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Executive Summary 
Plastics have become an integral part of modern human life. As a result, the production of plastics 
has increased rapidly. Most of the plastics are non-biodegradable and remain without decomposing 
for a very long time, creating a massive accumulation of waste plastic. Plastics are a type of polymer 
and also a petroleum-based product; these characteristics open a new door for the study of recycled 
waste plastic as an additive to hot mix asphalt (HMA). Reusing waste plastics in HMA can help 
to manage waste plastic pollution and can save resources. HMA is one of the most recycled 
products in the USA. HMA are recycled as “reclaimed asphalt pavement” (RAP). RAP is highly 
used and encouraged for use by many transportation agencies.  

In this study, a conventional and plastic modified asphalt binder of Superpave Performance Grade 
PG 70-22 was used.  Further, virgin aggregate and aggregate with 20% of RAP were incorporated 
in HMA with conventional and plastic modified HMA. A binder content of 5.4% was used in 
virgin aggregate HMA mix, and 4.9% was chosen for aggregate with RAP HMA mix. Superpave 
Gyratory Compacted samples with a diameter of 150 mm and a height of 60 mm were prepared 
for the Superpave design method. Air void of compacted samples was kept within the 7±0.5% 
range as directed by ASTM D8225 and AASHTO T324 test methods for the IDEAL Cracking 
test and Hamburg Wheel tracking test, respectively. The mechanical properties of conventional 
and modified HMA with RAP and recycled waste plastics were compared to assess fatigue 
cracking resistance and rutting resistance.  

The IDEAL Cracking test is a newer test method used to examine the fatigue cracking resistance 
of HMA compacted samples at an intermediate temperature. Cutting, drilling, notching, or gluing 
of compacted samples is not required, and tests can be conducted within a minute. After 
conducting      this test, the authors found no significant difference in fatigue cracking resistance 
between modified plastic and conventional HMA with virgin aggregate. However, when aggregate 
with 20% RAP was used, there was significantly lower fatigue cracking resistance in plastic 
modified HMA than in conventional HMA. 

The Hamburg Wheel Tracking (HWT) test is a popular test method to examine the rutting 
resistance of compacted HMA; 20,000 passes were used for this test. At the end of 20,000 passes, 
all the samples showed similar rut depth. The HMA samples with RAP showed a slightly lower 
(shallower) rut depth. 

These results show that the plastic modified HMA exhibited similar mechanical properties to 
conventional HMA when virgin aggregates were used. Thus, recycled waste plastic (polyethylene) 
may be used as a partial substitute for asphalt binder in HMA with virgin aggregate. 
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1. Introduction 
Currently, the world is concerned about environmental degradation more than ever. The level of 
pollution is increasing each year. Among different pollutants, plastics are one of the major sources 
of environmental degradation. The quantities of waste plastics and their non-biodegradable nature 
make it very hard to manage plastic waste pollution. Even still, due to the high demand for plastics, 
plastic production has not decreased. Recycling and reusing plastic is one of the most effective 
ways to manage plastic waste. However, to reuse a huge quantity of plastic, an industry requiring 
a massive quantity of materials is needed. 

The pavement industry satisfies this requirement. More than a billion tons of Hot Mix Asphalt 
(HMA) is produced worldwide annually.1 There is always a need for materials. Asphalt binder, a 
petroleum product, is an expensive component compared to other materials in HMA. Similarly, 
various polymer additives are used to enhance HMA performance. The price tag of those additives 
is highest among all the components of HMA. Since plastics are polymers and petroleum-based 
products, plastics may potentially be used as additives to HMA. Using recycled waste plastics in 
HMA can reduce the volume of waste plastics as well as the cost of paving materials, and this 
recycling can also play a significant role in conserving resources. To successfully modify HMA 
with plastic, either plastic modified HMA should exhibit similar or higher performance compared 
to conventional HMA. 

When sustainability and resource conservation in HMA are being discussed, Reclaimed Asphalt 
Pavement (RAP) cannot be missed. Removed or reprocessed pavement materials containing 
asphalt and aggregate are called RAP. The addition of RAP aggregate to HMA helps to conserve 
resources. Generally, the repair process of flexible pavement produces a large amount of RAP; if 
not reused, a large amount of unused RAP aggregate can fill landfill sites rapidly when it is 
disposed of at a landfill site. RAP aggregate use up to a certain percentage showed similar 
performance to the HMA with virgin aggregate. Many state-level transportation departments have 
encouraged the use of RAP and have published guidelines regarding the use of RAP. 

To examine the possibility of modifying HMA with recycled waste plastic and RAP, the 
performance of modified HMA should be tested. Fatigue cracking and rutting are common 
failures for flexible pavement. There are many methods available to examine cracking and rutting 
resistance. In this study, the IDEAL Cracking (IDEAL CT) test is employed to measure the 
fatigue cracking resistance. This method can be conducted in less than a minute and does not 
require cutting, drilling, or notching. Similarly, the Hamburg Wheel Tracking (HWT) is selected 
to test the rutting resistance. This is a popular and effective test to examine the rutting resistance 
of compacted HMA samples. The conventional and modified HMA samples were tested 
according to these test methods, and conclusions were drawn from the results given by those tests, 
as presented in the following chapters. 



