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Executive Summary 
Hydrogen gas (H2) has received much enthusiasm as an alternative future fuel. Energy acquired 
from H2 combustion presents three main advantages compared to other energies: 1) it has the least 
emission of greenhouse gases, 2) produces water as an end product, and 3) 2.75 more heat value 
compared to other fossil fuels. In addition, several implications successfully demonstrate the 
utilizations of H2 as energy source, for example, to power vehicles and rockets. Generally, H2 can 
be synthesized from several technologies. However, only 1% of H2 production is generated from 
biomass. Biological H2 production generated from anaerobic digestion is accounted for within the 
1%. Therefore, this project aimed to enhance H2 gas generation and recovery from anaerobic 
digesters. 

This project’s hypothesis was: “H2 gas generation and recovery can be enhanced when external H2 

forming microbial abundance was added to the system and operated under mesothermic 
conditions.” Three pure cultures, including Clostridium acetobutylicum (B-527), Clostridium, 
Lactobacillus brevis (B-1835), and Lactococcus lactis subspecies lactis (B-1232), were experimented 
with using batch reactors at 37oC for at least 10 days. Throughout the study, chemical oxygen 
demand (COD), Volatile fatty acid (VFA), alkalinity and ammonium (NH4

+-N) concentrations 
were measured using a spectrophotometer, and H2 content were detected using hydrogen gas 
analyzer. DNA was extracted and subjected to next generation DNA sequencing. 

The first set of the experiment employed two different sludge seed types, including wastewater 
digested sludge (control) and wastewater digested sludge spike with C. acetobutylicum. Seven 
substrates were fed into different reactors, entailing (i) primary sludge, (ii) waste activated 
sludge (WAS), (iii) mixed primary and WAS, (iv) food waste (FW), (v) mixed FW and primary
sludge, (vi) mixed FW and WAS, and (vii) mixed FW and mixed sludge. Therefore, seven reactors
for each feed were tested. The results showed FW substrate yielded the highest H2 content 
compared to other substrate types at day 4 and day 6. After day 6, the H2 content decreased, 
possibly due to methanogens (methane forming microbes) consuming H2 prior to methane 
formation. Furthermore, the difference in H2 recovery between the control reactors and 
C. acetobutylicum reactors were not observed. Hence, our finding suggests a high abundance of H2 

forming microorganisms does not promote H2 recovery in biogas. We also observed different 
microbial kinetics from this experiment. All bacterial seeds/sludge were stored at 4oC prior to the 
experiment. Lag phase and exponential growth phase of different microorganisms resulted in high 
H2 utilization for methane synthesis after six days. 

Similar experiments were carried out using other pure cultures with a reported ability to produce 
hydrogen gas, Lactobacillus brevis and Lactococcus lactis subspecies lactis. The H2 recovery from 4oC-
digested sludge feed measured the highest on the second day after incubation at 533, 1,000+, and 
570 ppm, respectively. Therefore, L. brevis possibly enhances H2 formation in anaerobic digesters. 
At day 5 and later, the H2 recovery from three reactors decreased substantively. 
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Once room-temperature-digested sludge seeds were utilized and incubated, the H2 recovery from 
all reactors was measured above the maximum detection limit of the hydrogen gas 
analyzer (> 1,000 ppm = 0.1%;). Therefore, our study could not specify which reactors produced 
highest H2 in this circumstance. Nevertheless, this indicated that by using room-temperature-
digested sludge seeds, H2-forming bacteria in the seeds were active and yielded high H2 gas content 
compared to the 4oC-digested sludge seeds. It also confirmed that an H2-forming bacteria spike 
was not required to enhance H2 production. On day 4 and after, the H2 recovery was found at 0 or 
significantly lower than the H2 content obtained on the second day. Therefore, a solids detention 
time of 2–4 day is suggested for enhanced H2 production from food waste anaerobic digesters.
This project resulted in two poster presentation as shown below (red indicating CSULB students). 

Deocampo, L., Ly, M., Asvapathanagul, A. Microbial populations shift during mesophilic and 
thermophilic anaerobic digestion. 2022 CSU-Program for Education and Research in 
Biotechnology (CSUPERB) symposium (CSUPERB January 12–15, 2022) Virtual. 

