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Executive Summary 
This report presents the results of a research project on preconstruction cost hour estimating for 
pavement rehabilitation projects undertaken by the California Department of Transportation 
(Caltrans). It is laid out according to, and describes, the four-step process followed in the research, 
namely (1) a literature review; (2) data collection; (3). data analysis; and (4) model development. 
In the literature review, the report develops the case for using two types of models for estimating 
preconstruction hours, namely an Artificial Neural Network (ANN) and a Parametric Model. 
Data for 139 pavement rehabilitation projects was obtained from Caltrans, and a data set was 
developed that combined the preconstruction hours for each project with the primary bid items for 
pavement rehabilitation projects. The report describes how the two models were developed and 
their success in explaining 85% and 80%, respectively, of the variation in the preconstruction hours. 
Finally, the report concludes with suggestions for further research. 
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1. Introduction 
This report presents the results of a research project on preconstruction cost estimating for 
pavement rehabilitation projects undertaken by the California Department of 
Transportation (Caltrans). The research project consisted of the four principal tasks illustrated in 
Figure 1.  

Figure 1. Four Principal Tasks in the Research Plan 

 

The research project responded to a need expressed by personnel in the California Transportation 
Commission (CTC). The CTC is required to oversee the preconstruction cost estimating process 
for the State Highway Operation and Protection Program (SHOPP), of which pavement 
rehabilitation projects are a part. The requirement in law reads as follows: 

Government Code 14526.5. (g) On or after July 1, 2017, to provide sufficient and 
transparent oversight of the department’s capital outlay support resources composed of 
both state staff and contractors, the commission shall be required to allocate the 
department’s capital outlay support resources by project phase, including preconstruction. 
Through this action, the commission will provide public transparency for the 
department’s budget estimates, increasing assurance that the annual budget forecast is 
reasonable. The commission shall develop guidelines, in consultation with the 
department, to implement this subdivision. Guidelines adopted by the commission to 
implement this subdivision shall be exempt from the Administrative Procedure Act. 
(Chapter 3.5 (commencing with Section 11340) of Part 1) 

Task 2 Data collection 
i. Physical outputs 

of each project 
ii. Project costs in 

dollars and hours 

Task 3 
Data analysis 
and data set 

development 

Task 4 Model 
development 
i. Regression 

model 
ii. Neural 

network 

Task 1 Literature 
review 
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The 2022 four-year SHOPP consists of more than 1,000 projects valued in total at $17.9 billion 
(Caltrans, 2022). Caltrans, the “department” referred to in the code, indicates that 14% of this 
amount is dedicated to the funding of preconstruction work. Preconstruction therefore accounts 
for about $2.5 billion of the four-year SHOPP, or about $600 million per year. The intent of this 
research, and similar additional future research, is to provide tools to help the CTC and Caltrans 
evaluate the estimates for this $600 million per year. Each of the four tasks in the research plan is 
presented as a chapter in the report that follows. 
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2. Literature Review 
This chapter introduces some of the principal guidance documents on cost estimating that are 
relevant to this study. It begins with a background on Caltrans phases, proceeds to discuss 
estimating methods, considers the inputs to estimating, and gives an example of a tool formerly 
used by Caltrans for support cost estimating. 

2.1 Caltrans Phases: Project Management Handbook 

This report is concerned with the preconstruction phases of pavement rehabilitation projects. 
Caltrans records and reports project in seven phases, as follows: 

• Project Initiation Documents, Phase K. Some of these documents are also referred to as 
Project Study Reports and Feasibility Studies. 

• Permits and Environmental Studies, Phase 0, which ends in the Project Approval and 
Environmental Documents milestone (PA&ED) and is sometimes referenced by it. 

• Plans, Specifications, and Estimates, Phase 1. 

• Right of Way Operations, Phase 2. 

• Construction Engineering, Phase 3. 

• Construction Capital, Phase 4. 

• Right of Way Capital, Phase 9. 

Phases 2 and 9 occur simultaneously and can be collectively described as a single phase, “Right of 
Way.” The same is true for Phases 3 and 4, which can be described as a single phase, 
“Construction.” The separate recording and reporting of Phases 2 from 9 and 3 from 4 are required 
by Section 3.00 of California’s annual budget and its State Administrative Manual (DGS, 2017). 
With these collective phases, then, the seven phases become five. The sequencing and relationship 
between these five phases are illustrated in Figure 2.  
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Figure 2. Caltrans Project Phases 
 

 

In this report, “preconstruction” is understood to refer to the sum of Phases 0 and 1 (“Permits and 
Environmental Studies” and “Plans, Specifications, and Estimates”). The cost estimate for these 
phases is presented to the CTC for approval before the start of Phase 0, that is, at the end of Phase 
K (“Project Initiation Document”).  

Figure 3 illustrates how pavement rehabilitation project costs were split across the phases, by 
percentage, excluding the Phase 9 cost, in the year from July 1, 2020 to July 1, 2021, the last 
complete year for which data was available when this research was undertaken. The data received 
from Caltrans did not include Phase 9, Right of Way capital or Phase K, as the Project Initiation 
Document is considered to be a pre-project cost rather than a project cost. Nevertheless, it is clear 
that construction capital costs comprise the bulk of the pavement rehabilitation costs. Construction 
capital refers almost exclusively to payments made to the contractors who perform construction 
work. 

The preconstruction effort that is the topic of this report, Phase 0 and 1, constituted only 
10 percent of the costs represented in Figure 3. Although only 10 percent of the total, these 
preconstruction costs in 2020–2021 amounted to more than $169 million, which is a sum worth 
examining. This $169 million is the portion of the $600 million of SHOPP preconstruction work, 
discussed in the Introduction, that is dedicated to pavement rehabilitation projects.  

It should be noted that the data in Figure 3 is for all pavement rehabilitation projects that incurred 
expenses in 2020–2021. This is a different population and time period from the 138 projects that 
will be discussed later in this report, although some of the 138 projects did incur expenses in 2020–
2021 and are therefore partially included in Figure 3.  
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Figure 3. Percentages of Caltrans Pavement Rehabilitation Costs by Phase in 2020–2021 

 

2.2 Estimating Methods 

This section introduces some of the principal guidance documents on cost estimating relevant to 
this study. The section moves from the general to the specific and discusses the Project 
Management Institute’s (PMI) Practice Standard for Estimating (PMI, 2011), the American 
Association of State Highway and Transportation Officials’ (AASHTO) Practical Guide to Cost 
Estimating (AASHTO, 2013), and the Transportation Research Board (TRB) Guidebook on 
Estimating Highway Preconstruction Services Costs (Gransberg et al., 2016). Table 1 indicates some 
characteristics of these sources that informed the choice to include them here. 

