
AI-Based Bridge and Road Inspection Framework Using Drones

Dr. Hovannes Kulhandjian

C S U  T R A N S P O R T A T I O N  C O N S O R T I U M

 

Project 2226         November 2023

transweb.sjsu.edu/csutc

transweb.sjsu.edu/csutc


MINETA TRANSPORTATION INSTITUTE

Founded in 1991, the Mineta Transportation Institute (MTI), an organized research and training unit in partnership with the Lucas 
College and Graduate School of Business at San José State University (SJSU), increases mobility for all by improving the safety, 
efficiency, accessibility, and convenience of our nation’s transportation system. Through research, education, workforce development, 
and technology transfer, we help create a connected world. MTI leads the Mineta Consortium for Transportation Mobility (MCTM) 
and the Mineta Consortium for Equitable, Efficient, and Sustainable Transportation (MCEEST) funded by the U.S. Department 
of Transportation, the California State University Transportation Consortium (CSUTC) funded by the State of California 
through Senate Bill 1 and the Climate Change and Extreme Events Training and Research (CCEETR) Program funded by the 
Federal Railroad Administration. MTI focuses on three primary responsibilities:

Research
MTI conducts multi-disciplinary research focused on surface 
transportation that contributes to effective decision making. 
Research areas include: active transportation; planning and policy; 
security and counterterrorism; sustainable transportation and 
land use; transit and passenger rail; transportation engineering; 
transportation finance; transportation technology; and 
workforce and labor. MTI research publications undergo expert 
peer review to ensure the quality of the research.

Education and Workforce Development
To ensure the efficient movement of people and products, we 
must prepare a new cohort of transportation professionals 
who are ready to lead a more diverse, inclusive, and equitable 
transportation industry. To help achieve this, MTI sponsors a suite 
of workforce development and education opportunities. The 
Institute supports educational programs offered by the Lucas 
Graduate School of Business: a Master of Science in Transportation 
Management, plus graduate certificates that include High-Speed 
and Intercity Rail Management and Transportation Security 
Management. These flexible programs offer live online classes 
so that working transportation professionals can pursue an 
advanced degree regardless of their location. 

Information and Technology Transfer
MTI utilizes a diverse array of dissemination methods and 
media to ensure research results reach those responsible 
for managing change. These methods include publication, 
seminars, workshops, websites, social media, webinars, 
and other technology transfer mechanisms. Additionally, 
MTI promotes the availability of completed research to 
professional organizations and works to integrate the 
research findings into the graduate education program. 
MTI’s extensive collection of transportation-related 
publications is integrated into San José State University’s 
world-class Martin Luther King, Jr. Library.

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the information presented herein. 
This document is disseminated in the interest of information exchange. MTI’s research is funded, partially or entirely, by grants from the U.S. 
Department of Transportation, the U.S. Department of Homeland Security, the California Department of Transportation, and the California 
State University Office of the Chancellor, whom assume no liability for the contents or use thereof. This report does not constitute a standard 
specification, design standard, or regulation.

Disclaimer

MTI FOUNDER
Hon. Norman Y. Mineta

MTI BOARD OF TRUSTEES

Founder, Honorable
Norman Mineta***
Secretary (ret.),
US Department of Transportation

Chair, 
Jeff Morales
Managing Principal
InfraStrategies, LLC

Vice Chair,
Donna DeMartino
Retired Transportation Executive

Executive Director, 
Karen Philbrick, PhD*
Mineta Transportation Institute
San José State University

Rashidi Barnes
CEO
Tri Delta Transit

David Castagnetti
Partner
Dentons Global Advisors

Maria Cino
Vice President
America & U.S. Government 
Relations Hewlett-Packard Enterprise

Grace Crunican** 
Owner
Crunican LLC

John Flaherty
Senior Fellow
Silicon Valley American 
Leadership Form

Stephen J. Gardner*
President & CEO
Amtrak

Ian Jefferies*
President & CEO
Association of American Railroads

Diane Woodend Jones 
Principal & Chair of Board
Lea + Elliott, Inc.

Rangapriya (Priya) Kannan, 
PhD*
Dean
Lucas College and 
Graduate School of Business
San José State University

Will Kempton**
Retired Transportation Executive 

David S. Kim
Senior Vice President
Principal, National Transportation 
Policy and Multimodal Strategy
WSP

Therese McMillan 
Retired Executive Director
Metropolitan Transportation 
Commission (MTC)

Abbas Mohaddes 
CEO
Econolite Group Inc.

Stephen Morrissey
Vice President – Regulatory and 
Policy 
United Airlines

Toks Omishakin*
Secretary
California State Transportation 
Agency (CALSTA) 

April Rai 
President & CEO
Conference of Minority 
Transportation Officials (COMTO)

Greg Regan* 
President
Transportation Trades Department, 
AFL-CIO

Rodney Slater
Partner 
Squire Patton Boggs

Paul Skoutelas*
President & CEO
American Public Transportation 
Association (APTA)

Kimberly Slaughter
CEO
Systra USA

Tony Tavares*
Director
California Department of 
Transportation (Caltrans)

Jim Tymon*
Executive Director
American Association of 
State Highway and Transportation 
Officials (AASHTO)

Josue Vaglienty
Senior Program Manager
Orange County Transportation 
Authority (OCTA)

* = Ex-Officio
** = Past Chair, Board of Trustees
*** = Deceased

Karen Philbrick, PhD
Executive Director

Hilary Nixon, PhD
Deputy Executive Director

Asha Weinstein Agrawal, PhD
Education Director
National Transportation Finance 
Center Director

Brian Michael Jenkins
National Transportation Security 
Center Director

Directors

https://transweb.sjsu.edu/mctm
https://transweb.sjsu.edu/mceest
https://transweb.sjsu.edu/csutc


 

Report 23-28 

 

 

 

AI-Based Bridge and Road Inspection 
Framework Using Drones 

 

 

 

Dr. Hovannes Kulhandjian 

 

 

November 2023 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A publication of the 
Mineta Transportation Institute 
Created by Congress in 1991 
 
College of Business 
San José State University 
San José, CA 95192-0219 

  



TECHNICAL REPORT  
DOCUMENTATION PAGE 

1. Report No. 
23-28

2. Government Accession No. 3. Recipient’s Catalog No. 

4. Title and Subtitle 
AI-Based Bridge and Road Inspection Framework Using Drones

5. Report Date 
November 2023

6. Performing Organization Code 

7. Authors
Hovannes Kulhandjian, PhD https://orcid.org/0000-0002-8983-6757

8. Performing Organization Report 
CA-MTI-2226

9. Performing Organization Name and Address 
Mineta Transportation Institute
College of Business
San José State University
San José, CA 95192-0219

