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Executive Summary 
A major health concern for the population riding on public transportation systems is exposure to 
viruses released by infectious passengers. Our previous transient investigations17 of virus transport 
from an infectious passenger sitting in the middle of a transit bus with air exiting through the back 
grille has shown that while viruses spread to the back and front of the bus, due to the level of their 
concentration, there is an increased risk of infection to passengers sitting adjacent and behind the 
infectious person during transit when the passenger drop-off door is closed. However, at the bus 
stop when the drop-off door is opened, the exposure risk was for passengers sitting in front of the 
infectious person. The study exemplified the importance of the bus ventilation system on the 
exposure risk aboard a transit bus. 

The present investigation is a continuation of our previous study with changes to the bus 
ventilation system with the goal of virus containment. Unsteady numerical simulations of virus 
spread aboard a transit bus with 37 passengers have been performed. The infectious passenger was 
sitting in an aisle seat in the middle of the bus releasing 1267 viruses per minute (21.2 particles per 
second). The mouth velocity was 0.278 m/s (0.3 CFM). The virus was modeled as a 2.5 µm round 
carbon particle. Fresh air was injected through two linear ceiling slots spanning the length of the 
bus at a speed of 1 m/s The volume flow rate was 59.38 m3/min (2097 CFM). The bus dimensions 
were taken from a standard transit bus used in Long Beach, California.  

Two linear axial and vertical exhaust slots have been investigated. The axial slots were placed 20.32 
cm above the floor with a width of 5.08 cm. There were two slots on each side of the bus covering 
the length of the bus adjacent to the seats. The vertical slots were placed between the windows, 
66.04 cm above the floor. The slot length and width were respectively 30.48 and 5.08 cm. There 
were five slots on the left-hand side and seven slots on the right-hand side of the bus. The right-
hand side includes the passenger drop-off door. The pressure at the slots was -35 Pa. For each 
case, simulations were performed with a closed door during transit conditions and with an open 
door at bus stops.  

For the axial slot, results for transit conditions show particles are contained to the adjacent and 
immediate front and back of the infectious passenger without spreading to the back of the bus or 
across the aisle. The particles’ concentration in these areas is related to the local mean velocity 
gradient and vorticity distribution. At the bus stop, when the drop-off door is opened, particles 
disperse further to the front of the bus but stay on the same side. After the door is closed, some 
particles move toward the rear of the infectious passenger, but the majority of the particles are 
concentrated in the front three rows of the infectious passenger. 

With the vertical slots, during transit, the particles’ dispersion is limited, and the majority of the 
particles are concentrated around the infectious person. When the drop-off door is opened, 
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particles move toward the entire back of the bus, indicating a higher rate of mixing in this 
condition.  

An analytical analysis using the Wells-Riley equation indicated a high risk of infection when the 
ventilation is off and a reduced risk of infection for both cases investigated.  
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1. Introduction 
The spread of a virus from infected passengers, and the release and spread of contaminants aboard 
public transportation systems are major public health and homeland security concerns. Since the 
onset of the COVID-19 pandemic, significant research and scholarly publications have been 
presented on virus characterization, spread, and masking. These scientific findings have been 
presented in a database by the world health organization (WHO) [1].  

The risk of acquiring a virus within an environment depends on the virus's infectious particle 
concentration in the air and the immune status of the exposed individuals. In addition to its 
concentration, virus transport also depends on ambient temperature and humidity, and the level 
of air recirculation. Coughing, sneezing, talking, and breathing generates a cloud of airborne 
particles with diameters between a few millimeters to less than 1 µm [2–6]. While large and 
medium-sized droplets settle on the floor within a few minutes, those with sizes less than 10 µm 
are airborne for a long time and circulate through the ventilation system [7, 8]. Thus, fine particle 
aerosols play a role in the transmission of the virus. Temperatures above 70 °C destroy infectivity 
in a few seconds [9]. Low temperature and humidity facilitate the transmission of the virus while 
the transmission process becomes less efficient when the temperature and humidity are above 30 °C 
and 50%, respectively [10–12]. 

