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Executive Summary 
Poor road conditions affect millions of drivers each day. As the mileage of paved roads increases, 
the task of monitoring the condition of each road becomes increasingly difficult. Carrying
conditions are the result of weather, material, traffic, and the life cycle of the road. Methods of 
monitoring the conditions of roads vary from visual inspection, pictures, use of state-of-the-art 
LiDAR on a vehicle, or even the use of spectral data analysis. Public and private agencies should 
be responsible for minimizing costs to optimize budgets. Proper and timely assessments are 
necessary to budget and plan for future needs and to protect the welfare and safety of the public. 
LiDAR (Light Detection and ranging) is a technology that is utilized in many contexts for remote 
sensing and traditional geomatics applications. LiDAR is not a new tool for assessing the condition 
of road pavement. However, the cost for traditional mobile applications of LiDAR is high and is 
used for larger areas. Accurate positional networks require an immense amount of time to establish 
targets for quality control and checks, so they are not always suitable for smaller areas or those that
require immediate attention. Low-cost, off-the-shelf technology has the potential to aid in the 
detection of smaller areas of pavement, which can facilitate proper assessment and planning to 
prevent and correct further issues. Apple has integrated a LiDAR sensor in the iPad Pro and the 
Apple iPhone Pro Model 12 and up to aid in the portrait mode at night. This project explores the 
application of the Apple iPad Pro and Apple iPhone equipped with LiDAR technology, using free 
apps that will utilize the LiDAR sensor in a more traditional Geomatics Engineering method. It 
will rely heavily on the IMU (inertial measurement unit), the integrated camera, and the single 
frequency GNSS (global navigation satellite system) sensor to position the device and to control 
the resultant collected data sets. A terrestrial LiDAR scanner, Leica P20, will be used as base 
model from which the comparison of the iPad and the iPhone will be made. 

Based on testing and analysis, the Apple iPad Pro and iPhone Pro LiDAR systems are currently
inadequate for detailed assessment of roadway surface damage. Sub-centimeter vertical 
deformations are needed to accurately define 3-D quantities which cannot be obtained with 
vertical accuracies in the 3-4 cm range. Multiple scans from different directions and angles would 
increase the ability to define the vertical deformations. However, the resulting misalignment 
between the same scan and multiple scans renders the created surface models useless. A general 
assessment is possible within the limitations of the LiDAR devices. General affected areas (square 
footage), relative distances, and visual damage can be measured. The cameras that are used help to 
identify locations of the damage, not just its extent. 
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1. Introduction 
Pavement performance investigation and evaluation are critical for pavement management systems 
(PMS) to maintain suitable driving conditions and to ensure adequate funding for rehabilitation 
efforts (Chun, P.J., Yamane, T., & Tsuzuki, Y., 2021)(Chun, P.J., Yamane, T., & Tsuzuki, Y., 
2021). For this purpose, agencies are interested in the type, extent, and severity of different types 
of distress. The most significant types include rutting, cracking (fatigue cracking and thermal 
cracking) for flexible pavement, and cracking and faulting for rigid pavement. There is specialized 
equipment available to identify pavement distress and quantify pavement conditions. However, 
the specialized equipment generally has high variability, is subject to detection errors, and requires
considerable labor and cost (Chun, P.J., Yamane, T., & Tsuzuki, Y., 2021) and (Huang, J., Liu, 
W., & Sun, X., 2014)(Huang, J., Liu, W., & Sun, X., 2014). Therefore, a superior method to 
collect pavement condition data and evaluate pavement performance is needed. 

Figure 1. Fatigue Cracking, Patterns, and Detection System 

Recent technological advancement is rapidly replacing the labor-intensive and subjective visual-
based inspection with a sensor-based approach. Commonly used sensors include digital cameras, 
Unmanned Aerial Vehicles (UAVs), line cameras, 3D Laser Imaging, and terrestrial laser scanners 
(Ragnoli, A., De Blasiis, M.R., & Di Benedetto, A., 2018)(Ragnoli, A., De Blasiis, M.R., & Di 
Benedetto, A., 2018).Cameras (mono and stereo), line cameras, and cameras on UAVs 
demonstrate a high success rate in identifying and measuring cracks on roads, as does 3D laser 
scanning, which acquires 3D images of various depths and types (Zakeri, H., Nejad, F.M., & 
Fahimifar, A., 2017)(Zakeri, H., Nejad, F.M., & Fahimifar, A., 2017). 
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Figure 2. Fresno State, Engineering East Corridor - iPad Scan 

Recently, mobile phones and electronic devices began adapting new camera and 3D sensing
technologies. In 2020, the Apple iPad Pro and the Apple iPhone 12 Pro were equipped with a 
LiDAR sensor to improve portrait-mode photos, specifically at nighttime. This new LiDAR 
sensor, however, has various unintended capabilities that can be adapted for other applications, 
including measuring pavement performance. 

