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Executive Summary 
As California becomes the pioneer state in promoting electric vehicles (EV) in the transportation 
sector, the incurred power demands of EVs may significantly lower the grid voltage and increase 
the travel expenses of EV users. Such drawbacks will degrade appliance function, lead to safety 
issues in the power grid, and worsen traffic congestion. In addition, private businesses can be 
hindered by these troubles and are reluctant to invest in the construction of new charging stations. 
The proposed project aims to achieve a satisfactory solution to recover the voltage drop induced 
by EVs charging through photovoltaic (PV) inverters, enable the most efficient charging 
scheduling, and minimize a charging station’s operation cost through infrastructure optimization.  

In this research, the team collects the charging demands and duration data from 2019 on the 
California State University, Long Beach campus and the solar power and weather data from the 
Long Beach Airport. The prices of charging service and batteries are from up-to-date market 
information. The time-of-use price of electricity for a 500 kW charging station is from the utility 
company Southern California Edison (SCE), with slight modifications. The gathered datasets are 
synthesized to create simulation scenarios for the charging schedule and station infrastructure 
optimization. The data sampling time and operation interval are both 15 minutes, which is long 
enough for a real-time calculation and scheduling. The software platform is GAMS with various 
state-of-the-art optimization solvers, such as SCIP, to ensure near-global optimality. Two 
scheduling algorithms, including robust model predictive control (MPC) and empirical rule-based 
methods, are proposed and compared under different scenarios and purposes. A response surface 
methodology (RSM) is further developed for the infrastructure optimization and handling the 
non-differentiable formula.  

As the results of this work, the research team lists the following discoveries: 

• Solar panels used in the charging station’s power supply can reduce operational costs while 
making transportation greener.  

• The proposed mathematical programming-based scheduling algorithm facilitates charging 
stations in meeting customers’ demands in charging power and wait time. Without 
considering voltage recovery, this rule-based method is more efficient than the robust 
MPC in computational time and solution profitability.  

• The RSM is better integrated with the rule-based approach for infrastructure optimization, 
whereas the robust MPC can be used for validation or policy improvement.  

• The battery energy storage system may not be economically efficient under the current 
market price and net surplus compensation rate issued by the utility.  
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This project has led to one peer-reviewed journal publication: “A Robust Model Predictive 
Control-Based Scheduling Approach for Electric Vehicle Charging with Photovoltaic Systems,” 
Yu Yang, Hen-Geul Yeh, and Richard Nguyen, IEEE Systems Journal, Vol. 17, no. 1, 111–121, 
and another paper has been submitted to the journal, IEEE Transactions on Transportation 
Electrification. 
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1. Introduction 
The U.S. government has invested $15 billion in the national network of 500,000 charging stations 
in the American Jobs Plan (The White House, 2021a). It also plans to reach 100 percent carbon-
pollution-free electricity by 2035 and reduce carbon pollution from the transportation sector (The 
White House, 2021b). In California, both the California Energy Commission (CEC) and 
Caltrans have established several funding opportunities, such as the Electric Program Investment 
Charge (EPIC) program, to encourage innovative solutions for the deployment of electric vehicle 
(EV) infrastructure. A promising solution is to integrate EV charging stations with solar farms 
built on university campuses, shopping malls, and multifamily apartments to benefit a wide range 
of passengers. The proposed research will develop a simulation-based tool to design and operate 
such an integrated system more economically.  

1.1 Project Background and Motivation 

Multifamily apartment residents, long-distance commuters, and disadvantaged communities need 
a convenient, affordable, and reliable public charging network at Level 2 (AC-slow) or 3 (DC-
fast) for their daily transportation. With limited space and budget, intermittent renewable sources, 
and grid restrictions, a solar-powered charging station must balance its investment, profitability, 
and utility. The proposed charging station design is shown in Figure 1. EVs can reserve the 
charging spots via vehicular communications, especially vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communications. Our scheduling algorithm will decide when and how to 
charge EVs through slow (Level 2) or fast chargers (Level 3). A solar farm will provide electricity 
to EV chargers during the daytime. If there is surplus electricity, then it will be sold to the grid. 
At night, either the grid or a battery will provide electricity to vehicles. We will design this green 
transportation system and develop its operational strategy to meet customer demand and maximize 
the operational profit of charging stations.  

Figure 1. Solar Farm, Charging Station, And Communication Network 
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The related works on solar power prediction, EV charging management, and charging station 
design will be reviewed to identify any knowledge gaps and possible solutions.  

Solar Power Prediction 

The intermittent nature of solar power affects the renewable energy’s supply to the charging station. 
Hence, a solar power prediction model is indispensable for schedulers to hedge the energy shortage. 
Solar power forecast approaches can be based on physical, statistical, and machine-learning models. 
The physical models use either previous observations or numerical weather predictions (NWPs) as 
inputs. For example, the total sky imager (TSI) model relies on image processing and cloud 
tracking for 15–30 minutes ahead of the prediction (Chow et al., 2011). Several types of clear sky 
models can be used to estimate solar irradiance (Antonanzas-Torres et al., 2019), which then serves 
as an input into a solar photovoltaic (PV) modeling algorithm for power generation predictions 
(Clack, 2017). The statistical approaches for short- and long-term forecasts based on 
autoregressive models have been extensively studied by Bacher et al. (2009). A probabilistic model 
has been developed by Loeper et al. (2020) to determine the joint distribution of hourly-ahead 
horizontal irradiation and measured solar power supply.  

Many machine learning methods have been applied for solar power prediction and have shown 
significant improvements over the traditional physical and statistical approaches. Neural network 
(NN) models have been very popular as solar power predictors since the 1990s (Inman et al., 2013). 
Other machine learning methods, such as support vector machines (SVM) using multiple kernels 
(Sharma et al., 2011) and Naïve Bayes models (Bayindir et al., 2017), have been also applied in 
the literature. A comprehensive comparison study on the day-ahead hourly forecast of solar power 
generation has been presented in Gigoni et al. (2015), where second-order grey-box regression 
methods, NNs, quantile random forests (RF), k-Nearest Neighbors (kNNs), and support vector 
regressions (SVR) have been investigated. Their results show that these approaches have similar 
overall accuracy. An ensemble average is then proposed to synthesize all of their advantages to 
achieve the best performance under all weather conditions. 

EV Charging Scheduling 

Traditional EV-charging scheduling methods solely focus on the transportation system to balance 
the use of charging stations and minimize the waiting/charging time. The first step is to collect 
station utilization information and arrival/departure time to build a data-driven model. Then, 
different algorithms, such as simulated annealing (Bodet et al., 2012), dynamic programming 
(Delikaraoglou et al., 2013), multiservice queuing model (Said et al., 2013), and greedy primal-
dual (Yudovina and Michailidis, 2015), can be employed to optimize the EV-charging schedule. 
Beyond the physical model, EV users’ charging preferences and behavior are studied to predict 
charging choices and responses to the service (Daina et al., 2017; Will and Schuller, 2016).  
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A more advanced centralized or decentralized scheduling scheme is to plan the charging by taking 
both the transportation demands and the grid input-output balance into account. The 
simultaneous charging of many EVs through the grid may adversely impact the power distribution 
system (Pieltain et al., 2011). This issue occurs when solar power is insufficient to meet energy 
consumption. Schedulers thus need to coordinate the charging operations economically and safely 
to shave the peak. For example, demand response can be adopted to shift the charging requests 
from peak to off-peak times, thus obtaining more economic benefits (Fan, 2012). Atallah et al. 
(2018) compared centralized and decentralized approaches for supercharging scheduling. The 
centralized method collects the information and solves a large-scale optimization problem to reach 
the optimal charging schedule, but may not be scalable to many EVs charging simultaneously. A 
decentralized strategy allows the charging decisions to be made by each EV individually. However, 
such a strategy may incur an avalanche effect on the grid in power load increasing (Amjad et al., 
2018). Moreover, the vehicular network should be sufficiently reliable to ensure real-time 
communication and management.  