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  3 

2. Literature Review      
Plastics have become an essential part of the modern world. The use of plastics is greater than ever 
before. As a result, the production of plastic has skyrocketed in recent years. The global production 
of plastics has increased from two million tons in 1950 to 368 million tons in 2019.2 The major 
problem with the use of plastics is their non-biodegradable nature. Plastic wastes can remain on 
the Earth without degrading for many years. Plastic wastes are not biodegradable, and they emit      
toxic gases when burned, creating a dire problem in plastic waste management. Most of the waste 
plastic ends up in the ocean, causing severe problems in the planet’s aquatic ecosystem.3 The 
approaches of reducing, reusing, and recycling plastics are said to be effective ways to reduce plastic 
wastes. The pavement industry has the potential to reuse a huge quantity of recycled plastic waste. 
Recycled plastics, mainly polyethylene (PE), have been used as an asphalt modifier since the 1980s. 
Polyethylene is generally preferred as an asphalt additive over other types of recycled plastic 
polymer because its melting point is lower than the asphalt processing temperature.  PE modified 
asphalts are available with different trade names such as Novophalt, Ditescpesa, Polyphat, etc.4 
The low blending capability of PE with asphalt binder has caused the lesser use of PE modification 
compared to other polymer modifications. Nevertheless, due to growing awareness of sustainability 
and environmental conservation, PE modified asphalts have grabbed attention in recent years. 

Many studies have been conducted about PE modified binders. Researchers found that the 
homogenous blending of PE with binder depends on several parameters. The blending 
temperature and duration play critical roles in the binder’s properties. A two-stage mixing process 
was recommended by Yousefi et al.; the first stage consists of high-shear mixing at high 
temperatures for a short period, and the second stage involves low-shearing mixing.5 Dalhat et al. 
found that the LDPE modified binder reached a uniform viscosity after 30 minutes of blending at 
a shear speed of 5,000 rpm, whereas it takes 60 minutes for HDPE and PP modified binder.6 
Uniform viscosity indicates a homogeneous dispersion of the polymer in the binder. Polymers with 
smaller particle size disperse easily and partially dissolve into the binder due to enhanced polymer 
particle swelling with large surface areas. In another study, Polacco et al. discovered that asphalt 
with high aromatic content has better compatibility with PE than asphalt with low asphaltene 
content.7 For the asphalt modification with LDPE, the mixing temperature of 160–180°C, 
blending speed of 1,300 rpm, and blending duration of 30–120 minutes was recommended. 
Additionally, LDPE concentration in the range of 3–5 wt% of bitumen was found to be the 
optimum concentration.8      

Phase separation is one of the main concerns with the PE modified binder. Phase separation 
describes the polymer’s separation from the binder during Polymer Modified Bitumen (PMB) 
transport and storage. It disturbs the homogeneity of the binder and affects the viscosity. 
Differences in molecular structure, density, molecular weight, and the polymer modified asphalt 
components’ viscosity are the reasons behind the low compatibility between the polymer and the 
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binder. According to Naksar et al., a recycled polymer content of 7 wt% shows behavior 
incompatible with asphalt binder.9 The use of 4 wt% of waste HDPE pipe showed no phase 
separation for a long time.10 Also, the recycled PE concentration should not exceed 5 wt% for 
paving applications.11       

The polymer size also affects the compatibility of PE with the binder. The smaller particles can 
help to overcome the phase separation and stabilize the blend.12 In a study by Ho et al., researchers 
found that the polymers with low molecular weight provide better compatibility and mixing with 
the asphalt binder.13       

Similarly, storage stability refers to the tendency of PE to separate from asphalt binder during 
storage. It provides the degree of chemical compatibility between two individual components. 
Storage stability was not shown by the Novopalt binder, produced with a 7 wt% PE content.14 In 
another study conducted by Cuadri et al., the storage stability time was increased from 1 hour to 
4 hours by decreasing the LDPE content from 4 wt% to 2 wt%.15      

Researchers used chemical, organic, and clay modifiers to improve the compatibility between 
bitumen and polymers. Liang et al. used a steric stabilization technique whereby PE was stably 
incorporated into asphalt using a styrene-butadiene-styrene (SBS) copolymer and an ethylene-
vinyl acetate copolymer to produce an asphalt mixture known as Polyphat.16 Another PE modified 
binder called Ditecpesa was introduced by adding silica gel and fine carbon black to stabilize the 
LDPE modified binder.17      

Farahani et al. observed that the PE modified binders were more thermally stable than virgin 
binders, as shown by their weight loss.18 The addition of PE increased softening point and viscosity 
value and decreased penetration and ductility. PE belongs to the plastomers group, which increases 
the stiffness but doesn’t change elastic recovery. Dalhat et al. reported that for every two-percent 
increment in PE content, performance grade (PG) high temperature increased at least by one 
level.19 However, that study also reported that the PE modified asphalt binders failed to meet 
elastic recovery criteria. The use of chemical additives like MA-g-PE and GMA-g-PE showed a 
positive effect on low-temperature properties, increased penetration and ductility, and enhanced 
high-temperature stability and compatibility between the polymer and binder.20 The addition of 
Low-Density Polyethylene (LDPE) and Polyphosphoric acid (PPA) in HMA improved the 
fatigue resistance and rutting resistance.21 Kishchynskyi et al. found that polymer additives of SBS 
type impart elasticity, increase cohesive strength and heat resistance, and improve its low-
temperature behavior.22 These studies showed that PE modified asphalt could increase the low-
temperature and high-temperature performance. 

Studies have been conducted on PE modified Hot Mix Asphalt (HMA) prepared from the dry 
method. Plastiphalt is prepared by a dry method where recycled plastics partially replaced 
aggregate.23 In the dry method, plastics are not mixed into the binder. Instead, they are added to 
hot aggregate/asphalt mix at the hot mix asphalt (HMA) plant. Thus, testing the modified binder 
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is not possible, and mixture performance can only be determined at the final pavement stage. This 
reduces quality control. The cracking resistance of the PE modified mixture produced by the wet 
method was found to be better than the PE modified mixture produced by the dry method.24 
Another shortcoming of the dry method is that the polymer size reduction is not achieved like in 
a wet method from high-shear blending.25 Thus, the wet method is preferable to the dry method. 