Table 1. Characteristics of the Selected Literature Sources 

 Specifically 
about 
Estimating 

Focuses on 
Highways 

Limited to 
Estimating 
of Costs 

Specific to 
Preconstructi
on 

PMI, 2011 P    

AASHTO, 2013 P P P  

Gransberg et al., 2016 P P P P 

 

  

Phase 0
6% Phase 1

4%
Phase 2

1%

Phase 3
9%

Phase 4
80%
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2.2.1 Project Management Institute Practice Standard for Estimating 

The PMI (2011) indicates that estimating methods fall into just three categories: analogous, 
bottom-up, and parametric. PMI defines analogous estimating as “a technique for estimating the 
duration or cost of an activity or a project using historical data from a similar activity or 
project” (PMI, 2017) and adds: 

Analogous techniques, also known as top-down estimating, are used when very little 
information is available about the project, or the new project is very similar to a previous 
project or the estimators have great experience with what is going to be estimated. This 
category of technique results in a total project estimate and is the technique of choice for 
early estimates where detailed information is not available. (PMI, 2011) 

The analogous approach is frequently used in conceptual cost estimating where, as PMI indicates, 
“detailed information is not available.” It both requires that the estimator have knowledge of 
similar comparable projects and relies upon the estimators’ expert judgement.  

PMI defines the second method, bottom-up estimating, as “a method of estimating project 
duration or cost by aggregating the estimates of the lower-level components of the work 
breakdown structure” (PMI, 2017) and adds: 

Bottom-up techniques are applied as the estimating tool of choice when the detailed 
project data becomes available. Using this technique, the expenditure of every resource of 
every component of the project is estimated as a prelude to rolling up these estimates to 
the intermediate levels and to the total project. This technique will result in a transparent 
and structured estimate for the project, which can be tracked and managed. (PMI, 2011) 

The bottom-up approach is not feasible in conceptual cost estimating since one must have detailed 
project data, and this is not the case at the conceptual stage.  

PMI defines the third method, parametric estimating, as “an estimating technique in which an 
algorithm is used to calculate cost or duration based on historical data and project 
parameters” (PMI, 2017) and notes: “Parametric techniques use statistical relationships between 
historical data and other variables (e.g., square meters in construction) to calculate an estimate for 
an activity cost, duration, or resource” (PMI, 2011). A discussion of parametric estimating follows 
in this report. 

2.2.2 AASHTO Practical Guide to Cost Estimating 

Although PMI indicates that analogous and parametric estimating are used at the early stage of a 
project and bottom-up estimating later, it does not identify a clear correlation between estimating 
methods and project phases. AASHTO’s Practical Guide to Cost Estimating (AASHTO, 2013) 
provides a clearer correlation, as illustrated in Table 2. 
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Table 2. Cost Estimating Methods by Phase, According to AASHTO 

Source: AASHTO (2013). 

It will be noticed that AASHTO uses different terms from PMI. It substitutes as follows: 

• PMI’s “analogous” is AASHTO’s “judgment” 

• PMI’s “parametric” is AASHTO’s “stochastic” 

• PMI’s “bottom-up” is AASHTO’s “deterministic” 

As indicated in Table 2, the appropriate estimating methods at the early planning phase of a project 
are analogous/judgement or parametric/stochastic. From the discussion of Caltrans phases, in 
Section 2.1, preconstruction cost estimates are needed at such an early phase. This study therefore 
focuses on parametric methods and an alternative not considered to any great extent by PMI or 
AASHTO, namely artificial neural networks, as introduced in the next section. 

2.2.3 TRB Guidebook on Estimating Highway Preconstruction Services Costs 

Gransberg et al. (2016) write specifically about estimating of preconstruction costs. They offer 
three methods for estimating such preconstruction costs: 

• Multiple regression modeling (yet another term for parametric and stochastic estimating) 

• Decision tree analysis 

• Artificial neural network modeling 
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This expands upon the methods described by PMI and AASHTO by adding two new methods, 
decision tree analysis and artificial neural network modelling, but does not include the analogous 
or judgmental method. 

2.2.4 Summary 

Table 3 provides side-by-side definitions of the estimating methods, as provided by PMI, 
AASHTO, and Gransberg et al., using the equivalent terms in these three sources. 
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Table 3. Summary of Estimating Methods, by Source 

PMI, 2017 AASHTO, 2013 Gransberg et al., 2016 
Analogous: “a technique for 
estimating the duration or cost 
of an activity or a project using 
historical data from a similar 
activity or project.” 

Judgment: not defined.  

Parametric: “an estimating 
technique in which an algorithm 
is used to calculate cost or 
duration based on historical data 
and project parameters.” 

Stochastic: not defined. Multiple Regression: “. . . 
statistical method for studying 
the relationship between a single 
dependent variable and one or 
more independent variables” 
(Allison, 2009). 

  Artificial neural networks: “. . . 
are capable of learning complex 
relationships in data. By 
mimicking the functions of the 
brain, they can discern patterns 
in data, and then extrapolate 
predictions when given new 
data” (Palisade 
Corporation, 2010). 

  Decision Tree: “A decision tree 
describes graphically the 
decisions to be made, the events 
that may occur, and the 
outcomes associated with 
combinations of decisions and 
events. Probabilities are assigned 
to the events, and values are 
determined for each outcome” 
(TreePlan Software, Inc., 2016). 

Bottom-up: “a method of 
estimating project duration or 
cost by aggregating the 
estimates of the lower-level 
components of the work 
breakdown structure.” 

Deterministic: Historic bid-
based or Cost-based 

Bottom-up: “Detailed estimates 
of work packages usually made 
by those who are most familiar 
with the task (also called micro 
estimates)” (Larson and Gray, 
2011). 
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In this report, because we are working with estimates at the Caltrans Project Initiation Document 
phase, which AASHTO calls the Planning Phase, we consider only estimates that use two 
methods: 

• Parametric estimates (PMI), which AASHTO calls “Stochastic” and Gransberg et al. call 
“Multiple Regression”.  

• Artificial Neural Networks (ANN), which are discussed by Gransberg et al., but not by 
PMI or AASHTO. 

At the Project Initiation Document / Planning Phase, it would also be appropriate to use 
Gransberg’s “Decision Tree” method, but that would require a larger collection of input variables 
than what were available for this study. PYPSCAN, discussed in Section 2.4, did follow a decision 
tree approach, but it required a multi-year data gathering effort and an ongoing mandate for 
Caltrans districts to maintain the data. Input variables are discussed in Section 2.5, and an example 
of their use is provided in Section 2.4. 

2.3 Input Variables 

To develop a cost estimating model, whether parametric or ANN, one needs both a set of projects 
for which one knows the values of given input variables and the final costs. The model would then 
be expressed as “given inputs x, the expected cost is y.” Blampied (2018) reviewed 40 papers on 
cost estimating and found that their input variables fell into five categories: 

• Project outputs: Items that the project will produce for the project customers and for which 
the project is undertaken. 

• Bid items: Items for which contractors submit prices before the start of the contract and 
for which they receive payment during or after the contract. Bid items are often needed to 
achieve the project outputs and may be a proxy for project outputs. 

• Project characteristics: Items, other than project outputs and bid items, that affect a project 
and that must be taken into consideration during the project’s development. 

• Economic: Indicators of the economic situation in the area in which the project is to be 
developed.  

• Geographic: Physical characteristics of the area in which the project is to be developed. 