Existing research on EV charging scheduling has two limitations: modeling and computations. 
First, stochastic models (Delikaraoglou et al., 2013; Said, 2013; Yudovina and Michailidis, 2015; 
Kim et al., 2017; Wu et al., 2012; Pantos, 2012) for mobility behaviors and power supplies are 
widely used, but the accuracy and generality of such models is rarely discussed. Moreover, the 
probabilistic models are difficult to solve within a deterministic optimization scheme. Second, 
most simulations are conducted for relatively small-scale problems because the integer 
programming algorithms cannot be easily scaled up. The off-the-shelf solvers, such as CPLEX, 
may take several minutes to solve a medium-sized charging problem (Keskin and Çatay, 2016). 
However, computational demand becomes much more substantial when power grid operations, 
such as load shaving, are required in the charging strategy.  

To overcome these limitations, the research team: (i) collects EV charging data and predicts PV 
energy generation using a support vector machine (SVM) model based on selected kernels, which 
can be embedded into a deterministic optimization solver (Nguyen et al., 2021); and (ii) develops 
and compares centralized optimization and empirical rule-based algorithms to determine the 
charging power assignment for each EV in real-time. The joint design of solar power model, 
charging pattern, and the scheduling algorithm will make the resulting solution unique, more 
practical, and optimal.  

Infrastructure Design and Cost Analysis 

Charging infrastructure based on renewable energy aims to meet the growing demands of EV 
charging without affecting the grid’s stability, which means avoiding harmonics and voltage 
fluctuations. The economic and environmental benefits of PV-based charging stations in 
Los Angeles have been proven in literature (Tulpule et al., 2013). A solar-powered charging system 
should be designed with a proper converter, battery, and PV panels to avoid overly aggressive 
capital investment. For example, many researchers (such as Hussain et al., 2019; Ding et al., 2015; 
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and Sbordone et al., 2015) have pointed out the significance of the optimal battery size in a 
charging station. In Mouli et al. (2015), the authors designed the PV array and battery size 
simultaneously to match charging demands. The latest research trend is integrating short-term 
scheduling and system designs to achieve an overall optimal solution (Quddus et al., 2019), in 
which two-stage stochastic programming is solved to design the system. However, such work omits 
the system’s nonlinearity, and its optimality is not guaranteed. The new contribution of this project 
is to integrate charging system operation and design within a two-stage decision framework and 
solve it through RSM  

1.2 Project Methods 

The project roadmap is shown in Figure 2. We will formulate an infrastructure design as a two-
level problem including economic optimization (upper-level) and charging scheduling 
(lower-level). The solar predictions, charging request scenarios, and grid models will be developed 
and embedded into the scheduling algorithm. Both centralized and decentralized scheduling will 
be developed in parallel and compared in efficiency.  

Data Preparation 

The research team has secured real-time EV charging data from a charging station with PV panels 
at the CSULB campus and solar power generation data from the Long Beach Airport. The EV-
charging data of the CSULB campus during 2019 with charging time (ranging from 5 minutes to 
11 hours), power, and service fees, have also been obtained. Based on the data collected, we can 
simulate and predict charging demand and solar power supply at CSULB. The time-of-use (TOU) 
rate (i.e., cost) of electricity for charging stations under 500 kW can be found on the Southern 
California Edison (SCE) website.  

Data-driven Modeling  

The research team has used the machine learning package scikit-learn in Python and MATLAB 
to model the solar power generation profile given some weather input data. The investigated 
methodologies include support vector machines (SVM), random forests (RF), LightGBMs, and 
linear auto-regression models. The results show that the linear auto-regression model with 
embedded feature extraction/selection outperforms other machine learning approaches in its 
prediction accuracy. The charging request data will be used to form different scenarios in the 
simulation.  

EV Charging Scheduling  

Both centralized and decentralized strategies will be developed for EV charging scheduling. In the 
centralized algorithm, we will develop and solve a mixed-integer program (MIP) for scheduling. 
The objective is to minimize operational costs while satisfying customers’ requirements. When a 
charging request is received, the solver will decide the power rate and power source (grid, solar 
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panel, or battery) along a long control horizon. The charging requests gathered on the CSULB 
campus under different solar irradiation conditions will be used to test the scheduling algorithm. 
The entire simulation and optimization framework is executed in the GAMS platform with state-
of-the-art solvers. 

Infrastructure Design 

Once all models are established, we will design the EV charging site, including the number of 
chargers, capacity of solar panels, and the size of energy storage, through RSM. The merit of RSM 
is that it can explore the relationship between input and response variables more efficiently via the 
design of experiments. The objective function of infrastructure design is to maximize profitability 
while meeting car usage demands and budget. The overall scheme will be formulated as a two-
level optimization problem. The lower level is scenario-based charging scheduling, which will be 
solved using centralized or decentralized algorithms. The upper level optimizes the expected profit 
by determining the PV penetration, number of Level 2 chargers, and battery capacity. This two-
level formula can accurately estimate the profitability of the real system, but is difficult to optimize 
through common solvers. The research team will use RSM to sample the design space and achieve 
a near-optimal solution. 

Figure 2. Technical Developments Roadmap  
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2. Robust Model Predictive Control for Electric  
Vehicle Charging  

This section is based on the authors’ paper: “A Robust Model Predictive Control-Based 
Scheduling Approach for Electric Vehicle Charging with Photovoltaic Systems,” Yu Yang, 
Hen-Geul Yeh, and Richard Nguyen, IEEE Systems Journal, Vol. 17, no. 1, 111–121. A scheduling 
algorithm based on a robust MPC (R-MPC) is designed for the charging service at the CSULB 
campus parking lot with a solar power supply. The actual charging, solar generation, and weather 
data are gathered to build prediction models for EV charging demands and solar power supply. 
Then, these prediction models are embedded into mixed-integer nonlinear program (MINLP) 
formulas, which are solved in real time to determine optimal charging power. Different from Kabir 
et al. (2020), the proposed approach allows EVs to be charged either from the power grid or the 
solar energy system. Unlike Maigha and Crow (2017), this approach optimizes the profit of a 
charging station rather than the overall energy cost of the grid. Diverging from several studies 
(Kabir et al., 2020; Zhang et al., 2014; Li et al., 2020; Sun et al., 2020), the proposed approach does 
not assume any probabilistic model and makes a deterministic optimization formula instead. The 
proposed method has at least four advantages and novelties: 

(i) The proposed approach allows the charging power to continuously vary rather than use 
constant current/voltage charging. 

(ii) Only the proposed approach incorporates both PV power sales and TOU price into the 
optimization objective. 

(iii) The one-step worst-case prediction is employed, and an additional optimization is solved 
to maximize the charging power without reducing profit. The resulting solution is more 
robust against uncertainties and avoids missing service. 

(iv) Dynamic power load equations are used in our approach instead of the static one, leading 
to more accurate models . 

2.1 Problem Formulation 

A Modified IEEE-13 Node Test Feeder 

The IEEE-13 node test feeder with a single-phase power supply is modified as a testbed, as shown 
in Figure 3. The following assumption is introduced: 

Assumption 1. The charging station is on the leaf node of a power grid network. 

