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1. Introduction 
The durability of infrastructures is defined by their ability to exceed expected design life while 
maintaining the desired mechanical properties without loss of serviceability. Most concrete 
structures have an expected service life of around 50 years. Several factors may affect their 
durability, such as temperature and moisture, mechanical loads, concrete permeability, and 
cracking. Thus, finding a way to preserve and extend the service life of concrete structures is a key 
task in civil engineering.  

Cracking is the most common degradation phenomenon of concrete elements. Cracks may develop 
due to different causes, such as plastic shrinkage, expansion, settling, and overloading. Wide-open 
and widespread cracks increase the permeability of the concrete and facilitate the flow of potentially 
harmful liquids or gases. This may lead to degradation phenomena such as carbonatation, pitting, 
corrosion of the steel rebars, and so on. 

Therefore, it is essential to limit the crack's width and diffusion. Different manual repair methods 
were proposed, including filling the cracks with a variety of expansive materials such as epoxy 
resins, polyurethane-based polymers, and latex emulsions. However, manual repairs can only be 
applied to visible and accessible cracks, while micro-cracks would remain unrepaired.  

An innovative and relatively recent solution is self-healing (or self-repairing) concrete. Cracks may 
heal over time due to continued hydration of clinker minerals or carbonation of calcium hydroxide. 
Three self-healing general methods were studied so far: 

• Autogenous or natural self-healing. Different natural processes can partially repair concrete 
cracks such as: (i) formation of calcium carbonate or calcium hydroxide, (ii) impurities, (iii) 
hydration of the unreacted cement, and (iv) the expansion of hydrated cementitious matrix. 

• Stimulated autogenous healing. These methods are used when crack widths are constrained, 
stimulating continuous hydration or crystallization by providing a suitable addition such as 
mineral, crystalline admixtures, and superabsorbent polymers.  

• Autonomous self-healing. Depends on integrating engineering modifications of the concrete 
matrix. 

An innovative autonomous self-healing method using microbial activity has recently been 
introduced. Specific bacteria mixed with concrete have been seen to increase the effectiveness of 
self-healing. The bacteria are meant to activate and repair any damage without the need of manual 
intervention.6  
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Three main techniques have been studied for the optimization of microbially induced calcium 
carbonate precipitation (MICP), namely: (i) the direct method of incorporating the bacteria in the 
concrete mixture, (ii) encapsulation, and (iii) external application. The direct method is the most 
used and can significantly affect concrete strength.11 In this method, the bacteria are usually applied 
within a protective material, including supplements and water, in the cement mix.11,12,13 
Encapsulation is preferable in internal applications due to its resulting evenness and uniformity in 
the mixture, as well as guaranteed bacterial survival. Yet, a high rate of encapsulation could affect 
the compressive strength of the concrete.20 External application of self-healing microorganisms 
entails treating the concrete surface. This could be obtained by brushing or spraying the bacteria 
onto the surface after clearing loose particles and spraying a safe discharge medium.21 The spray 
application has proven successful on different materials while biodeposition treatments have 
displayed promising results on cement-based materials.21,22 

A positive impact on concrete’s mechanical performance was seen when using green waste-derived 
biochar in cementitious mixes.8,9 Wood waste biochar concrete has shown compressive strength of 
the same order as basic concrete.9 In similar studies, concrete with added wood and sludge waste 
demonstrated improved ultimate strength, suggesting that good mechanical behavior could be 
obtained for biochar produced by different types of waste whilst proposing safe, green, eco-
friendly, and low-cost admixtures.8,9,10  

Although several techniques have been applied, different features still need to be investigated such 
as bacterial persistence, water absorption, strength reduction, and cost effectiveness/production.19,20 
Also, proper nutrients need to be provided to the bacteria throughout the concrete’s lifespan (i.e., 
throughout the service life of the structure).14  

Furthermore, in a concrete element, cracks of different lengths, widths, depths, and locations can 
be detected, depending on different factors. Early-age cracks caused by drying and shrinkage are 
generally smaller than loading-induced ones. Consequently, the type and number of cracks to be 
healed need to be identified a priori. For retrofitting intervention involving self-healing 
mechanisms, early-age cracks appear to be the ideal candidates since the cracking period is 
predictable and the average crack widths are generally smaller when compared to tensile-induced 
ones.17,18  