The use of PE modified asphalt binder by the wet process dates back to 1987. In 1987, the runway 
of Hobby International Airport (Houston, Texas) was constructed using recycled LDPE following 
the Novophalt technology.26 Novophalt technology was again used in the construction of a runway 
and taxiways of Kuala Lumpur International Airport in 1996. Similarly, Novophalt technology 
was found to be suitable for the construction of the Al Kharkheer Military Airfield Project in the      
Kingdom of Saudi Arabia (1999).27 In 2005, Dubai International Airport used LDPE modified 
binder in Phase 1 and continued to use it in the Phase 2 expansion after the material met the 
required specification.28 Another technology called Ditecpesa was used for the construction of a 
large-scale road project in Spain in 2010.29 The PE modified binder showed better rutting 
resistance in most of the studies. Therefore, PE modified binders are generally used in rutting 
susceptible areas such as runways and in hot climatic environments.  

Reclaimed Asphalt Pavement (RAP) helps to conserve resources and plays a crucial role towards 
future sustainability.30 RAPs are frequently used these days in HMAs. Many transportation state 
agencies allow the use of RAP up to 29%.31 The mix design becomes complex when more than 
25% of RAP is used because of the asphalt binder properties in the RAP.32 Researchers have found 
better rutting resistance with the use of 20% RAP.33 

Earlier studies generally focus on the rheological and mechanical properties of PE modified asphalt 
binder, and few investigations have been conducted on compacted HMA. Similarly, the effects of 
incorporating the plastic modified binder and RAP to conventional compacted HMA mix have 
not been studied extensively. This study will focus on the mechanical properties of compacted 
conventional and modified HMA with recycled waste plastic and RAP. Fatigue cracking resistance 
and rutting resistance will be tested with the IDEAL Cracking (IDEAL CT) test and the 
Hamburg Wheel Tracking (HWT) test, respectively.  
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3. Objectives      
This study aims to examine the effect of recycled waste plastic and RAP on HMA, individually 
and together, when used as an additive. Fatigue cracking resistance and rutting resistance will be 
analyzed using the IDEAL Cracking Test and Hamburg Wheel Tracking Test, respectively. 
Results between conventional HMA and recycled waste plastic modified HMA with and without 
RAP will be compared according to the factorial in Table 1. 

Table 1. Testing Factorial 

Conventional Binder Plastic Modified Binder  
Virgin Aggregate Conventional Binder 

(VCM) 
Virgin Aggregate Plastic Modified 

Binder (VPM) 

Aggregate with RAP Conventional Binder 
(RCM) 

Aggregate with RAP Plastic Modified 
Binder (RPM) 
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4. Materials 
Aggregate, asphalt binder, and air voids are the major constituents of Hot Mix Asphalt (HMA). 
Aggregate occupies about 90 to 95% of the mix’s total weight and is responsible for stability. 
Another constituent, asphalt binder, acts as a gluing material for aggregates and is also responsible 
for the mix’s durability. Similarly, air voids represent the air volume entrapped in HMA during 
compaction. Air voids play a vital role in the mix design and performance of HMA. 

4.1 Aggregates 

The aggregates provided by Vulcan Materials were used in the study. Aggregates include sand, 
gravel, slag, and crushed stones. Two types of aggregate were selected. One was virgin aggregate, 
and the other contained 20% of RAP. Both types of aggregates have a Nominal Maximum 
Aggregate Size (NMAS) of 12.5 mm (1/2”).   

4.2 Gradation 

Table 2 shows the gradations used in this study. 

Table 2. Aggregates Gradations both Virgin and RAP Containing Aggregate 
Sieve % Passing Specifications 

  Virgin RAP Virgin RAP 

3/4” (19mm) 100 100 100–100 100–100 

1/2” (12.5 mm) 96.1 96.1 95–100 95–100 

3/8” (9.5 mm) 86.2 86.5 72–88 72–88 

#4 (4.75 mm) 52.4 53.1 46–60 46–60 

#8 (2.36 mm) 36 36.8 28–42 28–42 

#16 (1.18 mm) 26.8 27.8   

#30 (0.6 mm) 19.2 20.3 15–27 15–27 

#50 (0.3 mm) 12.4 13.3 10–20 10–20 

#100 (0.15mm) 6.6 7.6   

#200 (75 µm) 4.4 5.2 2–7 2–7 

Pan 0 0 0 0 
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4.3 Asphalt Binder 

Asphalt binder is a petroleum product and is the most expensive among the components of 
conventional HMA mix. It mixes with mineral filler to form mastic, which binds aggregates with 
each other. Conventional binders and plastic modified binders are used in this study. The 
conventional binder consists of 1.3% of ELVALOYTM RET EP1177 and 0.26% of 
Polyphosphoric acid (PPA) by binder weight. Similarly, the plastic modified binder consists of 
1.5% of recycled linear low-density polyethylene (LLDPE), 0.6% of ELVALOYTM RET EP1177, 
and 0.2% of Polyphosphoric acid (PPA) by weight of the binder. Both asphalt binders for this 
study are provided by Asphalt Martin Company, and both binders were of PG 70-22 grade. Table 
3 shows the properties of the conventional and plastic modified binder of PG 70-22.  

Table 3. Asphalt Binder Properties 

Property Conventional 
Binder (PG 70-22) 

Plastic Modified 
Binder (PG 70-22) 

Rotational Viscosity (Pa-s) 0.74 0.7 

Elastic Recovery % 62.5 40 

Dynamic Shear Rheometer Original at 70     °C 1.11 1.12 

Dynamic Shear Rheometer RTFO at 70°C 3.03 3.73 

Dynamic Shear Rheometer PAV at      25°C 3,090 4,980 

BBR Stiffness S at -12°C 173 210 

BBR Slope (m-value) at -12°C 0.313 0.3 

Softening Point, °F 129 126 

Penetration, dmm 70 60 
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5. Methodology 
A series of processes is required for preparing the samples before the tests are conducted. Mixing 
of materials, short-term aging of HMA mix, compaction, and fabrication of samples are those 
processes. 