Assumption 1 enables us to determine the voltage of a charging station without knowing the power 
load of other nodes. Accordingly, a charging station with a solar farm is constructed at node 652. 
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Node 650 is a substation with voltage V650 = 4.16 kV. The impedances under different 
configurations can be found in Kersting (1991). Two types of time-dependent power load models 
are employed in the simulation. One is for the general residential area, and the other is for large 
hotels. The active power loads generated by these models, denoted as 𝑝!", are shown in Figure 4. 
The reactive power loads, denoted as 𝑞!", are calculated by assuming the power factor to be 0.95. 

The dynamics of real/reactive powers and voltage on a power grid can be described by the Distflow 
equations. In addition, the proposed scheme incorporates the maximum allowable reactive power 
generation from the IEEE-1547 standard. Since high charging demands render the node voltage 
below the limit, the reactive power injection at node 652 lifts the voltage and may recover from 
the instability (Turitsyn et al. 2015). Here, the voltage constraint at each node is set within the 1 
± 5% range. 

Given power consumptions data at each node, the IEEE-13 node test feeder is simulated to 
generate dynamic voltage profiles. Then, voltage V684 will be fed into the R-MPC to renew power 
load constraints on 𝑝!" and 𝑞!". 

Figure 3. The Modified IEEE 13 Node Test Feeder 

 

The Charging Station with Solar Panels is 
Introduced at Node 652 
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Figure 4. Left: Power Load for Three Residents  

 

Right: Power load for three large-scale hotels. 

Charging Station 

The team selected a charging station on the CSULB campus with a PV power supply as the 
research target. In total, there are 44 SAE J1772 charging spots, each with a maximum power of 
7.2 kW. A solar farm is built on-site with a maximum power generation Smax = 240 kW. The 
charging station primarily uses solar energy, and its power deficit is compensated by the grid. The 
TOU-EV-8 issued by SCE is applied. This tariff, denoted as αB(h), is particular to EV charging 
stations whose monthly maximum demand is between 20 kW and 500 kW. Two profiles about 
αB(h) are considered in the case studies:  

Price I: 9:00 p.m. to 8:00 a.m.: $0.08 / kWh, 8:00 a.m. to 4:00 p.m.: $0.05 / kWh, 
4:00 p.m. to 9:00 p.m.: $0.23 / kWh 

Price II: 9:00 p.m. to 8:00 a.m.: $0.12 / kWh, 8:00 a.m. to 4:00 p.m.: $0.10 / kWh, 
4:00 p.m. to 9:00 p.m.: $0.23 / kWh 

The charging service fee is αC = $0.40 / kWh at the CSULB campus. Apart from the charging 
service, the solar energy generated on-site can be sold back to the utility with αS = $0.09 / kWh. 

2.2 Schedule Design 

In this section, a scheduling algorithm is designed to determine the charging power at each spot. 
The overall scheme is shown in Figure 5. A day is divided into 96 time slots with a sampling time 
interval of Δ = 0.25 hour. At each time instant, a scheduling problem is solved optimally to 
determine the charging power along a prediction horizon H. The objective of scheduling is to meet 
customer demands and maximize daily revenue. Inputs to the optimization-based scheduling tool 
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include grid status, solar power generation, and charging demands. Note that a charging station 
node, denoted as s = 652, cannot know the power loads and flow on the entire power grid. Here 
the voltage at its parent node, denoted as ŝ = 684, is measurable in real time. However, voltage 
dynamics during the prediction horizon may not be known. Therefore, at any instant, the voltage 
prediction is a constant, Vs (h|h) = Vŝ (h + 1|h) =...= Vŝ (h + H |h), where (h + k|h) represents the 
prediction in k-step. Once the optimization algorithm calculates the charging power along the 
prediction horizon, denoted as C(h|h), C(h + 1|h),..., C(h + H |h), only C(h|h) is implemented. 
This scheme, the so-called receding horizon method, can adjust future operations based on 
real-time information. Repeating this process will generate an optimal charging profile for each 
EV. 

Charging Demands Prediction 

The charging data consists of the requested time, duration, and energy of each service event at the 
campus throughout the entirety of 2019. However, our scheduling algorithm only needs to forecast 
the number of charging requests at each decision time interval. Considering that customers, 
including university students and employees, may follow similar charging patterns during 
weekdays, historical data can be used to predict charging requests. The week-ahead average and 
maximum number of charging requests are denoted as 𝛾$(ℎ)  and �̅�(ℎ) . Let 𝛾)(𝑘 + ℎ|ℎ)	 to 
represent the predicted number of incoming charging requests 𝛾(𝑘 + ℎ)	during time instant k + h. 
Then, the following prediction scheme is designed: 

𝛾)(𝑘 + ℎ|ℎ) = / �̅�(ℎ + 𝑘)	𝑖𝑓	𝑘 = 0
𝛾$(ℎ + 𝑘)	𝑖𝑓	1 ≤ 𝑘 ≤ 𝐻 

 

Figure 5. The Overall Scheduling Schemes 

 

This is a one-step worst-case prediction, which impacts C(h|h) and ensures enough charging spots 
in the next 0.25 hours. Two designed datasets, shown in Figure 6, will evaluate the robustness of 
the scheduling algorithms. The busiest day (May 7) with 78 service requests is chosen as Test 1. 
It can be a good example to represent other untested real-world datasets. The second busiest day 
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(May 6) is modified by introducing additional charging requests with long durations. The resulting 
Test 2 has 107 service requests. Note that the required power of each EV may vary day by day and 
is difficult to forecast accurately. All predicted incoming EVs are assumed to be charged at the 
highest power rate of 7.2 kW. Figure 7 shows the aggregated energy demand at each time instant 
for the two tests. There are two peak hours of EV charging requests. One is around time instant 
32 (8:00 a.m.) and another is around time instant 68 (5:00 p.m.). These two peak hours are directly 
related to the class schedule on campus. Morning classes start at 8:00 a.m. and evening classes start 
at 5:00 p.m. Only the total charging energy of each EV on the CSULB campus can be obtained, 
whereas the state of charge (SOC) information is not available. Thus, SOC is not considered in 
the proposed optimization algorithm. 

Similarly, the allowed charging time for each incoming EV is not predicted because assuming the 
highest charging power already enables service to be completed earliest. The proposed algorithm 
has more flexibility to schedule the charging power for long-term tasks. Short-term tasks are more 
challenging because the time restriction forces the solver to charge that EV with high power. 

Figure 6. Charging Requests in Every 0.25 Hours  

 

Left top: Week-ahead average. 
Right top: Week-ahead maximum. Left bottom: 
Test 1 (May 7th). Right bottom: Test 2 
(Synthetic). 
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Figure 7. Aggregated Energy Demands in Every 0.25 Hours 

 

Solar Power Prediction 

Solar power is a renewable but not reliable energy source to the EV charging system due to its 
weather-dependent and intermittent nature. An accurate prediction model for solar power 
generation is a critical component of the charging scheduling algorithm. Authors previously 
proposed a machine-learning approach to predict solar power using weather forecast (Yang et al., 
2022). The dataset from the California Solar Initiative (CSI) used 15-minute interval power 
generation of a solar panel for training, validation, and testing. To make this paper self-contained, 
the machine-learning model is briefly introduced in this section.  

