
How do Environmental Factors Affect Drivers’ Gaze 
and Head Movements?

Arash Tavakoli
Vahid Balali
Arsalan Heydarian

C S U  T R A N S P O R T A T I O N  C O N S O R T I U M

Project 2044 August 2021

transweb.sjsu.edu/csutc

https://transweb.sjsu.edu/csutc


Mineta Transportation Institute 
Founded in 1991, the Mineta Transportation Institute (MTI), an organized research and training unit 
in partnership with the Lucas College and Graduate School of Business at San José State University 
(SJSU), increases mobility for all by improving the safety, efficiency, accessibility, and convenience of 
our nation’s transportation system. Through research, education, workforce development, and 
technology transfer, we help create a connected world. MTI leads the Mineta Consortium for 
Transportation Mobility (MCTM) funded by the U.S. Department of Transportation and the 
California State University Transportation Consortium (CSUTC) funded by the State of California 
through Senate Bill 1. MTI focuses on three primary responsibilities: 

Research 

MTI conducts multi-disciplinary research 
focused on surface transportation that 
contributes to effective decision making. 
Research areas include: active transportation; 
planning and policy; security and 
counterterrorism; sustainable transportation 
and land use; transit and passenger rail; 
transportation engineering; transportation 
finance; transportation technology; and 
workforce and labor. MTI research 
publications undergo expert peer review to 
ensure the quality of the research.  

Education and Workforce 

To ensure the efficient movement of people and 
products, we must prepare a new cohort of 
transportation professionals who are ready to 
lead a more diverse, inclusive, and equitable 
transportation industry. To help achieve this, 
MTI sponsors a suite of workforce 
development and education opportunities. The 
Institute supports educational programs offered 
by the Lucas Graduate School of Business: a 

Master of Science in Transportation 
Management, plus graduate certificates that 
include High-Speed and Intercity Rail 
Management and Transportation Security 
Management. These flexible programs offer 
live online classes so that working 
transportation professionals can pursue an 
advanced degree regardless of their location. 

Information and Technology Transfer 

MTI utilizes a diverse array of dissemination 
methods and media to ensure research results 
reach those responsible for managing change. 
These methods include publication, seminars, 
workshops, websites, social media, webinars, 
and other technology transfer mechanisms. 
Additionally, MTI promotes the availability of 
completed research to professional 
organizations and works to integrate the 
research findings into the graduate education 
program. MTI’s extensive collection of 
transportation-related publications is 
integrated into San José State University’s 
world-class Martin Luther King, Jr. Library. 

__________________________________________________________________________________ 

Disclaimer 

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy 
of the information presented herein. This document is disseminated in the interest of information 
exchange. MTI’s research is funded, partially or entirely, by grants from the California Department of 
Transportation, the California State University Office of the Chancellor, the U.S. Department of 
Homeland Security, and the U.S. Department of Transportation, who assume no liability for the 
contents or use thereof. This report does not constitute a standard specification, design standard, or 
regulation. 

https://transweb.sjsu.edu/mctm
https://transweb.sjsu.edu/mctm
https://transweb.sjsu.edu/csutc


Report 21-23 

How do Environmental Factors  
Affect Drivers’ Gaze and Head Movements? 

Arash Tavakoli 

Vahid Balali 

Arsalan Heydarian 

August 2021 

A publication of the 
Mineta Transportation Institute 
Created by Congress in 1991 

College of Business 
San José State University 
San José, CA 95192-0219 



TECHNICAL REPORT  
DOCUMENTATION PAGE 

1. Report No. 
21–23

2. Government Accession No. 3. Recipient’s Catalog No. 

4. Title and Subtitle 
How do Environmental Factors Affect Drivers’ Gaze and Head Movements?

5. Report Date 
August 2021

6. Performing Organization Code 

7. Authors 
Arash Tavakoli  
Vahid Balali: 0000-0002-5553-7599 
Arsalan Heydarian

8. Performing Organization Report 
CA-MTI-2044 

9. Performing Organization Name and Address 
Mineta Transportation Institute 
College of Business 
San José State University  
San José, CA 95192-0219 

10. Work Unit No. 

11. Contract or Grant No. 
ZSB12017-SJAUX

12. Sponsoring Agency Name and Address 
State of California SB1 2017/2018
Trustees of the California State University 
Sponsored Programs Administration  
401 Golden Shore, 5th Floor  
Long Beach, CA 90802 

13. Type of Report and Period Covered 

14. Sponsoring Agency Code 

15. Supplemental Notes 

16. Abstract 
Studies have shown that environmental factors affect driving behaviors. For instance, weather conditions and the presence 
of a passenger have been shown to significantly affect the speed of the driver. As one of the important measures of driving 
behavior is the gaze and head movements of the driver, such metrics can be potentially used towards understanding the 
effects of environmental factors on the driver’s behavior in real-time. In this study, using a naturalistic study platform, videos 
have been collected from six participants for more than four weeks of a fully naturalistic driving scenario. The videos of both 
the participants’ faces and roads have been cleaned and manually categorized depending on weather, road type, and passen-
ger conditions. Facial videos have been analyzed using OpenFace to retrieve the gaze direction and head movements of 
the driver. Results, overall, suggest that the gaze direction and head movements of the driver are affected by a combination 
of environmental factors and individual differences. Specifically, results depict the distracting effect of the passenger on 
some individuals. In addition, it shows that highways and city streets are the cause for maximum distraction on the driver’s 
gaze. 

17. Key Words 
Driver Behaviors, Gaze, Personalized
Modeling, Environmental Factors,  
Human Factors 

18. Distribution Statement 
No restrictions. This document is available to the public through The National 
Technical Information Service, Springfield, VA 22161. 