10. Work Unit No. 

11. Contract or Grant No. 
ZSB12017-SJAUX 

12. Sponsoring Agency Name and Address 
State of California SB1 2017/2018
Trustees of the California State University
Sponsored Programs Administration
401 Golden Shore, 5th Floor
Long Beach, CA 90802

13. Type of Report and Period Covered 

14. Sponsoring Agency Code 

15. Supplemental Notes 
DOI: 10.31979/mti.2023.2226

16. Abstract 
There are over 590,000 bridges dispersed across the roadway network that stretches across the United States alone. Each
bridge with a length of 20 feet or greater must be inspected at least once every 24 months, according to the Federal Highway
Act (FHWA) of 1968. This research developed an artificial intelligence (AI)-based framework for bridge and road inspection
using drones with multiple sensors collecting capabilities. It is not sufficient to conduct inspections of bridges and roads
using cameras alone, so the research team utilized an infrared (IR) camera along with a high-resolution optical camera. In
many instances, the IR camera can provide more details to the interior structural damages of a bridge or a road surface than
an optical camera, which is more suitable for inspecting damages on the surface of a bridge or a road. In addition, the drone
inspection system is equipped with a minicomputer that runs Machine Learning algorithms. These algorithms enable
autonomous drone navigation, image capture of the bridge or road structure, and analysis of the images. Whenever any
damage is detected, the location coordinates are saved. Thus, the drone can self-operate and carry out the inspection process
using advanced AI algorithms developed by the research team. The experimental results reveal the system can detect potholes
with an average accuracy of 84.62% using the visible light camera and 95.12% using a thermal camera. This developed bridge
and road inspection framework can save time, money, and lives by automating and having drones conduct major inspection
operations in place of humans.

17. Key Words 
Bridge inspection, Road inspection,
Applied machine learning,
Autonomous navigation, Drones

18. Distribution Statement 
No restrictions. This document is available to the public through The National
Technical Information Service, Springfield, VA 22161.

19. Security Classif. (of this report) 
Unclassified

20. Security Classif. (of this page) 
Unclassified

21. No. of Pages 
47

22. Price 

Form DOT F 1700.7 (8-72) 



Copyright © 2023 

by Mineta Transportation Institute 

All rights reserved. 

DOI: 10.31979/mti.2023.2226 

Mineta Transportation Institute 
College of Business 

San José State University 
San José, CA 95192-0219 

Tel: (408) 924-7560 
Fax: (408) 924-7565 

Email: mineta-institute@sjsu.edu 

transweb.sjsu.edu/research.2226 

transweb.sjsu.edu/research/2226
transweb.sjsu.edu/research/2226


M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  vi 

ACKNOWLEDGMENTS 
This study was supported by both the CSU Transportation Consortium and the Fresno State 
Transportation Institute. Any opinions, findings, conclusions, and recommendations expressed in 
this material are those of the author and do not necessarily reflect the views of these institutes. The 
author would like to thank his student assistants, Jose Maciel Torres, Cruz Nieves, Christian 
Reeves, and Nicholas Amely, undergraduate students from the Electrical and Computer Engi-
neering (ECE) department at California State University, Fresno for working on this interesting 
research project and implementing and testing the final proposed prototype. The author would 
also like to thank Editing Press, for editorial services, as well as MTI staff, including Executive 
Director Karen Philbrick, PhD; Deputy Executive Director Hilary Nixon, PhD; Graphic Designer 
Alverina Eka Weinardy; and Executive Administrative Assistant Jill Carter. 



M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  vii 

TABLE OF CONTENTS 
Acknowledgments ................................................................................................................... vi 

List of Figures ........................................................................................................................ viii 

Executive Summary .................................................................................................................. 1 

1. Introduction .......................................................................................................................... 2 

2. System Overview .................................................................................................................. 6 

3. Drone Framework ................................................................................................................ 8 

4. Software Architecture ......................................................................................................... 15 

5. Machine Learning .............................................................................................................. 19 

6. Drone Framework Implementation .................................................................................... 23 

7. Road Navigation Using Road Edge Line Detection .......................................................... 25 

8. Prototype Experimentation ................................................................................................ 28 

9. Conclusion .......................................................................................................................... 33 

Abbreviations and Acronyms .................................................................................................. 34 

Bibliography ........................................................................................................................... 36 

About the Author ................................................................................................................... 37 



M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  viii 

LIST OF FIGURES 
Figure 1. Sample Images of Bridge Inspections Conducted by Specialists ............................... 2 

Figure 2. Different Inspection Methods Used for Bridge and Road Inspection Include  
Ground Penetrating Radar, a Chain Drag, and Other Tools ................................... 3 

Figure 3. Example Images of a Bridge Taken with a Visible Camera (left) as well as  
an Infrared Camera (right) ........................................................................................ 4 

Figure 4. Example Images of a Road Surface Taken with a Visible Camera as well as  
an Infrared Camera ................................................................................................... 4 

Figure 5. The AI-Bridge and Road Inspection System Flowchart ........................................... 7 

Figure 6. PXI PX4 Pixhawk 2.4.8 Flight Controller ................................................................ 8 

Figure 7. The Final Drone Prototype ....................................................................................... 9 

Figure 8. The Raspberry Pi 4B Microcomputer ....................................................................... 9 

Figure 9. Visible Light Camera .............................................................................................. 10 

Figure 10. Seek Thermal CompactPRO Infrared Camera ..................................................... 10 

Figure 11. Radiolink AT9S Pro 10/12 Channels Radio Transmitter and  
Receiver R9DS. ..................................................................................................... 10 

Figure 12. Telemetry Transmitter and Receiver ..................................................................... 11 

Figure 13. Drone Receiver for Radio Master Tx16s Transmitter ........................................... 12 

Figure 14. Electrical Schematic Diagram of Hardware Framework ....................................... 13 

Figure 15. Drone System Diagram ......................................................................................... 14 

Figure 16. ROS2 Nodes and Topics ....................................................................................... 15 

Figure 17. Block Diagram of the Three Main Nodes Developed, Imaging Node, Road  
Nav Node, and Defect Classification Node .......................................................... 17 

Figure 18. PID Square Root Controller. ................................................................................ 18 

Figure 19. Convolutional Neural Network Architecture for the Visible Light  
Camera Image Input ............................................................................................. 19 



M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  ix 

Figure 20. Convolutional Neural Network Architecture for the Thermal Camera  
Image Input .......................................................................................................... 19 

Figure 21. Sample Images of Potholes and a Manhole Gathered with the Visible  
Light Camera ........................................................................................................ 20 