This study evaluates the microbiological self-healing ability of Portland cement-based concrete at 
28 days of curing. High-alkaline-tolerant bacteria and calcite-precipitation microorganisms were 
used to retrofit lab-fractured concrete. Different types of bacteria were studied in this report, 
namely: 
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• Bacillus subtilis. Known also as the hay bacillus or grass bacillus, this is a gram-positive 
bacterium commonly found in soil and the gastrointestinal tract of ruminants, humans, and 
marine sponges. 

• Bacillus megaterium. A rod-shaped, gram-positive bacterium which is one of the largest 
eubacteria in soil. 

• Pseudomonas stutzeri. A gram-negative soil bacterium classified as bacillus, or rod-shaped. 

• Sporosarcina pasteurii. A gram-positive bacterium with the ability to precipitate calcite and 
solidify sand given a calcium source and urea. 

The different concrete samples healed with each of these bacteria groups were cast and tested 
under compressive load up to failure. The compressive strengths obtained for the healed samples 
were compared to the results obtained on non-healed samples. This was done to investigate the 
self-healing capacity of each of the four types of bacteria.   
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2. Methodology 
This project consists of three key components:  

i. Bacteria. As said, this study compared the healing potential of several types of bacteria. 
In particular, four bacteria genera were used: (i) Bacillus subtilis (B-14596), (ii) Bacillus 
megaterium (B-350), (iii) Pseudomonas stutzeri (B-2461), and (iv) Sporosarcina 
pasteurii.24 Each bacteria group was grown via broth culture. Following the instructions 
provided by the Agricultural Research Service Culture Collection (ARS) at the North 
Regional Research Laboratory (NRRL), B. subtilis, B. megaterium, and P. stutzeri were 
grown in Tryptone-Yeast-Glucose broth (TYG broth), while S. pasteurii was grown in 
Ammonium-Yeast broth (NH4-YE broth) as instructed by the American Type 
Culture Collection (ATCC).23,24 

ii. Biochar. The biomass within the biochar acts as an immobilizer for the bacteria. This 
enhances the bacteria’s healing efficiency.27 In this study, food waste was used as 
biomass. The food waste included meat, butter, bread, rice, fruits, and salad. Starting 
from the data proposed in different research studies (see Figure 1) we aimed to 
replicate, at a smaller scale, the different food types of municipal wastes.26 Thus, this 
study proposes an eco-friendly and low-impact method to recycle a large amount of a 
common type of waste. 

iii. Concrete samples. Concrete samples were tested under pure compression. A test protocol 
was designed to investigate the effects of bio-healing on the mechanical properties of 
the samples and to compare this response against that of samples without bio-healing.  

The detailed descriptions of these three components are given in the following subsections.  

2.1 Bacterial Media and Growth Conditions 

Description of the cultures and their growth condition 

B. subtilis (B-14596), B. megaterium (B-350), and P. stutzeri (B-2461) were provided by the 
Agricultural Research Service Culture Collection (ARS) at the North Regional Research 
Laboratory (NRRL) and were grown in the recommended TYG media, which includes 2 grams 
of Tryptone, 5 grams of yeast extract, 1 gram of dipotassium phosphate, and 1 gram of glucose 
within 1 L of deionized water. The TYG broth was subsequently autoclaved prior to downstream 
culturing.23 S. pasteurii was obtained from the American Type Culture Collection (ATCC) and 
was grown in the suggested Ammonium-Yeast (NH4-YE) broth, which was composed of 10 
grams of ammonium sulfate, 20 grams of yeast extract, and 0.13 mol/L of 
Tris(hydroxymethyl)aminomethane (tris) buffer at pH 9.0 in 1 L of final volume.24 Each 



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  5 

ingredient was separately sterilized by autoclaving prior to mixing. Table 1 displays the 
composition of TYG and NH4-YE media. 