5.1 Mixing 

Aggregates were batched to meet the target gradation for the mix. Conventional and plastic 
modified asphalt binder of grade PG 70-22 were selected. For virgin aggregate HMA mix, a binder 
content of 5.4% by total weight of HMA mix was used, whereas a binder content of 4.9% by total 
weight of HMA mix was used for aggregate with 20% of RAP. 

Aggregates, asphalt binder, mixing bucket, mixer paddle, and spatulas were heated at a mixing 
temperature of 165°C (329°F) for two hours as shown in Figure 1 before mixing the aggregates 
and the asphalt binder. After that, the aggregates were poured into the mixing bucket and weighed 
on the scale; 5.4% or 4.9% of asphalt binder by total mix weight was added for virgin aggregate 
and aggregate with RAP in the mix, respectively. Then, the mixing bucket was aligned with the 
mobile bucket mixer, and mixing was initiated. The aggregates started to become coated with 
asphalt binder. The mixing was continued until the homogenous mix was obtained where 
aggregates were entirely coated by asphalt binder. Once a homogeneous mix is obtained, the 
mixing was stopped, and the HMA mix was transferred in a tray. The HMA mix was spread to 
an even thickness of 1 to 2 inches during transfer to a tray. 

     

Figure 1. (a) Aggregate, Binder, Mixing Bucket, Spatula, and Mixing Paddle Conditioned at 
Force Draft Ovens; (b) Mobile Bucket Mixer with Mixing Bucket      
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5.2 Aging 

Short-term aging is a laboratory procedure used to simulate the effects of HMA aging and binder 
absorption that occur during the pre-compaction phase of the construction process. After HMA 
mix preparation, the mix should undergo a short-term aging process to simulate the real field 
scenario. 

The AASHTO R30 test method was implemented for short-term aging of HMA mix. Following 
this test method, the HMA mix was sprayed in a pan to an even thickness between 1 to 2 inches. 
For the mechanical property testing procedure, the HMA mix was placed in a forced-draft oven 
for 4 hours at a temperature of 135°C. The HMA mix was stirred at one-hour intervals to maintain 
uniform conditioning. 

5.3 Compaction and Fabrication  

Twenty-eight compacted HMA samples were prepared for the study. HMA samples were 
compacted with a Pine Superpave Gyratory Compactor (SGC). Fourteen compacted HMA 
samples made with a conventional binder and fourteen samples made with a plastic modified 
binder were prepared. For the IDEAL CT test, compacted HMA samples should have a diameter 
of 150 mm and a thickness of 60 mm, as shown in Figure 2. In the HWT test, 60-mm-thick SGC 
compacted samples were required to be cut according to the procedure given by AASHTO T324. 
Air voids in all compacted samples must be within the range of 7% (±0.5%). A series of volumetric 
tests was followed to prepare the sample with those specifications. Four main standard tests used 
were: 

● AASHTO T 209: Standard Method of Test for Theoretical Maximum Specific 
Gravity (Gmm) 

● AASHTO T 312: Preparing and Determining the Density of Asphalt Mixture 
Specimens by Means of the Superpave Gyratory Compactor 

● AASHTO T 166: Standard Method of Test for Bulk Specific Gravity (Gmb) of 
Compacted Hot Mix Asphalt using the Saturated Surface-Dry Method 

● AASHTO T 269: Standard Method of Test for Percent Air Voids in Compacted 
Dense and Open Asphalt Mixtures. 
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Figure 2. Superpave Gyratory Compacted Samples 

The first test includes determining the theoretical maximum specific gravity (Gmm) of the HMA 
mix according to AASHTO T209. The NMAS in this study is 12.5 mm. Thus, 1,500 gm of 
short-term aged HMA mix was taken. Gmm is measured on the loose mix. Therefore, HMA 
particles were separated by hand. Proper care was taken while separating the particles to ensure 
particles were separated without fracturing. At no point was a significant amount of asphalt binder 
stuck to the container or the researchers’ hands, and it was ensured that the fine aggregate portion 
was not larger than a quarter inch. First, the pycnometer was completely filled with water at 25°C 
and the researcher measured the corresponding weight.  After that, the pycnometer was emptied, 
and the sample was placed into the pycnometer. The sample inside the pycnometer was submerged 
into the water at 25°C. Vacuum pressure of 27.5±2.5 mmHg was maintained for 15 minutes. A 
mechanical shaker provided continuous agitation while applying that pressure to force the air voids 
out of the loose mix and replace them with water. After 15 minutes, the pressure was released at a 
rate of no more than 60 mmHg per second. The apparatus for this test is shown in Figure 3. When 
atmospheric pressure was achieved, the pycnometer was partially filled with water and the samples 
was completely filled with water. The researchers measured the mass of the pycnometer and sample 
with the vessel completely filled with water. Once all three measurements had been taken, equation 
1 was used to determine the Gmm of the HMA mix.  
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𝐺## =
𝐴

𝐴 + 𝐷 − 𝐸 

(1)

 
𝐺##   = theoretical maximum specific gravity      

𝐴   = mass of oven-dry sample in air, g      

𝐷    = mass of pycnometer filled with water at 25°C, g      

𝐸   = mass of pycnometer filled with the sample and water at 25°C, g.  

 

 

Figure 3. Apparatus Setup Consisting of Pycnometer, Vacuum Pump, and Mechanical 
Shaker for Determining Gmm 

The next step involves the compaction of the HMA mix using SGC to measure the bulk specific 
gravity of the compacted HMA mix. A Pine Superpave Gyratory Compactor (SGC) was used for 
the compaction, and AASHTO T 312 was followed. The compaction mold, base plates, funnel, 
spatula, and loose HMA mix were heated at compaction temperature of 135°C for at least 30 
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minutes, as shown in Figure 4. After that, the HMA mix was poured into the compaction mold 
in one lift with the help of the funnel. The charged mold was placed into the SGC. Pressure of 
600 kPa was applied with an internal angle of 1.16°. The height of the compacted HMA sample 
was set to 60 mm.  