Figure 3. Terrestrial LiDAR Scan and Photo of Failed Pavement 

Low-cost sensors enable faster identification and detection of pavement conditions and 
performance. Road pavement identification costs are high due to the specialized sensors required, 
regardless of the size of the project. This leaves small construction sites with larger fixed costs 
disproportional to the size of the project. iPad and iPhone LiDAR technologies can be utilized 
and geared towards small sites such as parking lots, construction areas, and surrounding short 
segments of road. 

This proposal is designed to address three SB-1 objectives which incorporate: (1) new 
technologies; (2) cost-effective maintenance and decision-making regarding roads; and (3) long 
term maintenance and pavement rehabilitation requirements. 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  3 



 

    

  

 
 

  

  

  

  

  

 
 

 
 

 
 

     
   

 

 
 

 

Measure 
2016 Lane-Miles Collected 

As halt Concrete 
2018 Lane-Miles Collected 

Good 18,694 
18,072 

1.1 Visual Inspection 

Due to road construction and aging, the Fresno State campus has many areas that display obvious 
signs of cracking and fatigue, known as areas of concern. The areas chosen all have horizontal 
identifiers to allow for visual fatigue and damage. Different pavement types have been chosen as 
shown in figures 5, 6, 7, 8 and 9. According to the Caltrans Concrete Pavement Guide (State of 
California Department of Transportation, 2015) (State of California Department of 
Transportation, 2015), distress can be categorized into the following classifications: 

• Cracking 

• Joint/crack deterioration 

• Roughness 

• Surface defects/durability 

• Miscellaneous defects 

In 2018, the Caltrans State of the Pavement Report (Caltrans Division of Maintenance Pavement, 
2019) (Caltrans Division of Maintenance Pavement, 2019) details the condition of the roads across 
the state, classifying them from good, to fair, to poor. 

Figure4. Statewide Pavement Condition Summary by Pavement Type Based on Federal 
Performance Measures 

Figure 4 underscores the vast mileage of roadway that Caltrans maintains, making simple and
prompt classification of road conditions necessary. While this research did not use state highways, 
similar areas found on the Fresno State campus will demonstrate the abilities of the iPad and 
iPhone LiDAR sensor. 

Figures 5, 6, 7, 8, and 9 below display the areas to be scanned and compared. Figure 5 shows an 
area near the dorms on Fresno State campus, which sees a high volume of vehicle traffic from 
students. It also receives a high volume of vendors delivering food to the university dining hall. 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  4 



 

    

 
 

  
 

   
 

 
 

 
 

 

Scanned 

Figure 5. Site #1 on Fresno State Campus 

Figure 5 details the conditions in this area, including cracking in the asphalt, patching pothole 
areas from construction work, and other miscellaneous defects. 

Figure 6. Site #2, on Fresno State Campus, No Known Defects in the Asphalt 
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Deformation from cracking 

Figure 7. Site #1 on Fresno State Campus, Cracking, Joint Deterioration, 
Roughness, Surface Defects 

Figure 7, site #2, displays a newer road that was recently paved and striped, showing no known 
defects. 

Figure 8. Site #3 Concrete Pavement - Cracking, Joint Deterioration, 
Roughness, Surface Defects 
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Performance 
Accuracy of single 
measurement 
3D Position Accuracy 
Linearity error 
Angular accuracy 

Dual-axis compensator 

3 mm at 50 m; 6 mm at 100 m 
s 1 mm 
8" horizontal; 8" vertical 
2 mm standard deviation u to 50 m 
Selectable on/off, resolution l", dynamic range+/- 5', 
accuracy 1.5" 

Figure 8 represents site #3 of a concrete sidewalk used as a common path for students to walk or 
cycle between buildings on campus. 

1.2 Accuracies of iPhone/iPad Pro LiDAR and Terrestrial Laser Scanner 

The Leica P20 is an innovative combination of advanced, time-of-flight range measurements plus 
modern Waveform Digitizing (WFD) technology. It aims to achieve high-accuracy angular 
measurements and survey-grade tilt compensation (FLT Geosystems 2013). It can achieve 
detailed nuances of any scene that it scans, with a 3D positional accuracy of 3 mm at 50 m, and a 
linear error of less than 1 mm. The P20 is the ideal instrument to achieve an accurate surface model 
against which all other data will be compared. 