The first step is to remove the mean from the training dataset, and the resulting power generation 
is denoted as 𝑝#$(ℎ). The second step is to collect the weather input data and then build the model 
based on the autoregressive term, weather input, and time stamp. The regressor vector is defined 
as below: 

𝜙(ℎ) = [𝑝#$(ℎ − 1), 𝑢%(ℎ), 𝑢&(ℎ), 𝑢'(ℎ), 𝑢((ℎ), 𝑢)(ℎ), 𝑢*(ℎ), 𝑢+(ℎ)], 
 
where 𝑢%(ℎ) is the temperature; 𝑢&(ℎ)	is the dew point; 𝑢'(ℎ) is the humidity; 𝑢((ℎ) is the wind 
speed; and 𝑢)(ℎ) represents the time stamp. To represent the time-dependent nature of solar 
energy, two more variables are introduced: 𝑢*(𝑘) = cos(𝜋𝑢)(𝑘)/24)  and 	𝑢+(𝑘)	 sin(𝜋𝑢)(𝑘)/
24). The third step is feature construction. A simple linear regression model based on 𝜙(ℎ) has a 
limited capability for data fitting. Thus, 𝜙(ℎ)	is normalized to build the first kind Chebyshev 
polynomial as a feature of the model. In addition, when there are clouds in the sky, one-hot 
encoding variables 𝑢,(ℎ), 𝑢%-(ℎ), and	𝑢%%(ℎ)	are introduced to describe partly cloudy, mostly 
cloudy, and cloudy weather, respectively. 

The solar prediction model is a weighted sum of the augmented features: 
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𝑝#!(ℎ) = G 𝑎[/],2,!𝜙2,!(ℎ)
3",$∈&[(]

 

where subscript [𝑖]	indicates the weather type, either fair or cloudy; the model parameter 𝑎[/],2,! is 
identified by solving a constrained least squares problem on the training dataset; and Ψ[/]is the set 
of active features for weather type 𝑖. In Yang et al. (2022), Ψ[/] is built via a feature selection and 
elimination algorithm on the validation dataset. Compared with other machine-learning 
algorithms, the proposed approach is simpler and more accurate. 

The proposed model has a low mean squared error to predict solar power in southern California’s 
coastal areas (Yang et al., 2022). Figure 8 illustrates the one-hour ahead prediction together with 
the actual power generation in the testing dataset. Because our model is based on the weather 
forecast, its accuracy may not be suitable for long-term prediction. Hence, for more than a one-
hour ahead prediction, 𝑝#$(ℎ)	will be used instead. This solar power prediction model will be 
integrated into the charging scheduling algorithm shown in the next sub-section. 

Figure 8. One-Day Solar Power Profiles in the Testing Dataset  

 

Scheduling Scheme 

An R-MPC-based scheduling scheme is proposed by integrating optimization formulas with solar 
power predictions, charging requests predictions, and grid status. Each coming EV provides 
information on required energy and allowable charging time to the scheduler. Then, the scheduler 
solves a centralized optimization problem (MINLP1), shown in Figure 9.  
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Figure 9. Mixed-Integer Nonlinear Program 1 (MINLP1) 

 

The formula shown in Figure 9 is a mixed-integer nonlinear program (MINLP), but can be 
simplified as an equivalent mixed-integer linear program (MILP). The number of binary variables 
is dependent on the quantity of charging EVs and the length of the prediction horizon 𝐻. When 
(MINLP1) is solved, there can be non-unique optimal solutions. For example, switching charging 
power at time instants h and h + 1 may obtain the same profit due to flat grid power price during 
the prediction horizon after sunset. Among these optimal solutions, the one with high	𝐶4(ℎ|ℎ) is 
preferred because it is less sensitive to the future prediction and is more likely to complete the 
charging service on time. To yield a more robust solution, the research team further proposes the 
following optimization formula (MINLP2): 

Figure 10. Mixed-Integer Nonlinear Program 2 (MINLP2)  

 

Voltage Recovery 

In a receding horizon strategy, (MINLP1) and (MINLP2) are solved at a time instant h to 
determine 𝐶4(ℎ + 𝑘|ℎ), ∀𝑘 = 0,1, … , 𝐻, whereas only 𝐶4(ℎ|ℎ) is implemented. However, because 
solar power generation, charging requests, and voltage predictions may not be accurate, the 
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occurred scenarios can be different from the forecast. One of the issues is the overly low voltage 
when the power grid is subject to high power loads. Let us define a set Π(ℎ) ≔
{𝑙|7.2Δ(𝑇4 − 1) > 𝜂4(ℎ)}, such that 𝐶4(ℎ|ℎ), ∀𝑙 ∈ Π(ℎ) does not delay the service. Here 𝜂4(ℎ) 
represents the energy demand of charging spot l at time h. 𝑇4(ℎ) is the allowable charging time of 
EV at spot l and time instant h. Then, the following algorithm adjusts the solution of 𝐶4(ℎ|ℎ)	to 
satisfy the voltage constraint. 

Algorithm 1: 

Step 1 Implement 𝐶4(ℎ|ℎ)	on the charging station. 

Step 2 If 𝑉5 < (1– 5%)𝑉*-) , then go to Step 3; otherwise terminate Algorithm 1 and 
implement	𝐶4(ℎ|ℎ). 

Step 3 Let 𝑙∗ = arg𝑚𝑖𝑛4∈8(:)𝜂4/𝑇4. 

Step 4 Let 𝐶4∗(ℎ|ℎ) = 0, Π(ℎ) ← Π(ℎ) ∖ 𝑙∗, and go back to Step 1. 

To quickly lift the voltage, Algorithm 1 repeatedly searches for the EV with the smallest average 
power and shuts down its charging service temporarily. As the resulting power load decreases, the 
voltage will rise. 

2.3 Simulation Results 

The IEEE-13 node test feeder is used to simulate a microgrid. Except the charging station node, 
power load profiles of other nodes in the grid have been shown in Figure 3. Two testing datasets 
are used to evaluate the proposed scheduling algorithm. The charging and PV power selling prices 
are constant, αC = $0.40 / kWh and αS = $0.09 / kWh. Two electricity purchase prices are simulated, 
shown in Subsection 2.1, to investigate the demand response. Price I encourages using grid power 
in EV charging, whereas Price II is favorable to the use of solar power. Two price profiles and two 
testing datasets result in four scenarios. The grid is simulated by using GAMS 32. To obtain the 
globally optimal solutions of (MINLP1) and (MINLP2), the solver SCIP (Achterberg, 2009) is 
used and terminated when the relative gap reaches 1%. 

Four other charging schemes are implemented for comparison purposes. Here MPC-I, II, and III 
only change one feature of the proposed scheduling approach. 

(i) Greedy charging: This strategy always uses the highest power to charge an EV whenever 
it arrives. If the total charging power on the station is overly high, then Algorithm 1 is used 
to recover the voltage drop. 

(ii) MPC-I: Only the week-ahead average charging requests γ̃ is used for demand prediction. 
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(iii) MPC-II: Only (MINLP1) and Algorithm 1 are used to determine charging power. 

(iv) MPC-III: Following Jiang and Zhen 2019, only three power levels—7.2 kW, 3.6 kW, and 
0 kW—are provided for charging service. 

