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Executive Summary 
Fresno County, located in California's San Joaquin Valley, is known to have some of the highest 
levels of air pollution in the United States. The region's main sources of air pollution are 
transportation, industrial activities, and agriculture. Transportation-related pollution is a major
contributor to air pollution in Fresno County. Cars and trucks on the region's roads and highways 
emit large amounts of particulate matter, nitrogen oxides, and other pollutants into the air. In 
addition, the county is located near major transportation corridors, including Interstate 5 and State 
Route 99, which further exacerbates pollution levels. Because of the topographical characteristics 
of a valley surrounded by high mountain ranges, the pollution generated and transported into the 
valley slowly disperses when the atmosphere is stagnant, resulting in significantly increased 
pollution levels. For several decades, emissions from goods movement in the San Joaquin Valley 
have had detrimental health consequences for the low-income and minority communities adjacent 
to the truck depots, rail yards, and connecting highways. The previous StarTraq projects provided 
information, including transportation-related particle pollution data in different modes of 
transportation, including walking, bicycle riding, and driving; spatial characteristics of particulate 
matter emitted from traffic sources; and the neighborhood characterization for the built 
environment infrastructures. The results confirmed that the roadside PM2.5, black carbons, and 
PAHs were significantly elevated compared to the concentrations at the ambient monitoring
stations because of the immediate source proximity on or near roadways. This study aims to 
investigate the impact of meteorological factors such as daily average temperature, humidity, wind 
speed, and wind direction on PM levels in Fresno, CA. This study also aims to assess the inhalation 
risk by different age groups and exposure time in on-road and in-vehicle microenvironments by 
collecting mobile air quality data to explore the spatial variation of the transportation-related 
PM2.5. 

To explore the relationships between PM and meteorological factors, multiple linear regression 
(MLR) and generalized additive models (GAMs) have been utilized. MLR is commonly used in 
diverse applications due to its simple model interpretations resulting from its linear model 
structure. However, as many variables exhibit non-linear relationships, GAM is employed to 
examine these non-linear associations. 

To assess the transportation-related exposure to PM2.5 during roadway trips, the Average Daily 
Dose (ADD, µg/kg/day) was estimated from the observed mean PM2.5 concentrations in on-road 
and in-vehicle environments for different age groups and data from NHANES. 

Findings 

Our key findings are as follows: 

1. PM10 Analysis using MLR and GAM: During the whole season, humidity and wind speed are 
significant factors for PM10. During the hot season, temperature, humidity, wind speed, and 
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wind direction are all significant. During the cool season, humidity and wind speed are 
significant factors. 

2. PM2.5 Analysis using MLR: During the whole season, wind speed is the only significant factor 
for PM2.5. During the hot season, temperature and wind speed are both significant. During the 
cool season, temperature and wind speed are significant factors. 

3. PM2.5 Analysis using GAM: During the whole season, temperature, humidity, and wind speed 
are the significant factors for PM2.5. During the hot season, temperature and wind speed are 
both significant. During the cool season, wind speed is the only significant factor. 

4. Regional air quality PM2.5 measured at Fresno station and meteorological conditions was 
closely related to the on-road PM2.5. PM2.5 on the highways was higher than PM2.5 on the local 
roadways. On-road transportation-related particle pollutants measured in the San Joaquin
Valley is significantly higher than the concentrations measured in the Bay Area. 

5. The average daily dose of transportation-related PM2.5 estimation based on a 2-hour commute 
and an 8-hour trip scenario estimated that the children’s average daily dose of PM2.5 is 
significantly higher than the ADDs of adults. 

6. In-vehicle average daily doses are significantly lower than the on-road daily doses. The 
estimation of inhalable exposure to PM2.5 on-road can be applied to people who work or live 
near busy roads. 

In this research, we have continued to collect mobile air quality data from transportation-emitted 
particulate matter, including PM10, PM2.5, PM1, and BC. The study findings confirmed that 
personal exposure to transportation related PM2.5 varies by spatial variation and in different 
microenvironments. 

This study underscores the importance of considering seasonal variations and meteorological
factors when modeling PM pollution. By elucidating the sensitivity of PM levels to temperature 
and wind direction during the hot season in Fresno County, the findings provide actionable 
insights for policymakers and stakeholders, such as the need for healthcare providers in the area 
and school site decisions. These insights can inform the development and implementation of 
targeted strategies to mitigate the adverse health effects of particulate matter pollution, thereby 
safeguarding public health and enhancing overall air quality in Fresno County and regions facing 
similar air pollution challenges. 

This comprehensive study significantly advances our understanding of the intricate relationship 
between meteorological variables and PM pollution. By providing valuable insights and empirical 
evidence, the study empowers decision-makers with the knowledge needed to formulate evidence-
based policies and interventions for effective air quality management and public health protection 
in Fresno County and beyond. 
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1. Introduction 
Particulate matter (PM; also called particle pollution) is a combination of both solid particles and 
liquid droplets that can easily be found in the air. PM10 refers to inhalable particles with 10 
micrometers and smaller diameters, while PM2.5 refers to diameters 2.5 micrometers or smaller. 
To compare the size, human hair has an average diameter of about 70 micrometers, making PM2.5 

about 28 times smaller. Major PM sources include industrial activities, construction sites, unpaved 
roads, smoke, and fires (Kassomenos et al., 2014). Particulate matter less than 10 micrometers in 
diameter can have serious health effects such as asthma, heart attack, and respiratory diseases and 
potentially enter the human bloodstream. 

