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Executive Summary 
Local and regional planners struggle to keep up with rapid changes in mobility patterns. This 
exploratory research is framed with the overarching goal of asking if and how geo-social network 
data (GSND), in this case, Twitter data, can be used to understand and explain commuting and 
non-commuting travel patterns. Statistics capturing human mobility are expensive to obtain and 
deteriorate quickly as existing mobility patterns change and new ones emerge. Planners have been 
relying on US Census LODES data, which explicitly captures only commuting trips, and seems 
unsatisfying because only some 16.6% of all vehicle trips are work-related (FHWA 2017). GSND 
potentially offers a solution, as data derived from repeat origin-destination pairs of the same 
Twitter ID indicate trips regardless of purpose. We set out to answer the following research 
questions: 

1. Is it possible to extract travel flow patterns in the Bay Area from GSND and if so, how can
this be done efficiently?

2. To what degree do commuter flow patterns identified in GSND correlate with official
LODES commuting data?

3. Can GSND be used to explain non-commuting trips?

Approximately 33 million geo-referenced Bay Area tweets were harvested for the study period 
from 2010 until early 2020. They were filtered by repeat occurrences of origin/ destination (O/D) 
pairs and categorized by time of day and day of week. Each of these pairs, as well as all LODES 
O/D’s were then routed as shortest paths on the Open Street Maps network of roads. This study 
is limited to road trips only; further research should apply routing procedures for transit trips as 
well. For the GSND, we attributed trip purpose by the dominant land use in the O/D census 
blocks.  

We then compared the road segment loads of the two input data sets and found not only incredible 
high rates of correlation but also nearly complete spatial randomness among their differences, 
which suggests that the findings below are scale-independent and applicable in all parts of the 
study region. Twitter’s 2015 geolocation policy change resulted in a dramatic reduction of available 
GSND. Since then, smaller temporal samples have shown to be a poor predictor of local traffic 
loads. 

GSND are suitable to capture the over 80% of non-commuting trips that keep our roads busy. 
GSND is not suitable for characterizing real-time or short-term commuting patterns but is 
complementary to exiting commuting data. Translated into road segment loads, GSND and 
LODES data are virtually indistinguishable, which means that LODES data are an excellent 
substitute for overall transportation demand. 
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The research project set out to determine whether GSND may be used to augment LODES data 
beyond commuting trips and whether it may serve as a short-term substitute for commuting trips. 
It turns out that the reverse is true and the common practice of employing LODES data to 
extrapolate to overall traffic demand is indeed justified. This means that expensive and rarely 
comprehensive surveys are now only needed to capture trip purposes. Regardless of trip purpose 
(e.g., shopping, regular recreational activities, dropping kids at school), the LODES data is an 
excellent predictor of overall road segment loads. 

Keywords: Urban Planning, Commuter Mobility, Twitter Mobility, Collective Movement 
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I. Introduction
Historical land-use and development patterns, coupled with federal, state, and local policies, have 
resulted in sprawling metropolitan regions and severe imbalances between jobs and housing in 
many US metropolitan areas (Ihlanfeldt and Sjoquist, 1998). The results are apparent in every 
major American metropolitan area: traffic nightmares, long commute times, and rising housing 
costs. In 2019, before the pandemic, drivers in the San Francisco Bay urban area lost an average of 
47 hours over the year, just sitting in traffic, earning the region an unenviable 7th place in the US 
congestion rankings (Inrix, 2020). Good transportation planning strives to increase people’s 
mobility by reducing the friction of distance (Rodrigue, 2020). Policymakers have streamlined and 
simplified the complexities of travel behavior by focusing on work commutes because commuting 
to and from work remains one of the primary reasons why people travel, even as scholarly research 
has consistently acknowledged the influence and importance of non-work trips (Giuliano and 
Small, 1993; Kockelman, 1997). Transportation planning is a both data-hungry and resource-
intensive endeavor. This research is a pilot study to investigate two related ideas – first, if and 
whether geo-social network data (in our case geo-tagged Tweets) can be used as a reliable and 
relatively affordable data source to provide information about travel patterns for planning purposes 
and second, to assess the extent to which this can data can be useful in understanding and 
explaining non-commuting travel patterns. The reason to focus on non-commuting travel is that 
most “official” census data focuses on the journey to work.  

This study focuses on the San Francisco Bay Area, which includes the nine counties shown in 
Figure 1: Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Solano, 
and Sonoma, all of which form the San Francisco Bay region. The area is home to prestigious 
universities and high-tech industries, and it also offers natural beauty and cultural diversity, making 
it an attractive destination. The area has experienced rapid population growth over the past two 
decades and currently houses over 7.75 million people across 101 municipalities in 2020, with a 
projected additional 1.1 million jobs and 2.1 million people anticipated by 2040 (Mackenzie et al., 
2017). The subsequent rising demand in housing, together with topographic and regulatory 
constraints, has led to significant land-use changes throughout the area and has also exacerbated 
congestion and related environmental concerns (Cervero, 1996; Cervero and Duncan, 2006). The 
historic settlement patterns in and around the region and the highly individual growth trajectories 
of each county have resulted in imbalances between jobs and housing (Chapple and Zuk, 2015), 
which, in turn, has caused long commutes and an overloaded traffic system (Nguyen and Stivers, 
2012). The Bay Area’s geography and its bridge crossings create bottlenecks which cause further 
commute delays. 
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Figure 1. Study Area Overview 