Figure 1. Box and Whisker Plot of Percentage of Food Wasted by Group in  
Municipal Solid Wastes.26 
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Table 1. Compositions of the two Broth Cultures Used For Bacteria Growth 

Tryptone-Yeast-Glucose broth (1 L) Ammonium-Yeast broth (1 L) 

Tryptone (2 g) Ammonium sulfate (10 g) 

Yeast extract (5 g) Yeast extract (20 g) 

Dipotassium phosphate (1 g) Tris buffer (0.13 M) 

Glucose (1 g)  

 
Culture procedures and measurement 

A sterilized pipette was used to transfer 35 mL of autoclaved broth into a 50 mL conical tube in a 
sterilized work environment. B. subtilis, B. megaterium, and P. stutzeri were transferred into tubes 
filled with TYG broth, while S. pasteurii was transferred into tubes of NH4-YE broth using a 
sterilized inoculating loop. All types of bacteria grew aerobically at 28°C in an orbital incubator 
shaker for 24 hours or until growth was observed. The control TYG and NH4-YE broths without 
bacterial cultures were also placed in the incubator for contamination verification. 

A spectrophotometer was used to measure the optical density at 600 nm (O.D.600) of the bacterial 
growth to confirm the growth of the bacteria in each vial. The O.D.600 of 1 was maintained to 
standardize each bacterial cell number at each concrete manufacturer batch. 

2.2 Biochar 

Biochar is charcoal made from biomass. In this study, the biomass was provided by food waste. 
For this research, food near the expiration date was bought and transformed into charcoal as it was 
not possible to obtain food waste from the municipality. Nevertheless, the food for the biochar was 
mixed following the composition described in Figure 1. For the study, 20 L of biochar was 
produced. The food was cut up into pieces and put into a dehydrator to remove all moisture. After 
at least 24 hours, the food was removed from the dehydrator and checked to see if all moisture had 
been removed. 

The dried food was then wrapped in aluminum foil and placed into a furnace at 300°C for 1 hour. 
Through this process, the food waste undergoes pyrolysis and turns into biochar. Finally, the 
resulting biochar was mixed in a large container. 
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2.3 Concrete 

Description of the concrete samples 

The manufacturing of the concrete samples is herein described. To manufacture the samples, the 
90-lb (40.8 kg) QUIKRETE® ready-to-use concrete mix was used. This is a pre-blended mixture 
of cement and aggregates for general structural uses, requiring only the addition of water. The 
concrete was mixed in a Portable Concrete Mixer, with a 5 cu. ft. (0.14 m3) drum capacity, paired 
with a 1/2 HP motor, and a tilting/pivoting drum. As per the manufacturers’ recommendations, 
3.96 L of water was gradually added to the concrete mix, which was mixed for 5 minutes. More 
specifically, the first half of the water was poured in at the beginning of the process, and the 
remaining portion was poured halfway through the mixing process.  

For samples C1 to C11, biochar was added with the water, during the mixing of the samples. The 
volume of the biochar was 5% of that of the wet concrete. 

The concrete mixture was cast into 4" x 8" cylinder molds (101.6 mm x 203.2 mm) to obtain 
samples of the required dimensions. The ASTM C31 – Making and Curing Concrete Test 
Specimens in the Field procedures were employed for this scope.25  

Following ASTM C511 requirements, after an initial curing, all the concrete samples were 
positioned in curing tanks filled with water saturated with calcium hydroxide. All the tanks were 
located inside a curing room with a temperature within the 73.5°F, +/- 3.5°F range. During the 
initial curing, the cylinders were stored in a curing room and were not exposed to sunlight or 
heating for 48 hours. For all samples, curing in water lasted 28 days.  

A total of 77 samples were manufactured and tested (see Table 2). The samples were subdivided 
into 7 sets of 11 samples each: 

Set A, Concrete samples to failure, samples A1 to A11. This is the control set and consists of concrete 
samples tested up to failure after 56 days of curing. No self-healing procedures were applied to this 
set. 