Figure 22. Sample Images of Potholes and a Manhole Gathered with the  
Thermal Camera ................................................................................................... 20 

Figure 23. Region-Based Convolutional Neural Network (Visible Light)  
Object Detection Test .......................................................................................... 22 

Figure 24. Region-Based Convolutional Neural Network (Thermal) Object  
Detection Test ...................................................................................................... 22 

Figure 25. Canny Edge Detection Example on a Roadway Image Original (left)  
and Modified (right) ............................................................................................. 25 

Figure 26. Hough Transform Performed on a Roadway Image Original and Modified. ....... 26 

Figure 27. Color Masking and Hough Transform Performed on a Roadway Image ............. 27 

Figure 28. Detecting Road Edge Lines for Altitude Control ................................................. 27 

Figure 29. Experiments Conducted to Detect Faults in the Road Using the Built  
Quadcopter Drone ................................................................................................ 28 

Figure 30. Training Results of the Classification Deep Neural Network for  
Optical Images ...................................................................................................... 29 

Figure 31. Confusion Matrix for the Classification Deep Neural Network for  
Optical Images ...................................................................................................... 29 

Figure 32. Training Results of the Classification Deep Neural Network for  
Thermal Images .................................................................................................... 30 

Figure 33. Confusion Matrix for the Classification Deep Neural Network for  
Thermal Images .................................................................................................... 30 

Figure 34. Mini-Batch Accuracy Plot for the Region-Based Convolutional  
Neural Network for Optical Images ...................................................................... 31 

Figure 35. Mini-Batch Accuracy Plot for the Region-Based Convolutional Neural  
Network for Thermal Images ................................................................................ 31 

 



M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  1 

Executive Summary 
Bridge and road inspections are a necessary part of maintaining the country’s infrastructure. How-
ever, they can be time-consuming and expensive. Drones offer a new way to inspect bridges and 
roads that is faster, safer, and more cost-effective than traditional methods. Drones can access areas 
that are difficult or dangerous for humans, such as under bridges or along train tracks. They can 
also collect data from a variety of angles, which can help to identify problems that would not be 
visible from a single vantage point. In addition to being more efficient, drones are also safer than 
traditional inspection methods. This is because drones can fly over bridges without being close to 
traffic lanes or putting inspectors in harm's way. While the use of drones for bridge inspections is 
still in its early stages, it has the potential to revolutionize the way we inspect our bridges. Further-
more, drone inspections can reduce the environmental impact of bridge and road inspections by 
reducing the need for traffic control and other measures that can disrupt traffic and pollute the air. 
As the technology continues to develop, drones will become even more valuable for bridge and 
road inspection.  

Future bridge and road inspections will benefit substantially from our proposed system. In this 
study, we developed and implemented a framework based on artificial intelligence (AI) for inspect-
ing bridges and roads using drones equipped with a variety of sensors and a minicomputer. We 
use an infrared (IR) camera coupled with a high-resolution optical camera since using optical cam-
eras alone is insufficient. When compared to an optical camera, which is more suited for inspecting 
damage on the surface of a bridge or a road, the IR camera frequently provides more information 
on the interior structural faults of a bridge or road. To enable autonomous drone navigation and 
the capture of photographs of the bridge or road structure whenever it detects any problems, our 
drone inspection system is fitted with a minicomputer running Machine Learning algorithms. 
Using sophisticated AI algorithms, the drone both self-operates and does the inspection procedure 
without human assistance. Experiments were conducted on roads, not bridges, due to the stricter 
regulations of flying a drone near a bridge. The experimental results revealed that the system can 
detect potholes with an average accuracy of 84.6% using the visible light camera and 95.1% using 
an IR camera. We believe this bridge and road inspection framework can save considerable time, 
money, and lives by automating, and having drones conduct, major inspection operations in place 
of humans.  
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1. Introduction 
There are over 590,000 bridges dispersed across the roadway network stretching across the United 
States alone. Each bridge that has a length of 20 feet or greater must be inspected at least once 
every 24 months, according to the Federal Highway Act (FHWA) of 1968. Each inspection must 
adhere to the National Bridge Inspection Standards (NBIS), established by the US Department 
of Transportation (USDOT). A bridge inspection should uncover any severe structural flaws that 
need to be addressed, quantify the overall state of the bridge to prioritize capital needs, identify 
routine maintenance, and keep track of the bridge's history. Inspecting bridges is a time-consum-
ing and expensive task. Traditional inspection methods require a lot of coordination, such as traffic 
control, and they put personnel in danger.  

Several methods of routine bridge inspection are currently used by specialists to detect defects such 
as surface cracks or sub-surface delamination in infrastructure, including visible inspection, ther-
mal imaging inspection, ground penetrating radar (GPR), and acoustic inspection.  

For visible inspection, inspectors visually review the condition of the bridge in detail. 

Thermal inspections can detect changes in infrared radiation from the surface of a bridge, which 
could indicate degradation or delamination in the concrete. 

GPR uses electromagnetic radiation, inspectors can create an image of the area below the concrete 
in a bridge to find defects such as cracks or delamination in the materials. 

Acoustic inspections are done using a hammer, chain drag, or some other tool, whereby inspectors 
listen for changes in sound pitch on the bridge. Acoustic testing can be used to detect splits or 
separations in the materials used to make the bridge, such as delamination or coating splits. 

Regardless of the technique, the current process requires complex traffic lane-closure management, 
additional labor hours, expensive equipment, and can potentially place workers in unsafe environ-
ments (Flyability, 2022). 

   

Figure 1. Sample Images of Bridge Inspections Conducted by Specialists (Cho, 2018) 

As can be seen by the sample images in Figure 1, bridge inspections can be a tedious and dangerous 
task that might take several weeks to complete. 
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Figure 2. Inspection Methods Used for Bridge and Road Inspection Include  
Ground Penetrating Radar, a Chain Drag and Other Tools (USDT-FHWT) 

Figure 2 shows different methods that are used in bridge inspection, including GPR, chain drag, 
as well as other tools like a hammer. 

Drones, on the other hand, can readily access regions that humans find difficult or dangerous, such 
as under bridges or along train tracks. They allow workers to keep a longer standoff distance while 
still collecting the data required for inspections. In comparison to traditional inspection equipment 
like snoopers (truck equipment), drones can capture significantly more thorough inspection data. 
They make collecting high-definition photos from limited and inaccessible areas, such as beneath 
bridges and along beams and girders, simple. During bridge inspections, drones have the potential 
to save costs, deliver better data, and increase worker safety. Drone inspections of bridges will 
considerably reduce inspection expenses, as noted by Minnesota Department of Transportation 
(MnDOT), which was involved in research focusing on using drones as a tool for increasing the 
quality of bridge inspections: a normal bridge inspection requires three snooper inspection vehicles 
and eight inspection days; on average that can cost $59,000 (Wells & Lovelace, 2017). According 
to a report published by the United States Department of Transportation, Office of the Assistant 
Secretary for Research and Technology, “The use of drones for bridge inspections can create an 
overall average cost savings of 40 percent without a reduction in inspection quality” (USDOT-
OASRT, 2019).  