Local and regional planners struggle to keep up with the rapid changes in mobility patterns: 
statistics capturing human mobility are expensive to obtain, and they deteriorate quickly as existing 
mobility patterns change and new ones emerge. The currently most detailed example of such 
statistics is the Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination 
Employment Statistics (LODES) (online, 2019a) published by the US Census Bureau. LODES 
tables describe commuter flows on the census block level for the entire country. Because of their 
high quality, spatial granularity, and coverage, they are an important tool for informed decision 
making in city and regional planning. One significant drawback of the LODES data is that they 
pertain to commuting only: i.e., they do not cover any other types of trips such as leisure trips or 
shopping. Yet, based on data from the National Household Travel Survey conducted by the 
Federal Highway Administration (FHWA, online, 2017), only 16.6% of all vehicle trips are work-
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related. Nevertheless, LODES data have been used as a stand-in for all forms of mobility in the 
US. 

In this study, we use geo-social network data (“tweets”) from the social media platform Twitter to 
identify mobility patterns, which we correlate with LODES data. Tweets can be obtained quasi-
continuously via an application programming interface (online, 2020d). Each tweet used in this 
study is linked to a single location and timestamp, which means that the data can be aggregated 

spatially and temporally at any required level. We derive weighted connectivity information from 
the tweets by counting the number of connections between regularly visited regions, which we 
refer to as flows. Throughout this paper, we refer to flows derived from Twitter data as Twitter 
flows. Their data structure is identical to that of the LODES data, which also represent 
(commuter) flows. The research is framed with the overarching goal of asking if and how geo-
social network data can be used to understand and explain commuting and non-commuting travel 
patterns. To accomplish this goal, we ask the following four research questions: 

1. Is it possible to extract travel flow patterns from geo-social network data and if so, how 
can this be done efficiently? 

2. Focusing on commuting trips, to what degree do commuter flow patterns identified in 
geo-social network data correlate with official LODES commuting data? 

3. At which spatial level (scale) can commuter flows extracted from geo-social network data 
most accurately match official LODES commuting flows? 

4. Can geo-social network data be used to explain non-commuting trips? 

To answer these research questions, we compare LODES and Twitter flows using two approaches. 
First, we explore the flows’ spatiotemporal characteristics, such as changes in flow magnitude and 
distribution over time, flow connectivity of aggregated regions, and how cyclical temporal 
phenomena such as seasons or time-of-day impact the flows. We also integrate parcel-level land-
use data to determine which pairs of land-use classes are connected by flows. Second, we use a 
region-based approach to correlate origin-destination (OD) data to assess the association between 
Twitter and LODES flows on different spatial scales. Additionally, we map the flows onto a street 
graph to compare the flows on the individual street segments for the two data sets.  

1.1 Related Work 

Twitter and other geo-social network data sources have been used in numerous human mobility 
studies focusing on the detection of events and traffic disruptions (Steiger et al., 2016) or detection 
and visualization of mobility patterns (Gao, 2015), as well as a variety of other applications in the 
context of mobility, urban activity, or urban planning (Martí et al., 2019). In a county-level study 
in the New York City area, researchers used Twitter data to estimate human activity and mobility 
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patterns based on about 6.5 million tweets collected over six months. They concluded that Twitter 
data provide a suitable basis for modeling human mobility (Kurkcu et al., 2016). Similarly, a study 
based in Madrid shows that Twitter data can be used to model commuter mobility by identifying 
users’ home and work locations based on their temporal usage patterns (Osorio-Arjona and 
García-Palomares, 2019). Furthermore, an Australian study uses Twitter data in combination with 
call detail records (CDR) to provide evidence that Twitter data are a suitable proxy for human 
mobility (Jurdak et al., 2015). 

The problem of identifying work-related mobility and activity in Twitter data has been addressed 
using semantic text analysis and spatial autocorrelation methods in temporal bins (Steiger et al., 
2015). Using geo-social network data in urban planning not only allows us to conduct traditional 
studies with alternative data sources, but the high temporal granularity of the data also enables 
studies on virtually any temporal scale (Batty, 2013). 

When interpreting the results of this study, it is critical to take into account the potentially skewed 
results caused by the temporally and spatially heterogeneous nature of geo-social network data (Li 
et al., 2013; Zhang and Zhu, 2018). Different people tweet for different purposes and at different 
occasions and only few tweet continuously throughout the day. In larger geographic areas these 
difference balance each other out but for smaller area studies like around sports stadiums or in a 
bar district, the data would be skewed. It is one of the features of this study that it allows for both 
geographic and temporal differentiation. The scale question alluded to as aim #3 of the study is 
important to keep in mind when interpreting the results of this study. 

