal factors 1 Spring 623 21.1 18168 25.3 44375 27.1 

2 Summer 762 25.8 17669 24.6 37989 23.2 
3 Autumn 717 24.3 15408 21.5 33642 20.6 
4 Winter 850 28.8 20443 28.5 47606 29.1 

Road terrain 1 Flat 748 25.3 13405 18.7 29761 18.2 
2 Rolling 1975 66.9 53124 74.1 12080

7 
73.8 

3 Mountainous 229 7.8 5159 7.2 1304 8.0 
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Variable Category Description Severe Injury Moderate Injury PDO 
Count % Count % Count % 

Time of the day 1 12:00 AM–03:00 
AM 

193 6.5 2047 2.9 3992 2.4 

2 03:00 AM–06:00 
AM 

177 6.0 1880 2.6 4381 2.7 

3 06:00 AM–09:00 
AM 

412 14.0 11886 16.6 29002 17.7 

4 09:00 AM–12:00 PM 366 12.4 9488 13.2 22060 13.5 
5 12:00 PM–03:00 PM 445 15.1 13421 18.7 29605 18.1 
6 03:00 PM–06:00 PM 552 18.7 18351 25.6 41449 25.3 
7 06:00 PM–09:00 PM 499 16.9 10164 14.2 23404 14.3 
8 09:00 PM–12:00 PM 308 10.4 4451 6.2 9719 5.9 

Day of the 
week 

1 Sunday 412 14.0 6389 8.9 13217 8.1 
2 Monday 485 16.4 12518 17.5 29077 17.8 
3 Tuesday 410 13.9 12078 16.8 28917 17.7 
4 Wednesday 465 15.8 10533 14.7 24472 15.0 
5 Thursday 335 11.3 9869 13.8 22882 14.0 
6 Friday 449 15.2 12493 17.4 28711 17.5 
7 Saturday 396 13.4 7808 10.9 16336 10.0 

Locality 1 Agricultural 1573 53.3 21185 29.6 47922 29.3 
2 Residential 597 20.2 13674 19.1 27615 16.9 
3 Commercial 760 25.7 35720 49.8 85696 52.4 
4 Institutional 8 0.3 625 0.9 1379 0.8 
5 Industrial 14 0.5 484 0.7 1000 0.6 

 
In this study, the statistical models were setup to preserve the ordered nature of the severity class. 
Two ML models with different classification logics were applied, i.e., bagging and boosting 
techniques. The dataset was divided into training and test sets to evaluate the model's performance 
on unseen data. The training set was used to train the model, while the test set was used to assess 
its performance. The split ratio used in this study is 75:25 for the training and testing dataset, 
respectively. Since the dataset suffers from class imbalance, where one class has significantly fewer 
samples than the others, the Synthetic Minority Over-Sampling Technique for Nominal 
(SMOTE-N) data was applied to balance the classes. These methods help prevent the model from 
being biased towards the majority class and improve its ability to learn from the minority class.  

3.2 Statistical Models 

A class of logistic models known as ordered probability models, such as the OLM or OPM, proves 
useful for regression analysis when dealing with a modeled variable containing three or more 
categories, with crucial consideration of the order among these categories (Sasidharan & 
Menéndez, 2014). OLMs and OPMs are widely used to analyze and predict the relationship 
between ordinal dependent variables and a set of independent variables. OLMs and OPMs have 
been widely used to predict crash severity (Abdel-Aty, 2003; Ayuso & Santolino, 2007). 

3.2.1 Ordered Logit Model (OLM) 

The OLM was developed for weather-related crash severity analysis with severity levels defined as 
severe, moderate, and PDO.  
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Let 𝑌! be the ordinal response variable representing the crash severity of the ith observation. The 
severity levels are coded as follows: severe (𝑌! 	= 	2), moderate (𝑌! 	= 	1), and PDO (𝑌! 	= 	0). The 
OLM can be represented as follows: 

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌! 	≤ 	1	|	𝑋!)) 	= 	𝛼" 	+ 	𝛽"𝑋!" +	…	+	𝛽#𝑋!# 

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌! 	≤ 	2	|	𝑋!)) 	= 	𝛼$ 	+ 	𝛽"𝑋!$ +	…	+	𝛽#𝑋!# 

where 

𝑃(𝑌! 	≤ 	1	|	𝑋!) represents the probability that the crash severity of the i-th observation is 
less than or equal to moderate (level 1); 

𝑃(𝑌! 	≤ 	2	|	𝑋!) represents the probability that the crash severity of the i-th observation is 
less than or equal to severe (level 2); 

𝑋! denotes the vector of explanatory variables for the i-th observation; 

𝛼" and 𝛼$ are the intercepts specific to moderate and severe levels of crash severity, 
respectively; and 

𝛽", … 𝛽# are the coefficients associated with the explanatory variables 𝑋!", … 𝑋!#, 
respectively. 