19. Security Classif. (of this report) 
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages 
31

22. Price 

Form DOT F 1700.7 (8-72) 



Copyright © 2021 

by Mineta Transportation Institute 

All rights reserved. 

DOI: 10.31979/mti.2021.2044 

Mineta Transportation Institute 
College of Business 

San José State University  
San José, CA 95192-0219 

Tel: (408) 924-7560 
Fax: (408) 924-7565 

Email: mineta-institute@sjsu.edu 

transweb.sjsu.edu/research/2010 

mailto:mineta-institute@sjsu.edu
https://10.31979/mti.2020.2044
https://transweb.sjsu.edu/research/2010


M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E   iv 

ACKNOWLEDGMENTS 

I would like to thank the National Center for Transportation, Green Technology, and Education 
(TransGET) at the California State University Long Beach and the California State University 
Transportation Consortium (CSUTC). This report is in part based upon work supported by the 
CSUTC. Any opinions, findings, and conclusion or recommendations expressed in this report are 
those of the author and do not necessarily reflect the views of the CSUTC of other sponsors. 

 



M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  

CONTENTS 

Acknowledgments ...................................................................................................................... iv 
List of Figures ............................................................................................................................. vi 
List of Tables .............................................................................................................................. vii 
Executive Summary .................................................................................................................... 1 
1. Introduction .......................................................................................................................... 2 
2. Background Study ................................................................................................................. 4 
3. Data Collection and Setup .................................................................................................... 7 

3.1. Devices .......................................................................................................................... 7 
3.2. Participants .................................................................................................................... 7 

4. Analysis ................................................................................................................................. 8 
5. Results and Discussion ......................................................................................................... 11 
6. Conclusion and Future Work ............................................................................................... 19 
Abbreviations and Acronyms ...................................................................................................... 20 
Bibliography ............................................................................................................................... 21 
About the Authors ...................................................................................................................... 24 



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  vi 

LIST OF FIGURES 

Figure 1. System Setup and Different Conditions ...................................................................... 8 
Figure 2. OpenFace Data; (a) Gaze and Eye Landmark; (b) Face Landmark Locations in  

2D and 3D ................................................................................................................... 10 
Figure 3. Overall Graphs Depicting the Distribution and Variations on Groups of Passengers, 

Weather, Road Type, and Participant Differences with Regards to Mean and  
Standard Deviation of Gaze Angle in X and Y Directions, and Standard Deviation  
of Head Movement in X and Y Directions. ................................................................. 12 

Figure 4. (a) Interaction between Different Weather Conditions and Passenger Situation;  
(b) Interaction between Individual Differences and Weather Conditions (Right) ...... 15 

Figure 5. (a) Interaction Between Individual Differences and Different Road Types with Respect 
to Standard Deviation of Gaze; (b) Movements of the Head in X-Direction ............. 16 

Figure 6. Interaction between Individual Differences and Standard Deviation (a) and  
Mean (b) of Gaze in the X-Direction. ......................................................................... 17 

 

 



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  vii 

LIST OF TABLES 

Table 1. Distribution of the Data that has Been Collected and Analyzed to Date ..................... 9 
Table 2. Results of Multiple Comparisons Analysis ................................................................... 14 

 
 
 



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E   1 

Executive Summary 
The acceptance of Autonomous Vehicles (AVs) in society is largely influenced by perceptions of 
comfort and a human-like driving experience for the user. AVs, in addition to safety, reliability, 
and resiliency, need to be able to respond to driver and passenger behaviors, needs, and preferences. 
These parameters are dynamic and prone to change with time. It is also important to consider 
other drivers, their perception of the AVs around them, and being able to predict their actions in 
different scenarios. To address such issues, one is first required to understand how different envi-
ronmental factors (e.g., weather, traffic density, noise levels, road type, passenger, etc.) impact 
driver behavior and how this differ among individuals. Studies have shown that environmental 
factors affect driving behavior. For instance, weather conditions and the presence of a passenger 
have shown to significantly affect the speed of the driver. Among the important measures of driv-
ing behavior are the gaze and head movements of the driver. Such metrics can be used towards 
understanding the effects of environmental factors on a driver’s behavior in real-time. This research 
proposal intends to assess the effects of basic environmental factors on driver gaze direction and 
head movements by comparing and contrasting the differences in each condition, individual dif-
ferences among people, and the interplay between environmental factors and individual differ-
ences. First, a dataset of participants driving in different scenarios is built. Then, participant gaze 
and head location are automatically detected using the state-of-the-art gaze detection software, 
OpenFace. Finally, using statistical data analysis, the effect of each factor on gaze and head move-
ments is assessed and discussed among different individuals. The impact of a combination of en-
vironmental factors and individual differences on the gaze direction and head movement of the 
driver are expected to be identified. Results specifically depict the distracting effect of the passenger 
on some individuals and also portray how highways and city streets can serve as distractions for the 
driver’s gaze. 
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1. Introduction 
Although Autonomous Vehicles (AV) are improving at a very fast rate, it is predicted that through 
shared autonomy, humans will be involved in driving decision making for the foreseeable future. 
Shared autonomy is a promising approach where the human driver is kept in the loop to enhance 
situational awareness, response time in unsafe conditions, and trust in AV. In principle, AV can 
act as an expert driver, deferring execution to the human user only in challenging scenarios. How-
ever, deferring execution while the human driver is in a sub-optimal state (e.g., stressed, sleepy, 
intoxicated) can be hazardous. Thus, it is essential for AV to accurately assess and respond to the 
driver’s state and behavioral changes in real-time and according to each individual driver profile. 