Previous studies have confirmed that seasonal variation and meteorological factors influence the 
characteristics and behavior of PM (Gvozdić, 2010; Özbay, 2012; González et al., 2018; Ma et al.,
2019). Hou et al. (2019) and Shi et al. (2020) have examined the role of meteorological parameters 
on particulate matter and confirmed the sensitivity and relationship between the two. Additionally,
dust storms and wildfires can also contribute to PM pollution. Zhang et al. (2022) examined the 
impact of a dust storm on PM10 levels in Beijing and found that the storm significantly increased 
PM10 concentrations. Similarly, Wu et al. (2020) investigated the impact of wildfires on PM2.5 

levels in California and found that wildfires resulted in a substantial increase in PM2.5. 

Fresno County, located in California's San Joaquin Valley, is known to have some of the highest 
levels of air pollution in the United States. The region's main sources of air pollution are 
transportation, industrial activities, and agriculture. Transportation-related pollution is a major
contributor to air pollution in Fresno County, as cars and trucks on the region's roads and highways 
emit large amounts of particulate matter, nitrogen oxides, and other pollutants. In addition, the 
county is located near major transportation corridors, including Interstate 5 and State Route 99, 
which further exacerbates pollution levels. Industrial activities, including oil and gas production, 
manufacturing, and power generation also contribute to air pollution in Fresno County. The 
region is home to several oil and gas fields emitting large amounts of volatile organic compounds 
(VOCs) and other pollutants into the air. The region's power plants and manufacturing facilities 
also emit particulate matter and other pollutants into the air. Agriculture is another significant 
source of air pollution in Fresno County, as the region is known for its large-scale agricultural 
operations, which use fertilizers, pesticides, and other chemicals that can contribute to air 
pollution. In addition, the processing and transportation of agricultural products can also generate 
significant amounts of pollution. The high levels of air pollution in Fresno County have been 
linked to a range of negative health outcomes, including respiratory problems, cardiovascular 
disease, and cancer. The county and state have implemented various measures to address pollution 
levels, including regulations on vehicle emissions and industrial activities, promotion of clean 
energy sources, and efforts to reduce emissions from agricultural operations. However, air pollution 
remains a significant challenge for the region, and continued efforts are needed to improve air 
quality and protect public health. 
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Fresno County is characterized by hot, dry summers and cool, wet winters. Spring (March to 
May) in Fresno County is mild and pleasant, with daytime temperatures ranging from the mid-
60s to low 80s Fahrenheit (16-27 degrees Celsius). It can be quite windy during this season, with 
occasional rain showers. Summer (June to August) is hot and dry, with daytime temperatures 
frequently exceeding 90 degrees Fahrenheit (32 degrees Celsius). Temperatures over 100 degrees 
Fahrenheit (38 degrees Celsius) are common during the peak of summer. The county is also known 
for experiencing heat waves lasting several days or weeks. Fall (September to November) is like 
spring in terms of temperature but with drier conditions. Daytime temperatures typically range 
from the mid-60s to mid-80s Fahrenheit (16-29 degrees Celsius), and nights are cool and crisp.  
Winter (December to February) is mild and wet, with occasional frost and fog. Daytime 
temperatures range from the mid-50s to low-60s Fahrenheit (12-16 degrees Celsius), with 
nighttime temperatures dropping into the mid-30s to mid-40s Fahrenheit (1-7 degrees Celsius). 
Rainfall is most common during winter, with occasional snowfall in the higher elevations of the 
Sierra Nevada mountains. 

To further contextualize the investigation into air pollution in Fresno County and the significance 
of seasonal and meteorological factors, it is essential to understand the broader implications of 
poor air quality on public health and environmental sustainability. Studies have consistently linked 
exposure to particulate matter and other air pollutants to adverse health effects, including 
respiratory and cardiovascular diseases and premature mortality (Cohen et al., 2017; Thurston et 
al., 2017). Additionally, air pollution can harm ecosystems, contributing to biodiversity loss, soil 
degradation, and water contamination (Doherty et al., 2017; Wu et al., 2016). Given the 
multifaceted impacts of air pollution, understanding its drivers and dynamics becomes imperative 
for effective mitigation strategies and public health interventions. 

As climate change exacerbates environmental challenges worldwide, the need for proactive 
measures to address air pollution becomes even more pressing. Climate-related factors such as 
rising temperatures, altered precipitation patterns, and increased frequency of extreme weather 
events can influence air pollutants' formation, dispersion, and concentration, intensifying their 
adverse effects on human health and the environment (Haines et al., 2019; Jacobson, 2010). 
Additionally, climate change can interact with local factors such as topography and land use, 
further complicating the dynamics of air pollution in specific regions like Fresno County (Maji et 
al., 2018). Integrating climate considerations into air quality modeling and management
frameworks becomes essential for building resilience and adaptive capacity in changing
environmental conditions. 

This study aims to comprehensively understand the complex interplay between seasonal variation, 
meteorological factors, and air quality in Fresno County by considering the broader implications 
of air pollution on public health, environmental sustainability, and climate change. By applying 
multiple linear regression and generalized additive models (GAM), we seek to elucidate the 
significance of these relationships, offering insights that can inform evidence-based policies and 
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interventions aimed at mitigating air pollution and safeguarding the health and well-being of 
communities in the region. 