HMA is a visco-elastic material. This characteristic makes HMA rebound after compaction. 
Therefore, samples were subjected to squaring time of 4 minutes, wherein the samples stayed in 
place until the rebound period was over. After the squaring time, the compacted HMA sample 
was extracted from the mold and left to cool down to room temperature. 

      
(a)                                                          (b)  

Figure 4. (a) HMA, Compaction Molds, Funnel, Spatula Conditioned at Mixing Temperature; 
(b) Pine Superpave Gyratory Compactor 

The bulk specific gravity of compacted HMA samples must be determined to calculate the air void 
in the compacted HMA sample. AASHTO T166 was used to determine the bulk specific gravity. 
According to this test method, the researchers weighed the recently compacted HMA samples. 
Later, the compacted HMA sample was immersed in the water bath at 25°C for 4 minutes, and 
the immersed mass was recorded. Finally, the surface-dry mass was taken by removing the sample 
from the water bath and damp drying the sample by blotting it with a damp towel. The surface-
dry mass was recorded within 15 seconds after the sample was removed from the water bath. 
Equation 2 was used to determine the bulk specific gravity. 
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𝐺#* =
𝐴

𝐵 − 𝐶 

(2) 

      

𝐺#*   = bulk specific gravity      

𝐴   = mass of sample in air, g      

𝐵    = mass of surface dry sample in air, g      

𝐶   = mass of sample submerged in water at 25°C, g.  

Finally, air void in compacted HMA sample was determined according to AASHTO T 269; 
𝐺 𝑚𝑚 and 𝐺 𝑚𝑏 are required. Air voids were calculated using equation 3. 

     

𝑉0 = 100 31 −
𝐺#*
𝐺##

4 

(3) 

𝑉0   = percent air void        

𝐺#*   = bulk specific gravity 

𝐺##   = theoretical maximum specific gravity. 

Air void of 7% (±0.5%) is required in SGC compacted samples. To achieve this percent air void, a 
trial and error basis was implemented, and multiple trials were needed to achieve the proper 
specifications of the gyratory compacted sample. Initially, 2,400 gm of loose HMA sample was 
compacted and the 𝐺#* of the compacted sample was determined. Based on the percent air void 
that resulted from the 𝐺#* of the compacted sample, the loose sample mass was varied until the 
target air void was achieved. Table 4 shows the volumetric properties of the HMA mix. 

Table 4. Volumetric Properties 

Mix Type  Binder Content 
(%) Gmm Air Voids (%) VMA (%) VFA (%) 

VCM  5.4 2.501 7±0.5 18.52 62.58 
VPM  5.4 2.503 7±0.5 18.66 62.63 
RCM  5.4 2.478 7±0.5 17.28 61.05 
RPM  5.4 2.482 7±0.5 17.46 60.65 
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After compacting the sample with 7% (±0.5%) air void, the samples were ready for the IDEAL 
CT test. However, for the HWT test, the compacted samples need to be cut according to the 
procedure given by AASHTO T324. The compacted samples were marked to be cut as shown in 
Figure 5 and sent for saw cutting. Three compacted samples were prepared for each type of mix 
for the IDEAL CT test, and four compacted samples of each mix type were prepared for the 
HWT test. 

     

Figure 5. Marking of Cut Line for Hamburg Wheel Tracking Test 
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6. Testing 
This study examines the fatigue cracking resistance and rutting resistance of conventional and 
plastic modified compacted HMA. The test method used to determine the fatigue cracking of the 
compacted HMA mix was ASTM D8225-19: Standard Test Method for Determination of 
Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at 
Intermediate Temperature. Similarly, to examine the rutting resistance of compacted HMA mix, 
the researchers chose to follow AASHTO T 324: Standard Test Method for Hamburg Wheel-
Track Testing of Compacted Asphalt Mixtures.  

6.1 IDEAL Cracking Test 

 

Figure 6. IDEAL CT Testing Machine 
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The IDEAL-CT test was conducted first. The researchers followed ASTM D8225:19: Standard 
Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the 
Indirect Tensile Cracking Test at Intermediate Temperature. The DTS-30 from Pavetest with 
indirect tensile loading frame was used, as shown in Figure 6. The machine consists of an axial 
loading device, a load cell, loading strips, samples deformation measurement device, temperature-
controlled chambers, and a data control and acquisitions system. The load cell has a resolution of 
10 N and a capacity of at least 25 kN. This test required a minimum of three SGC compacted 
samples with a diameter of 150 mm and a thickness of 60 mm. For a sample with a nominal 
diameter of 150 mm, the loading strip should be 19.05 mm wide, and the length should be greater 
than the thickness of the sample. Notching, cutting, gluing, or drilling of compacted samples is 
not required. Therefore, it is simple and easy to fabricate the samples. IDEAL-CT test measures 
the fatigue cracking resistance through a fracture-mechanics-based parameter: Cracking Tolerance 
Index (CTindex). The CTindex is calculated from the failure energy, the post-peak slope of the load-
displacement curve, and deformation tolerance at 75% of peak load. The higher the value of 
CTindex, the better the cracking resistance of the sample and vice versa. The fatigue cracking 
resistance tests are performed at an intermediate temperature. According to D6373, AASHTO 
M320, or M332, the intermediate temperature for the HMA with binder PG 70-22 is 28°C, so 
28°C was selected as the test temperature. 