The driver’s gaze and head movements can potentially be affected by environmental conditions. 
These two parameters are significant indications of a driver’s distraction, inattention, and other 
driving-related behavior (Fletcher & Zelinsky, 2009). Previous studies have shown that the driver’s 
glance and gaze can be used as a measure in a multi-sensor real-time system for autonomous ve-
hicles (Fridman et al., 2017). The effect of environmental factors (e.g. traffic density, road type, 
weather conditions, and passenger situation) on the driver’s gaze direction and head movements is 
important from two major aspects: (1) one could optimize the route selection around the user in a 
manner that takes into consideration the relevant factors; (2) the relevant factors can also be uti-
lized to predict the state of the driver, specifically when using semi-autonomous vehicles. A work-
ing example would involve a trip using an an AV with different levels of automation chosen based 
on weather conditions and the corresponding distraction level of the driver. Such information can 
be used in AVs to assess whether the driver is attentive. If the pattern of the gaze of the driver does 
not match the model of his/her gaze in rainy conditions, this could mean that the driver is inat-
tentive on the road. This is important as AVs rely on drivers in the events of failure and efficient 
collaboration between AVs and the driver is crucial toward achieving a safer and joyful AV expe-
rience (Fridman, n.d.). Thus, the vehicle should have an understanding of the current status of the 
driver as well as how the state of the driver changes in different conditions and the relevant factors 
responsible for these changes. 

In this study, the goal is to understand the effects of three main environmental factors: (1) different 
weather conditions, (2) road types, and (3) the presence of a passenger on gaze direction, and head 
movements in a fully naturalistic and longitudinal driving scenario. In comparison to task engage-
ment distractions, such factors can potentially affect the driver unconsciously and influence the 
driver’s behavioral metrics such as gaze direction. This study specifically targets the research ques-
tions below: 

1) Can the effects of the three environmental factors (weather condition, road type, and pres-
ence of a passenger) on the driver’s gaze be detected automatically?  
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2) How do these factors affect the gaze direction and head movement of the driver?  

3) Are there distinguished differences among individuals in gaze and head movement within 
different conditions? If so, can statistical models be identified for each driver? 
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2. Background Study 
Studies in the past have extensively considered the problems of estimating drivers’ gaze and head 
movements (Fletcher & Zelinsky, 2009), their relationships with drivers’ mood and behavior 
(Fridman et al., 2017); and building systems to warn the driver based on detections from gaze 
variation (Fridman, n.d.). Estimating gaze in the past has been done using both eye trackers (Lappi 
et al., 2017) and computer vision techniques (Fletcher et al., 2005; Fridman et al., 2016; Fridman 
et al., 2015; Vicente et al, 2015). Computer vision methods have used deep learning techniques 
such as Convolutional Neural Networks (CNNs) to estimate the region of the gaze of the driver 
(e.g., looking at the road, side, etc.). These studies have indicated that experienced drivers use gaze 
to obtain a visual preview of the road (Lappi, 2016). Such studies have mostly been concerned with 
safety issues such as predicting fatigue (Mandal et al., 2016), distraction (Kutila et al., 2007), 
drowsiness (Park et al., 2016), mental and cognitive workload (Reimer et al., 2018), and driver 
maneuvers (Lethaus & Rataj, 2007). For instance, it has been observed that drowsy drivers are 
more likely to look at their laps (Kuo et al., 2018). Another study has attempted to estimate the 
cognitive load on the driver by only using their glance regions (Reimer et al., 2018). Although 
some studies have looked at naturalistic scenarios in assessing the gaze direction of the driver 
(Lappi et al., 2017; Fridman et al., 2016; Fridman et al., 2015), most have been conducted in 
controlled lab environments using driving simulators. Among recent studies, one observational 
study indicates that the direction of a driver’s gaze direction follows a pattern that includes seven 
major laws of human gaze behavior (e.g. repeatable and stereotypical gaze patterns, gaze focused 
on task-relevant objects, etc.) that have been previously identified by (Lappi et al., 2017; Lappi, 
2016). Using the correlation between gaze and driver’s state, many warning systems have been 
developed to recognize and prevent driver distraction (Fletcher & Zelinsky, 2009; Ahlstrom at al., 
2013). 

Studies have also depicted the effects of environmental factors such as weather conditions on driv-
ing behavior metrics (e.g., speed). The effect of weather and geometric elements on driving be-
havior has been observed and countermeasures to decrease the effects of adverse weather on high-
way sections that encounter challenging geometrics have been considered (Shankar et al., 1995). 
Another study has indicated that the driver’s behavior is impacted by the general observable con-
dition rather than weather forecasts (Kilpeläinen & Summala, 2007). Furthermore, studies have 
demonstrated the effect of the presence of a passenger on driving behavior with an existing asso-
ciation between the presence of male passengers and risky driving behavior (Simons-Morton et al., 
2005). This is supported by (Rhodes et al., 2015) demonstrating the increase in speed in a driving 
simulator when a simulated passenger is present. 
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Among the major driving metrics that could potentially be affected by such factors are the driver’s 
gaze and head movements. As these two parameters can be used towards understanding many of 
the driver’s states (Vora et al., 2017), it is important to assess the effects of environmental condi-
tions on these two metrics. Studies have considered the effects of environmental factors such as 
traffic density on the gaze behavior of drivers. A recent study indicated the effect of the traffic 
situation on an intersection on attention allocation and following accidents, (Werneke & Vollrath, 
2012) concluding that a simpler intersection has a greater number of accidents due to attention 
allocation problems of the gaze of the driver. Another study has depicted the effect of environment 
on the driver’s eye movement and how the driver attention gradually moves towards the surround-
ing environment (Arakawa et al., 2006). Recent research has indicated the effects of environmental 
factors on the driver distraction and its consequences on his/her behavior. Specifically, the study 
looked at how road geometry affects the driver’s gaze, speed, and steering control. Furthermore, a 
recent study has shown the effect of driving contexts such as speed, car-following behavior, and 
oncoming vehicles on eye glance behavior (Tivesten & Dozza, 2014). 