The previous StarTraq projects provided information, including transportation-related particle 
pollution data for different modes of transportation, including walking, bicycle riding, and driving;
spatial characteristics of particulate matter emitted from traffic sources; and the neighborhood 
characterization for the built environment infrastructures. The StarTraq 2020 project focuses on 
roadside exposure while walking in the Fresno/Clovis neighborhoods. The StarTraq 2021 project 
added a rich data set of particulate matter concentrations for cycling and driving on different 
roadways in the Fresno/Clovis area, including State Highway 99. The results from StarTraq 2020 
and 2021 have confirmed that the roadside PM2.5, black carbons, and PAHs were significantly
elevated when compared to the concentrations at the ambient monitoring stations due to the 
immediate source proximity on or near roadways (Kwon et al., 2021, 2022). Active transportation 
modes such as cycling and walking, and easy access to transit in communities require consolidating
data-driven transportation information. This information is critical to the stakeholders and the 
public because such data will help urban planning for sustainable growth and promote public health 
in the region. The CDC defines active transportation as the human-powered mode of 
transportation. It is directly related to having safe and comfortable sidewalks and bikeways (CDC). 
U.S. DOT addresses a more fundamental aspect of active transportation, describing its benefits. 
These benefits include reducing obesity and the risks of developing costly chronic conditions such 
as diabetes; as well as improving the quality of life for low-income families, minorities, and 
communities with residents who have no vehicles. Significant issues with active transportation 
include air pollution, local and regional disparities in environmental properties and social 
infrastructure and liabilities, and poor dissemination of information about environmental 
properties and infrastructure to stakeholders for better policies. The StarTraq 2022 project
collected additional mobile air quality data to explore the spatial variation of the transportation 
related PM2.5. The meteorological data were analyzed through temporal statistical models, and the 
inhalation risk for different age groups was assessed based on exposure time in the two 
microenvironments. 
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2. Methodology 
2.1 Air Quality Data and Study Area 

The air quality monitoring station is at latitude 36.7852 and longitude -119.7732 in Fresno, CA. 
It is surrounded by many residential homes and businesses. This station is shown in Figure 1. The 
meteorology monitoring station is located near the air quality monitoring station. It is located at 
latitude 36.7672 and longitude -119.7092 in Fresno, CA. The location is shown in Figure 2. These 
two stations are approximately four miles apart. 

Figure 1. Air Quality Monitoring Station Location in Fresno, CA 
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Figure 2. Meteorology Monitoring Station Location in Fresno, CA 

Air quality monitoring and meteorology station observations are crucial for understanding air 
pollution dynamics and its relationship with meteorological factors. These hourly observations 
provide valuable insight into the daily variations in air quality and weather conditions. These 
measurements are averaged daily to obtain a more representative picture of the environmental 
conditions. 

The available data covers a substantial period, from January 1, 2015, to December 31, 2020, 
allowing for comprehensive analyses of long-term trends and seasonal patterns. This extensive 
temporal coverage allows the assessment of the impact of a range of factors on air quality and 
meteorological parameters over multiple years. 

In developing predictive models, the data from 2015 to 2019 were utilized as a training set. This 
period was a foundation for understanding the relationships between variables and refining the 
modeling techniques. Subsequently, the data from 2020 were employed as a testing set to evaluate 
the performance and generalizability of the developed models. 

At the air quality stations, measurements of PM2.5 and PM10 concentrations are routinely taken, 
providing essential information on the levels of particulate matter in the atmosphere. These 
measurements serve as key indicators of air pollution, which can significantly affect public health 
and environmental quality. Similarly, the meteorology station records various meteorological
parameters, including daily average temperature (T), humidity (H), wind speed (WS), and wind 
direction (WD). These meteorological variables are crucial in influencing atmospheric conditions 
and the dispersion of air pollutants. 
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To account for the distinct weather patterns experienced during Fresno's seasons, the data were 
divided into two distinct seasons-the cool and hot seasons. The cool season, spanning from 
October to May, is characterized by milder temperatures and higher humidity levels. The hot 
season, from June to September, is marked by higher temperatures and decreased humidity.
Despite the wealth of data available, it is important to note that no imputation was performed for 
missing data. Instead, any instances of missing data were omitted from the analysis to ensure the 
integrity and accuracy of the results. This approach maintains the reliability of the findings and 
prevents potential biases in the analysis. 

2.2 Statistical Analyses 

The statistical program R was employed for analyses of the data set, allowing for thorough
exploration and interpretation of the data. Utilizing this versatile software allowed conduction of
in-depth investigations into the characteristics of PM2.5 and PM10 and the various meteorological 
variables recorded in the data set. By employing R, summary statistics and graphs could be 
generated, which provided valuable insights into the distribution, variability, and relationships 
within the data set. 

In addition to examining summary statistics and graphs, various statistical techniques were utilized 
to further analyze the data and uncover underlying patterns and relationships. Multiple linear 
regression (MLR) was used to investigate the associations between PM2.5 and PM10 concentrations 
and meteorological variables such as temperature, humidity, wind speed, and wind direction. MLR 
allowed us to assess the impact of each meteorological variable on air pollutant concentrations 
while controlling for potential confounding factors. 

Generalized additive models (GAM) were utilized to explore potentially non-linear relationships 
between the predictor and response variables. GAM provides a flexible modeling approach that 
can capture complex relationships not adequately represented by linear models. By incorporating 
GAM into the analysis, any non-linear associations between meteorological variables and air 
pollutant concentrations were identified and characterized, thereby enhancing the understanding 
of the underlying processes driving air quality dynamics. 