Recently, on Jan. 28, 2022, the Fern Hollow bridge in Pittsburgh collapsed. The National Trans-
portation Safety Board (NTSB) reported that there might have been some structural damage that 
was not detected (NTSB, 2023). Had the bridge been inspected with a drone, that structural dam-
age might have been detected and such a devastating collapse could have been avoided. 
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Our proposed research discussed below will be of great benefit for future bridge and road inspec-
tions. In this research work, we developed an artificial intelligence (AI)-based hardware and soft-
ware framework for bridge and road inspection using drones with multiple sensors. Since it is 
insufficient to conduct inspections using cameras alone, we utilized an infrared (IR) camera along 
with a high-resolution optical camera. In many instances, the IR camera can provide more details 
regarding the interior structural damage of a bridge or a road than an optical camera, which is 
more suitable for inspecting damage on the surface of a bridge or a road.  

 

Figure 3. Example Images of a Bridge Taken with a Visible Camera (left)  
as well as an Infrared Camera (right) 

Figure 3 shows example images of a bridge taken with a visible camera as well as an infrared camera. 
The image on the left, taken with the visible camera, does not show all the details of the damage 
underneath the concrete structure, whereas it can be clearly seen using the infrared camera, as 
shown on the right. 

 

Figure 4. Example Images of a Road Surface Taken with a Visible Camera  
as well as an Infrared Camera 

Similarly, Figure 4 shows example images of a road surface, in this case a concrete road, that were 
taken with a visible camera as well as an infrared camera. As can be seen, the image on the left, 
taken with the visible camera, does not show all the details of the damage that is detected under-
neath the concrete structure, whereas the damage can be clearly seen in the image on the right, 
taken with the infrared camera. 
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Therefore, we believe that the integration of an infrared camera along with a visible camera can 
greatly enhance the performance of fault detection on bridges as well as on roads. 

Several research studies have explored the use of drones to investigate bridges and other structures. 
Using ground penetrating radar, Biscarini et al. (2020) investigated the use of unmanned aerial 
photogrammetric surveys to perform visual inspections and produce a geometrical 3D model. In-
frared thermography analyses were also carried out to characterize the thermal surface map of the 
structure and to detect anomalies related to material degradation, such as the presence of humidity. 

Another study, Seo & Wacker (2018), evaluates the capabilities of drone technology as a supple-
mental bridge inspection tool to support legally mandated conventional bridge inspections. A vis-
ible light camera was used in this study but no infrared camera. 

The Minnesota Department of Transportation and Collins Engineers have been investigating the 
use of unmanned aircraft systems (UASs) as a tool for bridge inspections in a multi-phase project, 
according to Wells & Lovelace's (2017) report. The MnDOT's earlier study was carried out in 
this round of research, which also highlighted potential uses of UAS technology to support bridge 
inspections. 

In all the prior studies mentioned, advanced machine learning algorithms were not explored and 
there was a need for a specialist to operate the drone. Conversely, our drone inspection system is 
equipped with a minicomputer that runs Machine Learning algorithms to enable autonomous 
drone navigation and to take images of the bridge or the road structure on the fly; whenever it 
detects any damage, it can save the location information of that damage. Instead of having a person 
operate the drone, it can self-operate and carry out the inspection process on its own using the 
advanced AI algorithms we have developed. In this research work, we focused our experimental 
results on road inspection since getting permission to scan bridges was not as simple as we expected. 
The proposed framework can also be used for performing bridge inspection, which we may explore 
in our future work.  
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2. System Overview 
The AI-based bridge and road inspection system uses advanced software, a machine-learning neu-
ral network, and hardware subsystems that all work together to perform the intended task.  

Within the software subsystem, software development kit (SDK) libraries are used to interface 
with two different control setups. The libraries interface with the flight controller of the drone, 
which enables efficient communication between that device and the companion computer for pre-
flight and inflight tests and data transmission. The libraries also interface with the detection sen-
sors on board the drone, which are the cameras and ultrasonic sensors. This enables efficient video 
feed and image data transmission from the cameras to the companion computer for processing. 
Once the SDK libraries have proven a successful connection between the companion computer 
and the control setups, the drone's movement is initialized. The first step in the software's process 
is to instruct the drone to take off to preset global positioning system (GPS) waypoints. As the 
drone travels to these waypoints, it takes continuous pictures of the road that it is flying over. These 
images are analyzed in real time by the machine learning system, and if a fault is detected, the 
drone pauses its waypoint path and drops down in altitude to fly closer to the detected fault. 
Closeup pictures of the fault are taken by both cameras and transmitted to the ground station for 
storage, and then the drone resumes along its flight path and continues taking pictures. Once the 
drone reaches the final waypoint, the current mission is declared finished, and the drone returns 
to the launch waypoint. 

Within the machine learning subsystem, multiple preflight processes are run. Once the model 
dataset is uploaded, the dataset is aggregated and then used to train the neural network. After the 
model is initially trained, it is subsequently employed in real-time to identify cracks in the images 
captured within the software subsystem. 

All the hardware onboard the drone is encompassed within the hardware subsystem. This includes 
the unmanned aerial vehicle (UAV) hardware, the machine learning hardware, and the object 
avoidance hardware. All the image sensors within the machine learning and object avoidance hard-
ware sections are tested preflight, and if all the sensors can have interpretable data drawn from 
them, the Electronic Speed Controllers (ESCs) are calibrated, and the flight controller is armed. 
The software subsystem processes and the detection portion of the machine learning subsystem 
are then started.  

The AI-bridge and road inspection system flowchart is shown in Figure 5. 
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Figure 5. The AI-Bridge and Road Inspection System Flowchart 
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3. Drone Framework 
We built our system on a Hexacopter 6-axle Aircraft Kit that has an HMF S550 Frame, PXI PX4 
Flight Control, 920KV Motors, a GPS, and an AT9 Transmitter. 

The PXI PX4 Flight Controller, shown in Figure 6, is an open-source autopilot system that can 
be used to control a variety of UAVs. It is based on the PX4 autopilot software, which is developed 
and maintained by a community of developers from around the world. The PXI PX4 Flight Con-
trol is designed to be modular and scalable, making it possible to use it for a wide range of UAV 
applications. 