Deocampo, L., Banuelos, N., Asvapathanagul, A. Microbial populations shift during mesophilic 
and thermophilic anaerobic digestion phase 1: Biological hydrogen gas production from lab-scale 
batch anaerobic digester using various substrates. 2022 American Society for Microbiology (ASM
Microbe) Conference (ASM Microbe June 9–13, 2022) at Washington, D.C. 
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1. Introduction 
1.1 Hydrogen Gas as Future Energy Source 

Approximately, a large amount of 11-billion liters liquid petroleum is required to globally supply
transportation each day, which accounts for 99% of the total fuels consumed by the transportation
sector (Kalghatgi et al., 2018). This results in 14% of total greenhouse gas (GHG) emissions from 
carbon dioxide (CO2) and other GHGs (Kalghatgi et al., 2018). With rapid population growth, 
the 2050 projected climate impact illustrates that the use of petroleum fuels be 
consistent (Kalghatgi et al., 2018). Therefore, the significant GHG emissions from automobiles 
must be promptly minimized prior to mitigate impacts to global warming. As a result, regulations 
and policies, mainly in Europe and America, provide initiatives for alternative, low-carbon, and 
carbon-neutral fuels such as electric batteries, plug-in hybrids, and fuel-cell systems using 
(renewable) hydrogen, which will immediately reduce anthrophonic GHG emissions from fossil 
fuels combustion. Specifically, California aims to achieve 40% carbon reduction by 2030, compared 
to 2016 (Senate Bill 32) (Energy Innovation, 2022). In addition, the state has a goal of 100% 
carbon-emission free electricity (carbon neutrality via Senate Bill 100, The 100 Percent Clean 
Energy Act of 2018; (Energy Innovation, 2022)). After 2030, newly manufactured carbon-fueled 
vehicles will no longer be traded in California. 

While solar energy has been widely adopted, the aged solar panels need special disposal and 
recycling (Monteiro Lunardi et al., 2018). Furthermore, wind energy is limited by regional and 
climate factors (Carrion et al., 2008). Hydrogen gas is well-known as one of the most clean and 
sustainable energies with a yielded heating value nearly 3 times higher than petroleum 
fuels (Momirlan et al., 2005). Comparing combustion heat among several fuels, hydrogen has the 
highest heating value of 61,000 British Thermal Unit (BTU)/lb (Hung et al., 2011; NIST, 2022). 
Hydrogen gas can be synthesized from several technologies, but only 1% of hydrogen gas 
production is generated from biomass (Das et al., 2008). Biological hydrogen gas production 
during anaerobic digestion is accounted for within that 1% (Hosseini et al., 2016). Currently, most 
energy utilization from biogas is methane oxidization, which contributes to global warming 
because its combustion significantly emits CO2 (greenhouse gas; GHG). Biogas is a mixture of 
gases, and hydrogen gas (H2) has the highest heating value compared to other gases in the biogas 
mixture (Hung et al., 2011). When hydrogen gas reacts with oxygen gas, energy and water are 
generated with minimum GHG gas emission (Hosseini et al., 2016). Therefore, hydrogen energy 
is a promising alternative fuel for H2-powered electric vehicles (Berry et al., 1996). Emerson (2008) 
reports the economic potential of hydrogen-fuel-cell utilization for large-scale applications. 
Furthermore, several countries encourage hydrogen fuel for transportation (Market et al., 2020). 
All of the benefits of hydrogen energy satisfy opportunities to maximize California’s cap-and-trade 
program, which is designed to reduce the impact of transportation on climate change (Senate Bill 
697, 2021). Hence, H2 recovery from biomass/anaerobic digesters can potentially serve as our 
future renewable H2 fuel source. 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  3 



 

    

        

               
           

                
                

              
               

                
           

          
             

            
             

            
               

                 
         

            

         
            

           
              

            
           

              
                

               
     

  