Set B, No self-healing, samples B1 to B11. These concrete samples are cracked after 28 days of 
curing and are tested to failure after an additional 28 days. These samples were not sprayed with 
bacteria after cracking (no self-healing) and have been used to investigate the influence of cracking 
on the ultimate response of concrete. 
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Set C, Self-healing with biochar (no bacteria), samples C1 to C11. The samples of this set are cracked 
after 28 days of curing and tested to failure after an additional 28 days. Biochar was added to 
concrete during the mixing of the samples. The volume of biochar was 5% of that of wet concrete. 
After cracking, these samples were not treated with bacteria. 

Set D, Self-healing with B. subtilis, samples D1 to D11. This set of samples is cracked after 28 days 
of curing and tested to failure after an additional 28 days; the samples were treated with B. subtilis 
after cracking. 

Set E, Self-healing with B. megaterium, samples E1 to E11. This set of samples is cracked after 28 
days of curing and tested to failure after an additional 28 days; the samples were treated with B. 
megaterium after cracking. 

Set F, Self-healing with P. stutzeri, samples to F1 to F11. This set of samples is cracked after 28 
days of curing and tested to failure after an additional 28 days; the samples were treated with P. 
stutzeri after cracking. 

Set G, Self-healing with S. pasteurii, samples G1 to G11. This set of samples is cracked after 28 
days of curing and tested to failure after an additional 28 days; the samples were treated with S. 
pasteurii applied after cracking. 

 
Table 2. Description of the Samples Manufactured for this Study 

Set Name Sample  
Names Cracking at 28 days 

Self  
healing  

protocol 

Concrete samples to failure A1 to A11 Not 
implemented 

Not 
implemented 

No self-healing B1 to B11 Not 
implemented 

Not 
implemented 

Self-healing with biochar  
(no bacteria) C1 to C11 implemented Just biochar 

Self-healing with B. subtilis D1 to D11 implemented implemented 
Self-healing with B.  

megaterium E1 to E11 implemented implemented 

Self-healing with P.  
stutzeri F1 to F11 implemented implemented 

Self-healing with S.  
pasteurii G1 to G11 implemented implemented 
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Testing procedures 

After curing, concrete samples were ready to be tested. Compression tests were performed at the 
College of Engineering of the California State University, Long Beach, using the Humboldt 
HCM-500-iHA Compression Testing machine (Figure 2a). This machine can apply a maximum 
vertical force of 2,224 kN, while the maximum piston stroke is equal to 63.5 mm. Figure 2b depicts 
concrete samples after being cracked.  

The protocols used for the compression tests are described as follows.  

Test protocol to determine the compressive strength of concrete 

The testing procedure described in ASTM C39 was used to determine the compressive strength 
of concrete.29 The curing time for each sample was 56 days. Sample Sets B to G were cracked after 
28 days of curing before testing them to failure. The procedure used to create cracks in the samples 
is described below.  

Test protocol to crack concrete samples (cracking at 28 days) 

After an initial curing of 28 days, the samples of Sets C, D, E, F, and G were tested up to a 
compressive load equal to 75% of the average compressive strength of the samples of Set A. For 
this scope, the same loading rate used to determine the compressive strength of concrete was 
adopted up to 15.9 MPa, to then unload the samples. It is worth mentioning that while this testing 
protocol is sufficient to induce cracks in the samples, the pattern, width, and extension of these 
cracks will vary between samples. The procedure was deemed valid for the scope of this work as it 
allows for the rapid creation of cracks that would correspond to those present in highly strained 
concrete elements.  

Test Protocol for self-healing 

Immediately after cracking, the samples of Sets D, E, F, and G were set aside in a different non-
leak tray. The samples were then poured with 50 mL of solution (Table 2): 

Set D: Bacillus subtilis. 

Set E: Bacillus megaterium. 

Set F: Pseudomonas stutzeri. 

Set G: Sporosarcina pasteurii. 
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These samples were then covered using a cling film and placed on a shelf in a curing room. The 
bacteria were three times: the first time after 24 hours from cracking, the second time after 48 
hours from cracking, and the third time 72 hours after cracking, each time using 50 ml of the broth 
cultures described in Table 1. 