Note that the reference category for the ordinal response variable is PDO (level 0), which does not 
have a corresponding logit equation. Its probability can be derived as 1 - 𝑃(𝑌! 	≤ 	1	|	𝑋!) since the 
sum of probabilities for all levels should equal 1. 

3.2.2 Ordered Probit Model (OPM) 

The OPM assumes that the relationship between a set of independent variables and the probability 
of each category of the dependent variable follows a standard normal distribution (Long, 1997). 
The OPM can be represented mathematically as follows: 

𝑃 6𝑌 ≤
𝑗
𝑋8 = ∅:𝛽%𝑋 − 𝜑&= 

where 

𝑃 >𝑌 ≤ &
'
? represents the probability that the dependent variable Y takes a value less than 

or equal to j, given the value of the independent variables X;  

∅ represents the cumulative distribution function of the standard normal distribution; 
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𝛽 is a vector of coefficients; 

X is a vector of independent variables; and 

𝜑& represents the threshold parameters delineating different categories of dependent 
variables. 

3.3 Machine Learning (ML) Models 

3.3.1 Random Forest Model (RF) 

RF is an ensemble learning method that operates by constructing a multitude of decision trees at 
training time and outputting the class that is the mode of the classes (classification) or mean 
prediction (regression) of the individual trees. Suppose an RF model consists of N decision trees 
(Biau, 2012). Each tree gives a classification, and the tree "votes" for that class. The forest chooses 
the classification having the most votes (over all the trees in the forest). Each tree is grown as 
follows: 

• If the number of cases in the training set is N, then N cases are sampled at random—but 
with replacement from the original data. This sample will be the training set for growing 
the tree. 

• If there are M input variables, a number m is specified such that at each node, m variables 
are selected at random out of the M and the best split on these m is used to split the node. 
The value of m is held constant during the forest growing. 

• Each tree is grown to the largest extent possible and there is no pruning. 

For a given test record, each tree in the forest gives a classification. The forest chooses the 
classification having the most votes (over all the trees in the forest), and in case of regression, it 
takes the average of outputs by different trees. 

Mathematically, the prediction of an RF model for an input x can be written as 

𝑦A = 	
1
𝑁C 𝑓!(𝑥)

(

!)"
 

where fi(x) is the prediction of the i-th decision tree. 

The model would take as input features of a traffic incident (such as speed, weather condition, 
time of day, etc.), and output a severity class (severe injury, moderate injury, PDO). The model 
would be trained on a labeled dataset, and the aim would be to minimize the discrepancy between 
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the predicted and actual labels. An RF's ability to combine multiple decision trees helps it avoid 
overfitting and generally results in a robust prediction performance.  

3.3.2 Extreme Gradient Boosting Model (XGBoost) 

XGBoost model is an ensemble of decision trees, where each subsequent tree tries to correct the 
errors made by the previous ones. It is an iterative process that aims to minimize a loss function 
(Ke et al., 2017; Charm et al., 2023). Mathematically, the prediction 𝑦	Fof an XGBoost model with 
K trees for an input x can be written as follows: 

𝑦A = 	C 𝑓*(𝑥)
+

*)"
 

where fk(x) is the prediction of the k-th tree.  

The objective function that XGBoost tries to minimize is represented as follows: 

𝑜𝑏𝑗(𝜃) = 𝐿(𝜃) + 	𝜗(𝜃) 

where θ represents the parameters of the model, L(θ) is the training loss function, and ϑ(θ) is a 
regularization term that controls the complexity of the model.  

The "gradient boosting" part of XGBoost comes from the fact that it trains each new tree to predict 
the negative gradient (or "residual") of the loss function with respect to the current predictions (Ke 
et al., 2017). This is why it is called "gradient boosting," as it uses gradient information to boost 
the performance of the ensemble. The model would learn to predict the severity of a crash based 
on input features such as weather condition, time of day, lighting condition, etc., by minimizing 
the discrepancy between its predictions and the actual labels, while also controlling the complexity 
of the model to prevent overfitting. 