Although previous studies have mostly studied gaze behavior at a population level, they did not 
consider individual differences among people. Human behavior is dynamic and is based on spatial 
and temporal changes as well as individual attributes such as personality, psychological, and phys-
iological states. As a result, the way drivers are “engaged” or “distracted” can dynamically be influ-
enced by a single or combination of different environmental factors. The extent that each one of 
these factors can affect a driver’s engagement and distraction can vary on an event-specific situation 
and the driver’s characteristics. Among the studies that considered individualized differences in 
driving behaviors in general are (Linkov et al., 2019; Wang et al., 2018; Kong et al., 2013). Such 
studies have found that personality and attitude are predictors of risky driving (Kong et al., 2013). 
Furthermore, it has been depicted that extraversion and sensation-seeking are correlated with driv-
ing more to the right side of the road and conscientiousness correlates with a lower mean speed 
(Linkov et al., 2019). With today’s AV technology, it is important that the vehicle not only un-
derstand when a driver is distracted but also be supported by models of different drivers with dif-
ferent characteristics and personalities. For instance, it has been shown that passengers can cause 
a distraction for drivers and affect risk-taking situations by causing peer-pressure (Shepherd et al., 
2011). However, these studies do not indicate whether the presence of a passenger affects a driver’s 
behavior similarly or differently among different individuals? In fact, does that effect follow the 
same trend in differing cases of being in a country road compared to a city street? Studies have 
depicted that the peer-pressure effect decreases with age (Møller & Haustein, 2014). Similar to a 
factor such as age, how does the interplay of environmental factors and individual differences in-
fluence our assessment of driving behavior?  

Finally, recent improvements in the area of computer vision and machine learning have made it 
viable to perform many of the manual tasks in understanding human behavior, automatically. It is 
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currently feasible to retrieve human facial landmarks, facial units, gaze direction, and even emo-
tional states directly from videos (McDuff et al., 2016; Baltrusaitis, 2018). Using these novel al-
gorithms, we can get more insight into understanding human behavior from facial videos directly, 
without any interference, in naturalistic conditions. Such technologies are either commercially 
available (e.g. Affectiva (McDuff et al., 2016), Google Vision API, and Microsoft Azure) or 
through open-source versions (e.g. OpenFace (Baltrusaitis, 2018)). For our study, OpenFace has 
been chosen to analyze facial videos of the driver. OpenFace has the ability to assess landmark 
detection, gaze direction, and perform analyses on videos that include more than one person in the 
video. It works in real-time scenarios, which makes it a perfect choice for implementing our study 
in real-time cases (see future work section). More importantly, the gaze estimation using Open-
Face does not require any additional hardware. This is beneficial as additional hardware is prob-
lematic when considering naturalistic driving scenarios and the limitation that exists within the in-
cabin environment. As the codes are all available online, it is further suitable for improvements 
that align with our specific needs. OpenFace uses Conditional Neural Fields (CLNF) (Baltrusaitis 
et al., 2013) for facial landmark detection. It has achieved the least error in landmark detection, 
gaze estimation and head pose estimation benchmarks with an error of 9.96 percent on the 
MPIIGAZE dataset (Zhang et al., 2015), which is lower compared to all other available methods. 

The effect of basic environmental factors on a driver’s gaze direction and head movements are 
evaluated in this research by comparing and contrasting the differences in each condition, individ-
ual differences among people, and the interplay of environmental factors and individual differ-
ences. A dataset of participants driving in different scenarios is built first. Additionally, the gaze 
and head location are automatically detected using the state-of-the-art gaze detection software, 
OpenFace. Finally, using statistical analysis, the effect of each factor on gaze and head movements 
is assessed and discussed among different individuals. 
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3. Data Collection and Setup 
A naturalistic driving study platform consisting of facial and road camera, wearable watches, and 
car CAN bus data logger was developed for this study. The overall view of the system is shown in 
Figure 1. This paper presents and discusses the results of the cameras outputs with respect to gaze 
and head movements. 

3.1 Devices 

In our platform, we have used a Vantrue N2 dual dash camera for collecting the road and facial 
videos. This camera was used as it could handle up to 256 GB of a video recording which is equal 
to almost 25 hours of collecting videos. On average, this is equal to two weeks of the driving 
scenario for a participant who drives 1.5 hours per day. A Samsung 256 GB SD card was used to 
store the videos in the camera. The camera has an internal clock that timestamps every video. The 
camera’s LCD was set to turn off after one minute to decrease the distraction of the driver and the 
Hawthorn effect. Hawthorn effect refers to the awareness of participants being studied and how 
this influences the research outcome (Stand, 2000). 

3.2 Participants 

For the pilot study, we have recruited nine participants including six males and three females. The 
subjects were provided informed consent prior to the study as required by the California State 
University Long Beach’s Institutional Review Board for Social and Behavioral Research (IRB-
SBS). The cameras were placed in the participant's cars and they have been recorded for 4 weeks 
of driving until now. Once every two weeks, the data was unloaded from participants’ car and kept 
in an encrypted hard drive. The recruitment of the participants and collection of data is an on-
going process. The results of this paper depict the analyzed data to date, which includes six par-
ticipants, including four males and two females (the data for the other three participants are not 
yet fully collected). 
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4. Analysis 
From each participant, a joint set of road and facial videos were collected. The road videos were 
used for assessing the environmental condition in the driving scenario. The environmental condi-
tions included road type, weather conditions, and presence of the passenger. Initially, the videos 
were manually annotated to be in the categories of road type, weather, and passenger conditions. 
The road types have been categorized to be in one of the categories of street driving, country roads, 
two-way two-lane highway, and two-way three-lane highway. The weather conditions have been 
defined to be in one of the categories of clear, cloudy, and rainy. The passenger condition includes 
either having a passenger or not. A view of each road types and weather conditions can be viewed 
in Figure 1. Detail of in-cabin setuo is shown in Figure 1(a). Different types of road (R) and 
weather conditions (W) have been tested and output of OpenFace on a sample shot from in-cabin 
analysis are shown. 