 
Figure 2. (a) Humboldt HCM-500-iHA Compression Tester of the California State University 

Long Beach, (b) Concrete Samples after Cracking Test 

(a) (b) 
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3. Results 
3.1 Average Compressive Strengths 

The average compressive strength was assumed as a key parameter of the experimental tests. The 
average compressive strengths of the concrete samples of each set are shown in Figure 3. In this 

figure,  indicates the compressive strength of the variable Set X, with X varying from A to 
G.  

As can be seen, the average compressive strength of the samples with no pre-cracking and self-

healing (i.e., ) was equal to 21.2 MPa. This value was assumed as the reference strength for 

the remaining sets. In Figure 3,  is compared with each  using green or red arrows, to 
indicate an increase or a decrease, respectively of the average compressive strength of the generic 
set.  

Loading the concrete samples up to 75% of , unloading, and then reloading up to failure, 

reduces the average compressive strength of the set ( ) to 18.9 MPa (red arrow). Results on 
this set of samples’ compressive strength demonstrated how cracking plays a key role in reducing 
the capacity of the concrete samples. As compressive strength is the most relevant property of the 
concrete, methods to prevent degradation of this parameter, such as the self-healing proposed in 
this study, are of great interest.  

Set C samples are cracked after 28 days of curing and tested to failure after an additional 28 days. 

The average compressive strength of this set of specimens ( ) was equal to 12.0 MPa. This is 
the lowest value among all this study’s sets of samples. As a result, biochar alone was found to have 
no healing properties on cracked concrete specimens. 

Bacterial self-healing was applied to the last four sets, i.e., Sets D, E, F, and G. The average 

compressive strengths of these sets were found to be 22.5 MPa ( ), 15.6 MPa ( ), 21.7 

MPa ( ), and 24.0 MPa ( ), respectively.  

In Figure 3, the generic set’s average compressive strength is compared to that of the control set 

(i.e., ). In this figure, the percentage increments ( , green markers) 

or reductions ( , red markers) obtained for the different sets are also shown and 
plotted on a secondary vertical axis.  
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From Set C to Set G, three out of four treatments with bacteria contributed to incrementing the 
average compressive strength of the concrete samples: (i) self-healing with Bacillus subtilis (Set D), 
(ii) with Pseudomonas stutzeri (Set F), and (iii) with Sporosarcina pasteurii (Set G), corresponding 
to +6.11%, +2.49%, and +13.5% of the strength of Set A, respectively. These results are 
encouraging, demonstrating how these low-cost and eco-friendly treatments can be a valid method 
to improve the mechanical properties of the concrete. 

For the remaining sets, the average compressive strength reduces compared to the control set with 
a -43.1% reduction in Set C and -26.2% in Set E. 

 
Figure 3. Average Compressive Strengths of the Different Set 
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Figure 4. Percentage Variation of the Average Compressive Strengths of the Generic Set,  
Relative to Set A 

 

3.2 Variation of the Average Compressive Strengths  

Figure 5 shows the average compressive strengths of the different sets with the corresponding 
standard deviations, calculated as: 

 

In Figure 5, the green and the red markers show how the generic  may be increased or 
decreased with respect to Set A. The numerical values of these quantities are also reported in the 
same figure.  

The standard deviations of Sets B, C, D, E, F, and G were found to be equal to: 7.53 MPa, 3.62 
MPa, 10.1 MPa, 8.32 MPa, 7.40 MPa, and 9.54 MPa, respectively.  

Comparing the maximum values of compressive strengths (green markers of Figure 5) of Sets D 

( ),E ( ),F ( ), and G ( ) with , shows how all the self-healing treatments 
can increase the average compressive strength of the control samples. However, larger standard 
deviation values were obtained for these sets compared as to Set A. 
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Figure 6 shows the coefficient of variation (c.o.v.) of each set of tested samples, obtained as: 

  

As can be seen, for samples treated with bacteria a minimum dispersion of the order of 30% is 
obtained for the sets. This dispersion may depend on the crack patterns of the concrete samples. 
As each specimen was cracked, treated, and then tested up to failure, the first loading protocol 
causes non-uniform cracks in the different specimens that have an impact on the mechanical 
properties of the samples and the effectiveness of the self-healing treatments. In future research, 
the variability induced by the cracking protocol should be addressed. To obtain uniform responses, 
independent of the failure mode of the specimen, it is necessary to control the cracks’ formation 
upstream. A simple method could consist of using plastic or metallic inserts embedded inside the 
cylinder samples prior to casting. These shims could be removed after curing and would allow to 
test samples with same crack width, pattern, and dimensions.  