Multiple Linear Regression (MLR) Analysis 

Multiple linear regression (MLR) serves as a versatile statistical method applicable across various 
fields when investigating the linear relationship between an outcome variable (Y) and multiple 
predictor variables (Xs). The MLR model equation is as follows: 

� = �! + ∑"#$% �"�" + �, 

where �! is the intercept parameter, �" is the coefficient of each X variable, and � is the random 
error in the model assumed to follow a normal distribution with mean 0 and a constant variance 
�&. The MLR model equation provides the relationships between the outcome variable and each 
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predictor variable. Here, �! represents the intercept parameter, signifying the value of Y when all 
predictor variables are zero. In contrast, �" denotes the coefficients corresponding to each predictor 
variable Xi. The model also includes a term for random error, �, which accounts for unexplained 
variability not captured by the predictor variables. This error term is assumed to follow a normal 
distribution with a mean of 0 and constant variance �&, reflecting the stochastic nature of real-
world data and modeling uncertainty. In practical applications, MLR enables assessment of the 
extent to which changes in the predictor variables are associated with changes in the outcome 
variable, thereby elucidating the underlying relationships and facilitating predictive modeling. By 
estimating the regression coefficients (bi), MLR quantifies the magnitude and direction of the 
effect of each predictor variable on the outcome, offering valuable insights into the relative 
importance of different factors influencing the target variable. MLR provides measures of model 
fit, such as R-squared and adjusted R-squared, which gauge the proportion of variance explained 
by the predictor variables. These help the investigator evaluate the overall effectiveness of the 
regression model in capturing the observed data patterns. 

Generalized Additive Model (GAM) Analysis 

As shown in the equation above, multiple linear regression provides the “linear” relationship
between the outcome variable and predictor variables, which may not adequately capture the 
complexities of many real-world phenomena. In cases where relationships are nonlinear or exhibit 
complex interactions, a more flexible modeling approach is warranted. Generalized additive 
models (GAM) offer a versatile framework that extends beyond the constraints of linear models 
while preserving the additive structure, allowing for a more nuanced and accurate representation 
of the data. GAMs allow for the incorporation of smooth, non-linear functions (denoted as fj) for 
each predictor variable (Xj) as shown in the following model equation: 

'� = �! + ∑'$% �'(�') + �, 

where � is a (smooth) non-linear function. 

This flexibility enables GAMs to capture a wide range of non-linear relationships between the 
outcome variable and predictors, accommodating complex patterns and interactions that may be 
missed by traditional linear models. By employing smooth functions, GAMs can effectively model 
curvilinear relationships, nonlinear trends, and variable interactions, providing a more faithful 
representation of the underlying data-generating process. Moreover, GAMs offer advantages in 
handling qualitative and quantitative predictor variables, making them suitable for diverse 
modeling scenarios. Whether the predictors are continuous, categorical, or a combination, GAMs 
can accommodate different variables within the same modeling framework. This versatility
enhances the applicability of GAMs across various disciplines and research contexts, allowing us 
to analyze data sets effectively with mixed types of predictors and to uncover intricate relationships 
between variables. In practical applications, GAMs serve as powerful tools for exploring complex 
relationships in data, offering insights into the underlying mechanisms driving observed patterns 
and phenomena. By providing a more flexible and interpretable modeling approach compared to 
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traditional linear regression, GAMs facilitate more accurate predictions, hypothesis testing, and 
model interpretation. 

To assess the performance of multiple linear regression and generalized additive models, several 
different assessment measures were utilized, as outlined in Table 1, R2 provides a measure of the 
model's goodness of fit, ranging from 0 to 1. Prediction Accuracy (PA) also falls from 0 to 1. The 
Index of Agreement (IA) indicates the ratio of the mean square and potential errors, with a 
perfect fit indicated when IA = 1. Mean Square Error (MSE) and Mean Absolute Error (MAE) 
range from 0 to infinity. MSE quantifies the squared average distance between the actual and 
predicted data, while MAE measures the absolute average distance between the actual and 
predicted data. It is essential to consider these evaluation metrics comprehensively to gauge the 
performance of the regression models accurately.

Table 1. Performance Measures 

Performance measures Equations 
Coefficient of determination (R2) 

Mean Square Error (MSE) 

Mean Absolute Error (MAE) 

Prediction Accuracy (PA) 

Index of Agreement (IA) 

* &
− �2")(�" − �̅")�& = . /

(�" 6��(�)"$% 

*
(�" − �")&��� = . � 

" 
* 
|�" − �"|��� = . � 

" 

*∑ (�" − �2)&"$%�� = *∑ (�" − �2)&"$% 

*∑ (�" − �2)&"$%�� = 1 − *∑ (|�" − �2| + |�" − �2|)&"$% 

2.3 On-road and in-vehicle PM Air Quality Monitoring 

In 2022, particulate matter (PM10, PM2.5, and PM1) and particle-bound black carbon (BC)
concentrations were monitored using real-time aerosol monitors, DustTrak DRX II 8533 (TSI, 
St. Paul, MN), and microAeth AE51 (AethLab, Berkeley, CA), respectively as described in the 
previous study (Kwon et al., 2022) in four Central Valley to Bay Area round trips. “On-road 
(outside vehicle)’ monitors were installed on the roof of a vehicle. In contrast, ‘in-vehicle (inside 
vehicle)” monitors were installed inside the vehicle to compare the particulate pollution levels in 
two contrasting microenvironments. The Tracksticks logged the GPS data for trajectories and 
used them to identify the roadway types and areas of the air pollution data. Before and after driving, 
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collocation sampling was performed for any offsets or drifts of air monitors for quality assurance / 
quality control. The on-road and in-vehicle PM mean concentrations were compared using t-tests 
using the statistical program SPSS. 