Table 1 shows the operating profit, solution time, and missing service of considered approaches in 
four scenarios. Because our method takes both TOU price and surplus PV power sales into account, 
it yields a higher profit than the greedy method. Even though R-MPC has slightly less profit than 
MPC-II in scenarios 1, 3, and 4, it successfully completes all charging tasks, whereas MPC-II 
misses service in scenarios 2 and 3. Moreover, because our method employs a one-step worst-case 
prediction and maximizes the charging power through (MINLP2), it is more robust than all other 
MPC schemes. Another observation is that the discrete charging level in MPC-III reduces 
scheduling flexibility and introduces more binary variables into the optimization, resulting in less 
profit and longer computational time. The comparisons among these methods are shown in the 
following section. 

Table 1. Profits ($)/Solving Time (Second)/Missing Service of Four Charging Methods 

Methods S1 Profit S2 Profit S3 Profit S4 Profit 

R-MPC 1579.4 1981.8 1561.4 1944.5 
 

Greedy 1542.6 1910.8 1539.0 1906.8 
 

MPC-I 1579.6 1953.8 1560.7 1944.9 
 

MPC-II 1586.5 1975.2 1563.7 1945.3 
 

MPC-III  1575.5 1891.0 1557.9 1932.1 
 

S1 Solving S2 Solving S3 Solving S4 Solving 
 

Time Time Time Time 
R-MPC 2.21 9.90 0.94 1.00 

 
Greedy 0 0 0 0 

 
MPC-I 1.63 2.87 0.36 0.78 

 
MPC-II 0.86 4.17 0.35 0.68 

 
MPC-III  220.98 694.05 103.88 151.28 

S1 Missing S2 Missing S3 Missing S4 Missing 
 

Service Service Service  Service 
R-MPC 0 0 0 0 

 
Greedy 0 0 0 0 

 
MPC-I 0 2 0 0 

 
MPC-II 0 2 3 0 

 
MPC-III  0 9 0 0 
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Scenario 1: Test 1, Price I, Greedy MPC vs. R-MPC 

Under Price I, the optimization-based scheduler prefers using grid power to charge EVs, and thus 
some charging tasks will be suspended until the accumulated power exceeds the solar power or 
allowable waiting time is used up. The charging profiles of the greedy method and R-MPC are 
shown in Figure 11. Their major difference occurs around time instants 30 to 42. Before time 
instant 32, R-MPC sells most solar power back to the grid and suspends non-urgent charging 
services. After h = 32, R-MPC generates several power peaks at h = 32, 37, 38, and 41 to meet 
time constraints or use more grid power. The greedy approach always maximizes the charging 
power and reaches its peak at h = 38. After time instant 64, the cost of electricity becomes much 
higher, and solar power decreases. The R-MPC arranges most of the charging work to time instant 
84, when the grid power cost returns to a low level. 

Figure 11. The Charging Profiles and Solar Power Generation (Scenario 1) 

 

Scenario 2: Test 2, Price I, MPC III vs. R-MPC 

MPC-III owns all R-MPC features but employs discrete charging levels. The resulting charging 
profiles are shown in Figure 12. Due to a large number of binary variables in its formula, MPC-
III has a hard time reaching the optimal solution and does not sufficiently maximize the charging 
power between time instants 30 and 40. Therefore, the parking lot is full at time instants 42, 53, 
61, and 62. The charging requests at those time instants have to be rejected. 
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Figure 12. The Charging Profiles and Solar Power Generation (Scenario 2) 

 

 
Scenario 3: Test 1, Price II, MPC II vs. R-MPC 

Both R-MPC and MPC-II prefer using solar power to charge EVs under Price II. The resulting 
charging profiles are shown in Figure 13. Both schemes rely on optimization to determine the 
charging power. However, R-MPC further solves (MINLP2) to maximize the charging power 
such that all charging services can be completed on time. As a result, R-MPC generates 180 kW 
on time instant 37, whereas MPC-II only yields 50 kW at the same time step. Due to the high 
grid power load at time instant 82, shown in Figure 2, station voltage drops, and EV charging 
power is restricted. Because R-MPC has already completed most charging tasks, such an 
unpredicted voltage drop does not impact its charging time. On the contrary, MPC-II has more 
unfinished tasks at time instant 82, and thus lowering its charging power misses the service 
deadline. 

Figure 13. The Charging Profiles and Solar Power Generation (Scenario 3) 
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Scenario 4: Test 2, Price II, MPC I vs. R-MPC  

The charging profiles of R-MPC and MPC-I are shown in Figure 14. They initially have the same 
charging power but diverge at time instants 36 and 37. The actual charging requests are 𝛾(36) =
3 and 𝛾(37) = 5. R-MPC employs the one-step worst case prediction �̅�(36) = 6 and �̅�(37) =
6, whereas MPC-I adopts the average prediction 𝛾$(36) = 3 and 𝛾$(37) = 3. Therefore, R-MPC 
yields higher power at h = 36 and h = 37 to complete existing tasks earlier such that more charging 
space can be vacated. 

Figure 14. The Charging Profiles and Solar Power Generation (Scenario 4) 

 

Finally, Figure 15 shows the voltage profile of all four scenarios using the proposed R-MPC and 
voltage recovery algorithm. The low voltage, near 0.95 p.u., happens between time instants 80 and 
90, when high power loads are introduced at different nodes. Moreover, a small charging peak can 
be found during that period because several charging tasks are due before time instant 90. R-MPC 
always maximizes charging power at each time instant without reducing the profit, and thus it has 
more margin to lower its charging power during the peak hour. 
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Figure 15. The Voltage Under Four Scenarios Based On R-MPC 

 

The lower limit is 0.95 p.u. 
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3. Sizing of Chargers, Solar Panels, and Batteries in the 
Design of EV Charging Stations 

This section is based on the paper submitted to the IEEE Transactions on Transportation 
Electrification in December 2022. In this section, an optimization-based sizing method coupled 
with charging policy design is proposed based on the data collected from an EV parking lot at the 
CSULB campus. This information, including charging energy demands, allowable waiting time, 
as well as solar power generation, is analyzed to develop different charging policies, such as model 
prediction control (MPC) and empirical rule under a certain infrastructure setting. MPC assumes 
that one-hour ahead solar power can be known accurately. Then, the operational revenue of a 
charging station is maximized repeatedly by optimizing the charging power of each EV through a 
receding horizon manner while the time-of-use (TOU) price and the battery storage energy 
system’s (BESS) charging/discharging are taken into account. An empirical rule is also proposed 
without using any forecast. Note that a charging demand peak happens after 4 p.m. due to class 
schedules, when solar power is insufficient, and grid power price is high. The battery that is 
charged during the daytime by solar power can discharge after 4 p.m. to avoid using grid power. 
Charging priority is determined by the required energy and allowable waiting time. Given the 
MPC or empirical rule, we can efficiently enumerate different design combinations to obtain their 
resulting yearly operational revenue. Finally, the 10-year total profit is calculated by counting 
operational revenue and infrastructure investment together to choose the optimal sizing of PV 
capacity, the number of chargers, and BESS capacity. 

Compared with existing works, our contributions are listed below: 

(i) A two-stage decision process is proposed with the first stage consisting of size sampling 
and the second stage of charging policy design. 

(ii) An MPC and an empirical rule are developed for EV charging schedules and compared. 
The team demonstrates that a well-designed empirical charging strategy is comparable 
with the MPC. 

(iii) A response surface methodology (RSM) scheme is employed to solve the 
non-differentiable optimization problem for the sizing of charger numbers, BESS capacity, 
and solar panel capacity. 