Appendix A provides examples of input variables in each of these categories, modified from 
Blampied (2018). To use any of these input variables, the data needs to be available. In the present 
study, we used only project outputs and bid items. A future study could add a consideration of 
project characteristics such as environmental document type, right-of-way characteristics, and 
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urban-versus-rural settings. Economic and geographic input variables are less likely to be useful 
for a study that is confined to a single state, however, because they refer to input variables that 
differ from country to country or, at least, region to region.  

2.4 PYPSCAN: Prior Use of the Parametric Exponential in Caltrans 

Caltrans has a precedent for developing parametric estimates of support effort by phase on projects 
named the Person-Year Project Scheduling and Cost Analysis (PYPSCAN). This precedent is 
described in Blampied et al. (2017) and Blampied (2018). It came into service in 1980 after several 
years of development (Caltrans 2017). Caltrans has not updated PYPSCAN since 1997, and it is 
no longer used as the official Caltrans system for estimating support effort (Caltrans 2017).  

PYPSCAN calculated expected person year (PY) resource needs based on several variables: 

Project Type: Each project in a database of over 12,000 projects was assigned to a project type. At 
first there were 107 project types (McManus 1981) and, over time, additional types were added to 
reach 119 by 1992. Each project was assigned only one project type (Caltrans 1992). 

Function: Expected PYs were found for each of five “functions”: (1) highway preliminary 
engineering (or “project development,” PJD), (2) right of way (RWO), (3) structures 
design (STD), (4) structures construction (STC), and (5) highway construction (CON). In the 
early stages, PYSCAN also calculated day labor (D/L), but it was later dropped (McManus 1981 
compared with Caltrans 1992). 

Capital Cost: The user entered three capital costs: (1) the total construction cost, (2) right-of-way 
capital, and (3) structures construction cost. The system adjusted these costs for inflation using the 
Caltrans Construction Cost Index. A different capital cost was used for each function: PJD, CON, 
and D/L used total construction cost; STC and STD used structure construction cost; and RWO 
used right-of-way capital. 

Environmental Type: Each project had one of three environmental types, as specified in State and 
Federal law (CEQA and NEPA): (1) Categorical Exemption / Exclusion (CE), 
(2) Environmental Impact Report / Environmental Impact Statement (EIR/EIS), (3) Negative 
Declaration / Finding of No Significant Impact (ND/FONSI). 

Location: California was divided into Urban and Rural areas. 

Right-of-Way Information: This included numbers of appraisals, acquisitions, utilities, relocation 
assistance cases, demolitions, railroad agreements, and condemnations. 

Weather Zone: Each project was assigned to one of five weather zones, with Zone 1 being the 
driest and Zone 5 the wettest. 
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Considering the input variables in Appendix A, PYPSCAN used a combination of three types of 
input variables to develop the expected PY workload: 

Bid items: The construction capital costs are totals of the bid item costs on each project. 

Project characteristics: Environmental document type, urban / rural location, and right-of-way 
information. 

Geographic: Weather zone. 

PYSCAN formulas had an exponential form: 

P = aXb     (equation 1) 

Where P is the expected PY need, a is a constant, X is the inflation-adjusted estimated capital cost 
for the particular function, and b is a constant, with 0 < b < 1. This produced a possible 12 formulas 
for each project type (6 for PJD: 3 environmental types x 2 location types; and 2 each for each 
location type—STD, STC, and CON). A single formula, regardless of project type, was developed 
for the RWO calculated from the number and complexity of the Right of Way parcels that were 
affected. There were thus a possible 1,429 formulas (12 x 119 + 1). Each formula was developed 
by performing regression analysis on the projects from the database that matched the particular 
combination of input variables. In practice, there were fewer than 1,429 formulas because some 
project types could not include structures, and most had only one possible environmental type. 

PYPSCAN is an example of Gransberg’s “Decision Tree” method. One begins with 1,429 possible 
formulas and then eliminates groups of formulas as one queries the project type, function, 
environmental type, and location to end up with a single formula that is applicable to the specific 
situation. 

Until 1996, Caltrans used PYPSCAN to develop the annual Capital Outlay Support budget. 
Through PYPSCAN, an expected number of PY was calculated for each project for each year by 
function. These numbers were added and submitted to the Legislature as the need for direct project 
work in the coming year. The number for any given project would almost certainly be higher or 
lower than the expected number, but the overages and underages would cancel each other out and, 
when added over thousands of projects, would be an accurate estimate of the department-wide 
need. In 1996, Caltrans used PYSCAN, but then made an adjustment to the total.  

The Legislative Analyst reported: 

Caltrans uses a statistical model to estimate its capital outlay support staff requirements, 
based upon the number, size, and complexity of scheduled projects. For 1996-97, this 
workload model calculated a higher staffing requirement than in the current year. 
However, Caltrans reduced the modeled workload by 19 percent in order to attain the 
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staffing level proposed in the budget. Caltrans reports that it made the adjustments in 
order to account for anticipated efficiencies and shortcomings in the model. (LAO 1996)  

Later in the same report, the Legislative Analyst continued, “Caltrans must, therefore, improve its 
workload forecasting models and practices.” 

At that time, Caltrans had recently introduced a new commercial project management system, 
eXpert Project Manager (XPM). In response to the Legislative Analyst’s criticism, Caltrans 
introduced a process in 1997 whereby task managers could estimate the hours required for their 
units’ work on each project, and those estimates were entered into XPM. The basis of the task 
managers’ estimates was not documented but if it had been, it would probably have been based on 
the task managers’ experience and the estimates would therefore be analogous estimates. 

In 2014, Caltrans introduced a new project management system to replace XPM, CA PPM, now 
called Broadcom Clarity. Caltrans refers to its installation of Broadcom Clarity as “Project 
Resourcing and Schedule Management” (PRSM). 
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3. Data Collection  
Sections 2.5 and 2.6 have discussed some of the input variables that could be used in developing 
an estimate of preconstruction effort. In this study, the researchers chose to use only project outputs 
and bid items as input variables. This choice was made for two reasons: 

(1) The data was known to be available in existing databases and would therefore not require an 
extensive search for data or the assembly of a new database of original data.  

(2) The project outputs are, by definition, the items desired by the customer. The model this study 
produced would therefore tell the customers what the costs of their desired outputs would be. Bid 
items, as discussed above, can be proxies for project outputs, even though they themselves might 
not be the actual outputs desired by the customers. For instance, on the pavement rehabilitation 
projects considered in this study, lane miles of rehabilitated pavement are the desired project 
output. Bid items such as cubic yards of concrete pavement or tons of hot-mix asphalt bear a 
relationship to the lane miles and can thus serve as proxies for the lane miles. 

3.1 Project Performance Targets 

As previously noted, project outputs are frequently used as predictors of cost. Examples of these 
outputs are listed in Appendix A. The use of such outputs is facilitated by the 2012 Federal Surface 
Transportation Reauthorization Act, known as MAP-21 (US Congress, 2012), which requires 
each state to adopt performance measures and to set targets for its expected achievements against 
each measure. Caltrans has assigned specific performance targets to each of its projects. For 
pavement rehabilitation, the performance target is measured as lane miles that are to be repaved. 