 

Figure 6. PXI PX4 Pixhawk 2.4.8 Flight Controller 

The PXI PX4 Flight Control consists of several different components, including a flight controller 
board, a power distribution board, a GPS receiver, an inertial measurement unit (IMU), and a 
variety of sensors. The flight controller board is the central processing unit of the system and is 
responsible for controlling the UAV's flight. The power distribution board provides power to the 
other components of the system. The GPS receiver provides the flight controller with information 
about the UAV's position and altitude. The IMU provides the flight controller with information 
about the UAV's orientation. The sensors provide the flight controller with information about the 
UAV's environment. 

The PXI PX4 Flight Control can be programmed using the PX4 autopilot software. The software 
provides several different features, including: 

• Flight control: Used to control the UAV's flight using a variety of different autopilot 
modes. 

• Payload control: Used to control the UAV's payload, such as a camera or a gimbal. 
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• Mission planning: Used to plan and execute UAV missions. 

• Data logging: Used to log data from the UAV's sensors. 

The PXI PX4 Flight Control is a powerful and versatile autopilot system that can be used for a 
wide range of UAV applications. It is open-source, modular, and scalable, making it a good choice 
for both hobbyists and professional users. 

 

Figure 7. The Final Drone Prototype  

The final drone prototype, shown in Figure 7, including all the peripherals, six propellers with 
guards, a GPS module with built-in compass with GPS antenna mount and the PXI PX4 flight 
controller, is shown in Figure 7. 

 

Figure 8. The Raspberry Pi 4B Minicomputer 
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The Raspberry Pi 4B minicomputer, shown in Figure 8, was embedded in the drone to perform 
all the command and control as well as data gathering and implementing all the machine learning 
algorithms. 

 

Figure 9. Visible Light Camera 

The visible light camera, shown in Figure 9, was installed on the drone, and was used for gathering 
the camera images. 

 

Figure 10. Seek Thermal CompactPRO Infrared Camera 

The Seek Thermal Camera, Seek Thermal CompactPRO, a High Resolution (320 x 240 thermal 
sensor) Thermal Imaging Camera, shown in Figure 10, was installed on the drone, and was used 
for gathering thermal infrared images. We selected this camera due to its high resolution and 
modest price tag. 

 

Figure 11. Radiolink AT9S Pro 10/12 Channels Radio  
Transmitter and Receiver R9DS 
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A Radiolink AT9S Pro 10/12 Channels Radio Transmitter and Receiver R9DS, shown in Figure 
11, was used to communicate and control the drone. The transceiver is a high-performance radio 
system that is designed for use with a variety of remote-controlled aircraft, including drones, hel-
icopters, and airplanes. The transmitter features a 10/12-channel design, which allows users to 
control a wide range of aircraft functions. The receiver is compatible with a variety of Radiolink 
receivers, including the R9DS, which is a 10-channel receiver that supports serial BUS and pulse 
width modulation (PWM) signals. 

The S550 Hexacopter establishes completely wireless communication to the ground station via 
telemetry transmitters and receivers. The receivers were chosen with specific guidelines. The radio 
must have 2-way communication allowing it to send and receive telemetry specifications such as 
altitude, speed, location, and flight commands. The radios also needed to have a long communi-
cation distance so there was no chance of lost communication during a scheduled flight. The radios 
chosen that fit these requirements were the Holybro 915 MHz Telemetry Radios & the FrSky 
X8Rs Receiver, shown in Figure 12. The Holybro 915 MHz radios were chosen over a generic 5.8 
GHz radio since the latter radio has a shorter range, uses a larger bandwidth, and draws more 
power from the energy-limited drone system. The 915 MHz radio has a smaller bandwidth, less 
power draw, a longer range for communication, and is unlikely to be interfered with by other 
frequency-communicating devices, as the 5.8 GHz radios are prone to be. 

 

Figure 12. Telemetry Transmitter and Receiver 

The FrSky X8Rs receiver, shown in Figure 13, is a compact Serial Bus (SBUS) protocol receiver 
that works with the Radio Master Tx16s radio controller. The X8Rs are sometimes provided with 
a non-US software framework and must be flashed with the US framework to work with specific 
equipment. 
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Figure 13. Drone Receiver for Radio Master Tx16s Transmitter 

These radios are connected to the drone’s flight controller (Pixhawk). The Pixhawk is integrated 
with a user-friendly interface allowing users to tune, set up, and create specific flight guidelines 
that the Pixhawk listens to while in flight. On the drone there is a companion computer, the 
Raspberry Pi 4, that runs the entirety of the project’s main purpose. Since the power drawn from 
the Pi when it is fully under the load of the scripted commands is roughly between 4.5 W – 5.5 
W, there is no concern regarding a power loss mid-flight since the Raspberry Pi runs at a lower 
voltage, i.e., 5 V. Hence, a step-down voltage controller is used to drop down the voltage from the 
11.1 V LiPo drone battery to 5 V. The step-down power system also operates the Pi’s integrated 
visible light optical camera and the Seek Thermal Pro camera. 

The electrical schematic diagram of the hardware framework is shown in Figure 14. On the left 
side, it shows the Seek Thermal Pro camera connected to the Raspberry Pi, as well as the visible 
camera. On the right side are the six propellers connected to the Pixhawk controller along with 
the GPS, the lipo battery, and the telemetry radios. 
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Figure 14. Electrical Schematic Diagram of the Hardware Framework  

The overall system diagram is shown in Figure 15, comprised of the Raspberry Pi with the thermal 
and visible cameras connected to it. The Pixhawk controller has the Radio controller and the GPS 
interconnected to it. The Pixhawk module has complete control of the 6 propeller modules.  
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Figure 15. Drone System Diagram 
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4. Software Architecture 
Our system is primarily built on a ROS2 (Robot Operating System) system architecture. ROS is 
a set of software libraries and tools for building robot applications. These libraries and algorithm 
implementations are state-of-the-art and are a common architecture that is used in industry. ROS 
primarily implements a version of a publisher-subscriber model known as nodes and topics, visually 
described by Figure 16. One benefit to publishing data from nodes as topics is that it allows for 
multiple nodes to use the data simultaneously, without the need to implement multi-threading; it 
is handled by ROS2 in the back end. A network of nodes and topics is formed for complex systems 
but can perform efficient, continuous growth and easy development by only building a specific 
node.  

 
 
 

Figure 16. ROS2 Nodes and Topics 

The ROS setup integrated into the project is divided into three different nodes that run on the 
Raspberry Pi companion computer: the Imaging Node, Road Nav Node, and Defect Classification 
Node. The three developed nodes are shown in Figure 17 and described below. 