Setting the temperature chamber to 28°C was the first step to initialize the test. Once the 
temperature stabilized at 28°C, the compacted HMA samples were placed in the chamber for two 
hours. The indirect tensile frame’s contact surface was cleaned so that no debris was present there, 
since debris may give an incorrect measurement. The samples were then placed in an indirect 
tensile loading frame that was set up inside the DTS-30 testing machine. The sample was centrally 
placed so that it made uniform contact on the support, as shown in Figure 7. Inputs of a 50 
mm/minute loading rate and a 0.1 kN termination load were fed into the software. After that, the 
test was initiated. 
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Figure 7. IDEAL CT Samples During Testing 

The software records the displacements and corresponding loads. The test stops once failure of the 
compacted sample takes place. The sample is considered to be failed when there is displacement, 
even when a load of less than 0.1 kN is applied. The graph is plotted between the load and 
displacements. The test lasted for less than one minute. 

After the load vs. displacement graph was plotted, the work of failure 5𝑊78 was calculated as the 
area under the load vs. displacement curve through the quadrangle rule, as shown in equation 4. 

     

𝑊7 = 9
:;<

=><

?(𝑙=B< − 𝑙=) × 𝑃= +
1
2 ×

(𝑙=B< − 𝑙=) × (𝑃=B< − 𝑃=)G 

(4) 

     

𝑊7    = work of failure (joules)      

𝑃=   = applied load (kN) at the 𝑖 load application      

𝑃=B<   = applied load (kN) at the 𝑖 + 1 load application      

𝑙=    = LLD (mm) at the 𝑖 step      
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𝑙=B<   = LLD (mm) at the 𝑖 + 1 step.  

Another parameter required to determine CTindex, failure energy (𝐺 𝑓), can be calculated with the 
help of work of failure 5𝑊78. Failure energy was calculated by dividing the 5𝑊78 by the cross-
sectional area of the sample, as shown in equation 5. 

     

𝐺7 =
𝑊7
𝐷 × 𝑡 × 10

L 

(5) 

𝐺7   = failure energy (joules/m2)      

𝑊7    = work of failure (joules)      

𝐷   = sample diameter (mm)      

𝑡    = sample thickness (mm). 

The last parameter, post-peak slope (𝑚MN), is the slope of the tangential zone around the 75% 
peak load point after the peak; it can be calculated using equation 6. 

|𝑚MN| = P
𝑃QN − 𝑃LN
𝑙QN − 𝑙LN

P 

(6) 

𝑃QN = 85% of the peak load (kN) at the post-peak stage      

𝑃LN  = 65% of the peak load (kN) at the post-peak stage      

𝑙QN       = displacement (mm) corresponding to the 85% percent of the peak load at the post-peak 
stage      

𝑙LN       = displacement (mm) corresponding to the 85% percent of the peak load at the post-peak 
stage. 

Finally, after calculating these parameters, the 𝐶𝑇=:STU can be determined by using equation 7, as 
shown below. 

     

𝐶𝑇=:STU =
𝑡
62 ×

𝑙MN
𝐷 ×

𝐺7	
|𝑚MN|

× 10L 
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(7) 

𝐶𝑇=:STU = failure energy (joules/m2)

𝐺7   = failure energy (joules/m2)

𝐷   = sample diameter (mm)

|𝑚MN| = absolute value of the post-peak slope 𝑚MN (N/m)

𝑙MN  = displacement at 75 percent of the peak load after the peak (mm)  

𝑡   = sample thickness (mm). 

The 𝐶𝑇=:STU was calculated and prepared for statistical analysis. The load vs. displacement graphs,
along with the parameters of the 𝐶𝑇=:STU, are listed in the results portion of this report. 

6.2 Hamburg Wheel Tracking Test 

The second test conducted was the rutting resistance test. For this test, the researchers used 
AASHTO T 324: Standard Method of Test for Hamburg Wheel-Track Testing of Compacted 
Asphalt Mixtures. This method describes the testing of submerged, compacted HMA mixture in 
a reciprocating rolling-wheel device. SGC compacted HMA mixture was repetitively loaded using 
a reciprocating steel wheel, and the resultant deformation of the samples caused by the repetitive 
wheel loading was measured.  
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(a)
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(b) 

Figure 8. (a) Hamburg Wheel Machine; (b) Samples After Testing  

The Cox Hamburg Wheel Tracker Machine was used to conduct this test, as shown in Figure 8. 
It is an electrically powered machine having steel wheels of diameter 8 inches and width of 1.85 
inches. The wheels are capable of making 52 passes per minute by reciprocating the load of 705 N 
centrally over the compacted HMA samples. This test also measures moisture damage 
susceptibility since the samples are submerged in a temperature-controlled water bath during the 
test. 

To start the test, the testing machine was turned on along with the software. The tank was filled 
with water, and the temperature was set to 55°C. The test temperature is based on the PG grade 
of the binder and HMA. The saw-cut SGC compacted HMA was placed in the molds and secured 
properly in the mounting tray. When the target temperature was reached, the HMA compacted 
samples were placed into the machine by submerging the sample in the water and conditioning 
(submerging) it in that water bath for 45 minutes. 

According to the standard, the maximum number of 20,000 passes and maximum rut depth of 
12.5 mm was set in the software. The test will end when one of the cases is met. Once everything 
is ready, wheels are lowered using a hydraulic mechanism onto the compacted HMA sample’s 
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edge. Proper care was given to avoid that the wheels placed onto the compacted HMA do not 
exceed the five-minute mark and the samples are not submerged longer than 60 minutes before 
starting the test as instructed by AASHTO T 324. 

The test was initiated after all the conditions were satisfied. The software records and plots the rut 
depth versus the number of wheel passes on the sample. The test continues until the predetermined 
maximum number of passes or maximum rut depth is reached. The samples having a rut depth of 
more than 12.5 mm are considered to be failed. Once each run of the test was completed, the 
wheels were raised, and samples and mounting trays were removed. The water was drained out, 
and debris was cleaned with the vacuum cleaner. 
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7. Results and Analysis 
The researchers conducted the IDEAL Cracking test and Hamburg Wheel Tracking test to 
examine the fatigue resistance and rutting resistance of conventional and modified HMA. The 
results obtained from the tests are discussed below. 