A recent clinical study [13] focused on the effectiveness of surgical masks on the spreading of the 
Coronavirus, the Influenza virus, and the Rhinovirus in the exhaled breath and cough of children 
and adults with acute respiratory illness. Among the 246 participants, 50% were randomly assigned 
to wear masks, and the rest were without masks. The exhaled breath of the participants was 
measured for virus detection in a real-life situation. Those with the Coronavirus or/and Influenza 
and not wearing masks did not shed detectable virus in their droplets and aerosols. However, the 
results were the opposite in participants with the Rhinovirus which was detected in 54% of the 
participants’ aerosols. These findings also indicate that surgical masks can effectively reduce the 
transmission of Influenza virus particles into the environment in respiratory droplets, but not in 
aerosols. 

Previous investigations [14–16] on virus transport aboard a commercial plane have shown that an 
infectious person can expose passengers in the front and adjacent seats from them, and those sitting 
adjacent to windows have a higher risk of exposure due to an increased virus residence time. 
Distancing (vacating middle seats) and/or masking significantly reduce the risk of infection to the 
other passengers. 

For a commuter bus with an infected passenger sitting in an aisle seat in the middle of the bus, 
transient simulations of virus transport have shown a high risk of exposure to passengers sitting 
adjacent and immediately behind the infectious person when air exchange occurs at the bus stop 
[17]. However, the risk of infection was low for a 30-minute exposure during bus transit.  
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The present investigation is a continuation of our previous investigation [17] with changes in the 
ventilation system, allowing air exhaust channels on the side walls of the bus. Two cases of vertical 
line exhaust between the windows and linear axial exhaust near the passenger's foot have been 
investigated to reduce virus transmission and exposure risk to other passengers. To the authors’ 
knowledge, the proposed changes to the ventilation system have not been implanted in any new 
transit buses. 
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2. Numerical Investigations
2.1   Numerical Model 

The same commuter bus model as in our previous investigation [17] was used. Figure 1a shows 
the model. The bus had 37 seats and was fully occupied. Its dimensions were 12.82 m in length, 
2.4 m in width, and 2.58 m in height. Two linear slots in the ceiling delivered air inside. The 
airflow was uniform at 1 m/sec with a total volume flow rate of 59.38 m3/min (2097 CFM). 

Instead of having the inside air exiting through the back grille, two separate cases of axial and 
vertical linear slots have been investigated. Figure 1b shows the two configurations. For the axial 
slot, the distance between the floor to the center of the slot was 20.32 cm with a width of 5.08 cm. 
There were two slots on each side of the bus, and they ran the total length of the corresponding 
section of the bus. The vertical slots were placed between the windows at 66.04 cm from the floor. 
The length and width of the slots were 30.48 cm and 5.08 cm, respectively. There were five slots 
on the left side and seven slots on the right side of the bus. 

The infectious passenger was sitting in an aisle seat (Figure 1c). The passenger continuously 
released 2.5 µm round carbon particles at a rate of 21.1 particles/s. The particles simulate an 
aerosolized virus without evaporation. The mouth velocity was 0.278 m/s which corresponds to a 
volume flow rate of 0.0084 m3/min (0.3 CFM). A non-stick boundary condition was used for the 
particles. 
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Figure 1. (a) The Numerical Model (b) Axial and Vertical Linear Slots (c) The Infectious 
Passenger 

 

(a) 

 

 

(b) 

 

(c) 
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2.2 Numerical Simulations 

Three-dimensional unsteady Reynolds-Averaged Navier Stokes (U-RANS) simulations were 
performed using the Siemens CCM+ software with an SST k-ω turbulence model. The particle 
simulation was modeled using a Lagrangian multiphase method. A Polyhedral mesh was used for 
all simulations. The number of meshes for the cases with axial and vertical slots was, respectively, 
12 million and 12.1 million. The pressure boundary condition at the slots was -35 Pa. All 
simulations were performed on 64-core high-performance computing. As before, the simulations 
were performed with the passenger drop-off door being closed for 5 minutes and then opened for 
30 seconds. This process was repeated several times to determine the flow characteristics inside 
the bus.  

In addition to the axial mid-section plane, results are also presented for three monitoring vertical 
planes, as identified in Figure 2. These planes correspond to areas near the infectious passenger 
and the drop-off door where significant variations in air movements and virus concentration were 
expected. 