One of our research questions pertains to the amount of traffic generated by non-commute trips, 
which is widely unknown due to the costs involved in capturing this kind of data. We are aware of 
only a handful of related work, including a Walnut Creek (CA)-based study (online, 2020g) and 
a small national study (Convery and Williams, 2019). In a Chicago study, social media data were 
used to develop a gravity model using a classification of destination points of interest (Yang et al., 
2015). Similarly, a study based in New York City describes training a neural network model with 
Twitter data to augment a traditional gravity model (Pourebrahim et al., 2018). Social network 
geo-data have also been used to model travel demand (Lee et al., 2016). Probably closest to the 
work presented here is work that estimates local commuting patterns from geolocated Twitter data 
based on frequently visited locations: the paper documents similar success rates for using Twitter 
data to estimate census-based commuting data but it does not deal with non-work-related trips 
(McNeill et al., 2017). 

Historically, transportation planners have relied on commuting data to extrapolate to non-
commuting trips and everything that flows from that. Officially commuting data arrives with 
significant delays. This report investigates if geo-social network data can fill in the gaps to add 
robustness to conclusions about both commuting and non-commuting trips. It sheds light into the 
under-researched area of non-commuting trips by presenting a quantitative and replicable 
approach.   
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II. Data Description and Processing 
The LODES data were downloaded from the US Census website as plain text files that represent 
a sparse matrix in long-form format. For the 710,485 census blocks in California, the file lists 
15,327,971 work block to home block flows with the number of jobs at the origin block of each of 
those flows (16,566,140 jobs for all of California). The LODES data do not specify the modal 
split, i.e., the means of transport between the blocks. The closest equivalent for that is provided as 
a regular census table at the census tract level (online, 2019b). For our nine-county study area, we 
worked with 2,972,821 flows between 109,228 census blocks representing 3,252,286 individual 
commutes. The original Twitter data consists of 44,812,476 tweets posted between October 8, 
2010, and April 19, 2020. All observations are within the study area. Each includes a timestamp, 
a message (text), and a geographic point defined through a pair of coordinates. In this study, only 
tweets written manually by humans are of interest, which is why we removed the remaining tweets 
by identifying user accounts that were used to post tweets with unusually high frequencies and 
accounts featuring little editing distance1 among their tweets like those seen from advertisements 
or public weather stations (Petutschnig et al., 2020). Filtering based on those criteria reduced the 
dataset to 33,755,914 tweets. For temporal data clustering, we considered the time of day rather 
than the absolute timestamps of the tweets. This way, we were able to cluster tweets that were sent 
at roughly the same time of day, even if there were long periods of inactivity between them. 

The tweets include geographic point coordinates. We projected these coordinates onto a Cartesian 
coordinate system so we could assume consistent, metric distances between all points for the spatial 
clustering process. We used the outlines of the census blocks, census tracts, and counties obtained 
from the United States Census Bureau (online, 2019a). Table 1 shows some descriptive statistics 
of the study area and Twitter data. We see a high variation in the number of tweets and areas of 
the tracts and blocks on the census level, as opposed to the county level. 

Table 1: Study Area Description. 
 County Census 

Tract 
Census 
Block 

Number of regions               9   1,584 109,228 
Mean area [km²]        2,357.7        13,4            0.2 
Median area [km²]        2,126.5          1.6            0.02 
Mean number of Tweets 3,750,657 21,310        352 
Median number of Tweets 3,013,390 15,503          54 

An additional dimension of the flows is the trip purpose. To understand possible motives for a 
particular trip, we identified the land-use in the destination block using parcel-level land-use 
 

1 ‘Editing distance’ is a similarity measure. For example, a weather station would send out a tweet every hour that is 
identical to the previous one (all the same words in the same sequence) with only some numerical values changing 
gradually. A human being would not do that. This way, non-human generated tweets can be filtered. 
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designation in a commercially available dataset from Boundary Solutions (online, 2020b). Most 
census blocks are made up of multiple parcels. To integrate the land-use data into the analysis, we 
aggregated the parcel-level data to the census blocks that contain the respective parcels. We did so 
by assigning one land-use class to each census block. If a census block intersected with a single 
parcel, we assigned that parcel’s land-use class to it. If a census block consisted of multiple parcels, 
we assigned it the land-use class of the parcels covering the largest part of its area. 

Some experiments in this study required a street network graph, for which we used graph data 
provided by OpenStreetMap (online, 2020a). For the network dataset, we extracted all drivable 
public streets in a 250-km radius around the center of our study area, thus extending it 
substantially. We dimensioned the graph so liberally to capture routing results even if they include 
street segments not located within the study area, preferring this to omitting these partial routes 
from the analysis. We used Dijkstra’s least-cost path algorithm for routing, which is implemented 
in the module NetworkX (Hagberg et al., 2008). The street graph weighting scheme is aimed at 
car travel, which is a simplifying assumption, given that not all workers commute by car. 

Open Street Map (OSM) data has been shown to be highly reliable (Haklay 2010, Zheng & Zheng 
2014, Anahid et al. 2016), and this is especially true for the study area, which features an unusually 
large number of well-trained contributors. whose reliability has been described by an armful of 
literature. Based on random checks, the commercial land use data seems to be reasonably reliable 
and its reliability only increases by its aggregation to census blocks. We also compared it with land 
use information derived from OSM points of interest and found them matching well. The only 
cause for concern is mixed land uses, where buildings have commercial land use on the ground 
floor and residential land use on upper floors. In those cases, we erred on the side of commercial 
uses. 