 

Figure 1. System Setup and Different Conditions 
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Table 1 depicts the overall data that was collected in each condition. Both facial and road videos 
have been analyzed to be cleaned for cases that the driver was not driving or the camera was not in 
a correct angle.  

 

Table 1. Distribution of the Data that has Been Collected and Analyzed to Date. 
Each column shows the cumulative video data measured in seconds. 

 
  

Road  
Type (min) 

Weather  
Type (min) 

Passenger (min) 
Overall 
(min) 

Par-
tici-
pant 

City Country 
2-lanes on  
each side 

3-lanes 
on  
each side 

Clear Cloudy Rainy 
No  
passenger 

With  
passen-
ger 

  

1 503 35 255 10 254 488 60 587 216 803 
2 167 80 168 574 546 380 13 636 352 988 
3 187 55 52 8 195 31 75 83 218 301 
4 428 25 542 157 430 596 125 776 375 1151 
5 193 8 5 0 19 166 22 176 31 207 
6 457 166 240 171 87 890 57 362 671 1034 

 

The cleaned facial videos have been fed into OpenFace (Baltrusaitis, 2018), a state of the art open-
source software for analyzing the facial action units, gaze direction and landmarks location. By 
feeding the facial videos of each participant into the OpenFace, as shown in Figure 2, the landmark 
for head and gaze direction angle have been retrieved. As a summary, facial landmarks are locations 
in the face that are of interest for recent computer vision applications in facial detection, facial 
emotional analysis, and etc. Gaze angle direction shows the angle that the person is looking at in 
both horizontal (X-direction) and vertical (Y-direction) axis. OpenFace gaze angle output is neg-
ative in the X-direction if the participant is looking left to right, and similarly in the Y-direction 
if the participant is looking up to down. This output has been saved for each frame of the video in 
a CSV file associated with the video files. For videos that include a passenger, the videos have been 
fed into OpenFace for multi-face landmark detection module which takes into consideration mul-
tiple faces with multiple IDs associated with them. After processing the videos by OpenFace, CSV 
outputs of each video have gone through a cleaning process. In the cleaning process, data with a 
confidence level below 85% have been ignored. It should be noted that having low confidence level 
in facial analysis can occur due to lighting conditions, camera movements, etc.  

In general, for a large batch of collected video data, frames with low confidence level are negligible 
compared to the overall number of frames with high (>85%) confidence level. For videos involving 
a passenger, the outputs of passenger and driver have been separated using the fact that the driver’s 
head landmark lies on the right hand side of the frame implying that the location of the head 
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landmarks of the driver in pixel format should be more than half of the width of the frame. In this 
case, the width of the frame is 1920 pixels as the videos were recorded at full HD (High Defini-
tion), 1080×1920, 30 fps (frame per second). For each facial video, the standard deviation value of 
gaze angle direction and head location in X and Y-directions and head location have been calcu-
lated. It should be noted that head location has been estimated using the facial landmark of the 
bottom of the chin of the face of the participant. 

 

Figure 2. OpenFace Data; (a) Gaze and Eye Landmark; (b) Face Landmark Locations  
in 2D and 3D 

 

 

 

(a)

(b)
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5. Results and Discussion 
The mean and standard deviation values of gaze angle in the X- and Y-directions, as well as the 
standard deviation of head location as a measure of head movement in X- and Y-directions for 
different road types, weather conditions, passenger conditions, and different participants are de-
picted in Figure 2. Further inspection of the distribution of the data reveals that it does not follow 
the normality and homogeneity of variance assumptions. Therefore, the analysis for understanding 
the group differences has been achieved using the Wilcoxon signed-rank test (Wilcoxon et al., 
1970). This test can be used for dependent samples that do not follow the normality assumption. 
As in each group, multiple comparisons were being performed, the family-wise error rate in each 
family of tests has been kept at 0.05. Holm-Bonferroni’s correction has been performed on all the 
p-values for the family-wise error rate control (Holm, 1979). Below, the effect of each environ-
mental factor will be statistically discussed where significant p-values have been marked with a 
superscript asterisk (*). Table 2 depicts the results of all of the analyses that have been performed. 

Overall, the results demonstrate that the presence of a passenger significantly changes both  the 
mean and standard deviation of gaze in the X-direction (p-values of 2.2e-16* and 7.623e-11* re-
spectively) resulting in an increase in the absolute mean value of gaze and the standard deviation. 
Recall, that a more negative value in the X-direction shows that the driver is looking more toward 
the right, where the passenger is seated. The presence of a passenger also affects the movements 
of the driver’s head in the X-direction (p-value of 0.0006*). This depicts that on average, not only 
does the driver look more towards the passenger, the variations in his/her gaze increases. Essen-
tially, the driver moves his/her head to the sides more often when at least one passenger is in the 
car. This can significantly lead to distraction in driving scenarios considering that there are effective 
times that the driver is actually not looking at the road. 
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Figure 3. Overall Graphs Depicting the Distribution and Variations on Groups of Passengers, 
Weather, Road Type, and Participant Differences with Regards to Mean and Standard  