3.1 Problem Formulation 

A charging station at the CSULB campus with a PV power supply is studied. The number of N 
SAE J1772 type-I chargers are installed, each with maximum power 7.2 kW. A solar farm is built 
on-site with a power capacity denoted as P. A BESS is acquired with a usable energy capacity 
denoted as B. The price of BESS with different capacities is denoted as 𝛼< and is shown in Table 2. 
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The charging station primarily uses solar energy and its battery, with its power deficit being 
compensated by the grid. The TOU-EV-8 issued by the utility service provider SCE is applied. 
This tariff, denoted as 𝛼=  is particular to an EV charging station whose monthly maximum power
demand is between 20 kW and 500 kW, as shown in Table 3. 

Table 2. Battery Price for Various Capacities 

12 kWh 16 kWh 20 kWh 24 kWh 28 kWh 32 kWh 
$ 7,085 $ 9,185 $ 11,285 $ 13,385 $ 15,485 $ 17,580 
36 kWh 40 kWh 44 kWh 48 kWh 52 kWh 
$ 20,470 $ 22,570 $ 24,670 $ 26,770 $ 28,865 

Table 3. Grid Electricity Price 

Time Oct.–May Jun.–Sep. 

8 a.m.–4 p.m. 

4 p.m.–9 p.m. 
9 p.m.–8 a.m. 

0.10 $/kWh 

0.23 $/kWh 

0.12 $/kWh 

0.12 $/kWh 

0.28 $/kWh 

0.12 $/kWh 

The dataset from the California Solar Initiative (CSI) 15-minute interval power generation at 
Long Beach Airport is used to determine the solar energy profile. The commercial PV capacity 
factor in southern California is assumed to be 19.1%. The resulting solar power baseline has a 
similar shape as Figure 8. In addition, the charging data consisting of the requested time, duration, 
and energy of each service event on the CSULB campus during the entire year of 2019 is gathered 
for the simulation of the entire annual operation. 

3.2 Solution Method 

In this section, two charging strategies are developed by assuming the fixed values of N, B, and P. 
Once the most effective charging strategy is determined, the response surface methodology will be 
applied in Stage-I to optimize the infrastructure parameters of N, B, and P. It is worthwhile to 
note that the RSM-based design follows a reverse sequence (Stage-II first) to optimize the 
objective function and determine decision variables.  

For the charging strategy design, the decision sampling time Δ is specified as 15 minutes, which 
is the same as the solar power measurement time interval. To be precise, the charging requests are 
aggregated within a 15-minute interval. Then, the charging power for each EV is determined and 
renewed every 15 minutes. When an EV arrives at the station, its required energy and allowed 
charging time will be notified to the operator. The research team assumes that each EV will leave 
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the charging spot once the allowed waiting time is reached or the energy demand has been met. If 
all charging spots are occupied, then incoming charging requests will be ignored. 

Model Predictive Control based Charging 

MPC-based charging has been introduced in Section 3. Here, the BESS is further added into the 
formula. The research team found that the accurate prediction of future charging demands is a 
challenging task, and thereby only the on-spot EVs are considered in the MPC. It is also assumed 
that the voltage fluctuation can be compensated by the utility rather the charging station. The 
resulting MPC formula is solved at time instant h to maximize the H-step predicted revenue 
without considering the depreciation of materials at the charging station. Figure 16 shows the 
proposed scheme.  

Figure 16. Mixed-Integer Nonlinear Program 3 (MINLP3)  

 

Figure 17. Mixed-Integer Nonlinear Program 4 (MINLP4) 
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The discussions of MPC are presented in order. The objective function consists of three parts: 
charging fees, solar power sales to the grid, and power purchases from the grid. The battery’s stored 
energy cannot exceed its capacity. When the allowable charging time is shorter than the prediction 
horizon, MPC requires the charging to be finished on time. When the allowed charging time is 
longer than the prediction horizon, then the charging profile is determined by assuming a 
maximum power of 7.2 kW can be used out of the prediction horizon. The battery charging and 
discharging rate 𝑏(ℎ) is limited as 0.2 C-rate. Namely, the full charging or discharging time is 
5 hours. Ideally, a long prediction horizon in the MPC is preferred. However, solar power’s 
long-term forecast error and its increased computational demand prohibit us from further 
increasing H.  

After solving MINLP3, the charging power at the current time instant should be maximized 
because the incoming charging requests are not considered. The proposed MINLP4 is similar to 
MINLP2, but further minimizes battery charging/discharging fluctuations, as shown in Figure 17. 
Through this formula, the resulting charging policy will enable a parking lot to complete existing 
services earlier and accept more requests.  

Mathematical programs (MIMLP3) and (MINLP4) should be solved every 15 minutes with 
updated solar power and charging requests data to design the charging profiles for each on-spot 
EV. The incurred revenue at each time step is accumulated to obtain the true operational revenue 
R. Infrastructure parameters B and P explicitly impact the solution of MPC. Even though the 
number of charging spots N is not shown in (MINLP3) and (MINLP4), it determines whether 
incoming EVs can be accepted or not. The program’s complexity depends on the number of 
charging cars and resulting binary variables. The solution quality of MPC relies on the prediction 
accuracy of solar power generation which may be subject to substantial fluctuations. This drawback 
motivates us to develop a prediction-free scheme of the charging strategy. 

An Empirical Rule Method 

An empirical rule method is proposed in this subsection to schedule EV charging without using 
any prediction. First, note that the BESS can be charged using solar power without incurring any 
operational cost. When the grid power price becomes high, the BESS can provide power for EV 
charging to reduce the energy usage from the grid. Therefore, the rules of battery charging and 
discharging are: 

• The charging process of BESS starts from 6:00 a.m. and should be completed before 
4:00 p.m., denoted as TB. 

• After 4:00 p.m., the battery is used for EV charging with higher priority due to the rising 
price of grid power. 

• The energy in the BESS will never be sold to the grid. 
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The BESS charging period is determined based on the sunrise time and TOU price. Because 𝛼=  
is much higher after 4:00 p.m., it is more profitable to use battery-stored power. Similarly, because 
𝛼>  is much higher than 𝛼?, all BESS power will be stored for charging service rather than selling 
to the grid.  

At time instant h, the minimal charging power of an EV at spot l, denoted as 𝑥4 or battery 𝑏,	is 
defined as: 

𝑥4(ℎ) = 𝑚𝑖𝑛 i7.2,𝑚𝑎𝑥 j
𝜂4(ℎ)
Δ − 7.2(𝑇4(ℎ) − 1), 0kl 

𝑏(ℎ) = 𝑚𝑖𝑛 i0.2𝐵,𝑚𝑎𝑥 j
𝛽(ℎ)
Δ − 0.2𝐵(𝑇<(ℎ) − 1), 0kl 

where 𝛽(ℎ) is the available energy of battery at time instant h. From 6:00 a.m. to 2:00 p.m. on a 
weekday or 6:00 a.m. to 4:00 p.m. on weekends, the minimal power is supplied first through the 
PV, and the gap can be compensated by the grid. If extra solar energy is available, it should either 
be stored in the battery or used to charge EVs before anything else. If no EV or BESS needs power, 
then the surplus solar power can be sold back to the grid. 

• On weekdays between 6:00 a.m. and 2:00 p.m. or weekends between 6:00 a.m. and 
4:00 p.m., the charging power is initialized as its minimal value 𝑥4(ℎ)	or 𝑏(ℎ). 