Figure 2. The Monitoring Planes 

 

  



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  8 

3. Results and Discussions  
3.1 The Axial Exhaust Slots 

Figures 3–5 show the contours of the mean velocity and pressure, and particles’ dispersion at 30s 
intervals with axial exhaust slots when the drop-off door is closed. Figures 6 and 7 show the 
corresponding results for axial vorticity and turbulence kinetic energy (TKE). The presence of the 
axial slots on both sides of the bus increases the air circulation around the seated passengers. The 
mean velocity contours for the axial mid-section plane are not as uniform as before, as the axial 
slots extract more air toward the seated passengers and windows. The variations of the mean 
pressure are opposite to the corresponding variations for the mean velocity where low pressure 
corresponds to increased velocity and vice-versa.  

When the particles are released at 30 s, they initially disperse to the front-row passengers before 
spreading to the rear rows. However, the dispersion and the particle concentration are limited to 
the front and rear rows of the infectious passenger with no dispersion to the back of the bus. These 
results indicate that the linear exhaust slots are successful in containing the particles’ dispersion 
and in limiting their concentration to a small area around the source.  

Because of the additional air volume around the passengers, vorticity is not uniform at the mid-
section plane, and the increased vorticity around the seated passengers is due to the increase in 
velocity gradients within the vertical monitoring planes. 

The contours of turbulence kinetic energy (TKE) show an increase around the seated passengers 
when the passengers are facing each other. This could be explained by the fact that for the seated 
passengers in rows, the obstruction and blockage caused by the passengers limits turbulence 
generation, and thus TKE is not increased around the passengers seated in rows. However, 
obstruction and blockage are reduced for passengers facing each other, leading to higher air 
movement and increased turbulence. 
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Figure 3. Contours of the Mean Velocity with a Closed Door 
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Figure 4. Contours of Mean Pressure with a Closed Door 
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Figure 5. Particles’ Dispersion with a Closed Door 
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Figure 6. Contours of Axial Vorticity with a Closed Door 
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Figure 7. Contours of TKE with a Closed Door 
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Figures 8–12 show the corresponding results when the passenger drop-off door is opened and then 
closed after 30 seconds. With the door opening, additional air enters the bus, and since the axial 
slots are at a negative pressure, there is increased air movement toward the seated passengers and 
the adjacent windows, especially for those sitting close to the drop-off door. When the door closes, 
the air movement around the passengers is gradually reduced, and at 60 seconds after the door’s 
closure, the air movement approaches the closed-door condition identified previously. 

With the opening of the door, there are sudden drops in pressure at the mid-section plane and 
around the passengers seated in the vicinity of the door. The pressure drops result in increased air 
movements at these locations and cause a non-uniformity in the air distribution further to the front 
of the bus. There is a gradual increase in pressure at these locations until the door is closed.  

When the door is closed, there pressure increases at the mid-section plane and around the seated 
passengers, limiting air movements. The variation in pressure reduces significantly at 40 s after the 
door is closed, and at 50 s and 60 s, the pressure distribution approaches a steady state condition. 

With the door open, there is an increase in the particles’ dispersion toward the front of the bus, 
but this dispersion is limited to the side of the bus where the infectious passenger was sitting. The 
extent of the dispersion is beyond three rows in front of the infectious passenger. At 30 s when the 
door is closed, the particles have already reached the front of the bus.  

When the door is closed, even though the air movement is reduced, the concentration of the 
particles is reduced gradually with additional dispersion toward the rows behind the infectious 
passenger. However, there are significant risks to the passengers sitting in the front three rows 
which still have a high concentration of particles. 

With the opening of the door, vorticity is reduced at the mid-section plane and around the 
passengers due to increased mixing and reduced velocity gradients. However, after 15 seconds of 
the door opening, the air movement around the passengers sitting in the horizontal rows has 
recovered, resulting in increased vorticity at these locations. When the door is closed, there is a 
gradual redistribution of vorticity at the mid-section plane and around the passengers, approaching 
a steady state condition as in the closed-door air exchanges. 

Opening the door increases TKE around passengers facing each other which extends to their feet 
near the floor. When the door is closed, since there is still air exchange along the axial slots, the 
increase in TKE is mostly around the passengers’ feet. However, at 50 s, the TKE distribution is 
similar to the corresponding distribution before the opening of the door. 
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Figure 8. Contours of Mean Velocity in Open-Closed Door Conditions 
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Figure 9. Contours of Mean Pressure in Open-Closed Door Conditions 
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Figure 10. Particles’ Dispersion in Open-Closed Door Conditions 
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Figure 11. Contours of Axial Vorticity in Open-Closed Door Conditions 
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Figure 12. Contours of TKE in Open-Closed Door Conditions 
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3.2 The Vertical Exhausting Slots 

Figures 13–17 show the contours of the mean velocity and pressure, the particles’ dispersion, the 
contours of the vorticity, and the TKE at the mid-section plane and monitoring areas for vertical 
slots air exchange with the closed drop-off door. The vertical slots have reduced air exchange at 
the foot of the passengers near the floor with more air movements toward the passengers’ faces 
and the adjacent windows. There are more air movements at the mid-section plane, and at these 
locations, pressure is low. There is a slight increase in pressure near the passengers’ feet which 
corresponds to the low air exchanges at these locations. 