Deviation of Gaze Angle in X And Y Directions, and Standard Deviation of Head Movement  
in X and Y Directions. 
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The effects of weather conditions have been considered for the standard deviation of gaze direction 
and head movements in both the X- and Y-directions. The results depict a significant difference 
when comparing clear weather to cloudy and rainy conditions. However, the data does not suggest 
a significant difference between the cloudy and rainy conditions for gaze in the X-direction. The 
analysis shows the p-values of 1.1E-06*, 3.2E-04*, and 3.9E-1 for pairwise comparison of clear 
versus cloudy, clear versus rainy, and cloudy versus rainy conditions, respectively. However, when 
considering the gaze in the Y-direction, the results are significantly different for all three weather 
conditions. The analysis shows p-values of 3.0E-03*, 3.0E-04*, and 1.6E-04* for pairwise com-
parison clear versus cloudy, clear versus rainy, and cloudy versus rainy conditions, respectively. This 
may imply that when considering the effect of weather on gaze direction, the Y-direction may 
serve as a better metric for grouping the gaze behavior. More data is needed to confirm this obser-
vation. The effect of weather on head location in X and Y directions follows the same trend as the 
gaze direction. The analysis shows p-values of 1.2E-09*, 1.2E-08*, and 3.2E-02* for pairwise 
comparison of clear versus cloudy, clear versus rainy, and cloudy versus rainy conditions, respec-
tively in the X-direction, and p-values of 1.0E-04*, 3.8E-06*, and 2.2E-03* for pairwise compar-
ison of clear versus cloudy, clear versus rainy, and cloudy versus rainy conditions respectively, in 
the Y-direction. This indeed suggests that not only do weather conditions affect a driver’s gaze, 
the effects vary in the X and Y-directions. The change in gaze direction and head movement due 
to weather can be due to the fact that clear weather generally has an uncomfortable glare induced 
on the window that might lead to variation in gaze and head movement for the driver. In addition, 
the fact that head location and gaze follow the same trend implies that the driver is even using 
his/her head to reach a comfortable zone of scanning the road in different road conditions. 
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Table 2. Results of Multiple Comparisons Analysis—Holm-Bonferonni P-Value  
Adjustment has been Applied. 

 

 

 

Different road types significantly change the standard deviation of gaze direction in the X-direc-
tion. The results suggest that all four different road types are in fact different in a pairwise com-
parison of the standard deviation of gaze direction in the X-direction. The analysis shows p-values 
of 5.0E-04*, 2.2E-16*, 2.2E-16*, 5.8E-03*, 4.6E-12*, 8.7e-13* for pairwise comparison of groups 
city versus country, city versus two lanes highway, city versus three or more lanes highways, country 
versus two lanes highways, two lanes highway versus three or more lanes highway, respectively 
with respect to gaze in the X-direction. Inspecting variation in the standard deviation of gaze in 
the X-direction reveals that on average the standard deviation decreases from city streets to high-
ways.  

Considering the head movements in the X-direction, road types 0 and 1 (city streets versus country 
roads) are not significantly different, while both of them are different than all other road types. 
Altogether, the results suggest that two-way two-lane highways and two-way three-lane highways 

Effect Family Comparison P-Value Adjusted p-value for 
using the family error rate 

Significant at 0.05 level of 
familywise error rate? 

Passenger - mean of gaze - x Effect of passenger on mean of gaze in x-direction 2.2E-16 2E-16 YES
Passenger - SD of gaze - x Effect of passenger on standard deviation of gaze in x-direction 7.6E-11 8E-11 YES

Passenger - mean of gaze - y Effect of passenger on mean of gaze in y-direction 2.5E-08 3E-08 YES
Passenger - SD of gaze - y Effect of passenger on standard deviation of gaze in y-direction 7.7E-01 8E-01 NO
Passenger - SD of head - x Effect of passenger on Standard deviation of head in x-direction 5.7E-04 6E-04 YES
Passenger - SD of head - y Effect of passenger on Standard deviation of head in y-direction 8.8E-01 9E-01 NO