2.4 Exposure Estimation to Transportation-Related PM2.5 

To assess the transportation-related exposure to PM2.5 during roadway trips, the Average Daily 
Dose (ADD) was estimated from the observed mean PM2.5 concentrations in on-road and in-
vehicle environments. The PM2.5 mean concentrations were pooled from the overall fifteen trips 
in 2021 (Kwon et al., 2022) and 2022. The NHANES (1999-2006) body weights and inhalation 
rates by different ages and sexes were referred from the Exposure Factors Handbook (US EPA, 
2011). The Average Daily Dose represents human exposure and can be expressed as follows in the 
equation: 

CAIR × IR × ET × EF × ED
ADD = BW × AT 

where CAIR is pollutant concentration (µg/m3), IR is inhalation rate (m3/hour), ET is exposure 
time (hours/day), EF is exposure frequency (days/year), ED is exposure duration (years), BW is 
body weight of children (kg), and AT is averaging exposure time (days). The two scenario 
assumptions for exposure times (ET) were a 2-hour commute and an 8-hour road trip similar to 
occupational exposure of vehicle operators and people working 8 hours per day near roadways. The 
exposure frequency (EF), 250 days/year, was derived from 5 weekdays for 50 weeks per year with 
a 14-day vacation during a year duration (ED). The ADD (µg/kg-day) values were estimated by 
the five age groups: Children under 3 years old, children (3 to 11 years old), adolescents and young 
adults (11 to 21 years old), adults (21 to 59), and adults over 60. The ADD values by age groups 
in each scenario are compared with the reference dose (RfD) estimated with an assumption of 
exposure to 12 µg/m3, the annual primary standard of PM2.5 of the National Ambient Air Quality 
Standard (NAAQS). Primary standards provide public health protection, including protecting the 
health of “sensitive” populations such as asthmatics, children, and the elderly (US EPA, 2023). 
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3. Results 
3.1 Summary Statistics and Graphical Summaries 

Separate analyses were conducted for the training period (2015-2019) and the testing period 
(2020). Tables 2 and 3 present the descriptive statistics for all the variables. It is noticeable that 
the central tendencies (median and mean) of PM10 and PM2.5 are higher during 2020 than in 2015-
2019. Additionally, the variability (Std Dev) is larger in 2020 than in 2015-2019. These numerical 
differences are evident in the box plots from Figure 3. 

Table 2. Summary Statistics of the Variables from 2015 to 2019 

Variables Min Q1 Median Mean Q3 Max Std Dev N 

PM10 2.708 20.764 31.822 36.491 47.021 322.146 23.438 1820 

PM2.5 0.778 6.6424 9.9546 13.4970 16.0927 95.7271 11.1425 1820 

Daily Avg. 
Temp 

20.00 42.00 46.00 45.87 51.00 64.00 6.8001 1820 

Humidity 17.00 38.00 50.00 53.64 70.00 94.00 18.1839 1820 

Wind Speed 0.00 3.5 5.90 5.961 7.80 20.00 2.9251 1820 

Wind 
Direction 

10 220.00 300 260.4 310.0 350.00 81.3916 1820 

Table 3. Summary Statistics of the Variables from 2020 

Variables Min Q1 Median Mean Q3 Max Std Dev N 

PM10 1.688 20.958 34.326 47.463 54.618 294.208 43.26 365 

PM2.5 1.126 6.887 11.334 18.399 23.162 170.238 20.432 365 

Daily Avg. 
Temp 

26 39.00 45.00 45.05 51.00 63.00 7.506 365 

Humidity 24.00 37.00 46.50 51.08 62.75 95.00 16.938 365 

Wind Speed 1 3.30 5.300 5.596 7.200 16.700 2.745 365 

Wind 
Direction 

30 262.5 300 266.9 310.0 350.0 78.526 365 
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Figure 3. Boxplots of PM10 (left) and PM2.5 (right) from 2015 to 2020 

Figure 3 displays the boxplots of PM10 (left) and PM2.5 (right) by year. Notably, in 2019, the 
average levels clearly decreased. Furthermore, the variability in PM10 increased during 2019 and 
2020, while PM2.5 decreased during 2019. These trends are apparent in the boxplots, highlighting 
the temporal variations in particulate matter concentrations over the years. 

In Figure 4, the time series plots depict the variations in PM10 and PM2.5 levels over time. For 
PM10, it is evident that the concentrations peak during the fall seasons, influenced by factors such 
as increased agricultural activities and atmospheric conditions. Conversely, PM2.5 levels exhibit 
higher concentrations in early spring and winter, potentially attributed to increased combustion 
activities for heating purposes and atmospheric inversions trapping pollutants closer to the surface. 
These temporal patterns provide valuable insights into the region's seasonal dynamics of particulate 
matter pollution. 
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Figure 4. Time Series Plot of PM10 and PM2.5 from 2015 to 2020 

In Figure 5, the linear relationship among the variables is explored. PM10 and PM10.d1 (previous 
day) exhibit a high correlation, indicating a strong influence of the previous day's PM10 levels on 
the current day's values. Similarly, PM2.5 and PM2.5.d1 (previous day) also demonstrate a high
correlation, suggesting a significant impact of preceding PM2.5 concentrations on the current day's 
measurements. These observed correlations highlight the persistence of particulate matter 
pollution over consecutive days, indicating the potential for carryover effects from previous days' 
pollution levels. Understanding these relationships is crucial for accurately predicting and 
managing air quality, as past pollution levels can be valuable predictors for future concentrations. 
Additionally, these strong correlations underscore the interconnected nature of atmospheric 
processes and the importance of considering temporal dynamics when analyzing air quality data. 
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Figure 5. Scatterplot Matrix of the Variables 