Caltrans provided the researchers with data on the performance targets for its projects, where these 
targets are available. As the MAP-21 requirement is fairly new, targets are available only for 
projects that have been programmed since the targets were established. 

3.2 Project Bid Information 

Caltrans provided the researchers with the bid data for the 1,055 major projects for which bids 
were opened over the five-year period from April 26, 2016 to May 11, 2021. 

3.3 Expenditure Information 

Caltrans provided the researchers with actual project expenditure data for phases 0, 1, 2, 3, and 4 
of all Caltrans state highway projects from July 1, 2009 to January 10, 2022. The researchers had 
previous expenditure files for all phases of all Caltrans state highway projects from July 1, 1982 to 
June 30, 2009. 
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4. Data Analysis 
4.1 Data Combination 

The researchers combined the bid data with the expenditure data to find the Caltrans programs 
that funded each project. In some cases, projects received funding from more than one program, 
and in those cases, Caltrans split the funding between programs. The list of programs and the 
number of projects in each program is provided in Appendix B. From this list of programs, the 
researchers identified three programs listed in Table 4 that, together, comprise “pavement 
rehabilitation” for this report’s purposes. Under this classification, 139 pavement rehabilitation 
projects had bid openings in the five-year period from April 26, 2016 to May 11, 2021. 

Table 4. Three Pavement Rehabilitation Programs 

Program Number of bid openings 
20.201.121 Pavement Rehabilitation 100 
20.201.122 Pavement Preservation 26 
20.201.120 Roadway Rehabilitation 13 

 

4.2 Pareto Analysis 

The researchers considered the bid information on each of the 139 pavement projects and, for each 
project, found the fewest bid items that together contributed more than 80 percent of the awarded 
bid amount, in dollars, on that project. These bid items were then analyzed across the 139 projects, 
and it was found that 20 primary bid items  together contributed more than 80 percent of the 
awarded bid amount, in dollars, on every one of the 139 projects.  

4.3 Data Set Creation 

After the Pareto Analysis, three data sets were created as described below. 

4.3.1 Loaded State Employee Cost 

The first data set listed the sums, by fiscal year, for all projects in the three programs in Table 4, 
of the: 

a. State Employee non-overtime preconstruction hours;  

b. State Employee non-overtime preconstruction personal services cost dollars; and 

c. Overhead assessments in dollars (these are assessed to projects in proportion to non-
overtime hours).  
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All of this data was drawn from the expenditure information discussed in Section 3.3.  

Using this data set, a loaded hourly State Employee cost, d, was calculated for each fiscal year, 
being d = (b + c) / a, using the factors above.    

4.3.2 A&E Hours 

The second data set listed, for each of the 139 projects, the Architectural and Engineering (A&E) 
consultant preconstruction dollar expenditures, e, by fiscal year, from the expenditure information 
discussed in Section 3.3. Using the loaded hourly State Employee costs, d, by fiscal year from the 
first data set, A&E dollars were then converted into an hour equivalent, f = e / d. 

4.3.3 Preconstruction Hours for the 139 Projects 

The third data set listed the bid quantity, state employee preconstruction hours, and sum of 
equivalent A&E preconstruction hours: 

g. Bid quantity for each of the 20 primary bid items (data from the Bid Information described 
in Section 3.2, selected based upon the Pareto Analysis described in Section 4.2) 

h. State Employee preconstruction hours from the expenditure information discussed in 
Section 3.3. 

i.  Sum of equivalent A&E preconstruction hours, f, from the second data set. 

Total preconstruction hours, being j = h + i. 

This data set focused on preconstruction hours rather than dollar costs because hours are not 
subject to inflation. If dollar costs were used, each annual cost would need to be inflation-adjusted 
to a baseline date, using an inflation index. Indexes are averages of sample data and have significant 
margins of error.  

Caltrans estimates preconstruction effort in hours, a standard practice in most project cost 
estimating. The hours are then entered into PRSM where average dollar costs per hour are applied. 
The priced preconstruction costs are entered into the Caltrans programming system, California 
Transportation Improvement Program System (CTIPS), where they are inflation-adjusted to the 
years in which work will be performed. 

By using hours rather than dollars, this research avoided several adjustments for inflation, both up 
and down, and the use of average costs. These adjustments and averages increase the variation and 
uncertainty in the data and consequently decrease the reliability of the final results. 

  



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  
 

18 

5. Model Development 
Using the third data set described in Section 4.3.3, the researchers developed two models of 
estimating the preconstruction hours on Caltrans pavement rehabilitation projects: an Artificial 
Neural Network (ANN) and a Parametric Model. 

5.1 Artificial Neural Network (ANN) Model 

5.1.1 ANN Concept 

ANNs are designed to mimic human thought and are a form of artificial intelligence. 
Blampied (2018) found the first suggestion that ANNs might be used in cost estimating in a paper 
from 1993 (Rao et al., 1993) and the first successful development of an ANN for cost estimating 
in 1998 (Siqueira and Moselhi, 1998). Since then, ANNs have become more widely used in cost 
estimating. This development is part of the increasing use of artificial intelligence in many spheres 
of life. ANNs operate with “layers”: an input layer, one or more hidden layers, and an output layer. 

The ANN for Caltrans pavement rehabilitation projects, based on the 139 projects in the third 
data set (see Section 4.3.3), has a coefficient of determination (R2) of 0.85 and an average error of 
4,407.7. This will described in more detail in a forthcoming paper by Shehab et al.  “Estimation 
of the Preconstruction Cost of Pavement Rehabilitation Projects”.  

5.1.2 Actual vs. Predicted Hours 

Figure 4 compares the actual preconstruction hours on the 139 projects in the ANN version of this 
study to the hours predicted using the ANN model. The figure includes a diagonal line along 
which the actual hours equal the predicted. All points above the diagonal line have actual hours 
that exceed the predicted hours, while points below the diagonal have actual hours that are fewer 
than the predicted hours.   
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Figure 4. Comparison of Actual to Predicted Preconstruction Hours Using the ANN Model 

 

Although there is a relationship between the predicted and the actual preconstruction hours, as 
attested by the coefficient of determination (R2) of 0.85, there remains a significant spread in the 
data, both above and below the best fit line. This is discussed in Section 6.1. 

5.2 Parametric Models 

5.2.1 Least Squares Regression Analysis 

The researchers wrote MATLAB scripts to test the pavement rehabilitation project data, with the 
goal of finding the lowest least squares best fit relationship of the pavement rehabilitation project 
lane miles and primary bid items to the preconstruction effort in hours. Each script found the 
minimum value of a parametric function when varying a single unknown and keeping all other 
unknowns constant. The scripts iterated through the unknowns, adjusting each one in turn, until 
no further adjustment could reduce the total of the squares of the errors in the expression (i.e., 
providing a least-squares regression). The MATLAB scripts are available upon request and are 
not repeated here. 

Upon examination of the data in the third data set (see Section 4.3.3), it was found that one of the 
139 projects had no recorded preconstruction hours. This project was therefore omitted from the 
least squares regression. As a result, the parametric estimates are based on 138 projects, whereas 
the ANN was based on 139 projects. 