3.4 Deep Learning (DL) Models 

3.4.1 Multi-layer Perceptron 

MLP is a class of ANN composed of multiple layers of nodes (or "neurons") in a directed graph. 
Each layer is fully connected to the next one, meaning that each node in a given layer is connected 
to all nodes in the adjacent layers. Consider an input vector x of dimension d, which corresponds 
to the features of a given traffic incident. This includes factors such as lighting condition, weather 
condition, time of day, etc. The input is then passed through one or more hidden layers. Each 
node in a hidden layer computes a weighted sum of its inputs, adds a bias term, and applies an 
activation function. Mathematically, this can be expressed as follows. 
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ℎ!
(-) = 𝑓(C𝑤!(-).	ℎ&

(-/")

&

+	𝑏!
(-)) 

Here, hi
(l) is the output of the i-th node in the l-th layer, f is the activation function, wi,j

(l) is the 
weight connecting the j-th node in the (l − 1)-th layer to the i-th node in the l-th layer, and bi

(l) is 
the bias term for the i-th node in the l-th layer. The final hidden layer is fully connected to the 
output layer. In a classification context such as traffic crash severity prediction, the output layer 
would have one node for each class (severe injury, moderate injury, and PDO) and would use a 
SoftMax function to convert the outputs into probabilities summing to 1 (Sattar et al., 2023). The 
class with the highest probability is chosen as the prediction. 

3.4.2 TabNet 

The TabNet model is designed to learn and capture the complex relationships between 
weather-related features and the severity levels of crashes. It leverages various components to 
process and analyze the tabular data effectively. It consists of shared feature transformers, sparse 
attention mechanisms, sequential feature selection, and adversarial learning components. Shared 
feature transformers process the input features and extract meaningful representations. They learn 
patterns and relationships within the weather-related crash data, enabling the model to capture 
the important features that contribute to crash severity prediction.  

Sparse attention mechanisms are incorporated in TabNet to selectively focus on relevant features 
while disregarding irrelevant ones. This attention mechanism identifies important patterns and 
interactions among the weather-related features. By attending to the most relevant features, 
TabNet can effectively learn the relationships between weather conditions and crash severity 
(Sattar et al., 2023). Sequential feature selection is a critical aspect of TabNet. It adaptively chooses 
the most informative features at each decision step, allowing the model to make accurate 
predictions (Jiang et al., 2022). This sequential selection process ensures that the relevant features 
are utilized for classifying the severity levels of weather-related crashes. To enhance model 
robustness and interpretability, TabNet incorporates adversarial learning. It includes an adversarial 
loss component that encourages the model to capture useful information from the dropped features 
while maintaining privacy and interpretability.  

3.5 Model Evaluation and Comparison 

Performance metrics are essential for assessing the effectiveness and reliability of predictive models 
in various contexts. The models are evaluated using metrics such as precision, recall, and F1 score. 
Precision measures the proportion of true positive predictions among all positive predictions, while 
recall measures the proportion of true positives among all actual positives. The F1 score is a 
balanced measure of precision and recall, and accuracy measures the proportion of correct 
predictions among all predictions. The model comparison was carried out by assessing the 
performance of different models to determine which model performs best. The best model is often 
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the one that balances the trade-off between bias and variance and performs well on unseen data, 
demonstrating good generalization capabilities. The specific criteria for choosing the best model 
can depend on the context, including the relative costs of different types of prediction errors.  
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4. Results and Discussion 
4.1. Imbalance Data Treatment 

Wen et al. (2021) reviewed the current status on the use of ML in traffic crash prediction and 
identified data imbalance as a major issue. In this study, the SMOTE-N algorithm was employed 
in addressing class imbalance by generating synthetic samples for the minority class. The 
SMOTE-N algorithm is specifically designed for datasets with nominal predictor features. 
Figures 1 and 2 shows the visual representation of the dataset before and after data treatment.  

Figure 1. Distribution of Crash Severity before Data Treatment 

 

Figure 1 illustrates the data distribution wherein the minority class represents severe injury or class 
1. Training an ML or DL model using such imbalanced datasets can lead to biased training 
samples. Consequently, the SMOTE-N technique was employed as a remedy for the data 
imbalance issue. Figure 2 visually depicts the distribution of the dataset subsequent to the 
application of the SMOTE-N data-treatment technique. 
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Figure 2. Distribution of Crash Severity after Data Treatment 

 

4.2. Model Estimation 

The main objective was to evaluate the performance of three different approaches (i.e., statistical, 
ML, and DL) to classify crash severity. For the ML and DL models, the SMOTE-N data 
treatment was used to resolve the data imbalance issue.  