Specifications on the iPad Pro and the iPhone are not readily available, as the original intent of 
the sensor was for portrait photos, not for mapping. The iPad Pro sensor’s maximum accuracy is 
about 1cm at best accuracy (Luetzenburg, G., Kroon, A., & Bjork, A.A., 2021) (Luetzenburg, G., 
Kroon, A., & Bjork, A.A., 2021). 

Figure 9. Leica Scanstation P20 Specifications 

1.3 Classification of Fatigues: Surveyed vs Visual Check 

Traditional inspection is done visually as shown in figure 11 (Caltrans Division of Maintenance 
Pavement, 2019)(Caltrans Division of Maintenance Pavement, 2019).  

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  7 



 

    

 

 
 

  
   

   

  

Figure 10. APCS Vehicle on the Road and Manual Pavement Inspection 

Similarly, a proper analysis of the digital 3D inspection derived from the LiDAR data and point 
clouds from the iPad and iPhone will allow classification of the same areas and extent of the fatigue.
An initial visual check will be performed to ensure proper coverage of the areas in question. Next,
a 3D analysis will quantify the extent of the fatigue in the various pavement types. 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  8 



 

    

  
  

 
    

 

 

    
  

 

    

 
     

 

 

  

  

  

  

  

 

2. Methods 
2.1 Equipment Used 

Scan data from an off-the-shelf iPhone and iPad Pro was compared to the Leica P20 LiDAR 
Scanner. After detailing its specifications, it is evident that the Leica P20 will vastly outperform 
the iPhone and iPad LiDAR sensor. Thus, the Leica P20 will be used as a reference for the iPad 
and iPhone. Our goal is to determine if we can quickly produce a deliverable that shows roadway 
damage accurately enough to be useful. 

The Leica P20 measures 3 mm of inaccuracy on measurements at 50 m. The linearity error is equal 
to or less than 1 mm. The P20 can also scan up to 1 million points per second (FLT Geosystems, 
n.d.) (FLT Geosystems, n.d.) (Fig. 9). Conversely, the iPad Pro sensor has a maximum accuracy 
of approximately 1 cm (Luetzenburg, G., Kroon, A., & Bjork, A.A., 2021). As Apple has not 
released this information, we could not find a figure for the scan rate from a reputable source, 
though we can assume it is far lower than professional-grade scanners. 

2.2 Types of Surfaces 

Using Caltrans road classifications, we identified areas demonstrating fatigue in asphalt and 
concrete on the Fresno State campus. As demonstrated previously in Figures 5 through 9, areas of 
extreme fatigue in asphalt and concrete were used, as well as a recently paved road made of asphalt. 
Each surface type allows for classification from a visual inspection. The surfaces included smooth 
asphalt, moderately damaged asphalt, extremely damaged asphalt, and moderately damaged 
concrete. This included surfaces that had buckling, separation, pitting, and wash boarding. 

According to the Caltrans Concrete Pavement Guide (State of California Department of 
Transportation, 2015)(State of California Department of Transportation, 2015), distress can be 
categorized into the following categories: 

• Cracking 

• Joint/crack deterioration 

• Roughness 

• Surface defects/durability 

• Miscellaneous defects 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  9 



 

    

  

 
   

   
     

 
 

  
    

 

 

 

  
 

 

 

  

2.3 Data Collection 

Several iPad and iPhone scanner apps are available for use. Each app employs its own proprietary 
software to view 3-D data as a surface model, a 3D point cloud, or a mesh, all of which are visual 
depictions of the scanned objects. Several different scanning techniques were conducted during 
the data collection phase to determine which method produced the best results. 

To collect sufficient data, linear measurements were made along crack lines and perpendicular to
fatigue. The LiDAR sensor was also panned side to side and in circles around the roadway. 

Long, continuous scans were compared against short and small burst-of-data measurements. The 
long, continuous scans included sufficient overlap of areas to ensure proper coverage. 

Using a traditional terrestrial scanner, a base surface was created for comparing other scans. 

2.4 Processing Data 

Data from the iPhone and iPads were stored in raw formats. Each scan was converted and exported 
as a .las file to allow for compatibility with Leica Cyclone software. 

The iPhone and iPad were processed in Leica Cyclone, a software product that can convey large 
point clouds and perform complex and accurate analysis. Similarly, a surface was created using the 
Leica P20 scanner to produce the base model/surface for comparisons. It was processed in Leica 
Cyclone. 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  10 



 

    

  

  

  

     

  
 

  
 

 
 

 
 

 

 

 

3. Results 
The results show that iPads and iPhones cannot be utilized at this time to make proper analyses 
of measurable pavement conditions. 