• If 𝑝#(ℎ) > ∑ 𝑥4(ℎ)4∈@(:) + 𝑏(ℎ),	 then select an EV labeled as 𝑙∗  with the shortest 
allowable waiting time, denoted as 𝑇4∗(ℎ), whose charging power is 

𝑥4∗(ℎ) = 𝑚𝑎𝑥 i𝑚𝑖𝑛 i7.2, 𝑝#(ℎ) −G𝑥4(ℎ) − 𝑏(ℎ),
4A4∗

𝜂4∗(ℎ)/Δl , 𝑥4(ℎ)l 

• If BESS has the shortest allowable charging time and extra solar power is available, then 
there is 

𝑏(ℎ) = 𝑚𝑎𝑥 i𝑚𝑖𝑛 i0.2𝐵, 𝑝#(ℎ) −G𝑥4(ℎ),
4A4∗

𝛽(ℎ)/Δl , 𝑥4(ℎ)l 

Repeat the above process to enumerate EVs and the BESS until the solar power is used up. Here, 
the 𝜂4∗(ℎ)/Δ or 𝛽(ℎ)/Δ is embedded into the calculation to avoid overcharging. The charging 
load is initialized by the minimal required power and gradually increased to a full use of solar power. 

To avoid peak time charging on weekdays, the EVs should obtain as much energy as possible 
before 4 p.m. In addition, it is unnecessary to delay the charging load after 2:00 p.m. when solar 
energy generation starts decreasing. The resulting rule is 
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• On weekdays between 2:00 p.m. and 4:00 p.m., the charging power of EVs at spot l is 

𝑥4(ℎ) = 𝑚𝑖𝑛p7.2, 𝜂4(ℎ)/Δ𝑚𝑖𝑛{𝑇4(ℎ), 65 − ℎ}q 

𝑏(ℎ) = 𝑚𝑖𝑛{0.2𝐵, 𝛽(ℎ)/Δ(65 − ℎ)} 

The above rule for 𝑥4(ℎ) or 𝑏(ℎ) aims to complete charging service before 4 p.m., subject to a 
maximum power of 7.2 kW or 0.2 B.  

During peak hours, charging tasks should be kept at a minimum in order to shift the load to the 
off-peak time. In addition, non-grid power, including solar and battery power, is denoted as 
𝑝#$(ℎ) = 𝑝#(ℎ) + 𝑚𝑖𝑛{0.2𝐵, 𝛽(ℎ)/Δ	}. 

• Between 4:00 p.m. and 9:00 p.m., the charging power is initialized as its minimal value 
𝑥4(ℎ). 

• If 𝑝#$(ℎ) > ∑ 𝑥4(ℎ),4∈@(:) 	then select an EV labeled as 𝑙∗  with the shortest allowable 
charging time, denoted as 𝑇4∗(ℎ), whose charging power is 

𝑥4∗(ℎ) = 𝑚𝑎𝑥 i𝑚𝑖𝑛 i7.2, 𝑝#$(ℎ) −G𝑥4(ℎ)
4A4∗

, 𝜂4∗(ℎ)/Δl , 𝑥4∗(ℎ)l 

Repeat the above process until battery energy is used up or no charging is needed. 

• The battery discharge rate is  

𝑏(ℎ) = −𝑚𝑖𝑛 r
𝛽(ℎ)
Δ , 0.2𝐵,𝑚𝑎𝑥 i G 𝑥4(ℎ)

4∈@(:)

− 𝑝#(ℎ), 0ls 

At night, the charging power can be evenly distributed to each time instant due to flat grid 
electricity price 𝛼=(ℎ). However, if the desired departure time is later than sunrise, such tasks can 
be delayed in order to use solar energy. Let 𝑇4$denote the allowed charging time period after 
6:00 p.m. If the departure time of an EV at spot l is before 6:00 p.m., then 𝑇4$ = 0. 

• Between 9:00 p.m. and 6:00 a.m., the charging power of an EV at spot l is 

𝑥4(ℎ) = 𝑚𝑖𝑛 i7.2,𝑚𝑎𝑥 j0,
𝜂4(ℎ) − 7.2Δ𝑇4$

Δ𝑚𝑖𝑛{𝑇4(ℎ), 𝑇:→*}
kl 

where 𝑇:→* denotes the period from the current time instant to 6:00 a.m. 
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• Battery discharging between 9:00 p.m. and 6:00 a.m. is 

𝑏(ℎ) = −𝑚𝑖𝑛 i0.2𝐵,
𝛽(ℎ)
Δ , G 𝑥4(ℎ)

4∈@(:)

l 

Compared with MPC, the empirical rule approach does not rely on any predictor and optimization 
solver. Hence, it is more robust and quicker to make the charging decision. It is worthwhile to 
note that the pattern of solar power generation in southern California is relatively steady, and the 
daily charging peak time at our campus does not vary considerably due to the class schedule. The 
proposed charging strategy is thus implementable. 

Response Surface Methodology to Optimize Infrastructure  

In this subsection, the RSM is applied to optimize the infrastructure, including PV capacity P, 
battery capacity B, and the number of charging spots N. How these parameters influence the total 
profit is not described in previous sections analytically. Note that MPC relies on the receding 
horizon method to determine and modify operations on-the-fly and thereby cannot be used for 
long-term economic optimization. The empirical rule does not even have an optimization formula. 
RSM is a suitable tool to build an empirical relationship between infrastructure parameters and 
total profit, equal to operational revenue minus capital investment, through data fitting. Then, 
such an empirical model can be used for overall economic optimization. The algorithm flowchart 
of RSM is shown in Figure 18. 

The research team chooses the 3-factor BB design to explore the solution space, and thus only 13 
solutions need to be evaluated at each iteration. Three levels for B, N, and P are denoted as 𝐿<, 𝐿C, 
and 𝐿D, with possible values of -1, 0, and 1. The level distance depends on the variable range, 
denoted as 𝜆E, 𝜆C, and 𝜆D, respectively. As a result, the explored solution of BB design can be 
expressed as: 

𝐵 = 𝐵∗ + 𝐿<𝜆< , 𝑁 = 𝑁∗ + 𝐿C𝜆C , 𝑃 = 𝑃∗ + 𝐿D𝜆D 

where 𝐵∗, 𝑁∗, 𝑃∗ are the optimal solution in the previous iteration. 
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Figure 18. RSM Algorithm Flowchart 

 

In the evaluation step, the yearly operational revenue, denoted as ℛ, is obtained via the empirical 
rule method instead of MPC to avoid the MPC-incurred high computational demand. The capital 
investment includes charger, BESS, and PV panel. The Level 2 charger equipment and installation 
fee in a public site is $6,000 per plug. The HVL battery price 𝛼< for the U.S. market is shown in 
Table 1. The unit price of a commercial rooftop PV-panel is $1:56/WDC in the 2021 U.S. market, 
with a $17/kW maintenance cost per year (Ramasamy et al. 2021). Therefore, the 10-year total 
profit is: 
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ℋ(𝐵,𝑁, 𝑃) = 10ℛ − 𝛼<(𝐵) − 6000𝑁 − (1560 + 170)𝑃 
 
Here we assume that the BESS, charger, and PV-panel have at least a 10-year lifespan without 
any capacity reduction. 