The technologies used in this study are PostgreSQL (online, 2020d) databases with the spatial 
extension PostGIS (online, 2020c) for data storage and analysis, the programming environments 
R (online, 2020i) and Python (online, 2020e) for analysis and visualization, and the geographic 
information system QGIS (online, 2020f) for visualization. 
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III. Study Methods
The overall methodological workflow of the research presented in this paper is illustrated in Figure 
2. Starting from the upper left, the flowchart depicts the preprocessing and analysis steps applied
to the raw Twitter and LODES data to produce two comparable OD matrices. The right box
shows how the street network and the land-use data were integrated to produce intermediate
outputs (flow graphs and trip purpose datasets). The box on the bottom shows how these
intermediate outputs and origin-destination (OD) data feed into the final analytical steps, which
final outputs they produce (correlations and visualizations), and which research questions the
results refer to.

Because we use flows to model movement in this study, we focus on regularly occurring trips rather 
than one-off visits to a chance location. To single out candidate locations that are part of such 
regular trips, we use the DBSCAN clustering algorithm (Ester et al., 1996) to identify the 
spatiotemporal tweet clusters of each user. DBSCAN requires two parameters: minpts for the 
minimum number of points per cluster and ɛ to limit the search radius in the clustering process.
We chose minpts = 5, ɛs = 100m for the spatial clustering process and ɛt = 30min for temporal
clustering. We chose the values for minpts based on manual inspection of the data and s and t by 
identifying visible “elbows” in k-distance-graphs (Schubert et al., 2017).  

The DBSCAN algorithm detects clusters based on density. In our case, a set of tweets is considered 
a dense cluster if at least five of them meet the requirements specified through the parametrization. 
A cluster has no defined maximum extent, instead it is restricted by the data distribution. There is 
also no requirement to specify the number of expected clusters for the algorithm. This is an 
advantage, as we do not need to make assumptions about the number of regularly visited locations 
of Twitter users. 

We only consider movements between such candidate locations, therefore a user to be considered, 
they must have produced enough tweets meeting our cluster requirements in at least two locations. 
The trip detection assumes that, occasionally, users send consequitive Tweets from two separate 
candidate locations. Assuming the user has consistent usage behavior for their pairs of candidate 
locations, their movement patterns emerge over time. 

To identify individual trajectories describing the trips of a single user, we need to first establish 
what we consider a trip. We defined a trip as the movement between two census blocks if they 
contain a user’s cluster centroids and the user travelled between the blocks within three hours. We 
consider this time frame the maximum duration it takes to move from one corner of the study area 
to the furthest other point under reasonable traffic conditions. The reason for this time cap is that 
we focus on trips made directly (without longer interim stops) between two regions. If there is a 
longer time span between origin and destination, there may be intermediate stops in between, 
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which does not comply with our definition of a direct trip in this research. The connections are 
directional, based on the chronological order in which the blocks were visited. 

Figure 2. Schematic Workflow Illustrating Input Data, Analytical Steps, and Outputs 

By summing up users’ connections grouped by blocks, we generate an adjacency matrix which 
represents the number of connections between all pairs of blocks. We refer to the aggregated 
connections of regularly frequented locations as flows. The structures of the Twitter and LODES 
adjacency matrices are identical, allowing us to compare them. By aggregating the data to this 
level, we also obscure individual users’ data. This effect is desirable because it constitutes a vital 
privacy protection measure complying with best-practice recommendations (Kounadi and Resch, 
2018; Kounadi et al., 2018). 

To explore whether the Twitter flow data exhibit different patterns during and outside of traffic-
heavy times, and to account for longer-term trends and spatial scale differences, we partitioned the 
Twitter data spatially and temporally. To observe longer-term trends, we split the data into chunks 
of two years, because two-year timeframes are long enough to be robust against outlier years but 
still short enough to observe trends developing over longer time periods. The cyclical temporal 
phenomena of time of day and day of week govern day-to-day activity like working hours and 
therefore human mobility: to account for these daily and weekly variations, we partitioned the data 
by whether connections were made during the weekend (Saturday or Sunday) and whether they 
were made during typical Bay Area rush hour times (6:00–8:00 AM or 3:00–5:00 PM). 
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In terms of spatial aggregation, we partitioned the flow data on the census block level, but we also 
require the data on census tract and county levels for some of our experiments and visual outputs. 
The three scale levels are hierarchically organized administrative divisions where census block ⊂ 
census tract ⊂ county, which makes aggregation simple. We aggregated the data by tallying the 
flows based on travelers’ administrative division membership. 

Each datum of the LODES and Twitter OD pairs represents aggregated movement between a 
pair of census blocks. We compare the LODES pairs with the Twitter flow data and quantify 
differences between the two datasets. We use correlation coefficients to quantify the relations 
between LODES and Twitter connections. Because the data deviate substantially from a normal 
distribution, we chose the nonparametric Spearman’s rank correlation coefficient ρ as a measure 
of association. For every OD pair of two regions, we have two flow counts (for tweets and 
LODES). This allows us to draw a direct comparison. To show the impact of the spatial scale on 
the correlation, we performed the calculations on the census block, census tract, and county levels. 