3.1 Site #1 

Site #1 served as the foundation for the level of detail attained using the iPad and iPhone LiDAR 
sensor. Figure 11 represents Site #1 using the base surface from the Leica P20 Scanner. Several 
conclusions can be made from this figure. Joint/crack deterioration is visible along the patch lines 
of the asphalt. Roughness is apparent. Holes in the asphalt are visible and were measured at 3-4 
cm in depth. Details of infrastructure are also visible using the Leica P20 scanner. Figure 11 shows
details of the manhole and joints in the curb/gutter. The rim of the manhole sits approximately
0.5 cm below the grade of the asphalt. 

Figure 11. Site #1 Leica P20 Scanner Surface 

Figure 12 shows the poor results derived from the iPad LiDAR sensor. An inspection with the 
surface will not bear the same results. The manhole is not visible. Figure 12 shows that the road is 
smooth. Joints in the curb and gutter are not visible. The iPad sensor did show the hole in the 
asphalt, but it is nowhere near the level of detail needed to make quantifiable measurements. 
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Figure 12. Site #1 iPad LiDAR Sensor 

The level of detail observed on the iPad Pro-based scans was relatively low across the wide range 
of scans that we made. During our search through the data, the highest resolution we were able to
identify was 1 cm, and we observed nothing in our data that exceeded those results. In general, 
most of the data we were able to recover only showed details within the range of 2-3 cm at best, 
and 4-5 cm on average. In both asphalt and broken concrete, only the very worst damage could be 
seen with the iPad Pro’s sensor. Deep, long cracks are often signs of significant damage in road 
surfaces but are often less than 1-2 cm in width, and thus were barely visible in our collected data. 
We had the most success picking up surface details like major potholes or areas with wide cracking 
between older surfaces and newer patches. Details with more points in the z-axis, such as deep
potholes and curbs, could be measured with slightly more consistency and accuracy, but details 
such as cracks and small, shallow potholes that exist on a relatively flat plane were significantly
more difficult to measure reliably. 

3.2 Site #2 

Misclosure on longer scans added a tremendous amount of error to our scans, and the error 
propagates as distance and subsequent measurements are made. As we lengthened the extent of 
our scans with the iPad Pro, it was obvious that the errors propagated to the point of creating 
multiple different layers of surfaces. Figure 13 shows the details of the iPad scan on site #2. 

Figure 13 demonstrates the anomalies that resulted from the iPad sensor data. Essentially, three 
levels of planes are visual. Anomalies in the curb and gutter are present. 
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A comparison to the Terrestrial scanner was not necessary because the visual inspection does not 
remotely represent the road. 

Figure 13. Site #2 New Asphalt 

On scans that had ends that were not closed, long, linear images generally appeared to maintain a 
semblance of linearity. However, on scans that closed back on themselves (a traverse of sorts), it 
was clear that the data contained an unusable amount of misclosure. Many of our longer scans had 
overlaps that misclosed as much as 10 cm. The app had no recognition of these 
misclosures/misalignments and would simply take action to mathematically force the misclosed 
edges to connect. This meant that the surface models it produced were full of large, geometrically 
shaped edges where none existed on the physical surfaces. As shown in Figure 14, a cross-section 
of the derived point cloud shows the vertical misalignment on site #2. 
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Figure 14. Cross-Section Revealing Vertical Misalignment 

Figure 15 compares the picture alongside the LiDAR sensor data. 

Figure 15. Site #2 Visual Comparison vs LiDAR Comparison 

3.3 Site #3 

Site #3 was a concrete surface. As mentioned earlier, it has obvious visual deformation and 
cracking. The concrete shows evidence of roughness, joint/crack deterioration, surface defects, and 
grading misalignment (Figure 16). 

One slight area of success was using the iPad Pro data in a colorized format. A surface model could 
not be used to extract valuable data. The resultant surface showed only a smooth finish. No 
cracking, deformation, or grade changes were present in the derived surface from the iPad data. 
However, when viewing the points using their true color, contrasting colors would show damage 
on moderately damaged surfaces. It does create a form of visual inspection, but it is no different 
from what a digital camera can provide. Cracks in the surface of the concrete were too insignificant 
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to be visible in the iPad Pro LiDAR data, but light and fine cracking was still invisible in these 
colorized scans. 