Particle dispersion is reduced significantly with the vertical exhausting slots. The front rows of the 
infectious passengers are not impacted, and the dispersion is toward the passengers sitting in the 
rear seats with some particles crossing the aisle toward the other side of the bus. This is in line 
with increased air movement around the passengers’ faces and at the mid-section plane. Moreover, 
having more slots increases air exchange on this side of the bus. 

The vertical slots and increased air movements toward the sides of the windows result in increased 
vorticity at these locations. For the face-to-face passengers, the increase in vorticity is seen between 
the passengers from the floor up. With increased vorticity, TKE is increased, and the increase is 
more pronounced when there are obstruction and velocity gradients. 
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Figure 13. Contours of Mean Velocity with a Closed Door 
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Figure 14. Contours of Mean Pressure with a Closed Door 
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Figure 15. Particles’ Dispersion with a Closed Door 
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Figure 16. Contours of Axial Vorticity with a Closed Door 
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Figure 17. Contours of TKE with a Closed Door 
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Figures 18–22 show the corresponding results with the door opened for 30 seconds and then 
closing. As before, the opening of the door results in increased air intake into the bus and high air 
movement toward the vertical slots. Since the vertical slots are significantly above the floor, the 
increased air movement is mostly toward the upper half of the passengers’ bodies. This effect is 
mostly seen for the passengers sitting close to the door and the back. Toward the front of the bus, 
the air movement is still similar to before the drop-off door opened with downward flow from the 
ceiling slots, tilting toward the vertical slots at specific locations, and impacting air movement at 
the faces of the passengers sitting at these locations. When the door is closed, the air movement 
gradually approaches the steady state solution, as seen before the opening of the drop-off door, but 
the process is slow, and by 60 seconds after door closure, the changes are still in a transient state. 

The pressure drops with the opening of the door at the mid-section plane show areas of very low 
pressure. With the additional air movement toward the vertical slots, especially for those 
passengers sitting close to the door, a further reduction in the mean pressure is observed. With the 
closing of the door, pressure recovers and approaches the steady-state condition. 

The impact of the open door is seen as increasing particle dispersion toward the back of the bus 
with some crossing over to the other side toward the door and the back. These solid particles 
behave as small solid spheres, and their drags are impacted by the local pressure distribution and 
air movement. The non-uniformity in air movement and the distribution of pressure results in 
further dispersion in the back area. After the door is closed, the particle concentration is reduced 
with an increased dispersion and air exchange, except there is still a higher concentration around 
the seats behind the infectious passenger. At 30 seconds after the door’s closure, passengers sitting 
in the last half of the bus are all exposed to the virus, although the concentration and the number 
of particles that each passenger is exposed to is significantly decreased. 

Increased vorticity is seen toward the passengers sitting across the door when the door is opened. 
The variation of vorticity is related to the level of obstruction and the corresponding velocity 
gradients at each location. With the door open, for passengers facing each other, there are increases 
in vorticity around the passengers' lower half of the body which expands into the mid-section 
plane. For the horizontal sitting passengers, the increase in air exchange due to the door opening 
results in increased vorticity around the upper passengers’ bodies toward the vertical slots.  

With the door opened, increased TKE is seen toward the front of the bus, but with the closing of 
the door, TKE increases become localized and are related to the local obstructions and velocity 
fluctuations. Both vorticity and TKE play a role in the level of concentration and exhaust rate of 
the particles.  
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Figure 18. Contours of Mean Velocity in Open-Closed Door Conditions 
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Figure 19. Contours of Mean Pressure in Open-Closed Door Conditions 
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Figure 20. Particles’ Dispersion in Open-Closed Door Conditions 
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Figure 21. Contours of Axial Vorticity in Open-Closed Door Conditions 
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Figure 22. Contours of TKE in Open-Closed Door Conditions 
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3.3 Analytical Solutions 

The Wells-Riley (WR) equation was used to estimate the risk of infection for different riding 
durations and scenarios. The equation assumes well-mixed air inside the cabin which is not true 
as evident from our simulations. However, it provides an estimate of the probability of infection 
with a relatively high level of accuracy. The equation is: 

𝑛
𝑁!