We used block-level land-use data to identify the land-use class pairs associated with each LODES 
and Twitter flow. By aggregating these data by land-use class, flow size, and direction of travel, 
we can quantify the share of land-use class pairs for the two datasets. As with regional flow 
aggregations, we can aggregate flows by summing up all flows belonging to the same pair of land-
use classes. 

LODES data solely contain work trips, whereas Twitter flows contain other trip purposes as well, 
such as leisure trips or other non-commuting-related mobility. We hypothesized that the trip 
purpose is reflected in the connected land-use classes of the trips and that we should, therefore, be 
able to identify differences between the datasets.  

With the exception of the city of San Francisco, the typical mode of transportation for commuters 
in the nine-county region is automobile transportation (McKenzie, 2015). It is therefore 
appropriate to identify travel routes between origins and destinations by mapping them to the 
least-cost path on the street network weighted for car usage to obtain a model that resembles the 
actual road usage patterns. For routing between pairs of census blocks, we had to specify exactly 
where on the street graph the routes begin and end. We chose the graph’s node closest to the 
centroid of each block. For each pair of census blocks, the routing routine returns a set of edges of 
the street graph to represent street segments. Integrating the LODES and Twitter flow data, we 
calculated how often each individual street segment is used to accommodate the flows. The 
resulting graph permits direct comparisons between the LODES and Twitter data on each edge. 
To make the data sources comparable, we converted the results to standard scores to account for 
the scale differences between both datasets. Thereby, the comparison between LODES and 
Twitter flows becomes quantifiable for each street segment or area unit comprising a set of 
segments. 
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We calculated the correlation of the segment load of LODES and Twitter flows, which are shown 
in Figure 2. When looking at the whole study region and incorporating all Twitter-derived 
trajectories with the LODES-based ones, there is no statistically discernible difference between 
the two datasets (the correlation rates are perfect beyond the highest Z scores). 

Figure 3. Frequency Distribution of r2 Values for the Comparison of LODES to 
All Twitter Data 

Twitter and LODES flows represent different facets of mobility, which is why we questioned the 
informative value of such high correlations and chose a different measure of comparison, creating 
travel demand surfaces for the LODES and Twitter data. The surfaces are the result of converting 
the midpoints of over 3.1 million street segments (median length: 92m) with their segment use 
value into irregularly distributed points. These points were then transformed into grids of cell size 
100m (1ha). 

The high correlation depicted in Figure 2 can be ascribed to the law of large numbers. The more 
interesting questions arise from comparing the LODES data with different subsets of the Twitter 
data such as only those trips that fall within rush hours, or smaller temporal windows to determine 
whether the Twitter data may be used to update LODES data and to capture behavior changes. 
Correlating LODES with Twitter-derived street segment usage, we ran spatial regression models 
on all possible combinations of the LODES data and the whole Twitter dataset as well as temporal 
subsets (see Tables 1 and 2).  

Based on our results, a few conclusions may be drawn. Two-year temporal subsets are relatively 
poor substitutes for LODES-based street segment use. As one would expect, there is a higher 
correlation for those same two-year subsets predicting overall Twitter-based street segment usage. 
This, in turn, suggests that the Twitter data represent different populations compared to the 
commuters represented by the LODES data, which confirms our initial hypothesis. 
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Table 2: Explanatory Power of Different Twitter Data Subsets Predicting LODES Street 
Segment Loads 

LODES Prediction Spatial Error 

All Twitter 0.766143 

Outside of rush hour 0.770077 

Rush hour 0.736184 

Weekends 0.772134 

Outside of rush hour 2018/19 only 0.425247 

Rush hour 2018/19 only 0.320049 

Weekends 2018/19 only 0.41174 

Table 3: Explanatory Power of Subsets from the 2018/19 Twitter Data 
Predicting Twitter Street Segment Loads for the Entire Study Period 

All Twitter Predictions 2018/19 Spatial Error 

Outside of rush hour 0.602277 

Rush hour 0.492426 

Weekends 0.609862 

Trip purposes may be discerned from a semantic analysis of a tweet’s content, from the land-use 
type of the trip destination (sports venue, shopping center, etc.), and from the time of day and day 
of the week. Using the technique of mapping flows to street segments described above, we created 
maps of street segment loads during and outside of rush hours, on weekends, and in two-year 
windows that not only show the expected differences in travel patterns but also match the trip 
purposes derived from the analysis of destination land-uses. 
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IV. FINDINGS
We performed some exploratory data analysis to get a sense of the regional differences between 
Twitter and LODES data. There are notable differences between the data sources. While Twitter 
flows occur more regionally—the vast majority of them happen within their census tract and 
county—over 40% of LODES connections cross county borders. Given that LODES data only 
include commuter flows, whereas Twitter flows include other trip purposes as well, such 
discrepancies are expected. There is a strong discrepancy between Twitter and LODES on the 
census tract level: 42.7% of Twitter flows happen within a tract, as opposed to only 3.4% of 
LODES flows. This suggests that Twitter flows represent shorter trips, which is supported by the 
descriptive statistics of trip lengths and estimated car travel times outlined in Table 3 (previous 
chapter). 