5.2.2 Single-input-Variable Parametric Models 

MATLAB code was first written to consider the lane mile project output and each of the primary 
bid items as single input variables. One of the primary bid items, Time Related Overhead, occurred 
on every project but took two forms, namely payment by Work Days (WDAYS) or payment as a 
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Lump Sum (LS). For the parametric analysis, this bid item was considered as two separate items. 
A total of 21 input variables were therefore considered: the 1 project output, lane miles, and now 
20 primary bid items. The single-input-variable parametric model takes the form:  

Preconstruction hours (Phases 0 + 1) = a + b.Xc (equation 2) 

Where a, b, and c are constants, and X is each of the input variables. It should be noted that the 
form of this equation is similar to that used for PYPSCAN (equation 1) with the addition of a 
leading constant, a. The constant is added because some activities on a project are independent of 
the project size. Establishing a project in the accounting system, one of the first project activities, 
for instance, requires the same effort on every project regardless of size. 

Table 5 lists the resulting determinations of factors a, b, and c along with the number of projects 
that included each of the input variables X, the number of times the script iterated through the 
constants, and the coefficient of determination, R2. This coefficient indicated how much of the 
variation in hours is accounted for by the input variable X. For instance, the first listed input 
variable, Time-Related Overhead in working days, accounts for 49.4 percent of the variation in 
hours. 
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Table 5. Least Squares Best Fit Factors for Equation 2 

Input variable X Unit Number 
of projects 

Least 
squares 

iterations 

a b c R2 

X1Time-Related 
Overhead – Days 

WDAY 70 48 1,674.651 75.562 1.000 0.494 

X2 Structural 
Concrete 

CY 66 2,525 17,099.381 52.742 0.798 0.474 

X3 Lean Concrete CY 25 1,034 0.000 2,663.737 0.312 0.425 

X4 Temporary 
Railing 

LF 86 6,751 10,206.483 169.207 0.427 0.338 

X5 Roadway 
Excavation 

CY 93 4,358 15,399.599 10.707 0.640 0.277 

X6 Jointed Concrete 
Pavement 

CY 29 5,086 25,415.463 5.084 0.789 0.222 

X7 Aggregate Base CY 79 1,458 16,379.988 228.608 0.408 0.206 
X8 Continuous 
Reinforced Concrete 
Pavement 

CY 18 2,220 0.000 1,163.964 0.288 0.185 

X9 Lane Miles miles 66 1,721 10,581.393 476.250 0.867 0.174 

X10 Grind Existing 
Concrete Pavement 

SQYD 36 7,939 16,127.312 22.931 0.526 0.154 

X11 Hot Mix Asphalt Ton 131 577 14,410.965 0.146 1.000 0.139 
X12 Minor Concrete CY 94 2,609 7,709.038 6,393.685 0.133 0.058 

X13 Vegetation 
Control 

SQYD 81 11,035 10,814.140 735.777 0.317 0.048 

X14 Guardrail System LF 108 16,995 5,722.603 3,440.373 0.168 0.041 

X15 Mobilization LS 138 276 10,787.163 8,050.130 0.000 0.013 
X16 Modifying or 
Removing Electric 
System 

LS 138 37 16,271.534 3,587.036 0.000 0.013 

X17 Rubberized Hot 
Mix Asphalt 

Ton 104 366 17,222.739 0.039 1.000 0.008 

X18 Cold Plane 
Asphalt Concrete 
Pavement 

SQYD 128 66 17,580.246 0.006 1.000 0.006 

X19 Slab Replacement CY 34 32,046 0.000 21,683.010 0.036 0.003 

X20 Traffic Control 
System 

LS 138 207 17,357.374 1,034.112 1.000 0.0005 

X21 Time--Related 
Overhead – LS 

LS 68 1 15,223.170 0.000 1.000 0.000 
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Input variable X9, Lane Miles, is the project output for pavement rehabilitation projects. It would 
be desirable to say that a given preconstruction effort would produce a lane mile of pavement, but 
the data indicates that lane miles is not a good predictor of preconstruction effort. This is illustrated 
in Figure 5 which charts the preconstruction hours against the lane miles on the 138 projects. 
There is a wide scatter of data above and below the best-fit “predicted hours” line. 

Figure 5. Lane Miles vs. Preconstruction Hours 

 

5.2.3 Multiple Regression Analysis 

After considering the single-variable least squares regression parametric models, MATLAB scripts 
were written to examine situations that considered the full set of 21 input variables. Several 
different versions were developed, and these will be described in more detail in a forthcoming 
paper by Blampied et al.,  “Parametric Estimation of the Preconstruction Cost of Pavement 
Rehabilitation Projects”. The highest correlation was found from an additive exponential 
parametric model that excluded three input variables and found a further four null input variables. 
An additive exponential parametric model takes the form: 

Preconstruction hours (Phases 0 + 1) = a + b1.X1
c1 + b2.X2

c2 + . . . + bn.Xn
cn (equation 3) 

The expression with the highest correlation had a coefficient of determination (R2) of 0.80 and an 
average error of 6,429.8. It therefore had a lower accuracy than the ANN.  

The version that produced the above results excluded three input variables from consideration 
because they could potentially be manipulated by the user: X1 Time-Related Overhead – Days, X15 

Mobilization, and X21 Time-Related Overhead – LS. The least squares calculations then found 
that another four input variables had no impact on the preconstruction hours. These were X5 
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Roadway Excavation, X6 Jointed Concrete Pavement, X8 Continuous Reinforced Concrete 
Pavement, and X9 Lane Miles. As a result, 14 input variables were found to be significant. 

5.2.4 Actual vs. Predicted Hours 

Figure 6 compares the actual preconstruction hours on the 138 projects in the parametric version 
of this study to the hours predicted using the multiple regression analysis. The figure includes a 
diagonal line along which the actual hours equal the predicted. All points above the diagonal line 
have actual hours that exceed the predicted hours, while points below the diagonal have actual 
hours that are fewer than the predicted hours.   

Figure 6. Comparison of Actual to Predicted Preconstruction Hours Using  
the Parametric Model 

 

 

 
Although there is a relationship between the predicted and the actual preconstruction hours, as 
attested by the coefficient of determination (R2) of 0.80, there remains a significant spread in the 
data, above and below the best fit line. This is discussed in Section 6.1. 
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6. Summary & Conclusions  
6.1 Dealing with the Unexplained Variation 

This study has produced two models, an ANN with a coefficient of determination (R2) of 0.85 
and a parametric model with a coefficient of determination (R2) of 0.80. They thus address 85% 
and 80% of the variation in the data, respectively, and leave 15% and 20% of unexplained variation. 
The 85% and 80% is a significant achievement, but the unexplained variations still pose problems. 
Possible approaches to addressing this variation include searching for additional variables, 
assuming estimate ranges, developing probability density functions, and adopting a portfolio-level 
perspective. These approaches are considered below. 