Comparison of weather 0 and 1 on standard deviation of gaze direction in x 1.1E-06 3E-06 YES
Comparison of weather 0 and 2 on standard deviation of gaze direction in x 3.2E-04 6E-04 YES
Comparison of weather 1 and 2 on standard deviation of gaze direction in x 3.9E-01 4E-01 NO
Comparison of weather 0 and 1 on standard deviation of gaze direction in y 3.0E-03 6E-03 YES
Comparison of weather 0 and 2 on standard deviation of gaze direction in y 3.0E-04 9E-04 YES
Comparison of weather 1 and 2 on standard deviation of gaze direction in y 1.6E-02 2E-02 YES
Comparison of weather 0 and 1 on standard deviation of head in x 1.2E-09 4E-09 YES
Comparison of weather 0 and 2 on standard deviation of head in x 1.2E-08 2E-08 YES
Comparison of weather 1 and 2 on standard deviation of head in x 3.2E-02 3E-02 YES
Comparison of weather 0 and 1 on standard deviation of head in y 1.0E-04 2E-04 YES
Comparison of weather 0 and 2 on standard deviation of head in y 3.8E-06 1E-05 YES
Comparison of weather 1 and 2 on standard deviation of head in y 2.2E-03 2E-03 YES
Comparison of road 0 and 1 on standard deviation of gaze in x direction 5.0E-04 1E-03 YES
Comparison of road 0 and 2 on standard deviation of gaze in x direction 2.2E-16 1E-15 YES
Comparison of road 0 and 3 on standard deviation of gaze in x direction 2.2E-16 1E-15 YES
Comparison of road 1 and 2 on standard deviation of gaze in x direction 5.8E-03 6E-03 YES
Comparison of road 1 and 3 on standard deviation of gaze in x direction 4.6E-12 1E-11 YES
Comparison of road 2 and 3 on standard deviation of gaze in x direction 8.8E-13 4E-12 YES
Comparison of road 0 and 1 on standard deviation of gaze in y direction 8.1E-07 2E-06 YES
Comparison of road 0 and 2 on standard deviation of gaze in y direction 2.2E-16 1E-15 YES
Comparison of road 0 and 3 on standard deviation of gaze in y direction 2.2E-16 1E-15 YES
Comparison of road 1 and 2 on standard deviation of gaze in y direction 1.4E-02 1E-02 YES
Comparison of road 1 and 3 on standard deviation of gaze in y direction 8.6E-10 3E-09 YES
Comparison of road 2 and 3 on standard deviation of gaze in y direction 1.8E-11 7E-11 YES
Comparison of road 0 and 1 on standard deviation of head in x 7.6E-01 8E-01 NO
Comparison of road 0 and 2 on standard deviation of head in x 7.7E-11 2E-10 YES
Comparison of road 0 and 3 on standard deviation of head in x 2.2E-16 1E-15 YES
Comparison of road 1 and 2 on standard deviation of head in x 8.8E-03 2E-02 YES
Comparison of road 1 and 3 on standard deviation of head in x 7.2E-13 3E-12 YES
Comparison of road 2 and 3 on standard deviation of head in x 3.6E-16 2E-15 YES
Comparison of road 0 and 1 on standard deviation of head in y 6.2E-11 2E-10 YES
Comparison of road 0 and 2 on standard deviation of head in y 2.2E-16 1E-15 YES
Comparison of road 0 and 3 on standard deviation of head in y 2.2E-16 1E-15 YES
Comparison of road 1 and 2 on standard deviation of head in y 2.1E-01 2E-01 NO
Comparison of road 1 and 3 on standard deviation of head in y 7.6E-07 2E-06 YES
Comparison of road 2 and 3 on standard deviation of head in y 1.4E-08 4E-08 YES

Road - SD gaze - x

Road - SD gaze - y

Road - SD of head - x

Road - SD of head - y

Weather - SD - gaze - x

Weather - SD - gaze - y

Weather - SD of head - x

Weather - SD of head - y
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demonstrate different variations with respect to head location in the X-direction. Together, afore-
mentioned points mean that an average driver is more distracted in the city compared to highways, 
with his/her gaze and head movements correspondingly influenced in differing manner, due to 
different road conditions, differing landscapes and varying objects of distraction such as pedestri-
ans, billboards, vegetation, etc. Although this difference is intuitively visible by looking at the sides 
(gaze and head movements in the X-direction), inspecting the gaze and head movement in the Y-
direction reveals approximately the same results (see Table 1). 

Considering the interaction between different factors, Figure 4(a) shows the standard deviation of 
gaze in different weather conditions in the presence or absence of a passenger. While clear weather 
presents significantly different gaze behavior in the X-direction compared to cloudy and rainy 
conditions (Std of gaze: clear<cloudy<rainy), the presence of a passenger changes the trend. Figure 
3(a) depicts that when a passenger is present, cloudy weather has the least gaze standard deviation 
whereas when no passenger is present, the case is totally flipped. In addition, analyzing the re-
sponse of different people under changing weather conditions reveals the individual differences in 
reaction to different weather conditions. For instance, Figure 4(b) depicts the standard deviation 
of gaze in X-direction under varying weather conditions. As it is depicted on the graph, two of the 
participants (#4 and #5) stay more focused when being in a rainy condition, whereas the other 
three react more distracted in a rainy condition. Thus, there is a participant factor that must be 
recognized. 

 

Figure 4. (a) Interaction between Different Weather Conditions and Passenger Situation;  
(b) Interaction between Individual Differences and Weather Conditions (Right).  

Note that the trend of the standard deviation of gaze is different when a passenger exists  
compared to when the driver is alone. 

 

 

 

Analyzing the data under different road conditions for the standard deviation of gaze in the X-
direction, also reveals that there are two different trends in how people react in different road 
conditions. As Figure 5(a) depicts, participants #2 and #3 tend to be more distracted in highways, 
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whereas, participants #4 and #6 tend to be less distracted in highways. Inspecting the head move-
ments reveals that for participants #2 and #3, potential distraction is related to their gaze direction 
only and not their head movements, meaning that on average they keep their head more towards 
the road while moving their gaze to scan the surrounding environment. Moreover, participant #6 
is likely to be more distracted in country roads due to the scenic environment (Figure 5(b)). 

 

Figure 5. (a) Interaction between individual differences and different road types with respect  
to standard deviation of gaze; (b) movements of the head in x-direction. 

Note that at the time of analysis for the current paper, there was no data available from  
participant #5 in two-way three-lane highways. 

 

 

 

Considering the sole effect of a passenger on standard deviation of gaze in the X-direction and its 
interplay with individual differences, we find that the standard deviation of gaze angle increases 
for 5 participants. However, Figure 6(a) depicts that out of six participants, one of them (partici-
pant #5) has less variation in gaze angle when a passenger is present. Although this could mean 
that this participant is more focused when a passenger is present, inspecting the mean value of gaze 
angle (Figure 6(b)) reveals that he/she is keeping his/her gaze more towards the passenger. This 
means that even if the driver is not moving his/her eyes significantly, he/she is, in fact, holding 
his/her gaze towards the passenger leading to a decrease for the variation in gaze. Further manual 
inspection of the videos reveals that this conclusion is in line with overall events in the videos of 
the participant. 

 

 



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E   17 

Figure 6. Interaction between Individual Differences and Standard Deviation (a) and  
Mean (b) Of Gaze in the X-Direction. 