Regarding the average compressive strength, the following efficacy parameter can be used to 
estimate the effectiveness of the treatment: 

 

This parameter simultaneously considers the increase in compressive strength due to the self-

healing treatment and the dispersion obtained for each set. Thus, larger values of  correspond 
to more effective treatments, while negative values represent treatments that produce no 

improvements. The values of  are shown in Table 3, where a summary of the main parameters 
discussed so far are also reported. As can be seen, self-healing with Sporosarcina pasteurii (Set G) 
appears to be the most effective treatment.  

 

  

* Set X
Set X Set X

cmf
s

s =

/ 1Set X Set A
cm cm

Set X
Set X

ffy
s

-
=

Set Xy

Set Xy



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  15 

Figure 5. Average Compressive Strengths of the Different Sets with Standard Deviations 

 

 
Figure 6. Coefficient of Variation off Each Set 
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3.3 Elastic, Ultimate Response, and Ductility 

The elastic limits of the concrete samples are herein calculated according to Fib Model Code, 
where the Serviceability Limit State (SLS) is identified within a compressive stress as

.28 Figure 7 shows the average values of these limits for each set, with the 

corresponding elastic compressive strain  (gray markers). In the same figure, the average 

values of the peak ( , black markers) and ultimate ( , red markers) 
compressive stresses—strains are plotted for a direct comparison. 

Table 3. Summary of the Main Parameter Related to the Average Compressive Strengths 

Set  [MPa]  [Mpa] C.O.V. [%]  [%]   

A 21.2 3.61 17.1% 0.0% 0.000 
B 18.9 7.53 39.8% -10.59% -0.014 
C 12.0 3.62 30.1% -43.1% -0.119 
D 22.5 10.08 44.8% 6.11% 0.006 
E 15.6 8.32 53.2% -26.2% -0.031 
F 21.7 7.40 34.1% 2.49% 0.003 
G 24.0 9.54 39.7% 13.5% 0.014 

 

Starting from the values at the elastic limit and at the peak, the reduced modulus of elasticity 

 and the modulus of elasticity  can also be calculated.28 
These values are plotted in Figure 8. 

As expected, being loaded up to first cracking and then reloaded up to failure, the samples of Sets 
from B to G show greater vertical deformations compared to the control Set A (Figure 7). As a 
result, decreasing values of the elastic moduli of the same sets were also obtained (Figure 8). 

As Section 3.2 shows, treatments with Bacillus subtilis (Set D), with Pseudomonas stutzeri (Set F), 
and with Sporosarcina pasteurii (Set G), increase the average compressive strength; the same 
treatments increase the limit elastic stress as well (Figure 7, gray markers). As for the ultimate 
responses, all sets return values of the stresses lower than Set A, but larger than the ultimate 
compressive strains (Figure 7, red markers). The ultimate compressive strain, a key parameter in 
building materials as it is related to ductility, is defined as: 
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The average values of the ductility are shown in Figure 9 for each set. In this figure, green markers 
represent sets of samples with average ductility greater than Set A, while red markers stand for 
reductions in ductility compared to Set A. The percentage increases/decreases of the ductility of 
the generic set compared to the control set are plotted in Figure 9 in the secondary axis. As shown, 
self-healing with Bacillus subtilis (Set D) and with Sporosarcina pasteurii (Set G) led to large 
increases of the average ductility of the concrete samples, equals to +25.8% and +49.6%, 
respectively; for the remaining self-healing treatments, slight reductions of the same parameter are 
obtained, corresponding to -2.85% for Set E and -3.04% for Set F. 