6.1.1 Search for Additional Variables 

This study has used two types of input variable, namely, project outputs and bid items. Section 2.5 
discusses other variables that could be used. Some of them would probably increase the coefficient 
of determination of the models and therefore explain a larger percentage of the variation; however, 
this might not be the case. For instance, Gardner et al. (2016) studied the correlation of project 
costs using 29 project characteristics on State Highway pavement preservation projects in Montana 
and found that the coefficient of determination did not increase significantly when they considered 
more than the eight highest-impact project characteristics. They found that a significant effort was 
required to gather data on additional project characteristics and that the cost of data gathering 
outweighed the value of increase in the coefficient of determination. Gardner et al. suggested that 
agencies identify their highest-impact variables and then maintain data only on those input 
variables. This would avoid the costly effort needed to assemble hard-to-find data on low-impact 
variables. 

It seems reasonable to expect only marginal changes in the coefficient of determination as 
additional low-impact variables are added to a parametric model, and the finding by Gardner et 
al. (2016) is not surprising.  

6.1.2 Assuming Estimate Ranges 

A common method of addressing the unexplained variation is to ascribe it to random factors and 
establish empirical estimate ranges. AASHTO uses this approach, indicating that conceptual 
estimates should typically have a range +200 percent to -50 percent (AASHTO, 2013).  

6.1.3 Probability Density Function 

A third method of addressing the unexplained variation is to develop a probability density chart. 
Figure 7 provides an illustrative hypothetical example of a simple case in which there is only one 
input variable, the “units of output.” 
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Figure 7. Illustration of “best fit” Parametric Cost Estimate 

 

Figure 7 illustrates a best fit parametric cost estimate and then adds probability lines for various 
confidence levels above and below the best fit expected cost. At the 10 percent upper confidence 
limit line, for instance, there is 10 percent confidence that the cost will be below that limit line and 
90 percent confidence that the cost will be above the limit line. At the 90 percent upper confidence 
limit line, the reverse is true—there is 90 percent confidence that the cost will be below that limit 
line and 10 percent confidence that the cost will be above the limit line. 

A chart such as Figure 7 could be used by project portfolio owners to evaluate cost estimates that 
are submitted by project teams. In the example in Figure 7, the team for Project A has submitted 
an estimate that is higher than average, being slightly above the 60-percent upper confidence limit. 
The team for Project B has submitted an estimate that is lower than average, being slightly below 
the 30 percent upper confidence limit. 

The estimates for Projects A and B are not necessarily wrong. Almost 40 percent of historic 
projects with outputs similar to those of Project A have cost more than the Project A estimate, and 
almost 30 percent of projects with outputs similar to those of Project B have cost less than the 
Project B estimate. The chart provides a tool that the project team can use to evaluate the team’s 
estimates. There may good reasons why the estimate for a project is above or below the historic 
average, and it is incumbent upon the team to both consider and provide those reasons. 
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6.1.4 Portfolio-level Perspective 

A fourth approach to addressing the unexplained variation is to use a portfolio-level perspective. 
Rather than focusing on individual projects, one could consider the entire project portfolio. As an 
example, California’s State Highway Operation and Protection Program (SHOPP) consists of 
more than 1,000 projects with a total four-year programmed budget of $17.9 billion, as was noted 
in the Introduction (Caltrans, 2022). In a portfolio such as the SHOPP, some projects can be 
expected to have estimates above the “best fit” line and others below (as illustrated in Figure 7), 
and these surpluses and deficits can be expected to cancel each other out. Across more than 
1,000 projects, for instance, the aggregate of the estimates by the project teams should be close to 
the aggregate of the “best fit” expected conceptual estimates.  

Nevertheless, it should be noted that while this portfolio approach could be useful to estimate the 
total budget at the portfolio level, it does little to correct potential inaccuracies in individual 
projects. 

6.2 Usefulness to the CTC and Caltrans 

Separately from this report, the researchers have provided the CTC with tools to use this research. 
These consist of both ANN and parametric estimating tools. Suggestions for their use are 
discussed below. 

6.2.1 ANN Model 

The use of the ANN model has been demonstrated to CTC staff. The application of this method 
requires that the user obtain the ANN software. As noted above, the ANN provides a more reliable 
estimate than the estimate provided by the parametric model.  

6.2.2 Parametric Model 

A spreadsheet has been provided that can be used by CTC or Caltrans staff to obtain the expected 
number of preconstruction (Phases 0 and 1) hours for a given pavement rehabilitation project when 
the project is submitted for programming. In addition to the expected hours, this spreadsheet 
provides upper and lower confidence limits which are based on the AASHTO limits (AASHTO, 
2013). This spreadsheet is available for use by other interested parties. 

Figure 8 is an image of the input form for the parametric model. To use it, the capital cost estimate 
in the Project Initiation Document would need to include estimated quantities for each of the 
14 expected bid items listed in the input form. After entering those 14 quantities, the spreadsheet 
would return an expected number of preconstruction hours, along with upper and lower confidence 
limits based on the AASHTO factors (AASHTO, 2013). 
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Figure 8. Image of the Input form for the Parametric Model 

Program "Task" District  Project number 
Other- this model does not apply 

  
   

Expected Bid Item Quantity  Unit of measure 
Traffic Control System -  LS 1 = Yes, included in project, 0 = No, not 

included in project 
Temporary Railing -  LF 
Aggregate Base -  CY 
Lean Concrete -  CY 
Hot Mix Asphalt -  Ton 
Rubberized Hot Mix Asphalt -  Ton 
Cold Plane Asphalt Concrete 
Pavement 

-  SQYD 

Slab Replacement -  CY 
Grind Existing Concrete 
Pavement 

-  SQYD 

Structural Concrete -  CY 
Minor Concrete -  CY 
Guardrail System -  LF 
Vegetation Control -  SQYD 
Modify or Remove Electrical 
System 

-  LS 1 = Yes, included in project, 0 = No, not 
included in project 

Upper confidence limit 9,420  Using AASHTO estimate ranges, 90% certain that 
the actual Phase 0 + 1 hours (state employees and 
consultants combined) will be less that this upper 
confidence limit. 

Best estimate  3,140  Best estimate of the Phase 0 + 1 hours (state employees 
and consultants combined)  

Lower confidence limit 1,570  Using AASHTO estimate ranges, 90% certain that 
the actual Phase 0 + 1 hours (state employees and 
consultants combined) will be more that this lower 
confidence limit. 
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CTC staff or Caltrans can use these tools to evaluate the reasonableness of the preconstruction 
estimate on an individual project or on the sum of an entire biennial SHOPP pavement 
rehabilitation portfolio. The researchers recommend that the CTC consider the results at the 
aggregate portfolio level and delegate the further consideration of individual projects to Caltrans.  

6.3 Further Research 

This report and its associated research are of limited scope due to constraints of time and funding. 
Further opportunities for research include: 

A. Research that can be accomplished with the existing data: 

1. Estimating for other project types 

2. Estimating for other phases 

3. Estimating upper and lower confidence limits at the bid stage 

4. Developing portfolio-level cost estimates for entire biennial tranches of projects 

5. Evaluating of efficiencies 

6. Evaluating alternative project development processes  

7. Evaluating optimum levels of contracting-out 

8. Evaluating multi-year “support to capital”  

B. Research that would need some additional data: 

9. Estimating upper and lower confidence limits at the conceptual stage 

10. Using project characteristics as input variables 

11. Estimating project durations 

Each of these opportunities is discussed below. 