4.2.1. Statistical Models 

4.2.1.1. Ordered Logit Model (OLM) 

The confusion matrix from the OLM is as presented in Table 2. For severe crashes, the model did 
not correctly predict any instances. All severe crashes were misclassified as either 
moderate (215 instances) or PDO (525 instances). This indicates a major issue as the model is 
unable to correctly identify any of the severe crashes, which could be the most critical to predict 
accurately in a real-world setting. For moderate crashes, the model correctly predicted 
1,101 instances. However, a significant number (16,776) were misclassified as PDO. This suggests 
that while the model has some ability to identify moderate crashes, it is largely confusing them 
with PDO crashes. The model performs best in predicting PDO crashes. It correctly predicted 
40,195 PDO crashes and misclassified 751 as moderate. None of the PDO crashes were 
misclassified as severe. Hence, the model’s performance in classifying crash severity is suboptimal. 
It never predicts severe crashes, which could be the most important to predict in practice. 
Additionally, it often confuses moderate and PDO crashes. The model may benefit from 
additional training, better feature selection, or a different modeling strategy. 

  



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  19 

Table 2. Confusion Matrix for the OLM 

Test 
Predicted 

Severe Injury Moderate Injury PDO 

Reference 

Severe Injury 0 215 525 

Moderate Injury 0 1101 16776 

PDO 0 751 40195 

 
4.2.1.2. Ordered Probit Model (OPM) 

The confusion matrix from the OPM is as presented in Table 3. The model correctly predicted 
two moderate-injury crashes but also misclassified many crashes. Although the performance of 
both models is poor in this category, the OPM marginally outperformed the OLM. In addition, 
the model correctly predicted fewer moderate-injury crashes (1,022) and misclassified many as 
PDO. Therefore, the OLM slightly outperformed the OPM in this category. The model correctly 
predicted a slightly higher number of PDO crashes (40,410) and misclassified fewer as 
moderate-injury crashes (536). Thus, the OPM performs better in predicting PDO crashes. The 
performance of the OLM and OPM is relatively similar in this case, with each outperforming the 
other in different crash severity categories. However, both models struggle a great deal in correctly 
identifying moderate-injury crashes and distinguishing between moderate-injury and PDO 
crashes. These results suggest that further model refinement and exploration of other modeling 
techniques could be beneficial. 

Table 3. Confusion Matrix for the OPM 

Test 
Predicted 

Severe Injury Moderate Injury PDO 

Reference 

Severe Injury 2 236 502 

Moderate Injury 0 1022 16855 

PDO 0 536 40410 

 
4.2.2. Machine Learning (ML) Models 

4.2.2.1. Random Forest (RF) 

Table 4 shows the confusion matrix from the RF model. Out of the actual severe-injury cases, the 
model correctly predicted 77 of them (true positives). However, it also misclassified 321 as 
moderate injury and 342 as PDO (false negatives). For the actual moderate injury cases, the model 
correctly classified 7,002 of them. On the other hand, it incorrectly classified 109 cases as severe 
injury and 10,766 cases as PDO. The model performed best in predicting the PDO crashes, 
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correctly classifying 31,745 cases. However, it misclassified 154 cases as severe injury and 9,047 as 
moderate injury. While the model offers some value in identifying and categorizing crash severity, 
its current performance highlights several areas of potential concern in practical applications. 
These primarily revolve around the misclassification of cases, which could lead to inadequate 
responses, misallocation of resources, misguided policy decisions, and potential financial 
implications in an insurance context. 

Table 4. Confusion Matrix for the RF 

Test 
Predicted 

Severe Injury Moderate Injury PDO 

Reference 

Severe Injury 77 321 342 

Moderate Injury 109 7002 10766 

PDO 154 9047 31745 

 
Figure 3 represents the permutation feature importance as determined by the RF model. The 
permutation feature importance is a technique for estimating the contributions of individual 
features to the predictive power of a model by observing the effect on model performance of 
randomly permuting the values of each feature, one at a time (Altmann et al., 2010). In this study, 
the RF model was trained on a subset of the dataset. A representative dataset was used for this 
process because this technique is computationally demanding. In the plot, each bar corresponds to 
a specific feature in the dataset, and the length of the bar corresponds to the importance of that 
feature. Positive values indicate that the performance of the model decreases when the feature is 
shuffled, suggesting that the model relies on the feature to make accurate predictions. Conversely, 
negative values indicate that the performance of the model improves when the feature is shuffled, 
suggesting that the model might be overfitting to noise in the feature. 