1.2 Food Waste Generation and its Impacts to the Environment 

One third of the world’s annual food production (approximately 1.3 billion tons) is wasted and 
disposed in landfills, contributing the equivalent of about 3.3 billion tons CO2 emissions per 
year (Salemdeeb et al., 2017; Fisgativa et al., 2017). Specifically, in the U.S., the amount of food 
waste (FW) has increased by 50% since 1974 (Posmanik et al. 2017). Nevertheless, only 2% of FW 
in the U.S. is currently anaerobically digested (Food Waste Reduction Alliance, 2016), while 22% 
of FW are landfilled, and 22% of FW are combusted with energy recovery in 2017 (USEPA, 
2019). By 2025, the world’s annual amount of FW is projected to be almost 2.5 billion tons 
(Karthikeyan et al., 2018). These numbers highlight potential environmental concerns regarding 
FW disposals, especially fugitive greenhouse gas (GHG; i.e., methane (CH4) and CO2) from 
landfills. Hence, FW must be handled more effectively by reducing the amount of FW that is 
created, thus preventing fugitive GHG during the disposal processes, and by recovering renewable
bioenergy and sustainable materials, such as a product that can improve soil heath. In September 
2015, the Environmental Protection Agency (EPA), along with the U.S. Department of 
Agriculture (USDA), announced the 2030 food waste and loss reduction goal that aims to reduce 
FW disposed to combustion with energy recovery and landfills by 50%, to 109.4 lbs per person by 
the year 2030 (USEPA, 2019; USDA, 2015). This will substantially minimize climate change 
impacts because 20% of total U.S. methane emissions originates from landfills (USEPA, 2019). 

Evaluation of sustainable approaches to FW disposal, including landfilling, incineration, 
FW composting, and FW anaerobic digestion (FW-AD), has showed FW-AD as a relatively 
cost-effective technology due to its generation of renewable energy. Moreover, AD can 
accommodate a much wider range of substrates and can be operated in different bioreactor scales 
at various locations (Appels et al., 2011). Incineration and composting mostly convert useful 
organic contents into GHG—CO2, not methane gas. Although the reaction in landfills is 
anaerobic, it is not feasible to provide favorable operational factors to promote methane formation.
Hence, methane gas is directly emitted to the atmosphere. CH4 is about 20 times more effective 
than CO2 in destroying the ozone layer, therefore, FW, as a major carbon resource delivered to 
landfills, must be properly minimized. 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  4 



 

    

    

             

          
         

            
           

                
           

             
              

         
               

        

              
            

              
            

            
             
             

            

organic compounds 
(e.g., polysaccharides and fats) 

Hydrolysis 
(Hydrolytic bacteria) 

Monomers 
(e.g., glucose, amino acids, fatty acids) 

Fermentation 
(Fermentative acidogenic bacteria) ,.... ____ _.,.__.._ ___ ...., 

Organic acids, alcohol, ketones 

1.3 Anaerobic Digestion Pathways 

Figure 1. Metabolic Bacterial Groups Involved in Anaerobic Digestion of Wastes (Bitton, 2011) 

Anaerobic digestion of waste consists of four main processes: hydrolysis, 
fermentation/acidogenesis, acetogenesis, and methane formation (Figure 1). Anaerobic digesters 
(ADers) at water resource recovery facilities (WW-ADers) and food waste and wastewater 
anaerobic co-digesters (FW-WW-ADers) currently share the same microbial seeds to begin, but 
the substrates are different. Most ADers are operated to achieve the highest biogas volume at the 
maximum CH4 gas percentage. Biogas is a mixture of gases, entailing CH4, CO2, N2, H2S, H2, 
and H2O, for example. Analyzing the microbial pathways of biogas formation (Figure 1), hydrogen 
gas is an intermediate compound for methane production (see red arrow). Therefore, the system 
must provide favorable conditions to promote hydrogen-forming bacteria and to restrict 
methane-producing bacteria. As a result, hydrogen gas is not converted to methane gas, and a large 
fraction of hydrogen gas will be retained in biogas. 

The goal of this project is to enhance H2 gas formation by externally providing additional 
H2-forming bacteria in existing anaerobic digested sludge. The goal aligns with with California’s 
cap-and-trade program to reduce the impact of transportation on climate change (Senate Bill 697,
2021). The project goal associated with this paper’s objectives deliver environmental and 
transportation solutions. While electric vehicles require electricity produced from coal, natural gas, 
etc., and hybrid automobiles are partially fueled by gasoline, hydrogen energy is known as nearly-
zero carbon emissions. In addition, this project’s outcomes will help reduce the amount of food 
waste disposed in landfills and incinerators, which directly supports the 2030 EPA’s and USDA’s 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  5 



 

    

            
         

           
             