Table 4: Trip Lengths on the OSM Network 

LODES Twitter 
Minimum 0.001 km / 0 min 0.008 km / 0 min 
Median 12.660 km / 14 min 2.800 km / 3 min 
Mean 22.538 km / 19 min 7.561 km / 6 min 
Maximum 259.761 km / 178 min 366.315 km / 264 min 

Figure 3 shows the magnitudes of (a) Twitter flows during rush hours, (b) Twitter flows outside 
of rush hours, and (c) LODES data at the county level. Each pair of counties is represented by an 
arrow that denotes direction and magnitude of flow. The color and shape of the arrows indicate 
origin and destination counties, whereas the base width indicates the flow magnitudes. 

Findings
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Figure 4. Chord Diagrams for County-Level 
Connections of  

(a) Twitter Flows during Rush Hours,  
(b) Twitter Flows Outside of Rush Hours, 
and (c) LODES Data (magnitude × 1,000) 

 

 

 

 

 

 

The numbers of connections show that the absolute flow magnitudes are higher for the LODES 
data. Besides that, the LODES data contains a lot more intercounty connections than the Twitter 
flows. For example, around half of the outgoing connections of Alameda County connect to other 
counties in the LODES data, whereas only about 15% of Twitter connections are outbound. In 
accordance with this effect, the LODES data reflect more inbound connections to the counties 
compared with Twitter. Another visible difference between Twitter and LODES flows is the 
difference in relative connections between individual counties. In particular, the City and County 
of San Francisco is represented more strongly in the Twitter flows compared to other counties. 
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Figure 4 shows which land-use classes are connected by the flow data based on (a) Twitter data 
during rush hours, (b) Twitter data outside of rush hours, and (c) LODES data. Even though the 
proportions of origin and destination land use and the size of flows in parts (a) and (b) are very 
similar especially compared to (c), there are noteworthy differences between them. During rush 
hours, there are fewer connections between residential areas and more connections between 
residential areas and work-related land-use classes. Also salient is the similar distribution of land-
use classes for origin and destination areas in (a) and (b), in contrast to (c). This is because the 
LODES data underlying (c) have a clear separation of home and work location, whereas the 
Twitter data represent trips regardless of the functional context of their origin and destination 
regions. 

 
Figure 5. Sankey Diagrams of Land-Use Pairs from (a) Twitter Flows during Rush Hours, (b) 

Twitter Flows Outside of Rush Hours, and  
(c) LODES Data (magnitude × 1,000) 

The results of the spatial error model in Table 2 show that the rush hour trips are a poorer predictor 
of LODES trips than the ones taking place outside of rush hour and during the weekends. Actual 
work-related trips seem to be less likely to be accompanied by tweets than non-commuting trips. 
This matches our observations that a significant number of Twitter trajectories have residential 
origins and destinations, which also fits the results of national surveys by the FHWA. 
Furthermore, we observe a relatively poor predictive capacity of the two-year subsets, although it 
is important to keep in mind that the one-hectare resolution is a fairly stringent constraint. We 
endeavor to continue our research towards determining the scale thresholds for such predictions. 

Another aim of our research was to assess whether the finer temporal resolution of the Twitter 
data could be used to improve upon existing datasets such as the LODES datasets To answer this 
research question, we ran spatial regression models with a two-year subset (2018/19) to explore 
how well it predicts the much more voluminous Twitter data from previous years. As mentioned 
above, the constraint of basing predictions on one-hectare cells makes this goal fairly ambitious. 
However, as the results in Table 5 illustrate, even the much smaller 2018/19 dataset exhibits 
relatively high correlations, except for rush hour trips. Correlation rates of 0.6 are considered quite 
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good in the social sciences. The only outlier in this table is the value for rush hour tweets from our 
two-year window. 

Table 5: Robustness of a Two-Year Subset of Twitter Data  
Predicting LODES Street Segment Usage 

Temporal Subset r² 

Weekends 0.6098 

Outside of rush hour 0.6023 

Rush hour 0.4924 

 

Our original assumption was that the street segment usage during rush hours provided by our 
Twitter data should be most similar to the LODES data for the rush hour periods. Our correlation 
results show that this hypothesis could not be confirmed. Instead, it stands to reason that tweets 
are relatively rare immediately before or after a trip to work and that those trips completed during 
rush hour may actually represent other trips such as social calls or for the consumption of goods 
and services. While this observation is not specifically verified through this research, our claim is 
supported by the land-use class connectivity results, which contain a high percentage of residential-
to-residential trips and residential to commercial trips, as well as the exceedingly short trip lengths, 
which differ significantly from the mean trip length of the LODES data. 