7.1 IDEAL Cracking Test 

In this study, the test tabulated values were imported to Microsoft Excel. The values were arranged 
in a proper format, and the load vs. displacement curve was constructed. 

The work of failure was calculated from the area under the load vs. displacement curve with the 
help of the quadrangle rule. Similarly, other parameters such as the absolute value of the post-peak 
slope 𝑚MN, describing displacement at 75% of the peak load after the peak, were extracted from 
the curve. After calculating all those values, 𝐶𝑇=:STU was determined. The load vs. displacement 
curves of different HMA compacted samples are shown in the following graphs (Figures 9 through 
20). 

 

Figure 9. Load vs. Displacement Curve for VCM1 
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Figure 10. Load vs. Displacement Curve for VCM2 

 

 

Figure 11. Load vs. Displacement Curve for VCM3 
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Figure 12. Load vs. Displacement Curve for VPM1 

 

 

Figure 13. Load vs. Displacement Curve for VPM2 
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Figure 14. Load vs. Displacement Curve for VPM3 

 

 

Figure 15. Load vs. Displacement Curve for RCM1 
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Figure 16. Load vs. Displacement Curve for RCM2 

 

 

Figure 17. Load vs. Displacement Curve for RCM3 
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Figure 18. Load vs. Displacement Curve for RPM1 

 

 

Figure 19. Load vs. Displacement Curve for RPM2 
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Figure 20. Load vs. Displacement Curve for RPM3 

The failure energy (𝐺7) was determined by dividing the work of failure (obtained from the area 
covered by the load vs. displacement curve) by the cross-sectional area of samples. Then, 𝐶𝑇=:STU 
was calculated. The 𝐶𝑇=:STU is shown in Table 5 along with corresponding parameters of each 
HMA sample.  

Table 5. IDEAL-CT Test Results 

Sample l75 (mm) |m75| (N/m) Wf(J) Gf (J/m2) CTindex 

VCM1 7.70 1623731.7 72.89 8099.7 247.87 
VCM2 7.78 1533536.6 74.08 8231.7 269.59 
VCM3 7.06 1592217.8 69.75 7751.0 221.84 
Average VCM 246.43 
VPM1 7.51 1530244.1 64.44 7160.8 226.77 
VPM2 8.05 1522686.4 66.50 7389.3 252.08 
VPM3 8.56 1474016.2 66.17 7352.7 275.55 
Average VPM 251.46 
RCM1 7.09 2188032.0 91.92 10213.3 213.63 
RCM2 8.18 2250056.3 90.10 10011.4 235.00 
RCM3 7.85 2297687.5 91.77 10197.7 224.87 
Average RCM 224.50 
RPM1 7.22 2778263.4 80.65 8961.6 150.25 
RPM2 6.61 2506792.5 76.38 8487.2 144.44 
RPM3 7.10 2210300.3 79.55 8839.2 183.26 
Average RPM 159.31 
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7.2 Statistical Analysis For IDEAL-CT Samples 

Minitab 19 was used as a statistical analysis tool in this study. The 𝐶𝑇=:STU of each sample was fed 
to conduct the statistical analysis. Researchers conducted a t-test to determine the significance of 
the difference between the two mixes. The analysis was conducted on each mixture, and results 
were compared with the other mixtures that correlate with it using a t-test. A p-value below 0.05 
indicates a significant difference. Table 6 shows the p-values for the results.  

Table 6. Significant Levels Between Mixtures 

Comparison p-value CTindex 
Mix1 vs. Mix2  Mix1 vs. Mix2 

VCM vs RCM 0.221 246.43 vs 224.50 

VCM vs VPM 0.855 246.43 vs 251.46 

RCM vs RPM 0.044 224.50 vs 159.31 

VPM vs RPM 0.009 251.46 vs 159.31 
 

Comparison between Virgin HMA (VCM) and HMA with RAP (RCM) 

The 𝐶𝑇=:STU of VCM was found to be 246.43. 𝐶𝑇=:STU was lesser in the case of RCM. The 𝐶𝑇=:STU 
of RCM was 224.50. The t-test revealed no significant difference between the use of 20% of RAP 
or virgin aggregates in HMA. These results were similar to those of earlier studies done by other 
researchers on the performance of HMA with RAP. However, when comparing the 𝐶𝑇=:STU of 
the other HMA mixes, results differed between conventional HMA and plastic modified HMA, 
depending upon the use of virgin aggregate or aggregate containing RAP. 

Comparison between Virgin Conventional HMA (VCM) and Virgin Plastic Modified HMA 
(VPM) 

In the case of the compacted HMA containing virgin aggregate, the use of conventional or recycled 
waste plastic modified binder showed a similar 𝐶𝑇=:STU. The VPM showed a slightly higher 
𝐶𝑇=:STU value. As for the average 𝐶𝑇=:STU, the value was 246.43 for VCM and 251.46 for VPM. 
The t-test showed no significant difference between these two mixes and the least significant 
difference between the mixes used in the study. 

Comparison between Conventional HMA with RAP (RCM) and Plastic Modified HMA 
with RAP (RPM) 

With the addition of 20% of RAP to HMA and using the plastic modified binder, there was a 
noticeable decrease in the 𝐶𝑇=:STU value as compared to the 𝐶𝑇=:STU value of HMA with RAP and 
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conventional binder. The average 𝐶𝑇=:STU value was found to be 224.50 and 159.31 for RCM and 
RPM mix, respectively. The t-test also showed a significant difference in 𝐶𝑇=:STU value between 
the RCM and RPM mix. 