6.3.1 Estimating for other Project Types  

This report has focused on pavement rehabilitation projects using a set of 138 projects that had 
bid opening from April 26, 2016 to May 11, 2021. As noted above, Caltrans opened bids on 1,055 
projects in that time period, and the most common type of projects was Safety Improvements, for  
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which 252 projects had bid openings (see Appendix B). The researchers chose to focus first on 
pavement rehabilitation because they believed that this was a major project type that would have a 
reasonably high R2 factor, which was accurate. Safety improvements might be more challenging 
because a wide variety of improvements might be characterized as “safety.” Now that the data is 
available, similar studies could easily be performed for safety improvements and the other types of 
projects listed in Appendix B. 

6.3.2 Estimating for other Phases 

The current research project has focused on the preconstruction phases, Caltrans Phases 0 and 1. 
On pavement rehabilitation projects, these phases account for 10 percent of the total project cost, 
as illustrated in Figure 3. On some other types of projects, the preconstruction phases account for 
larger percentages of the total project cost. Research similar the current research could be 
performed on the remaining 90 percent of project costs. That would use different data selections 
and might need some supplemental data because the remaining phases, right of way and 
construction, continue through construction whereas preconstruction, as its name implies, ends 
when construction starts. The data selections used for right of way or construction would need to 
consist of projects that have completed construction and therefore have complete cost data. 

6.3.3 & 6.3.9 Estimating upper and Lower Confidence Limits 

The discussion above includes consideration of a probability density function, as shown in Figure 
7 and discussed in Section 5.1.3, that would allow one to say that there is a 10 percent (or other 
percent) certainty that a given estimate is too high or too low. There is very little prior research on 
this type of estimate. The spreadsheet provided to the CTC uses the AASHTO confidence limits, 
which are based upon the expert opinions of panels of experts, but not upon a statistical analysis. 
AASHTO gives upper and lower confidence limits of +200 percent and -50 percent respectively. 
From Figure 7, though, it appears that the upper and lower confidence lines ought not to be 
percentages of the estimate, but rather some other relationship. The upper and lower confidence 
lines might be fixed numerical deviations rather than percentages, for instance. 

The data provided to the researchers by Caltrans is sufficient to do a statistical analysis of cost 
estimate ranges at the bid stage, which would be a significant contribution to existing knowledge. 
To analyze the ranges at the conceptual, or Project Initiation Document, stage would require 
additional data, but the researchers believe that this data is available in the Caltrans CTIPS system, 
and the researchers would ask for the needed data if more analysis is requested. 

6.3.4 Developing Portfolio-level Cost Estimates for Entire Biennial Tranches of Projects 

This report has presented two methods of estimating the preconstruction effort needed on 
individual projects. The normal outcome is that some projects will require a higher-than-expected 
effort while others will require a lower-than-expected effort and that the highs will balance the 
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lows. Averaged over an entire portfolio of projects, then, the methods used in this report should 
be a good predictor of preconstruction effort. As an alternative to using the upper and lower 
confidence limits, the CTC could consider the portfolio as a whole while leaving Caltrans to 
manage the highs and lows. It is a widely accepted management best practice for upper-level 
executives to consider and try to manage overall trends in an organization’s data, while leaving 
lower-level managers to manage individual variations within the data. 

The SHOPP is developed in two-year cycles. The CTC could use tools such as those developed 
in this report to estimate and evaluate the entire effort for the projects in each cycle, while ignoring 
the deviations of individual projects from their expected values and leaving Caltrans to manage 
those deviations. 

6.3.5 Evaluating Efficiencies 

SB1 of 2017 requires Caltrans to submit an annual report on its achievement of efficiencies. The 
requirement reads: 

Streets and Highways Code 2032.5. (d) The department shall implement efficiency 
measures with the goal to generate at least one hundred million dollars ($100,000,000) 
per year in savings to invest in maintenance and rehabilitation of the state highway 
system. These savings shall be reported to the commission. (California Legislature, 2017) 

Caltrans defines efficiencies as “Caltrans will consider efficiencies that result in cost avoidance or 
a reduction in support or capital costs.” (Caltrans, 2021). One of the challenges in evaluating 
efficiencies is the fact that organizations are complex systems. That is, each part in an organization 
affects other parts. A cost avoidance or reduction in cost in one part of an organization almost 
always causes a cost increase in some other part of the organization. In evaluating efficiencies, one 
needs to determine whether the organization as a whole is operating more efficiently rather than 
considering or counting only those portions of the organization that have become more efficient.  

The tools developed in this report could be used to establish whether Caltrans as a whole is 
becoming more efficient. It could also evaluate whether individual projects with claimed 
efficiencies truly are more efficient than the preceding projects. Whether considering the whole 
organization or individual projects, the approach would be based upon recognized statistical 
methods. 

6.3.6 Evaluating Alternative Project Development Processes  

At various times, Caltrans has obtained legislative permission for the experimental use of 
alternative project development processes, including construction manager/general contractor, 
design-build, and design sequencing. There has also been consideration of processes that do not  
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require legislation, such as lean scheduling. The legislature often tasks the CTC with evaluating 
the success of these measures. In the same manner as the evaluation of efficiencies described above, 
the tools developed in this report could be used to establish whether the alternative processes do, 
in fact, result in cost savings. As with the evaluation of efficiencies, the evaluation of alternative 
processes would be based upon recognized statistical methods. An evaluation of this nature has 
previously been performed on the use of lean scheduling on a drainage project in Los Angeles 
County (Caltrans District 7).  

As noted below, the methods discussed in this report could be used to develop expected project 
durations. If this were done, those durations could be used to evaluate the impact of alternative 
processes on project durations. 

6.3.7 Evaluating Optimum Levels of Contracting-out 

Caltrans began contracting out some of its engineering work in the 1986–1987 Fiscal Year, and 
since then, private consultants have formed a part of the overall Caltrans project development 
workforce. Occasionally, there have been debates, both in Caltrans and in other transportation 
departments, about how to use consultants most efficiently. This report has already described the 
use of the study’s tools to evaluate efficiencies, which could equally be well used to evaluate the 
efficiency of different levels of consultant involvement in the various phases and types of projects. 
As with the evaluation of other efficiencies, this evaluation would use recognized statistical 
methods. 

6.3.8 Evaluating Multi-year “support to Capital”  

Caltrans and other departments of transportation have, at times, used the “support to capital” ratio 
as a tool in evaluating their operations. That is the ratio of the costs of Phases 0, 1, 2, and 3 
combined with the costs of Phases 4 and 9. This ratio has limited use because a change in the ratio 
does not necessarily mean that the organization is becoming more or less efficient. In principle, an 
increased design effort should produce a more competitive PS&E package with a resulting decrease 
in construction costs. Figure 3 illustrates the fact that, on average, construction costs are much 
greater than design costs. A small percentage of savings in construction costs can compensate for 
a relatively large increase in design costs. 