3.2 Multiple Linear Regression (MLR) and Generalized Additive Model (GAM)
Results 

Tables 4 and 5 represent the relationship between multiple linear regression and the generalized 
additive model for PM10, while Tables 6 and 7 display the results for PM2.5. Fresno County
experiences hot, dry summers and cool, wet winters. Understanding the influence of temperature 
on particulate matter in this area is of interest, therefore we have considered both seasons. The 
“hot” season refers to June through August, while the “cool” season refers to September through 
May. These distinctions allow for a more nuanced analysis of the seasonal variations in particulate 
matter concentrations and their relationship with temperature. 

For PM10, both MLR and GAM analyses indicate that temperature and wind direction are 
statistically insignificant, while other variables are. During the hot season, both temperature and 
wind direction become statistically significant predictors. However, they remain insignificant 
during the cool season. This suggests that the influence of temperature and wind direction on 
PM10 levels varies depending on the season, with these factors playing a more prominent role 
during the hot season. 

Turning to PM2.5, the MLR model shows that temperature, humidity, and wind direction are not 
significant predictors, whereas only wind direction is insignificant under the GAM model 
throughout the entire season. However, temperature emerges as highly significant during both hot 
and cool seasons under the MLR model. Conversely, humidity becomes insignificant during hot 
and cool seasons under the GAM model. These findings underscore the complex relationships 
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between meteorological variables and PM2.5 concentrations, with different models yielding varying 
results across different seasons. 

The distinction between hot and cool seasons allows for a more comprehensive understanding of 
how meteorological factors influence particulate matter levels in Fresno County. By examining 
these seasonal variations, the underlying mechanisms driving air pollution dynamics can be 
elucidated, and targeted strategies can be developed to mitigate their adverse effects on public
health and the environment. Further research into the interplay between meteorology and air 
quality is essential for informing effective pollution control measures and improving overall air 
quality in the region. 

Table 4. Multiple Linear Regression Model (MLR) Output for PM10 

Entire Season “Hot” Season "Cool" Season 

Variable Estimate P-value Estimate P-value Estimate P-value 

Intercept 35.795 0 23.578 0 42.554 0 

PM10 (d-1) 0.685 0 0.706 0 0.667 0 

Temperature 0.069 0.169 0.304 0.003 -0.083 0.236 

Humidity -0.27 0 -0.178 0.017 -0.265 0 

Wind Speed -1.833 0 -1.584 0 -1.87 0 

Wind Direction -0.007 0.102 -0.025 0.037 -0.007 0.192 

Table 5. Generalized Additive Model (GAM) Output for PM10 

Entire Season “Hot” Season "Cool" Season 

Variables Estimate P-value Estimate P-value Estimate P-value 

Intercept 36.552 0 44.519 0 32.582 0 

PM10 (d-1) 4.38 0 2.085 0 3.831 0 

Temperature 1.905 0.075 1 0.008 3.548 0.691 

Humidity 4.818 0 2.341 0.007 4.703 0 

Wind Speed 4.188 0 2.225 0 5.058 0 

Wind Direction 1 0.23 5.372 0.007 1 0.431 
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Table 6. Multiple Linear Regression Model (MLR) Output for PM2.5 

Entire Season “Hot” Season "Cool" Season 

Variable Estimate P-value Estimate P-value Estimate P-value 

Intercept 11.107 0.000 3.118 0.123 13.777 0.000 

PM2.5 (d-1) 0.750 0.000 0.697 0.000 0.740 0.000 

Temperature -0.009 0.626 0.147 0.000 -0.103 0.000 

Humidity -0.013 0.096 -0.031 0.242 0.016 0.173 

Wind Speed -1.012 0.000 -0.679 0.000 -1.089 0.000 

Wind Direction -0.002 0.194 -0.004 0.365 -0.002 0.226 

Table 7. Generalized Additive Model (GAM) Output for PM2.5 

Entire Season “Hot” Season "Cool" Season 

Variables Estimate P-value Estimate P-value Estimate P-value 

Intercept 13.469 0.000 10.620 0.000 14.888 0.000 

PM2.5 (d-1) 3.302 0.000 3.017 0.000 3.293 0.000 

Temperature 6.292 0.000 1.000 0.000 4.878 0.145 

Humidity 7.472 0.000 1.400 0.193 4.779 0.164 

Wind Speed 5.891 0.000 6.806 0.000 4.275 0.000 

Wind Direction 4.521 0.459 4.002 0.374 1.000 0.435 

Tables 8 and 9 present the measures of how the MLR and GAM models fit the PM10 and PM2.5 

data. For PM10, MLR demonstrates superior performance compared to GAM during the hot 
seasons, while GAM performs better during the cool season. This suggests that MLR may be 
more effective in capturing the relationship between predictor variables and PM10 concentrations 
overall, particularly during periods of elevated temperatures. However, during cooler seasons, the 
flexibility of the GAM model allows it to capture the variability in PM10 levels better. 