The map in Figure 6 represents quantifiable evidence of trips that are not captured by the 
traditionally used LODES data. The map displays the areas of negative correlation (up to -0.13) 
between the LODES data and the Twitter weekend data, which emphasizes the differences 
between the two sources of movement data, as described in the previous section. The areas depicted 
show no spatial autocorrelation, i.e., they are randomly distributed. Virtually all of these areas are 
in residential areas (a small remainder are in remote areas) and do not match known points of 
interest such as shopping centers, sports venues, state parks, etc. For well-known traffic 
chokepoints, the street segment loads confirm our expectations set by the LODES data. The 
ubiquity of the flows beyond these notable points is a new source of information that has hitherto 
been unavailable. However, it is important to note that the way we selected the Twitter data 
excludes trips that do not show up repeatedly for the same individual and hence underestimates 
the amount of non-routine trips. 
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Figure 6. Areas with Negative r2 for Twitter Data Predicting LODES Street Segment Use 

Note to Figure 6. The areas in red are the only areas, where there is a significant difference for all 
the tweets that were filtered for the purpose of simulating LODES data. The total sum of these 

areas is small and not spatially autocorrelated. 
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V. Discussion and Limitations 
To address research question 1 (to what degree do commuter flow patterns identified in geo-social 
network data correlate with official LODES commuting data?), we correlated the OD pairs of our 
data sources on different spatial scales. We found that they correlate strongly on a relatively small 
spatial scale. When mapping the flows to the street graph and considering the land-use classes 
associated with trips, we found indications that a large portion of Twitter flows are not direct work 
trips. Instead, they tend to be significantly shorter, even if they occur during rush hour times. 

To address research question 2 (Can geo-social network data be used to augment flow data to 
include information about non-commuting trips?), we worked under the assumption that 
commuting is strongly tied to certain land-use classes, e.g., from residential areas to office spaces, 
and deviations from this can be attributed to extraprofessional travel. We identified two pieces of 
evidence in the land-use comparisons supporting our hypothesis. The comparisons of land-use 
classes associated with the LODES and Twitter flows suggest that there are substantial differences 
between the two datasets pointing to a strong difference in trip purpose. Secondly, the comparison 
of connected land-use classes in the Twitter flows during and outside of rush hour times suggests 
a relationship as well. Per our assumption, we would expect commuter travel to show a stronger 
linkage between residential and work-related areas than non-commuter travel, which the 
comparison of Figure 4 panels (a) and (b) confirms. 

To address research question 3 (At which spatial level (scale) can commuter flows extracted from 
geo-social network data most accurately match official LODES commuting flows?), we again refer 
to the correlation coefficients of Twitter and LODES flows at different times and on different 
spatial scales. The correlation coefficients show that for county-level mobility, Twitter and 
LODES exhibit robust, high correlations. This is consistent with several nation-wide studies 
conducted at county-level resolution. At the scale of county-level analyses, Twitter data works very 
well as a substitute for LODES data as the two are effectively undistinguishable. 

5.1 Discussion of Methods 

Our definition of flows works from the premise that they should only include regions that a user 
visits repeatedly. We implemented this premise by only including regions in which we detected 
spatiotemporal clusters of tweets by a given user. The intention behind using this approach was to 
adequately represent routine travel behavior, which means that rarely visited locations are likely to 

be excluded from the analysis. This approach, however, relies on the assumption that frequent 
visits to a location result in frequent tweets. If a user tweets so rarely at a frequently visited location 
that we cannot detect a tweet cluster there, the location is falsely excluded from our analysis. For 
the region-based approach, we consider flow magnitudes, as well as the start and end regions 
encoded in the OD matrices. The direct comparisons of OD flows via correlation coefficients 
result in simple summary statistics. On one hand, these are compact and easily comparable, but on 
the other, they do not provide insights into the spatial characteristics of the results. Another 
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problem is the inherently binary perspective when comparing OD pairs: two OD pairs are either 
identical or not. In reality, each OD pair is a simplified representation of what is actually a route 
along a street network. Two OD pairs in close spatial proximity are likely to share some street 
segments in their routes even though they are not identical, and they are therefore a mismatch 
from a region-based perspective. This skews the correlation statistics towards low values, especially 
for large-scale target regions. The graph-based reasoning methods are better suited to capturing 
spatially similar but non-identical connections. This effect can be observed when comparing the 
region-based results in Figure 7 with the graph-based ones from Table 3. Even though the median 
street segment length of 92m is a finer scale than the census block level, the predictive power is 
significantly higher. 

 
Figure 7. Flow data correlations as a function of scale. 

Twitter usage is skewed by demographic and geographic context. Therefore, when deriving flow 
data from tweets, the population of some regions will be represented more than others. For 
example, there are residential areas with few active Twitter users but a large working population; 
there are also places with few permanent residents that attract large numbers of visitors like sports 
venues or shopping centers. Knowledge about such places should be taken into account when 
interpreting the results of this study. By clustering tweets for region selection in the flow data, we 
intended to capture regular travel patterns. However, this approach can lead to an 
underrepresentation of regions that generate large traffic volume from large amounts of visitors 
who, individually, visit only on rare occasions, such as sports stadiums or national parks. A study 
focusing on such regions would have to adjust the flow detection methodology or integrate points 
of interest as another data source. 
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While LODES exclusively covers commuter mobility, Twitter flows represent other travel 
purposes as well. In principle, the difference between the two datasets should pertain only to non-
commuting mobility. However, because the commuter flows contained in the Twitter data are 
likely not represented equally across the pairs of regions, the result of comparison will contain a 
region-dependent error term that has to be addressed. The resulting error adds to the effect of 
skewed Twitter usage explained above. The same principle applies to the flows between land-use 
data classes. It is possible to scale the Twitter origin land-use class distributions to resemble the 
distributions from LODES and adjust the Twitter destination land-use classes accordingly: this 
would skew the distribution of Twitter flows towards the LODES data at the cost of introducing 
an additional error term. Commuter flows are a geographic phenomenon and as such spatially 
dependent, i.e., the effect varies regionally. We have hence two different spatial error models that 
combine. The development of such a combined model is beyond the scope of this research. 