Comparison between Virgin Plastic Modified HMA (VCM) and Plastic Modified HMA with 
RAP (RPM) 

There was a large difference between the average 𝐶𝑇=:STU value of VCM and RPM. The average 
𝐶𝑇=:STU of VPM was found to be 251.46, whereas the average 𝐶𝑇=:STU value of RPM was 159.31. 
From the t-test, the p-value between these HMA mixes was 0.009, indicating that there was a 
significant difference in fatigue cracking resistance between VCM and RPM.  

7.3 Hamburg Wheel Tracking Test 

The Hamburg Wheel Tracking test was conducted to determine the rutting resistance. VCM, 
VPM, RCM, and RPM compacted samples were tested. The software records the rut depth for 
each number of passes automatically for the duration of the test. These data were extracted and 
the curve between rut depth vs. the number of passes plotted. Table 9 shows the average rut depth 
of different HMA mix configurations with different numbers of passes. Similarly, Figure 21 shows 
the rut depth vs. the number of passes. 

Table 7. Hamburg Wheel Rut Depth Results 

Mix Type VCM VPM RCM RPM 

No. of passes Rut Depth (mm) 

0 0.00 0.00 0.00 0.00 

5,000 -3.32 -4.71 -3.11 -4.07 

10,000 -6.42 -8.06 -4.37 -6.98 

15,000 -8.18 -8.32 -6.19 -7.47 

20,000 -8.26 -8.34 -7.54 -7.89 
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Figure 21. HWT Test Results 

A maximum allowable rut depth of 12.5 mm and 20,000 passes were selected based on AASHTO 
T324. In this study, none of the samples exceeded 12.5 mm of rut depth. Thus, the researchers 
compared the rut depth of compacted samples with different numbers of passes. This approach 
will help to analyze the effect of adding recycled waste plastics on the rutting resistance. 

At 20,000 passes, the virgin and plastic modified HMA mix showed similar rutting depth. VCM 
and VPM had a rut depth of 8.26 mm and 8.34 mm, respectively. The HMA with 20% of RAP 
showed slightly better rutting resistance. RCM had a rut depth of 7.54 mm, and RPM had a rut 
depth of 7.89 mm. At 10,000 passes, the rut depth of plastic modified HMA was higher than 
conventional HMA. However, after 10,000 passes, researchers found that the rate of increase in 
rut depth is higher in conventional HMA. The rut depth of HMA with conventional and plastic 
modified binder at 20,000 passes was found to be similar. 
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8. Conclusions  
Many studies are being conducted to reuse recycled plastic waste effectively to manage the plastic 
waste problem. Similarly, the use of RAP in pavement has been a common practice to conserve 
resources. In this study, recycled waste linear low-density polyethylene (LLDPE) was added to 
virgin aggregate and aggregate containing 20% of RAP. The mechanical properties of plastic 
modified HMA containing RAP were tested and compared to conventional HMA. The following 
conclusions were obtained.  

● 𝐶𝑇=:STU  value for VCM and VPM were similar. This indicates that the fatigue cracking 
resistance is similar in HMA with conventional and plastic modified binder containing 
virgin aggregate, suggesting that recycled waste plastic can be used to substitute a certain 
percentage of binder in HMA having virgin aggregate to produce similar fatigue resistance. 

● In the case of HMA with RAP, the fatigue cracking resistance parameter 𝐶𝑇=:STU  drops 
when the plastic modified binder was used instead of the conventional binder. This finding 
indicates that HMA with RAP and plastic modified binder may have reduced fatigue 
cracking resistance. 

● The rut depth of HMA with conventional and plastic modified binder at 20,000 passes 
was found to be similar. 

● The HMA with RAP showed lower fatigue cracking resistance, whereas it showed better 
rutting resistance compared to HMA with virgin aggregate.  

● Recycled waste plastic can be used to partially substitute the binders to produce similar 
fatigue and cracking resistance. 
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9. Limitations and Future Work 
This study’s results are limited to the materials used and are not inclusive of all variations of 
materials. The authors acknowledge that more extensive testing is required to draw more 
conclusive results. 

The following suggestions can be tested. 

● Fatigue cracking resistance can be tested by reducing the RAP aggregate percentage. 

● RAP extracted from plastic modified HMA pavement may have different effects on the 
mechanical performance of HMA than RAP from conventional HMA. The results 
between conventional RAP and plastic modified HMA RAP can be compared. 

● The softer plastic modified binder can be tested to obtain more apparent results on the 
rutting resistance of the plastic modified HMA. 

● Plastic modified HMA with different percentages of recycled waste plastic can be studied 
to examine the optimum plastic content for better fatigue cracking and rutting resistance. 
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 Abbreviations and Acronyms
𝐶𝑇=:STU Cracking Tolerance Index 
Gmb Theoretical Maximum Specific Gravity 
Gmm Bulk Specific Gravity 
HDPE High-Density Polyethylene 
HMA Hot Mix Asphalt 
HWT Hamburg Wheel Test 
IDEAL-CT Ideal Cracking Test 
LDPE Low-Density Polyethylene 
LLDPE Linear Low-Density Polyethylene 
NMAS Nominal Maximum Aggregate Size 
PE Polyethylene 
PG Performance Grade 
PMB Polymer Modified Bitumen 
PP Polypropylene 
PPA Polyphosphoric Acid 
RAP Reclaimed Asphalt Pavement 
RCM RAP Conventional Mix 
RET Reactive Elastomeric Terpolymer 
RPM RAP Plastic Modified Mix 
RET Reactive Elastomeric Terpolymer 
HWT Hamburg Wheel Tracking 
SBS Styrene-Butadiene-Styrene 
SGC Superpave Gyratory Compactor 
USDA United States Department of Agriculture 
UV Ultraviolet 
VCM Virgin Conventional HMA Mix 
VFA Voids Filled with Asphalt 
VMA Voids in Mineral Aggregate 
VPM Virgin Plastic Modified HMA Mix 
WMA Warm Mix Asphalt 
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