  

food waste and loss reduction goals (USEPA, 2019; USDA, 2015). Moreover, once fugitive
methane gas from landfills is reduced, climate change impacts will also substantially be minimized
because 20% of total U.S. methane emissions originate from landfills, which also satisfies Assembly 
Bill 32 (AB 32) and the EPA’s Clean Air Act on climate change mitigation. 
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2. Materials and Methods 
2.1 Pure Cultures and Growth Conditions 

Clostridium acetobutylicum (B-527), Lactobacillus brevis (B-1835), and Lactococcus lactis subspecies 
lactis (B-1232) were kindly provided by the Agricultural Research Services Culture Collection 
(ARS), the Northern Regional Research Laboratory (NRRL), and the United State Department 
of Agriculture (USDA). All pure cultures were grown using liver infusion broth at 28oC in an 
orbital incubator for 24 hours. 

2.2 Wastewater Sludge 

Primary sludge, waste activated sludge, thickened sludge, and anaerobic digested sludge were 
obtained from the Chiquita Water Reclamation Plant atSanta Margarita Water 
District (SMWD). All sludge samples were collected in one-gallon sterilized containers, stored at 
4oC, transported to the laboratory, and kept at 4oC until used. 

2.3 Physiochemical Analysis of Sludge and H2 Content Measurement 

Chemical oxygen demand (COD), Volatile fatty acid (VFA), and alkalinity and 
ammonium (NH4

+-N) concentrations were measured using a DR 3900 spectrophotometer (Hach,
Loveland, CO) with TNT822, TNT872, TNT833, and TNT870 kits. Suspended solids analysis 
was performed in accordance with the Standard Method (American Public Health 
Association/American Water Works Association/Water Environment Federation, 2017). H2 

content was detected using a hydrogen gas analyzer. 

2.4 DNA Extraction and Molecular Analysis 

DNA was subjected to DNA extraction using modified bead-beating protocol (Huang et al., 2010;
Yu and Mohn, 1999) and purified using phenol/chloroform and chloroform. The extracts were 
then precipitated in isopropanol at -20oC before being further washed with 70% ethanol and eluted 
with high performance liquor chromatography (HPLC) water. DNA extracts were measured for 
DNA concentration and purity using a nanodropTM lite spectrophotometer (Thermo Scientific). 
DNA extracts were diluted to 10 ng/µL for next generation DNA sequencing analysis. 

2.5 Statistical Analysis 

Pearson correlation coefficient, t-test, f-test, and degree of significance were determined using 
Microsoft Excel. RStudio (RStudio Team, 2015) and R v.3.5.1 (R Core Team, 2018) were 
employed for data analysis for multivariable analysis-Redundancy Discriminant Analysis (RDA). 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  7 



2.6 Reactor Preparation and Incubation Condition 

50 mL sterilized conical tubes were added with 25 mL digested sludge, 5 mL sodium 
bicarbonate (NaHCO3), and 5 mL of each substrate (Figure 2). The mixed feeds were prepared 
from 2.5 mL of each feed mixture. All reactors were incubated in an orbital heating bath at 37oC 
and 30 rpm for approximately two weeks. Pure cultures were individually spiked to each reactor 
after supernatant broth was removed. 

Figure 2. Batch Reactor Set up 

2.7 Food Waste Preparation 

Food waste was prepared from fresh groceries, which contained 49.3 g of butter (5%) as fat, 295.5 g 
of fruit and vegetables (31.6%) as fiber, 295.5 g of bread (31.6%) as carbohydrate, 295.5 g of dog 
food (31.6%) as protein (Figure 3). All groceries were ground using a cooking blender and food 
processor. All processed food waste was equally portioned at 30 g in a sterilized container and kept 
frozen at -20oC until use. 30 mL deionized water was added to each 30 g of thawed and processed 
food waste prior to the experiment. Food waste composition was prepared according to 
recommended publications (Slopiecka et al., 2022). 