 
Figure 7. Elastic, Peak, and Ultimate Stresses Vs. Strain of the Concrete Samples 

 

Combining the results obtained in Section 3.1 on the average compressive strengths with the 
results of this section on the concrete’s ductility, the best self-healing procedure appears to be the 
one with Sporosarcina pasteurii. For this set of samples, a significant increase in ductility and a good 
improvement of the compressive strength were obtained. 
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Figure 8. Moduli of Elasticity of the Different Sets 

 

 
Figure 9. Average Ductility Values of the Concrete Sets 
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4. Conclusions 
Durability of concrete structures is a significant topic in civil engineering. A significant research 
effort has been focused on the degradation phenomena of concrete, highlighting how these 
phenomena are significantly dictated by cracking of the material. The need to extend the durability 
of concrete infrastructures led to the development of several methods for improving the mechanical 
properties of cracked concrete. 

This research work studied a low-cost and eco-friendly method to improve the durability of 
concrete using self-healing bacteria. Experimental compression tests were conducted on 7 sets of 
11 concrete samples. The first two sets included samples with no treatments and were used as 
control samples; the remaining sets consisted of concrete samples treated with:  

• Biochar (and no bacteria) 

• Bacillus subtilis. 

• Bacillus megaterium. 

• Pseudomonas stutzeri. 

• Sporosarcina pasteurii 

The average compressive strength of each set was measured. The strength of the samples subjected 
to the self-healing procedures were compared to the compressive strength of the control set. 
Results showed how self-healing procedures with Bacillus subtilis, Pseudomonas stutzeri, and with 
Sporosarcina pasteurii increased the average compressive strength of the concrete samples, while the 
remaining self-healing procedure with Bacillus megaterium did not prove effective in increasing the 
mechanical properties of the material.  

The standard deviation and the coefficient of variation of the compressive strengths were also 
reported for each tested set. These parameters showed how a slight dispersion resulted in 
computing the compressive strength of the single sample of the generic set as a result of the 
different failure modes observed during the experimental tests.  

Finally, a discussion on the elastic and ultimate responses, as well as on the ductility of the concrete 
sets, was reported, showing how all the self-healing treatments increase the ultimate compressive 
strain of the samples, reducing the elastic moduli at the same time. The ductility of the concrete 
appeared to be improved by self-healing with Bacillus megaterium and Sporosarcina pasteurii, while 
Bacillus subtilis and Sporosarcina pasteurii played a minor role on this parameter. 
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The results of this work can contribute to the diffusion of sustainable concrete structures with the 
ability to fix its cracks autogenously or autonomously.  
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Transportation Authority (LA Metro)

Ian Jefferies*
President & CEO
Association of American Railroads

Diane Woodend Jones 
Principal & Chair of Board
Lea + Elliott, Inc.

Therese McMillan 
Retired Executive Director
Metropolitan Transportation 
Commission (MTC)

Abbas Mohaddes 
CEO
Econolite Group Inc.

Stephen Morrissey
Vice President – Regulatory and 
Policy 
United Airlines

Toks Omishakin*
Secretary
California State Transportation 
Agency (CALSTA) 

Marco Pagani, PhD*
Interim Dean
Lucas College and 
Graduate School of Business
San José State University

April Rai 
President & CEO
Conference of Minority 
Transportation Officials (COMTO)

Greg Regan* 
President
Transportation Trades Department, 
AFL-CIO

Paul Skoutelas*
President & CEO
American Public Transportation 
Association (APTA)

Kimberly Slaughter
CEO
Systra USA

Tony Tavares*
Director
California Department of 
Transportation (Caltrans)

Jim Tymon*
Executive Director
American Association of 
State Highway and Transportation 
Officials (AASHTO)

* = Ex-Officio
** = Past Chair, Board of Trustees
*** = Deceased

Karen Philbrick, PhD
Executive Director

Hilary Nixon, PhD
Deputy Executive Director

Asha Weinstein Agrawal, PhD
Education Director
National Transportation Finance 
Center Director

Brian Michael Jenkins
National Transportation Security 
Center Director

Directors