The data that the researchers have obtained are sufficient to make a forty-year examination of the 
support to capital ratio in Caltrans. Such an examination could be useful in evaluating the 
effectiveness of major changes that Caltrans has made over this time period and might be useful 
in informing the CTC and Caltrans as they consider future changes.  
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6.3.10 Using Project Characteristics as Input Variables 

This report has introduced the concept of project characteristics, and some examples of project 
characteristics are provided in Appendix A. Each of the characteristics listed in that appendix has 
been used by various researchers to predict project costs and could be considered to supplement 
the current research on Caltrans projects. Such supplemental research would require the gathering 
of data on the selected project characteristics. The research could be useful in improving the cost 
estimates. As discussed in the section on PYPSCAN, Caltrans has previously developed cost 
estimating models using project characteristics that include the weather zone, urban or rural 
location, environmental document type, and right-of-way information, including numbers of 
appraisals, acquisitions, utilities, relocation assistance cases, demolitions, railroad agreements, and 
condemnations. 

6.3.11 Estimating Project Durations 

The discussion to this point has focused almost entirely of estimating effort and costs. The 
methods used here could equally well be used for estimating the durations of projects and phases. 
Such an investigation would be based upon milestones and would require the collection from 
Caltrans of actual achieved milestone data. The researchers believe that this data does exist and 
could be obtained.  

6.4 Conclusion 

As has been discussed in this report, conceptual cost estimates are made at the earliest stage of 
projects and can be developed through one of three approaches: analogous estimating, parametric 
estimating, and artificial intelligence. While the analogous approach relies on the estimator’s expert 
judgement, the other two approaches use computations from large sets of historic data on similar 
projects. This report has developed, and then compared, the three types of parametric estimates: 
additive exponential, linear, and multiplicative exponential. The immediate purpose of a 
conceptual cost estimate is to provide decision makers with an order of magnitude to assist them 
in deciding whether to start a feasibility study. The parametric and artificial intelligence 
approaches, because they have a statistical basis in historic costs, can also have other uses: 

• Assisting executives to evaluate whether cost estimates at later stages in a project are 
reasonable. This includes determining both where a given estimate on one project is 
reasonable and whether the collective estimates of the entire portfolio is reasonable. 

• Assisting executives to determine whether their organizational efficiency measures are 
succeeding. To demonstrate that an innovation has achieved an efficiency, one must know 
both the actual cost after the innovation and what the cost would have been without the 
innovation. While the cost after the innovation would be readily available from the actual 
costs incurred, it is more difficult to determine what the cost would have been without the 
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innovation. The parametric and artificial intelligence approaches, based on historic costs, 
give an indication of what the pre-innovation cost would be. This is particularly useful 
when combined with an approach that accommodates unexplained variance, such as the 
chart in Figure 7 or the portfolio-level perspective. 

• Incentivizing project teams to improve upon past performance. The cost estimating models 
provide teams with an expected cost using their historic delivery methods. Given that 
information, it is possible (and likely) that teams would rise to the challenge and work to 
complete their projects at lower-than-expected costs. 

• Finally, this research is generalizable; although this research used data on pavement 
rehabilitation projects, the ANN and parametric estimating models could be applied to any 
set of projects on which input variables and actual costs are known. However, the 
coefficients of determination of those models might not be as high as the 0.85 and 0.80 
observed in this study. 
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Appendix A: Examples of the Input Variables  

in Five Categories 
Modified from Blampied (2018). 

Project outputs Bid items 
Project 
characteristics Economic Geographic 

building area 
floor area 
heavy 
manufacturing 
high or low 
building 
Lane miles of 
pavement 
multi-use or 
single-user 
building  
number of 
apartments 
number of 
elevators 
Number of 
wheelchair ramps 
number of floors 
single or double 
track railroad 
size of parking 
area 
specially 
engineered 
building 
stack-up building 

cubic meters of 
asphalt 
concrete 
cubic meters of 
base 
cubic meters of 
concrete 
cubic meters of 
earthwork 
kilograms of 
steel / tons of 
reinforcing 
bars 
square meters 
of formwork 

average daily traffic 
earthwork 
electrical work 
electro- mechanical 
work 
environmental 
document type 
geo-technical work 
structural work 
height of overburden 
height of piers 
interior decoration 
length 
length of structures 
number of piles 
number of spans 
plumbing work 
project duration 
Right of way needs 
site area 
sub-structure 
super-structure 
terrain type 
urban / rural 
location 

fuel 
consumption 
Gross National 
Income 
number of 
bidders 
number of local 
bidders 
oil prices 
bidding and 
labor climate 

climate 
earthquake 
impact 
geology 
region 
terrain 
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Appendix B: Caltrans Project Count by Program 
This table shows the count of major projects with construction awards by Caltrans with bid 
openings from April 26, 2016 to May 11, 2021, by program. 

Program Number of bid openings 
20.201.010 Safety Improvements 252 
20.201.235 Roadside Safety Improvements 112 
20.201.121 Pavement Rehabilitation 100 
20.201.015 Collision Severity Reduction 79 
20.201.131 Major Damage (Permanent Restoration) 74 
20.201.110 Bridge Rehabilitation 55 
20.201.315 Transportation Management Systems 50 
20.201.335 Storm Water Mitigation 48 
20.201.151 Drainage System Restoration 42 
20.201.119 Capital Bridge Preventative Maintenance Program  32 
20.201.361 ADA Curb Ramps 28 
20.201.122 Pavement Preservation 26 
20.400.100 Locally Generated Funds 22 
20.201.113 Bridge Seismic Restoration 20 
20.201.378 Pedestrian Infrastructure 20 
20.201.112 Bridge Rail Replacement and Upgrade 18 
20.400 Locally Funded State Highway Projects 17 
20.201.310 Operational Improvements 17 
20.201.120 Roadway Rehabilitation 13 
20.201.321 Weigh Stations & Weigh-In-Motion Facilities 12 
20.201.111 Bridge Scour Mitigation 11 
20.201.150 Roadway Protective Betterments 9 
20.201.170 Signs and Lighting Rehabilitation 9 
20.075.600 Regional Improvement Program 8 
20.201.322 Transportation Permit Requirements for Bridges 8 
20.201.999 Other SHOPP 7 
20.800.100 Other State Funds 5 
20.400.232 Local Surface Transportation Program 4 
20.201.352 Maintenance Facilities 4 
20.800.200 Generic Non-STIP/SHOPP State Fund – Support 3 
20.201.210 Highway Planting Restoration 3 
20.722.000 Proposition 1B Funding of State Route 99 Improvements 2 
20.201.130 Major Damage Restoration 2 
20.201.351 Equipment Facilities 1 
20.723.000 Trade Corridors Improvement Fund 1 
20.400.200 Federal High Priority Projects/Demonstration Projects 1 
20.025.700 New Programming Interregional Improvement Program 1 
20.723.100 Trade Corridors Improvement Fund 1 
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Program Number of bid openings 
20.400.246 Local Highway Safety Improvement Program (Infrastructure) 1 
20.400.330 Regional Surface Transportation Program 1 
20.201.250 Safety Roadside Rest Area Restoration 1 
20.400.210 Congestion Management and Air Quality Improvement 1 
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