1. Imaging Node: The program that interfaces with physical cameras, processes the image 
with OpenCV and publishes the image topic as “sensor msg” type from an OpenCV Mat type. 
The Imaging node processes all the image and video data drawn from sensors onboard the drone. 
The Imaging node does not subscribe to any topics but publishes two different topics. Those two 
topics are ‘thermal_st’ and ‘visible_light’, which refer to the video feeds and image frames from the 
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thermal and visible light cameras onboard the drone. These frames are pulled from the cameras 
using multiple driver scripts and SDK libraries contained within the Imaging node. 

2. Road Nav Node: Our motion, planning, and data collection program. Subscribes to the 
image topics, performs edge detection for autonomous road navigation based on planned GPS 
start and end points. Data collection is done at periodic intervals. The Road Nav node processes 
the Inertial Measurement Unit (IMU) and location data from multiple sensors onboard the drone. 
The Road_Nav node subscribes to three different topics but does not publish any topics itself. This 
node subscribes to the ‘imu_pub’ topic, which draws the IMU orientation, acceleration, and alti-
tude data from it. It subscribes to the ‘global_position’ node topic, which draws GPS location data 
from it. Finally, it subscribes to the ‘flagged’ topic that is published by the Defect Classification 
node, which draws crack detection data from it. The node processes all the data from these three 
different topics and uses it to control the movement of the drone. 

3. Defect Classification Node: The program that uses the developed machine learning model 
to detect defects from the subscribed image topics to publish the defect topic. The model’s require-
ment for a Tensorflow lite format, plus delays and incompatibility with MATLAB, prevented full 
implementation of this feature. The Defect Classification node subscribes to two different topics 
and publishes one topic. The two topics it subscribes to are the two topics published by the Image 
node, which are ‘thermal_st’ and ‘visible_light’. The node uses the video feed and image frame data 
to provide input into the machine learning neural networks and scripts contained within the node 
and publishes a ‘flagged’ topic that contains all the images that were classified as containing defects. 
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A visual representation of the above structure is shown in Figure 17. 

 

 

Figure 17. Block Diagram of the Three Main Nodes Developed: Imaging  
Node, Road Nav Node, and Defect Classification Node 

Control Systems  

The drone’s flight controller is a square-root type proportional-integral-derivative (PID) controller, 
as shown in Figure 18. This allows the drone to come back to a smooth and stable flight pattern 
quickly and accurately. This type of controller limits the overcompensation of the system’s closed 
loop integrations. The square-root controller allows the drone’s PIDs to be easily tuned with pre-
cise calculations, minimizing the drone’s chance of error and oscillation in mid-flight. With quick 
movements of torque, the drone’s stable reaction is resilient to oscillation, moving to counteract 
such movement to bring it back to stationary stabilization. To produce these values, the Mission 
Planner used (ArduPilot) makes setting these values user-friendly while the interface shows the 
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extended tuning branches of the flight controller, allowing users to make pre- and post-flight ad-
justments to the flight controller’s operating system. 

 

 

Figure 18. PID Square Root Controller 
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5. Machine Learing 
Deep learning is a branch of machine learning in artificial intelligence. Deep learning algorithms 
use artificial neural networks (ANN) that replicate the functionality of a brain. It is made up of 
layers of artificial nodes that carry raw input data through each layer to the final output layer. These 
neural networks are powerful in decision-making and can learn from unstructured data. A deep 
convolutional neural network (DCNN) model was created in this project, as DCNN is the most 
common for image classification. The architecture of a DCNN algorithm implemented in this 
project is shown in Figures 19 and 20, for the visible light camera image input and the thermal 
camera image input, respectively. See the description below for additional details. The architecture 
for both is the same, they differ only in the input images to the algorithms. 

 

 

Figure 19. Convolutional Neural Network Architecture for the  
Visible Light Camera Image Input 

 

 

Figure 20. Convolutional Neural Network Architecture for the  
Thermal Camera Image Input 
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Sample images of data collected with the visible light camera and thermal camera that are used to 
train the neural network are shown in Figures 21 and 22, respectively. 

 

Figure 21. Sample Images of Potholes and a Manhole Cover  
Gathered with the Visible Light Camera 

 

 

Figure 22. Sample Images of Potholes and a Manhole Cover  
Gathered with the Thermal Camera 

The captured visible light camera and IR camera images are first manually cropped to a 100 × 120-
pixel size. The input images undergo a feature-extraction network by first being processed by the 
convolution layer consisting of eight convolution filters of size 20 × 20. The output from the con-
volution layer goes through the rectified linear unit (ReLU) function followed by the pooling layer, 
which employs a maximum pooling process of 2 × 2 matrices. This process is repeated several times 
to create the output and to train the machine with inherent features of the image. The output of 
the pooling layer is fed into a second convolution layer consisting of 16 convolution filters of size 
10 × 10. Similarly, after passing the output through the ReLU function it undergoes the pooling 
layer with a maximum pooling size of 2 × 2 matrices. Finally, it passes through a third convolution 
layer consisting of 32 convolution filters of size 5 × 5, which is processed by the ReLU function 
and the pooling layer with a maximum pooling size of 2 × 2 matrices. 
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The classifier network consists of a fully connected layer comprised of 100 hidden nodes, which 
produces a Softmax output (i.e., a vector of probabilities) that in turn is used for classifying the 
road condition. The output layer of the DCNN represents the probability distribution containing 
the probabilities that each class is assigned in accordance with the input images. Using a maximum 
ratio combining algorithm by combining data from the two sensors, once the algorithms detect a 
fault it will register the coordinates where the fault is detected using the GPS signal; if no fault is 
detected it will continue to capture the data from the two sensors, passing it to the algorithm to 
perform the road/bridge inspection. 

The goal of the machine learning aspect of this project is to increase the speed of data analysis 
while examining roadways (and, in the future, bridges). Deep neural networks allow for quick and 
accurate analysis of large amounts of data, though they are not infallible. For this reason, two 
machine learning models were adopted to work in parallel in two different ways. The first method 
uses an infrared camera in tandem with a visible light camera to increase the odds of a fault being 
detected, since the two different cameras capture different types of information. While both meth-
ods are visual inspection methods, the infrared camera detects variations of heat across the surface 
of the roadway. Faults were observed to have a different temperature compared to the surrounding 
asphalt; these are highlighted in the thermal images.  