Figure 3. Food Waste Composition 
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3. Results 
3.1 Hydrogen Recovery by C. Acetobutylicum 

C. acetobutylicum was spiked into anaerobic digestion reactors, which were separately fed with seven
different types of feed, including (i) primary sludge, (ii) waste activated sludge (WAS), (iii) mixed 
primary and WAS, (iv) food waste (FW), (v) mixed FW and primary sludge, (vi) mixed FW and 
WAS, and (vii) mixed FW and mixed sludge. The H2 gas recovery was measured at day 4 and 6 
from food waste anaerobic digesters with spike and control (Figure 4), as well as with mixed food 
waste and primary sludge control reactor at day 4 at 900 ppm (data not shown). The 4oC-digested 
sludge was used to seed all reactors. Our findings indicate no significant advantages of a C. 
acetobutylicum spike in H2 production performance. Therefore, a spike is not essential for H2 

recovery enhancement. However, food waste was proofed as the most suitable substrate to enhance 
H2 recovery compared to other tested substrates. 

Our results show non-steady H2 recovery patterns. When the 4oC-digested sludge was operated 
anaerobically at 37oC, microbial populations adjusted their kinetics for higher-temperature 
activities. Our data implied that the high-H2-forming bacteria possessed high kinetics and reached 
their maximum rates before methane-forming bacteria. Therefore, H2 was collected at higher 
contents at the early days. After day 6, H2 content in all food waste reactors was below the 
minimum detection limit of the hydrogen gas analyzer. This suggests that H2 was utilized for other 
bacterial groups as reactants or substrates or H2 generation was deteriorated, which resulted in 
nondetectable H2 percentage from the reactors. 

Figure 4. Hydrogen Gas Recovery from Control and C. Acetobutylicum Spike Food Waste 
Anaerobic Digestion Reactors 
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3.2 Hydrogen Recovery using Different Anaerobically Digested Sludge Seeds 

Similar experiments were carried out with other pure cultures based on their reported ability to 
produce hydrogen gas, Lactobacillus brevis and Lactococcus lactis subspecies lactis. H2 content 
generated from batch anaerobic digesters fed with food waste with L. brevis, L. lactis subspecies 
lactis spike and control are displayed in Figure 5. The experiments utilized two different digested 
sludge, whose temperature were at 4oC (Figure 5a) and at room temperature (Figure 5b) prior to 
the start of incubation. The H2 recovery from 4oC-digested-sludge feed measured the highest on 
the second day after incubation at 533, 1,000+ and 570 ppm. While the H2 contents from the 
control and the L. lactis subspecies lactis spike reactors were assessed approximately at equal 
concentrations, the L. brevis spike reactor produced nearly twice as much H2 content. Therefore, 
L. brevis possibly enhance H2 formation in anaerobic digesters. At day 5 and later, the H2 recovery 
from the three reactors decreased substantively. After seven days of incubation, H2 contents were 
mostly measured at 0 ppm. 

Once room-temperature digested sludge seeds were utilized and incubated, the H2 recovery from 
all reactors was measured above the maximum detection limit of the hydrogen gas 
analyzer (> 1,000 ppm = 0.1%; Figure 5b). While our study could not specify which reactors 
produced the highest H2 in this circumstance, this indicated that using room temperature digested 
sludge seeds, the H2-forming bacteria in the seeds were active and yielded high H2 gas content 
compared to the 4oC digested sludge seeds and that the H2-forming bacteria spike was not required 
to enhance H2 production (Figure 5a). On day 4 and after, the H2 recovery was found at 0 or 
significantly lower than the H2 content obtained on the second day. Therefore, a solids detention 
time of 2–4 days is suggested for enhanced H2 production from food waste anaerobic digesters. 

Figure 5. Hydrogen Gas Recovery from Control, L. Brevis Spike and L. Lactis 
Subspecies Lactis Spike Reactors (a) 4oc Digested Sludge Seed and

(b) Room Temperature Digested Sludge Seed 

(a) (b) 
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3.3 Change in Physicochemical Parameters Associated with H2 Recovery 

COD and VFA concentrations from reactors fed with food waste had the highest COD and VFA
concentrations compared to other substrate types. Moreover, a decrease of COD and VFA 
overtime, except the spike at the end of the study, suggests that food waste was effectively utilized 
during anaerobic digestion. Compared to other reactors fed with different substrates, different 
patterns of COD and VFA concentration shifts were observed, which implies that high COD and
VFA in food waste reactors in spike and control reactors offered advantages for H2 gas recovery 
and had higher influences on H2 recovery than additional C. acetobutylicum. Although, high COD 
and VFA were observed during high H2 recovery, the H2 contents were not detected after days 4 
or 6. Therefore, H2 may be further utilized for methane formation, or H2 formation was 
deteriorated. 
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Figure 6. Physicochemical Parameters Shift (a) COD – Control, (b) COD – Spike, 
(c) VFA – Control, (d) VFA – Spike, (e) Alkalinity – Control, (f) Alkalinity – Spike, 