For PM2.5, GAM outperforms MLR throughout the period and during the cool seasons. This 
indicates that the GAM model's ability to capture nonlinear relationships and account for complex 
interactions between variables makes it more suitable for modeling PM2.5 concentrations, especially 
during cooler periods. Interestingly, during the hot season, it is unclear which model performs 
better, suggesting that the performance of MLR and GAM may be comparable under certain 
conditions. 
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These findings highlight the importance of considering linear and nonlinear modeling approaches 
when analyzing air quality data. The choice of model may depend on a range of factors, such as 
the season, the specific pollutant being studied, and the characteristics of the data. By comparing 
the performance of different modeling techniques, valuable insights can be gained into the 
underlying processes driving air pollution and improve the accuracy of air quality predictions. 
Continued research in this area is essential for developing robust modeling frameworks that 
effectively inform air quality management strategies and protect public health. 

Table 8. Model Comparisons PM10 

Seasons (PM10) R2 RMSE MAE PA IA 

Entire season 
(MLR) 

0.818 19.515 10.386 0.574 0.806 

Entire season 
(GAM) 

0.802 21.346 10.428 0.479 0.824 

Hot Season 
(MLR) 

0.785 27.1 13.825 0.572 0.804 

Hot Season 
(GAM) 

0.786 29.3 14.879 0.461 0.827 

Cool Season 
(MLR) 

0.82 13.576 8.412 0.641 0.795 

Cool Season 
(GAM) 

0.829 12.92 7.589 0.729 0.78 

Table 9. Model Comparisons for PM2.5 

Seasons (PM2.5) R2 RMSE MAE PA IA 

Entire season 
(MLR) 

0.775 9.792 5.024 0.65 0.79 

Entire season 
(GAM) 

0.774 9.676 4.747 0.742 0.774 

Hot Season 
(MLR) 

0.753 15.59 7.219 0.542 0.809 

Hot Season 
(GAM) 

0.756 15.754 7.152 0.506 0.816 

Cool Season 
(MLR) 

0.809 5.534 3.991 0.78 0.772 

Cool Season 
(GAM) 

0.839 5.084 3.512 0.769 0.774 
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3.3 Transportation-Related PM Measured On-road, In-vehicle, and Regional Air 
During the Intercity Trips 

Table 10 summarizes the mean PM2.5 and Black Carbon (BC) measured on-road and in-vehicle 
as markers of Fresno’s air quality. On-road PM2.5 and BC concentrations were statistically
significantly higher than those measured in-vehicle using a t-test. On-road concentrations were 
almost 6 times higher than in-vehicle concentrations for PM2.5 and nearly 10 times higher for BC. 
Therefore, in-vehicle concentrations were at a safer level, 16% for PM2.5 and 11% for BC, 
respectively, compared to the on-road concentrations. Compared to the previous StarTraq 2021 
study, on-road black carbon was significantly decreased in 2022 data. Therefore, the I/O ratio 
increased from 4% to 11%, although the in-vehicle black carbon levels remained similar to the 
2021 levels. 

Table 10. Average PM2.5 and Black Carbon Concentrations (µg/m3) Measured 
On-road and In-vehicle During the Four Intercity Trips Between 

the San Joaquin Valley and Bay Area in 2022 

Trip ID 
PM2.5 Black Carbon 

PM2.5 at Fresno 
On-Road In-Vehicle On-Road In-Vehicle 

Trip 12 F-B-F* 5.9 0.01 3.23 0.27 5.4 

Trip 13 F-B-F 22.3 4.6 2.26 0.38 34.0 

Trip 14 F-B-F 20.5 3.1 2.68 0.29 28.5 

Trip 15 F-B-F 30.5 4.8 4.04 0.35 32.0 

Average 19.8 3.1 3.1 0.3 25.0 

On-Road/In-Vehicle 6.3 9.5 

In-Vehicle/On-Road 16% 11% 

*F-B-F: Fresno to Berkeley to Fresno trip 
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Figure 6. PM2.5 Concentration by Microenvironments (left: box plot), 
1:1 Scatter Plots of On-road and In-vehicle PM2.5 (middle) and Black

Carbon (right), Fifteen Trips Were Combined from the StarTraq 2021 and 2022 

The on-road PM2.5 means were not statistically significantly different from the PM2.5 means 
measured at the Fresno monitoring station by a t-test when the overall fifteen trips were sampled
in 2021 and 2022. The p-value was 0.997. The on-road PM2.5 means were statistically significantly 
higher than the in-vehicle PM2.5 means, as shown in Figure 6 (on the left, p < 0.001*). The scatter 
plots of the on-road and in-vehicle PM2.5 (middle) and BC (right) illustrate positive relationships 
between the on-road and in-vehicle mean concentrations. There is a strong positive relationship 
between on-road and in-vehicle PM2.5. For PM2.5, 88% of the variability in in-vehicle PM2.5 can 
be explained by on-road PM2.5 (R2 = 0.88). For BC, the relationship between on-road and in-
vehicle was positive but not as strong as that of PM2.5. For BC, 34% of the variability in in-vehicle 
BC can be explained by on-road BC (R2 = 0.34). The results indicate that in-vehicle 
transportation-related particle exposure was at safer levels (11 to 16 %) compared to the on-road 
exposure for both PM2.5 and BC. 

Figure 7. PM2.5 on the Local Roads in the Bay Area and in Fresno (left); PM2.5 on the Highways 
in the Bay Area and in the San Joaquin Valley (middle); PM2.5 on the Local Roads and 

Highways in Overall Trips (right) in 2022 Intercity Monitoring (trips 12 to 15) 
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The geographical locations impacted by topography and roadway classes are also significant
determinants of air quality. As illustrated in Figure 7, regardless of the roadway types, on-road 
PM2.5 means were higher in the San Joaquin Valley than in the Bay area. The PM2.5 was higher 
on the highways than the PM2.5 on the local roads in the Bay area. Notably, the median of PM2.5 

in Fresno local was higher than that of PM2.5 on highways in the San Joaquin Valley. When overall
data were combined by roadway class, highway concentrations were higher than local roadways. 