The top three features according to this analysis are crash types, vehicle types, and locality, 
suggesting that these features are the most important for predicting the severity of a crash 
according to the trained model. However, it's important to note a few caveats. First, while 
permutation feature importance provides a useful way to rank the importance of features, it does 
not provide any information about the nature of the relationship between each feature and the 
target variable (Altmann et al., 2010). Second, it is possible that important features might appear 
unimportant if they are highly correlated with other features (Altmann et al., 2010). Finally, 
because this analysis was performed on a sample of the original dataset, the results might differ if 
the analysis were performed on the full dataset or a different sample.  
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Figure 3. Permutation Feature Importance Plot 

 

4.2.2.1. Extreme Gradient Boosting (XGBoost) 

Of the severe-injury cases, the model correctly predicted 139 of them (true positives). However, it 
misclassified 322 as moderate injury and 279 as PDO (false negatives). This model appears to be 
better at predicting severe-injury cases than the RF model, with more actual severe-injury cases 
correctly classified. For the moderate-injury cases, the model correctly classified 8,485 of them. 
However, it incorrectly classified 297 crashes as severe injury and 9,095 crashes as PDO. 

Table 5. Confusion Matrix for the XGBoost 

Test Predicted 

Severe Injury Moderate Injury PDO 

Reference Severe Injury 139 322 279 

Moderate Injury 297 8485 9095 

PDO 350 11999 28597 

 

4.3. Model Performance Comparison and Analysis of Predictive Power 

Table 6 presents the performance metrics of all the developed models. Evaluating model 
performance is a critical part of the ML process (Ke et al., 2017). By quantifying how well a model 
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performs on a given dataset, one can understand its strengths and weaknesses, guide the selection 
of models, tune hyperparameters, and assess the effectiveness of feature selection or engineering 
(Ke et al., 2017). Without this step, one would not know if our model is effective, if it generalizes 
well to unseen data, or how it might be improved. When dealing with imbalanced datasets, the 
choice of evaluation metric becomes particularly important. In this study, the F1 score, alongside 
precision and recall, was used. 
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Table 6. Model Performance Metrics 

Method Model Level of Severity Precision % Recall % F1 Score % 

Statistical Model 

OLM 

Severe Injury Undefined 0.00 Undefined 

Moderate Injury 53.27 6.16 11.04 

PDO 69.91 98.17 81.66 

OPM 

Severe Injury 100 0.27 0.54 

Moderate Injury 56.97 5.72 10.39 

PDO 69.95 98.69 81.87 

ML 

RF 

Severe Injury 22.65 10.41 14.26 

Moderate Injury 42.77 85.53 57.03 

PDO 95.72 77.53 85.67 

XGBoost 

Severe Injury 17.68 18.78 18.22 

Moderate Injury 40.78 47.46 43.87 

PDO 75.71 69.84 72.47 

DL 

MLP 

Severe Injury 11.17 36.91 17.15 

Moderate Injury 5.08 60.44 9.37 

PDO 98.80 70.02 81.75 

TabNet 

Severe Injury 8.45 45.73 28.78 

Moderate Injury 3.73 72.19 14.54 

PDO 79.62 82.72 92.10 
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4.3.1. Severe-injury classification 

The most effective model for predicting severe-injury crashes is reportedly the TabNet model, 
which presumably is a form of DL model. This model has a precision of 8.45, which indicates that 
out of all instances predicted as severe-injury crashes, only 8.45% were severe-injury crashes. The 
recall is 45.73, meaning that the model correctly identified 45.73% of the actual severe-injury 
crashes. The F1 score, which is a harmonic mean of precision and recall, and is often used as a 
single metric to compare models, is 28.78. This relatively low score indicates that the model 
struggles with the severe-injury classification, which could be due to several reasons such as class 
imbalance or the complexity of the problem. However, when it comes to predicting crash severity, 
other studies have found XGBoost to perform better (Guo et al., 2021; Jamal et al., 2021). For 
instance, a comparative study by Jamal et al. (2021) found that an XGBoost model outperformed 
other ML models in predicting crash severity. In another study, Pensantez-Narvaez et al. (2019) 
compared the XGBoost model and logistic regression in crash severity analysis and found 
XGBoost to perform better. They attributed its success to its ability to handle non-linear 
relationships and interactions between features, which are common in crash data. While other 
studies might have found XGBoost to be a better model, the choice of model should be guided by 
the specific characteristics of the dataset and the problem at hand, and no single model is likely to 
be the best choice for all tasks (Li et al., 2023).  