There are also two different forms of model being utilized for this project: a classification deep 
neural network, and a region-based convolutional neural network (RCNN). The first of the two 
forms, the classification of a deep neural network, is used on the drone itself. The function of the 
classification neural network is to quickly analyze photos and classify the photos into one of any 
number of groups. These models are only capable of classifying the whole image into one of several 
classifications, whereas the region-based convolutional neural network can localize, identify, clas-
sify, and bound objects inside the photo itself. The classification deep neural networks complete 
their analysis within a shorter time frame than their region-based convolutional neural network 
counterparts; this enables the classification deep neural networks to do a preliminary analysis of 
the photos to organize the data for the region-based convolutional neural network, giving images 
classified as “faulty roadways” a priority for analysis. The region-based convolutional neural net-
works were not designed to be used on the drone due to the high amount of processing power they 
would require relative to the Raspberry Pi’s capacity. These models would reduce the overall effec-
tiveness of the drone, as the power and time that would be used in processing photos would greatly 
reduce overall flight time. 
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Figure 23. Region-Based Convolutional Neural Network  
(Visible Light) Object Detection Test 

 

 

Figure 24. Region-Based Convolutional Neural Network  
(Thermal) Object Detection Test 
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6. Drone Framework Implementation 
Drone Development 

During the early phases of the development, the S550 Hexacopter had trouble completing a suc-
cessful flight: it fell out of the air while trying to land, due to losing communication to the motors, 
and other software issues, damaging the landing gear. This was caused by the drone’s tuning at-
tributions as well as the Electronic Speed Control (ESC), which desynced it from the flight con-
troller’s initial tune. The drone went through structural reconfigurations and tuning of the PIDs, 
allowing it to conduct more consecutive successful flights. Once the drone was stable enough to 
conduct missions with the sensors and the companion computer attached, data could be collected 
and sent to the ground station via a Secure Shell (SSH) protocol. We were then able to collect 
data and run it through our flagging models, allowing us to train and test how successful it was in 
finding discrepancies in the scanned roadway structure.  

ML Development 

The machine learning aspect to this project was designed to be used both with and without the 
drone. The smaller classification models were created to provide initial organization for the photos 
taken by the drone. The classification deep neural networks were designed to classify the photos 
into one of two groups: “faulty roadways” or “okay roadways”. In addition, the design of the model 
included a feature in which photos classified as “faulty roadways” would be saved with a flag, al-
lowing subsequent analysis to prioritize the photos with faults present. The Faster-RCNN models 
would then analyze each photo taken, starting with the photos that were flagged as faulty. These 
models were built using MATLAB, as MATLAB has a large number of toolboxes and accompa-
nying documentation that is useful when implementing deep learning models. In addition, 
MATLAB automatically graphs training data in real time as the deep neural network is being 
trained. MATLAB also has several pre-trained deep neural networks that can be downloaded, 
modified, and used either with the MATLAB code or the Deep Network Designer. The classifi-
cation of deep neural networks was modified using the Deep Network Designer. The region-based 
convolutional neural network was built using MATLAB code and accepts images of the same 
dimensions. MATLAB’s Image Labeler application was used to annotate and create the 
MATLAB data stores required for the region-based convolutional neural network. 

Software Device Integration 

Using the ROS2 application programming interface (API), the imaging, road navigation and de-
fect classification node classes were developed, inheriting members from the parent ROS2 node 
template class. This provided layers of abstraction, allowing for a more centralized development 
focus. To interface with the physical sensors, the imaging node uses two separate libraries: 
OpenCV and libseek-thermal, an open-source image processing library and open-source device 
driver library, respectively. For both the visible light and infrared sensors, the devices were opened 
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as an OpenCV VideoCapture object, which is a class built into OpenCV to capture a sequence of 
frames (video) from multiple sources. Each frame processed from the VideoCapture object is an 
OpenCV Mat type, which is a dimensional array matrix representation of the pixel data. It is 
important to note that the VideoCapture objects remained open during the life of the node object 
instead of repeatedly opening and closing during each frame grab. This optimization saves notable 
amounts of computation by eliminating the need to free buffers by releasing hardware interfaces 
at the 9 Hz speed the infrared is limited to. This is done by opening the devices at the constructor 
of the class and releasing at the destructor. The node class publishers are implemented using a 
timer callback function supported by the chrono C++ library to achieve the desired 9 Hz data 
publishing rate, which translates to 9 frames per second. This function acts as a timer interrupt, 
executing at a certain interval. Similarly, in the case where subscriptions are made in a node, like 
Road Navigation, callback functions are executed any time a new topic is received, thereby syn-
chronizing with the publisher’s rate. 
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7. Road Navigation Using Road Edge Line Detection 
To perform GPS-less navigation, we explored different algorithms to allow the drone to navigate 
through the streets to scan and inspect the pathways for any defects. We present the different 
methods we used to perform road navigation. 

Multiple computer vision algorithms were used to detect and locate road edge lines in the camera 
frame. These algorithms were implemented using the computer vision programming library 
OpenCV. The first and most crucial method of detection used was Canny edge detection, which 
is a popular multistage edge detection algorithm that can detect changes in color gradient intensity. 
This algorithm uses non-maximum suppression to locate the local maxima gradient contrast pixels 
within a frame, and then hysteresis thresholding is used to compare these local maxima to a spec-
ified range, to determine which pixels will be finally returned as edges (OpenCV, Canny Edge 
Detection, 2023). The advantage of an algorithm that uses hysteresis thresholding is that it enables 
a more adaptive detection model to be created, since the threshold range is based on the relative 
edge spread of that specific frame. This algorithm detected clear changes in gradient intensity of 
the asphalt and the painted road edge lines. 

Figure 25 shows the canny edge detection performed on a roadway; the left side image is the 
original and right side is the modified one. 

 

Figure 25. Canny Edge Detection Example on a Roadway Image:  
Original (left) and Modified (right) 

The second layer of computer vision detection used was the Hough Transform, which is a math-
ematical transform technique used to detect straight lines in an image frame. It does this by plot-
ting all initially detected lines as sine curves, and defining all intersection points of neighboring 
sine curves to be points along the same line (OpenCV, Hough Transform, 2023). The length of 
the lines detected depends on the density of intersection points in the given pixel cluster, and user 
input thresholding is used to determine the minimum number of intersection points necessary to 
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be detected as a line. The thresholding of this transform is fine-tuned to only detect line lengths 
greater than a specific high value, and clear isolation of the lines spanning the painted road edge 
lines in image frames was effectively achieved through extensive testing. 

Figure 26 shows the Hough transform performed on a roadway; the left side image is the original 
and the right side is the modified one. 

 

Figure 26. Hough Transform Performed on a Roadway Image: Original and Modified 

An alternative method of detection that was utilized to detect boundary lines in image frames 
where edge detection was not the most effective solution was color masking. Instances in which 
this method proved to be more effective were when analyzing slightly blurry camera feeds or light-
colored roadways. This method was used to define colors according to hue, saturation, and value 
(HSV) parameters and isolate those software-defined colors in the image frames. This enabled 
clear isolation of the painted road edge lines from the road color. After these lines were isolated, a 
Hough transform was then performed on the image frame to detect the visible colors as lines. 