 

 

 

This study considers the effect of different environmental factors on driver’s gaze and head move-
ments in a fully naturalistic platform without any external interference. The first and most im-
portant outcome is the viability of detection of factors that have been previously discussed in ex-
perimental studies, in a fully naturalistic study. While individuals have differences in their gaze 
direction and head movements, on average the effect of environmental factors could be detected 
in each scenario. However, the results suggest that not only environmental factors affect the driver’s 
behavior, but there is an interplay between factors and individual differences. Thus, understanding 
the gaze of the driver requires an understanding of both environmental factors and individual char-
acteristics that affect one’s gaze. In this study, we have only considered three such environmental 
factors. Other factors such as the presence of special vehicles (e.g., trucks), bikes, pedestrians, noise 
level, vegetation, number of passengers, destination, etc. need to be accounted for. As this was the 
first step towards such a study, the number of participants was lower than a regular experimental 
study. Having more participants might reveal more individual differences and preferences in dif-
ferent conditions. 

Another fundamental consideration is the fusion effect of gaze angle and head movement. As has 
been shown in the results section, these two together can lead to a better understanding the driver’s 
actions at any given moment. For instance, although head movements ,may not demonstrate a 
special increase, the gaze might actually reveal that the driver is looking to the sides more often. 
Another example would be moving the gaze with the head which increases the standard deviation 
in head movement but does not have an effect on gaze direction. Studies in the past have also 
indicated that an interplay exists between gaze and head movement. Although Fridman et al. 
(2016) and Lee et al. (2016) suggest that the driver head can be used as a substitute for the gaze 
direction in situations where the gaze cannot be predicted (Fridman et al., 2016; Lee et al., 2016), 
Fridman et al. (2015) depict that adding eye pose on top of head pose in special situations where 
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the head does not move a lot helps increase the accuracy of predicting where the driver is looking 
at (Fridman et al., 2015). 

Moreover, the interaction between environmental factors and individualized differences brings up 
the concept of personalizing the services that are currently being offered in a generalized fashion 
as in the case of routing services. Analyzing the gaze direction data reveals that participants are 
highly affected by environmental factors. Studies have shown that gaze dispersion is highly corre-
lated to mental workload. In fact, a recent study demonstrated that horizontal gaze dispersion is 
more sensitive to a driver’s mental workload than a weighted average between horizontal and ver-
tical gaze dispersion (Wang et al., 2014). Considering the results of this study, one implication is 
that to better optimize for factors such as the mental workload, distraction, environmental condi-
tions, and individual differences need to be considered when performing services such as route 
selection. For instance, routing services are currently enacted based on the fastest route possible. 
However, with this information, the routing can be potentially optimized for keeping the driver’s 
gaze on the road, based on weather, passenger condition, road type, etc. Furthermore, as such 
services have detailed information on traffic, weather, etc., it can potentially be transferred to other 
drivers. A simple example considers a driver whose attention is affected by trucks. When the rout-
ing service can estimate the number of trucks in a specific route, it can take that into consideration 
to offer a personalized route for the user that can minimize said distraction, fatigue, etc.  

This study also demonstrates that by using open-source vision-based software, models can be built 
to detect different patterns in gaze and following distractions. Considering that this work’s analysis 
has been done by open-source software available for nearly every operating system, the value of 
such analysis can be done in one’s car and help to build driving monitoring systems that can be 
implemented in real-time. This is extremely important when discussing AVs, as such vehicles, 
currently rely on the human in the event of failure. A proper understanding of the state of the 
driver can lead to better collaboration, trust, and outcome of using such semi-autonomous human-
in-the-loop systems. In order for autonomous vehicles to have a better interaction with the driver, 
they need to first have an understanding of the driver’s current state, the factors that affect it, and 
the ability to make short-term future predictions. Consider a semi-AV that is entering a school 
zone on a rainy day and that relies on the human for the event of failure. Meanwhile, the driver is 
distracted, with data for that specific driver displaying his/her lack of concentration during rainy 
conditions. This can lead to a suggestion by the car to not take the route that passes through the 
school zone. Such a collaborative environment can heighten the trust between the driver and the 
semi-AV. 

 



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E   19 

6. Conclusion and Future Work 
In this study, the effect of environmental factors on drivers’ gaze and head movement behavior 
have been discussed under a fully naturalistic driving scenario. A platform has been designed to 
collect videos from the road and in-cabin situations. Videos were analyzed using OpenFace to 
retrieve the gaze direction. Road videos were annotated to be in one of clear, cloudy, and rainy 
condition, as well as city, country road, two-way two-lane highways, and two-way three-lane high-
ways. Results suggest that the driver’s gaze and head movements are highly affected by the com-
bination of environmental factors as well as individual differences. The next steps in this study are: 
(1) gather more participants with a diverse demographic background to provide for data diversity, 
and variation in conditions (for instance taking into account snowy weather); (2) perform person-
ality tests on each participant to build a metric for differences between individual choices that can 
lead to a better prediction in building models; (3) use questionnaires to assess the individual’s un-
derstanding of their driving behavior and confirm it; (4) building models using machine learning 
applications to predict gaze direction that considers both environmental conditions and individual 
differences; and (5) feed those models into embedded systems, perform analysis in real-time using 
such systems, and design driver monitoring systems that work in real-time and consider environ-
mental factors as well as individual preferences and differences. 
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Abbreviations and Acronyms 
AV Autonomous Vehicle 

CLNF Conditional Neural Fields 

CAN Controller Area Network 

HD High Definition 

HOG Histogram of Oriented Gradients 

HR Heart Rate 

IoT Internet of Things 

NN Nearest Neighbor 

RDD Random Digit Dialing 

SVM Support Vector Machine 
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