Given the sampled factors and associated response, a quadratic surface function can be generated: 

ℋz(𝐵,𝑁, 𝑃) = 𝑐𝑜𝑛𝑠𝑡 + 𝑐<𝐵 +	𝑐C𝑁 + 𝑐D𝑃 + 𝑐<&𝐵& + 𝑐C&𝑁& + 𝑐D&𝑃& + 𝑐<C𝐵𝑁 + 𝑐<D𝐵𝑃
+ 𝑐DC𝑃𝑁 

 
where constants 𝐶<,𝐶C,𝐶D,𝐶<&, 𝐶C&, 𝐶D&, 𝐶<C , 𝐶<D , and	𝐶DC	are model coefficients to be identified 
through factor-response data. Then, a new solution can be searched on the surface function. Note 
that B, N, and P are all integer variables, and thus the resulting optimization is a mixed-integer 
quadratic program (MIQP), which can be solved to its global maximum via commercial solvers. If 
such a solution is not better than existing ones, then the surface function ℋz  can be updated for 
continued searching. If that solution is better than others or has been evaluated in previous 
iterations, then level distance is deducted, and the BB-design is conducted again around the 
existing optimal solution. The RSM terminates when the searching space shrinks to a small value. 

3.3 Simulation Study 

In this section, only the empirical rule is used in the RSM for infrastructure design because of its 
fast calculation. Yearly, solar power and charging request data is used to obtain the annual 
operation revenue. Once the optimal values of B, P, and N are determined, MPC is evaluated and 
compared with the empirical rule method. The optimization platform is GAMS 41.2.0, with 
solvers CPLEX and SCIP (Achterberg, 2009). Both CPLEX and SCIP termination conditions 
are specified as reaching a 0.1% relative gap or 200 seconds of wall-clock time. 

The initial feasible range of each design variable is shown below. However, if a better solution is 
found close to the boundary, then the searching area will be expanded. 

𝐵 ∈ [12,52] ∪ 0,𝑁 ∈ [14,44], 𝑃 ∈ [100,240]	 

Table 4 shows the initial 13 sampled BB-designs and associated 10-year total profits. The analysis 
of variance (ANOVA), including F-value and p-value, is attached to quantify the influence of 
three design parameters to the total profit. Note that the p-value of each factor is small or even 
zero, which implies that all three variables have significant influence on the profit and thus should 
be considered simultaneously. 
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Table 4. Initial 13 Sampled Designs 

H B P F 

195707.860 12 100 32 
 

74361.710 12 240 32 
 

186334.470 52 100 32 
 

65927.510 52 240 32 
 

185445.120 12 170 20 
 

75197.460 12 170 44 
 

175874.770 52 170 20 
 

67100.760 52 170 44 
 

226773.780 32 100 20 
 

128145.940 32 100 44 
 

119373.290 32 240 20 
 

3004.400 32 240 44 
 

140852.350 32 170 32 

F-value 5.38 921.4  779.92 

p-value 0.0459  0 0 

 
Figure 19 shows the profit of the evaluated designs in the RSM. The initial 13 designs distribute 
into a large design space, and thus the resulting profit fluctuates substantially. Once the quadratic 
surface is constructed, a better solution is found at the 14th sample. As the level distance is reduced, 
the sampling space shrinks, and the profit curve becomes smoother. The RSM terminates when 
the level distances of B and N has reached 1. The optimal solution is found at the 52nd sample. 

Figure 19. The Profit Evolution in RSM 
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Figure 20 shows the 3-dimensional (3D) design space and the profit in color. The high-profit 
region has more samples to reach the near-optimal design. It clearly shows that large PV-panel or 
BESS capacity reduces the overall profit because high capital investment prolongs the payback 
period. The optimal solution is shown in Table 5. Even though BESS can shift some of the solar 
power to peak hours after sunset and thus generate more revenue, the solver still prefers not to use 
BESS due to its high cost. For comparison, we also show the solution with minimum BESS 
capacity (12 kWh), which is less profitable. The number of charging spots is also not large enough, 
such that some charging requests are declined when the station is full. Even though this may lose 
some revenue, the capital cost is saved. 

Figure 20. The Evaluated Design and Associated 10-year Profit 

 

Besides the rule-based operation strategy, MPC with a prediction horizon H = 15 is executed to 
determine annual operations, given the sizing solution B, N, and P. The results are also shown in 
Table 5. It is not surprising to see that MPC takes a significantly longer time to compute the year-
long operation because it needs to solve (MINLP3) and (MINLP4) for each time instant. Due to 
real time optimization, MPC slightly outperforms the rule-based method regarding operational 
revenue and declined services when the battery is not used. However, the long solution time 
prohibits its application in the RSM. Increasing the relative gap can shorten the computational 
time, but the solution’s optimality cannot be guaranteed. In addition, when battery use is enforced, 
MPC needs to decide whether the battery or EV is charged based on the inaccurate prediction of 
solar power. This complexity makes the MPC take an even longer time and yield less revenue. On 
the contrary, the proposed rule-based method takes much less time because of its optimization-
free nature and achieves similar results without using a solar power prediction. Hence, the rule-
based method can be a more practical choice in RSM-based infrastructure sizing.  
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Table 5. Solution Profit, Time, and Declined Services 

Optimum (B: 0, P: 84, N: 19) Rule-based MPC-based 

P ($)  234429.99 240914.55 
 

Simulation Time (minutes) 9.8 772.5 
 

Declined Service 2100 1904 
Optimum w/ BESS (B: 12, P: 84, N: 19) Rule-based MPC-based 

P ($)  231855.86 213423.13 
 

Simulation Time (minutes) 11.9 3539.7 
 

Declined Service 2128 2490  

Figure 21 shows the sampled daily EV charging profiles using rule-based and MPC-based 
strategies. The rule-based method charges EVs by following the solar power profile in order to 
save cost, whereas the MPC method allows much higher charging power in order to complete 
existing services earlier and accept more charging requests. 

Figure 21. Charging profiles and Solar Power in a Sampled Day (B = 0, P = 84, N = 19) 

 

 
When a small-scale BESS (12 kWh) is deployed, the sampled daily battery charging/discharging 
profiles of MPC and rule-based approaches are shown in Figure 22. The rule-based method 
charges BESS before 4:00 p.m. and discharges it after 4:00 p.m. The MPC approach operates the 
BESS based on the optimization, which also charges the battery before 4:00 p.m. and discharges 
it at night. It is also worthwhile to note that the initial energy of BESS at that sampled day is non-
zero because a year-long simulation is conducted. 
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Figure 22. Battery Charging/Discharging Profiles in a Sampled Day (B = 12, P = 84, N = 19) 
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4. Summary & Conclusions  
In this project, the research team designed electric vehicle charging policy and station 
infrastructure optimization algorithms. Two charging strategies, including MPC and empirical 
rule-based methods, are proposed and compared. The MPC is based on solar power prediction 
and needs to solve an optimization problem twice to determine the optimal solution while reducing 
the number of declined services. A voltage recovery approach can be applied with MPC to mitigate 
the prediction error on the voltage through reactive power injection. The empirical rule is designed 
heuristically and is prediction-free. Then, the RSM is developed to search the optimal design 
parameters, including PV capacity, battery capacity, and charger number, for 10-year profit 
maximization solely based on the empirical rule. One-year charging requests with solar power 
generation data collected on the CSULB campus are used to evaluate the proposed methodology. 
The simulation results show that the empirical rule approach yields similar revenue compared with 
the MPC, but requires a substantially shorter solving time and is thus particularly suitable to the 
RSM. The ANOVA result shows that PV capacity, battery size, and charging number are all 
important factors that impact the 10-year revenue of the charging station. The RSM-based 
optimal design demonstrates that the expensive BESS may not be necessary for the charging 
station if surplus solar power can be sold back to the grid. The proposed methodology can be 
applied to any EV charging station update if the solar power generation and charging requests data 
is available. In the future, the prediction-based empirical rule and battery capacity degradation can 
be two possible research directions to improve the current study.  
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