4.3.2. Moderate-injury classification 

The model with the best performance for predicting moderate-injury crashes is RF. However, it 
has a precision of 42.77, which means that 42.77% of the instances it predicted as moderate-injury 
crashes were indeed moderate-injury crashes. It has a recall of 85.53, signifying that it correctly 
identified 85.53% of all actual moderate-injury crashes. The F1 score is 57.03, which is 
considerably higher than the severe-injury model, indicating a better balance of precision and 
recall. In previous research on crash severity prediction (Theofilatos et al., 2019), achieving a 
balance between precision and recall is a common challenge, as the relative importance of false 
positives and false negatives can vary depending on the specific application and costs associated 
with prediction errors. The RF model's high recall indicates its ability to capture a substantial 
proportion of actual moderate injuries, a crucial consideration in traffic safety applications. 

4.3.3. Property Damage Only (PDO) Classification 

The model with the highest performance in predicting PDO crashes is TabNet. Its precision is 
79.62, implying that 79.62% of instances it predicted as PDO were PDO. The model has a recall 
of 82.72, implying it correctly identified 82.72% of actual PDO cases. The F1 score is notably high 
at 92.1, indicating a superior balance of precision and recall for this class. 

Hence, the model performances vary significantly across the severity levels, with the PDO 
predictions faring the best and the severe-injury predictions performing the worst. This 
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discrepancy in performance may be attributed to various factors, including but not limited to, class 
imbalance, differing complexities in predicting each class, or nuances in the data distribution for 
each class.  

Figure 4. Precision Comparison for Statistical, ML, and ML Models 

 

 

Figure 5. Recall Comparison for Statistical, ML, and DL Models 
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Figure 6. F1 Comparison for Statistical, ML, and DL Models 

 

Figure 6 shows the graphical comparison of the performance metrics of different models. The 
statistical modes show high precision for severe-injury crashes but very low recall, suggesting they 
are confident but not comprehensive in identifying severe-injury crashes. The F1 score, which 
balances precision and recall, is also low for severe-injury crashes. For moderate-injury crashes, 
precision is relatively high, but recall is low, leading to a low F1 score. However, these models 
perform better for PDO crashes, with a relatively high F1 score. The ML models, on the other 
hand, provide a more balanced performance across all severity levels. For severe-injury crashes, 
both precision and recall are lower than for other categories, resulting in a lower F1 score. For 
moderate injury and PDO crashes, the performance is better with higher F1 scores. The DL 
models, however, have lower precision for moderate- and severe-injury crashes, suggesting they 
may incorrectly classify incidents as these categories. However, they have high recall, particularly 
for PDO and moderate-injury crashes, indicating that they are good at identifying these categories 
when present. The F1 scores are relatively low for severe- and moderate-injury crashes, but higher 
for PDO crashes.  

While the statistical models are very confident in their predictions of severe-injury crashes (high 
precision), they miss a lot of actual severe-injury crashes (low recall). This might be acceptable if 
the goal is to avoid false alarms at the cost of missing some real cases. However, in many 
applications, such as emergency response or healthcare, missing severe-injury crashes could have 
serious consequences, making these models less effective for real-world application. For predicting 
PDO crashes, statistical models perform very well with a high recall and good precision. The ML 
models offer a more balanced performance, making fewer mistakes in both directions (moderate 
precision and recall). They may be useful in situations where both false positives and false negatives 
carry significant costs. For example, if resources are being allocated based on these predictions, it 
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would be important to both catch as many real cases as possible (high recall) and to avoid wasting 
resources on false alarms (high precision). The DL models, however, are very sensitive, catching a 
large proportion of actual incidents (high recall), but they also produce a significant number of 
false alarms (low precision). This could be useful in a situation where the cost of a false negative is 
much higher than the cost of a false positive. For example, in a preliminary screening tool, it might 
be acceptable to have more false alarms to ensure that all or most real cases are identified for further 
investigation. 
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5. Conclusion 
5.1 Summary of Findings 