Figure 27 shows the color masking along with the Hough transform performed on a roadway; the 
left side image is the original, the middle image is after color masking and Hough transform, and 
the right side includes the green lines for navigation. 
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Figure 27. Color Masking and Hough Transform Performed on a Roadway Image 

These computer vision methods were used to detect road edge lines in an image frame, but also to 
output x-axis and y-axis coordinates of the start and end points of each line detected in relation to 
the size of the image frame being analyzed in pixels. To determine whether the drone had passed 
a detected road edge line during flight, the x coordinates of these lines were compared to the x 
coordinate value of the vertical asymptote in the exact middle of the frame. If the x coordinates of 
the lines were to become greater or less than the middle x coordinate, depending on which side 
the line had started on, a respective left or right edge was returned. This edge information was fed 
into a MAVROS program (a ROS package allowing drone communication) and used to determine 
the attitude control of the drone. If an edge is returned by the computer vision program, the 
MAVROS program will send a command to the drone that will stop its motion across the returned 
edge. This detection control setup enables fully autonomous flight of the drone along both straight 
and curved roadways without the use of GPS. 

 

Figure 28. Detecting Road Edge Lines for Attitude Control 

Figure 28 shows the process of detecting road edge lines, which is used for altitude control of the 
drone. 
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8. Prototype Experimentation  
The drone was successfully built and tuned, and the auxiliary components were integrated into the 
drone. Thermal and optical cameras were mounted on the drone, and software was created to 
ensure functionality. Additionally, the machine learning aspect was successful in constructing mul-
tiple classification deep neural networks as well as the requisite region-based convolutional neural 
networks. These models have a high degree of accuracy whose training data set results can be seen 
in the machine learning experimental section below. 

 

Figure 29. Experiments Conducted to Detect Faults in the Road  
Using the Prototype Quadcopter Drone 

All models that had been constructed for this project demonstrated a fairly high degree of accuracy. 
The Optical Image Deep Neural Network achieved a validation accuracy of 84.6%, and its thermal 
imaging counterpart achieved a validation accuracy of 95.1%. The Optical Faster-RCNN model 
was able to achieve a mini-batch (i.e., training) accuracy of 99.5%, whereas the Thermal Faster-
RCNN model was able to achieve a mini-batch accuracy of 98.9%. Figures 30–35 below show the 
training results for all four models.   
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Figure 30. Training Results of the Classification Deep Neural Network  
for Optical Images 

 

 

Figure 31. Confusion Matrix for the Classification  
Deep Neural Network for Optical Images 
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Figure 32. Training Results of the Classification Deep Neural  
Network for Thermal Images 

 

 

Figure 33. Confusion Matrix for the Classification  
Deep Neural Network for Thermal Images 
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Figure 34. Mini-Batch Accuracy Plot for the Region-Based  
Convolutional Neural Network for Optical Images 

 

 

Figure 35. Mini-Batch Accuracy Plot for the Region-Based  
Convolutional Neural Network for Thermal Images 

Machine Learning Limitations: 

The greatest limitation of the machine learning aspect of this project is its limited data set size. 
The optical image data set only had a total of 293 photos, and the thermal image data set had a 
total of 282 photos. Ideally, the number of photos we would have in each data set would be around 
700 photos or more per classification data set based on the research findings. Several unforeseen 
circumstances caused a delay in the drone’s operational readiness, which, in turn, limited data col-
lection efforts. In addition, this project only had one operational thermal camera, which meant 
that it could either be used to collect data or be used while integrating all the auxiliary components. 
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Additionally, the region-based convolutional neural network requires a large amount of time to 
adequately train on either the thermal or optical data sets, even while using an NVIDIA GTX 
2070 graphics card. 

FAA Part 107 Class Drone License: 

For legal reasons, to operate the drone, one of our research team members had to acquire a Federal 
Aviation Administration (FAA) Part 107 Drone License. The Part 107 license demonstrates that 
one understands the regulations, operating requirements, and procedures for safely flying an Un-
manned Aircraft (UA). If planning to fly for compensation under FAA regulations, you are re-
quired to possess a Part 107 license. For recreational use you can go through the TRUST com-
mittee to be granted without a license. In Fresno County the airport covers most of the airspace 
which is a Class C airspace meaning the airspace goes up to 4400 ft MSL (mean sea level). Most 
UA scheduled flights are done in Class E airspaces, which is everything that is not a designated 
airspace. To fly in this airspace, there must be a flight plan submitted to the FAA and the airport 
that the UA will be flown in. While flying under a Part 107, UAs cannot fly more than 400 ft 
AGL (above ground level) unless they are a part of inspection, which allows having a radius of 400 
ft around the peak of the highest point of the infrastructure that is being inspected. 
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9. Conclusion 
In this research project, we developed an AI-based bridge and road inspection framework that can 
be used to inspect bridges and roads using drones. We implemented several algorithms for GPS-
less navigation of the drone using road edge line detection. Data gathering was primarily done on 
roads for now, using a visible light camera and a thermal IR camera. After gathering the data, we 
trained several Machine Learning models to automate the road inspection process by identifying 
sections with locations of road that need repair. Experimental results reveal we can detect defects 
in a road with over 95% accuracy. Additional work will be required for bridge inspection. 
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Abbreviations and Acronyms 
AI 

AGL 

ANN 

API 

DCNN 

Artificial Intelligence  

Above Ground Level 

Artificial Neural Network 

Application Programming Interface 

Deep Convolutional Neural Network 

ECE Electrical and Computer Engineering 

ESC Electronic Speed Controller 

FAA 

FHWA 

GPR 

GPS 

HSV 

IMU 

IR 

MSL 

MnDOT 

Federal Aviation Administration 

Federal Highway Act   

Ground Penetrating Radar 

Global Positioning System 

Hue, Saturation, and Value 

Inertial Measurement Unit 

Infrared 

Mean Sea Level 

Minnesota Department of Transportation 

NBIS National Bridge Inspection Standards 

NTSB 

PID 

PWM 

RCNN 

National Transportation Safety Board 

Proportional-Integral-Derivative 

Pulse Width Modulation 

Region-based Convolutional Neural Network 
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ReLU  

ROS 

Rectified Linear Unit  

Robot Operating System 

SDK 

SSH 

Software Development Kit 

Secure Shell 

UA 

UAS 

UAV 

USDOT 

Unmanned Aircraft 

Unmanned Aircraft System 

Unmanned Aerial Vehicle 

US Department of Transportation 
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