3.4 Exposure Assessment to Transportation-Related PM2.5 

The Average Daily Dose (ADD, µg/kg/day) was estimated from the observed mean PM2.5 

concentrations in on-road and in-vehicle environments to assess the transportation-related 
exposure to PM2.5 during roadway trips. Two scenario assumptions for exposure times were used. 
The first scenario estimated transportation-related PM2.5 exposure in vehicles (in-vehicle) and near 
roadsides (on-road) from a 2-hour daily commute every weekday for a year with a 2-week vacation 
(50 weeks per year). The second scenario estimated transportation-related PM2.5 exposure in 
vehicles (in-vehicle) and near roadsides (on-road) from an 8-hour daily road trip every weekday 
for a year, excluding a 2-week vacation (50 weeks per year). The 8-hour daily road trip scenario 
can be applied for 8-hour occupational exposure of transportation workers and people who work 
for 8 hours per day near the roadways. The ADD estimations were divided into five age groups:
Children under 3 years old, children (3 to 11 years old), adolescents and young adults (11 to 21 
years old), adults (21 to 59), and adults over 60. 

As illustrated in Figures 8 and 9, the average daily doses for the children’s groups were significantly 
higher than those in the adults’ groups because of the children’s smaller size. The median ADD 
of children under 3 in in-vehicle exposure (0.36 µg/kg/day) was higher than the average reference 
dose (RfD, 0.32 µg/kg/day), a value derived from the same frequency and duration of exposure for 
all age groups (that is, the annual PM2.5 standard of 12 µg/m3). The results illustrate that PM2.5 

exposure at safe levels during the daily commute can still significantly expose infants and children 
under 3. For two-hour daily exposure to near-road environments, the ADDs of children under 11 
were higher than the RfD of the other age groups. This result may concern schools and daycare 
facilities next to busy traffic areas. 

Despite the higher average daily dose of transportation-related PM2.5 in the on-road air quality, if 
people consistently close the window and recirculate their in-vehicle air, the ADD is reduced 
significantly in in-vehicle cabin air. People can use cabin air filters and recirculate in-vehicle air to 
protect themselves from PM2.5 penetrating from on-road transportation or even from elevated 
PM2.5 driven by wildfire. Figure 9 shows that an 8-hour driving scenario is equivalent to daily 
exposure for people who operate vehicles occupationally or for those who work on or near 
roadways. Due to the increase in exposure duration, increased ADD is observed in all age groups. 
The ADDs of adult groups were lower than the RfD-8hr (1.26 µg/kg/day) even in the on-road 
environments. However, the ADDs of groups of children under 11 were higher than RfD-8hr. 
The scenario may be applied to estimate inhalation exposure of children who live near busy
roadways or in downwind locations and play outside frequently. 
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Figure 8. Transportation-related Exposure to PM2.5 Estimated 
from a 2-hour Daily Commute In-vehicle and On-road Environments by Age Groups 

Figure 9. Transportation-related Exposure to PM2.5 Estimated 
from an 8-hour Daily Exposure In-vehicle and On-road Environments by Age Groups 
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4. Summary & Conclusions 
Analysis suggests that the relationship between temperature and particulate matter (PM10 and 
PM2.5) in Fresno County is influenced by the season, temperature, and wind direction. These 
meteorological factors significantly impact PM10 levels during the hot season but not during the 
cool season. Conversely, temperature emerges as a highly significant predictor for PM2.5 

concentrations during both hot and cool seasons under the MLR model. The choice between 
MLR and GAM for modeling depends on the specific season and pollutant, with MLR 
outperforming GAM for PM10 and GAM performing better for PM2.5 during the cool season. 

The regional air quality PM2.5 measured at Fresno station and meteorological conditions were 
closely related to the concentration of on-road particulate matter. Through intercity monitoring 
of PM2.5 and BC, it was observed that on-road concentrations were statistically significantly higher 
than the particle concentrations measured in-vehicle (p<.001), indicating that in-vehicle particle 
concentrations were at a safe level compared to on-road concentrations. Additionally, PM2.5 

concentrations on highways were higher than those on local roadways in most cases. Furthermore, 
transportation-related particle pollutants measured on-road in the San Joaquin Valley were 
significantly higher than the concentrations measured in the Bay Area. 

The results from an average daily dose of transportation-related PM2.5, based on a 2-hour commute 
and an 8-hour trip scenario, estimated that the children’s average daily dose of PM2.5 is significantly 
higher than the ADDs of adults’ age groups. In-vehicle average daily doses were significantly lower 
than the on-road daily doses. The estimation of inhalable exposure to PM2.5 on-road can be applied 
to people who work or live near busy traffic areas. 

These findings underscore the complex dynamics of air pollution and the importance of 
considering a range of factors such as seasonality, location, and transportation patterns when 
assessing air quality. Continued research in this area is crucial for developing effective strategies to 
mitigate air pollution and safeguard public health in Fresno County and beyond. By understanding 
the interplay between meteorological conditions, transportation emissions, and particulate matter 
concentrations, policymakers can make informed decisions to improve air quality and promote 
environmental sustainability. 
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