An extensive evaluation of various statistical, ML, and DL models to predict crash severity was 
conducted in this study. The analysis began with data preprocessing using SMOTE-N to address 
imbalances in the crash dataset. The findings revealed that each model category presented unique 
strengths and weaknesses. Statistical models, including OLM and OPM, demonstrated high 
precision but low recall in predicting severe-injury crashes. These models excelled in their 
confidence but lacked comprehensive identification of severe incidents. They were most effective 
in predicting PDO crashes. 

ML models, exemplified by RF and XGBoost, delivered a more balanced performance. They 
provided moderate precision and recall across different severity levels, making them suitable for 
situations where the costs of false positives and false negatives are significant. DL models, MLP, 
and TabNet offered high recall rates but lower precision. These models were particularly effective 
in identifying severe- and moderate-injury crashes, despite a higher rate of false positives. TabNet 
stood out as the best performer for predicting both severe-injury and PDO crashes. It can be 
deduced from this study that the choice of model heavily depends on the specific application and 
the trade-off between false positives and false negatives. While statistical models provide high 
precision, ML models offer balanced performance, and DL models yield high recall. Therefore, to 
optimally predict crash severity, practitioners should carefully consider the context and 
requirements of their specific application.  

The models developed in this study hold substantial promise for enhancing traffic safety in real-
world applications. Specifically, the RF model exhibits notable performance in predicting 
moderate-injury crashes, offering a valuable tool for traffic safety authorities and organizations. Its 
balanced precision and recall make it suitable for identifying crashes with a moderate level of injury 
severity, allowing for more targeted allocation of resources, such as emergency response teams and 
medical personnel, to the crash scenes. This can lead to quicker and more effective responses, 
potentially reducing the severity of injuries and saving lives. Furthermore, the TabNet model's 
exceptional precision and recall in predicting PDO crashes make it a valuable asset for traffic 
management and insurance agencies. By accurately identifying PDO crashes, these organizations 
can streamline their claims processes, minimize fraud, and allocate resources more efficiently. 

Moreover, the deployment of these models can significantly contribute to proactive traffic safety 
measures. By leveraging the insights gained from predictive modeling, traffic safety authorities can 
implement targeted interventions and educational campaigns in areas prone to severe crashes. 
Additionally, these models can inform the design and implementation of infrastructure 
improvements, such as road modifications and signage enhancements, to mitigate crash risks 
effectively. As traffic safety continues to be a paramount concern worldwide, the integration of 
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predictive models such as RF and TabNet into decision-making processes can lead to more 
effective and data-driven approaches to reducing injuries and fatalities on our roadways. 
Ultimately, the utilization of these models empowers stakeholders with the tools they need to make 
more informed, proactive, and lifesaving decisions in the field of traffic safety. 

5.2 Limitations and Future Scope of Work 

The study provides valuable insights into the performance of various models for predicting crash 
severity. The following are limitations and should be further explored: 

• Imbalanced data were dealt with using the SMOTE-N technique. Although this method 
helps balance the classes, it also created synthetic data, which might not represent 
real-world scenarios accurately. There is a need to further explore the sensitivity of different 
data-treatment methods to crash data.  

• There is a need for further refinement of the developed models, especially in correctly 
identifying moderate-injury crashes and distinguishing between moderate injury and PDO 
crashes. 

• ML techniques have shown promise in improving prediction accuracy, while statistical 
models provide interpretability. Future research should focus on addressing data 
limitations, integrating real-time data sources, and exploring emerging technologies such 
as sensor data fusion and DL algorithms to enhance crash severity prediction and improve 
road safety outcomes. 
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Abbreviations and Acronyms 
ANN   Artificial Neural Network  

AUC-ROC  Area Under Curve- Receiver Operating Characteristic 

CNN   Convolutional Neural Network  

DL   Deep Learning 

HSIS   Highway Safety Information System 

ML   Machine Learning 

MLP    Multi-Layer Perceptron  

OLM    Ordered Logit Model  

OPM    Ordered Probit Model  

PDO    Property Damage Only  

ResNet   Residual Neural Network  

RF   Random Forest  

RNN   Recurrent Neural Network  

XGBoost   Extreme Gradient Boosting  
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