Figure 16. Colorized Point Cloud of Site #3 

3.4 Potential Sources of Error 

The novelty of using an off-the-shelf device without calibration and proper site control is 
considerable. Unfortunately, there are too many potential sources of error with this method to 
identify any one main source. The first potential source we found was the Inertial Measurement 
Unit (IMU). The IMU is a chip within the architecture of the iPad Pro that allows the device to 
know where it is in 3D space. It does this by taking thousands of inertial measurements as the 
device is moved in six axes. The device's ability to compute its location as it is being moved is 
critical for establishing the readings being taken by the LiDAR sensor on the device. If the IMU 
is not taking measurements quickly or accurately enough, this will affect the output data. 

The second potential source of error is the LiDAR sensor itself. The sensor is not particularly 
accurate on the scales we need for crack detection and is also highly susceptible to bad readings 
from objects that have poor emissivity. While we could not find exact specifications for the sensor 
from Apple, we can safely assume that the number of measurements per second is at least several 
orders of magnitude less than that of a professional-grade scanner. We also noticed that what 
seemed to affect the areas of poor emissivity the most was the actual texture of the surface more so 
than the color of the material. Sand and gravel in the bottom of a pothole typically were not 
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measured accurately, even though that mixture was composed of materials that normally have good 
emissivity. 

Lastly, as we are unable to see how the onboard processing of the data within the 3D Scanner App 
is performed, we can also regard this as a potential source of error. Essentially, the data processing 
operates as a black box, and without writing our own software, we cannot confirm that the best 
practices are being used to catalog and process the data coming from the sensor. 
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4. Future Potential 
4.1 Gimbal Stabilization 

In the future, a gimbal stabilizer may be used to increase the quality of scans being produced. 
Others have demonstrated that, with the addition of a gimbal stabilizer, such as the ones sold by 
DJI, Inc for photography purposes, data can be produced using the iPhone, which carries the same 
sensor on board and has less misclosure over long, linear measurements (Tamimi, 2022)(Tamimi, 
2022). The gimbal stabilizer is intended to smooth the transitions in 3D space between the 
individual measurements of the IMU, allowing the raw data being collected to be less jerky and 
therefore more accurate. 

4.2 Processing Raw Data 

We hypothesize that the 3D Scanner App is not processing data in the most accurate, rigorous, 
and processor-intensive way, since the app is designed to run on an iPhone 12, the least powerful 
Apple product to carry this sensor. If we were to obtain the raw, unfiltered measurement data 
directly from the sensor, we assume that we could use more intensive and accurate PC-based 
processes to process our data. If an app could be written to do this, the final deliverable would be 
an improvement over its current capabilities. 

4.3 Hardware 

As companies like Meta continue to advocate for products like the Metaverse and other companies 
continue to leverage Augmented Reality (AR) in their products, we can assume (or perhaps hope) 
that Apple will continue to improve the sensor installed on their products. The LiDAR sensor is 
the physical method by which the digital AR world on a device is linked to actual 3D space. 
Making this link more robust and accurate while improving the speed and accuracy of the IMU
would improve the ability of Apple products to use AR and, by extension, would bring this project 
closer to a productive solution rather than leave the deliverable lacking. This will likely occur in 
the future, but we cannot know for sure. 

4.4 Setting Control 

The use of physical control points in the scanned area would considerably increase the quality of 
the scans, particularly if the raw data could be obtained. Being able to measure markers and their 
relationships to each other with the precision needed, however, would dramatically increase the 
cost of each scan. A total station of high accuracy would be needed, as well as an experienced
technician to operate it and perform the scans. However, the cost of this approach would exceed 
half of the price of using a scanning total station or even a laser scanner like the Leica P20 used in 
this project. While the deliverable would be greatly improved, this method would still not have the 
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necessary resolution to display the types of cracks we aim to measure, and it would be expensive, 
negating the purpose of the study altogether. 
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Conclusion 
After various tests, adjustments to processing, and variation in the collection methodology, we 
have determined that the Apple iPad Pro cannot be used to collect and categorize the necessary 
information needed to assess roadway surface damage. From the three surfaces tested in this study, 
which involved differing degrees of pavement condition, none of the surfaces produced usable or 
reliable data. Smaller deviations in cracks and holes in the asphalt were not detectable, while large 
areas produced vertical misalignments, thus obscuring which data were reliable and usable. 

As discussed in Section 4, there are several sources of data that can be tested to isolate any potential 
systematic issues. However, given the vast number of roads of carrying conditions in California, 
inspections by sight and camera still produce better and faster results than what the iPad and 
iPhone LiDAR sensor can currently yield. 

Currently, it is recommended that traditional LiDAR scanning and visual inspection continue 
until other means and methods are further developed. 
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