(g) Ammonium – Control, and (h) Ammonium – Spike 
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Alkalinity was initially prepared at greater than 10,000 mg/L as CaCO3 (Figures 6e and 6f). 
However, initial alkalinity concentration of food waste reactor spike with C. acetobutylicum was 
lower at 8,000 mg/L as CaCO3 (Figure 6f). Alkalinity varied within a similar range in all reactors. 
The alkalinity concentrations maintained in all reactors were sufficient to regulate neutral pH. 

Figure 6g (control) and 6h (C. acetobutylicum spike) display ammonium concentrations in both 
reactors. The ammonium concentrations from the control reactors were varied more than the spike 
reactors. Ammonia/ammonium toxication was not observed in our study. 

Pearson correlation coefficients with degree of significance (P) greater than 0.05 among 
physicochemical parameters in the same food waste reactor are illustrated in Figure 7. When cold 
digested sludge seeds were spiked with L. brevis spike and L. lactis subspecies lactis in different 
reactors, the H2 content had an inverse relationship with COD concentration at r = -0.95 
and -0.97, respectively (Figures 7a and 7b). Alkalinity had a negative correlation with the H2 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  13 



 

    

                
              

        

           
               

           
           

            

 
  

content only in the L. brevis spike reactor (r = -0.94), and ammonium had a negative relationship 
with the H2 content only in the L. lactis subspecies lactis spike reactor (r = -0.90). No significant 
correlations were found for sludge characteristics obtained from the control reactor. 

Similar statistical analysis was tested among sludge characteristics for the room-temperature 
digested sludge seeds (Figures 7c, 7d, and 7e). Among the three reactors, L. brevis spike and 
L. lactis subspecies lactis and control, positive Pearson correlation coefficient was found in the 
L. lactis subspecies lactis reactor fed with food waste, while there was no statistically significant 
correlation between the H2 content parameters determined in the other two reactors. 
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Figure 7. Correlation Matrix of Sludge Characteristics (a) L. brevis with 4oC Seeds, 
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Note: RT denoting room temperature. 
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Our study had small sample sizes to test degree of significance (n = 6). Furthermore, the 
H2 contents were mostly below the minimum detection limits of the hydrogen gas analysis. Hence, 
most H2 contents were reported as 0 or 1,000 ppm, which impacted statistical analysis. Our 
findings suggest that a spike of H2-forming bacterial populations is not necessary. Moreover, the 
H2 contents measured were not maintained at high or detectable value. This implies that H2 was 
utilized by other microbial groups or that H2 synthesis was terminated, which could not be 
concluded in this study because only H2 was measured, not other biogases such as CH4, CO2, H2O, 
H2S, N2, or O2. Here, all reactors were operated at the optimal environmental conditions to 
maximize methane generation. Therefore, it is likely that H2 was taken up for methane formation. 
In addition, solids retention time in the reactor must be minimized to inhibit methanogens in 
future studies. 
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4. Summary & Conclusions 
H2 recovery in three pure culture reactors and one control were measured between days 2–6, 
depending on reactor types. Food waste was observed as the best substrate for enhancing 
H2 formation. In addition, there was no substantive difference in H2 content measured among 
control and spike reactors, which suggests there were enough H2-producing microorganisms in 
the digested sludge seeds. However, the H2 contents that decreased after days 2, 4, or 6, varied by 
reactor types. This implies that H2 was utilized by other microbial groups or that H2 synthesis was 
terminated, which could not be concluded in this study. Once the digested sludge seeds were 
prepared at room temperature prior to 37oC incubation, all three reactors, L. brevis spike and 
L. lactis subspecies lactis and control, produced equivalent amounts of H2 content as soon as day 2. 
After two days, H2 was nearly below the minimum detection limit of the hydrogen gas analyzer.
Consequently, our data suggests a solids detention time of two days is the most suitable to enhance
H2 recovery and prohibit methanogens from taking up H2 for methane synthesis in the food waste 
anaerobic digesters. 
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