= $1 − 𝑒
"!#"$#%

$$ ( 

Where: 

• n is the number of infectious cases 

• Ns is the population (in our case 37) 

• n0 is the number of infectors (1 for our case) 

• qn is the quanta generation rate= qg/(copies/quanta) (0.645 based on previous analyses) 

• qg is the viruses released per min (1,267 in our case) 

• QB is the person’s CFM (0.3) 

• QT is the room’s CFM 

• t is the trip duration in minutes 

• Ventilation is OFF 

When the ventilation is off, the room CFM is calculated based on the volume of the air inside the 
bus which is equivalent to 2,749 ft3 based on the dimensions of the bus used. Then, QT (CFM) is 
2,749/t.  

Figure 1 shows the number of infectious passengers with time for three cases of no ventilation, 
50% recirculating air and 50% fresh air, and 100% fresh air. In the case of no ventilation, the 
number of infectious passengers increases very quickly beyond 30 minutes. At 30 minutes, two 
passengers are infected. The number of passengers increases to eight after 60 minutes and to 23 
after 120 minutes. However, with both 50% and 100% fresh air, the infectious rate decreases 
significantly. At 30 minutes, the risk of infection for these cases reaches, respectively, 0.2 and 0.1 
passengers, and at 60 minutes, are 0.4 and 0.2, respectively. 
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As we have indicated before, the assumption of a fully mixed flow is not valid, and thus with 
increased virus concentration around the infectious passenger, the risk of infection increases. In 
the case of the axial slots, the total length of the slots on both sides is approximately 24 m where 
about 1/12 of that or 2 m of the slot is adjacent to the infectious passenger. For 100% fresh air, 
the volumetric airflow is 2,097 CFM, and 1/12 of that is approximately 175 CFM. This is the 
volume of the air movement around the passengers sitting close to the infectious passenger. 
Assuming 1,267 viruses are released per minute, the virus concentration in this area is 7.24/ft3. 

Virus infectivity and replication is often quantified through the use of 50% tissue culture infectious 
dose (TCID50) assays. A study [18] on the human infectious dose of the Influenza A virus found 
TCID50 = 3 which corresponds to approximately 703±422 viral particles for a one-hour exposure 
[19]. For our simulation, for one-hour exposure, the total virus/ft3 is about 434, which is within 
the range of the human infectious dose, and thus presents a risk for infection. 

Figure 23. Analytical Results for the Rate of Infection with Time 
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4. Conclusions  
Unsteady incompressible Reynolds-Averaged Navier-Stokes (U-RANS) simulations with an 
SST-kω turbulence model were performed to investigate virus transport released from an 
infectious passenger aboard a transit bus. The infectious passenger was sitting in the middle of the 
bus in an aisle seat, releasing 1,267 of 2.5 micron round particles per minute at a mouth velocity 
of 0.278 m/s (0.3 CFM). Fresh air at a rate of 59.38 m3/min (2,097 CFM) was injected into the 
bus through the ceiling liner slots at a velocity of 1 m/s. Two different linear axial and vertical 
exhausts placed on the side walls were investigated for virus containment. Results show that in 
both cases, the particles’ concentration is limited to around the infectious passenger. With the 
opening of the passenger’s drop-off door and additional air change, the particles spread to the front 
and back of the bus, but stay on the same side of the bus as the infectious passenger and particles’ 
concentration is reduced. The study shows that increased ventilation and local air control reduce 
the risk of infection significantly.  

The current simulations are for 100% fresh air entering the bus through the ceiling slots and exiting 
through either the horizontal or vertical slots. In most cases, the bus uses either partial or fully 
recirculating air to save energy and thus increases the probability of infection. As indicated in the 
analytical study, the chance of infection increases significantly with a fully-recirculating air but 
reduces when equal parts of fresh and recirculating air are used. The flexibility of controlling the 
percentage of fresh air introduced into the bus’s ventilation system allows the bus operator and the 
transit agency to maintain a healthy cabin environment during the flu season and when an 
increased risk of infection or environmental contamination exists due to an emergency condition. 
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