The clustering process identifying the candidate locations based on which we quantify the Twitter 
flows is biased towards regions that are visited multiple times by the same user. By doing so, the 
flow detection becomes robust against outliers caused by one-time trips to otherwise never visited 
regions. However, by filtering the data like this, we also eliminate locations that are visited only 
rarely by individuals but attract large numbers of people. Places like holiday destinations, national 
parks or sports venues potentially fall in this category. 

Mobility data can provide intimate insights into people’s lives. To protect Twitter users’ privacy, 
we apply the principle of data economy throughout the entire workflow and only disclose results 
in which the spatial and temporal aggregation prevents the identification of individuals, following 
the “geo-privacy by design” guidelines by (Kounadi and Resch, 2018; Kounadi et al., 2018). 

5.2 Discussion of Results and Relevance for Transportation Planning 

This research acknowledges that transportation planning and policy requires long-range planning 
including the use of demographic forecasting and travel demand modeling to direct infrastructure 
investments. Researchers use existing data sources like the US Census Bureau’s LEHD and its 
derivative data products such as LODES to support these analyses, but they do not capture non-
commuting trips and are unsuitable for short-term fluctuations. For example, the 2020 commuting 
data will not be available to the researchers until at least 2022, limiting the ability of researchers to 
draw immediate and meaningful conclusions about the impact of the pandemic. While it is true 
that large firms and city agencies may rely on data gathered from a variety of sources such as 
remotely sensed imagery data or data from passive sensors, such data is inaccessible to the majority 
of transportation planning researchers and professionals.  

In recent years, the prevalence of volunteered geographic information and similar data sources 
made available by commercial providers like SeeClickFix (online, 2020c), Waze (online, 2020e), 
(Plunz et al. 2019) have assisted planners and city managers to undertake just-in-time planning, 
usually by making modest adjustments in response to public requests for intervention. These 
interventions tend to work well in well-defined jurisdictional areas (within city limits, for example). 
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They also tend to be “reactive”, more suited for transportation management, rather than future-
oriented planning. In this research, we used geo-referenced tweets as a freely available data source 
to support and substantiate the data gathered through official sources such as the US Census 
Bureau. One of the limitations that we wish to note is that while Twitter data are indeed free to 
access, some technical expertise is necessary to scrape the data using published APIs. In addition, 
the company’s policy changes enacted in 2015, made it easier for twitter users to tweet without 
sharing their actual geo-location, thereby reducing the volume of geo-referenced tweets available 
for analysis. In other words, unless a Twitter user turned on their “geo-location”, we will not know 
where they tweeted from, even if they tweet about a particular location (unless we engage in 
considerably more sophisticated semantic analyses). From an analytical perspective, this absence 
of location information adds to additional challenges related to reliability of data gathered.  

In our research, we compared flow data using different methods, each of which highlighted 
different features/aspects of the data we examined. We clustered tweets spatio-temporally to filter 
repeat trips of the same twitter ID, and then created routes for each origin-destination pair. Once 
we had O-D pairs, we were able to compare LODES data alongside the twitter data to determine 
road segment loads. We also determined trip purpose by mapping the origin and destination 
locations of the tweets and linked them with land uses at census block level. Please note that we 
only used geo-located tweets, which is a much smaller set than all tweets – this can be considered 
a limitation, but it also adds to data authenticity and reliability for this type of research without 
having to rely on the semantic interpretation of tweet contents. 

When focusing on correlations between flow magnitudes, we found the most influential factor to 
be spatial scale. When we examined our results at a county by county level of analysis, our model 
of flows using LODES and Twitter data are quite similar. In other words, the informal (more 
frequently available) geosocial data and the official (more infrequently available) census-based data 
confirm that the same road segments are more frequently traversed. When we examine the very 
same data at a finer scalar resolution – i.e., at looking at flows at the census tract and block, Twitter 
and LODES flows deviate significantly. Given that we identified large differences between three 
spatial scales, it may be worth investigating even more scale levels such as using zip code as a unit 
of analysis to learn more about travel flow dynamics at different spatial scales. What does this 
variability mean to a planner or policy maker? We propose that geosocial network data can allow 
us to draw conclusions about travel flows in the absence of census data as long as we are looking at 
broad flow patterns across counties. It will become increasingly unreliable if we attempt to rely 
exclusively on geosocial data to draw conclusions about finer grain movement flows such as 
between census tracts without additional supporting analyses not yet explored through our 
research. Our research team is interested in exploring another alternative to using administrative 
units by using regularly spaced grid cells to explore arbitrary spatial scales. 

One of the strengths of our study is that we acknowledged that it is not useful for transportation 
planners to focus only on the start and end points of the origin-destination matrix. Travel 
movement occurs along road networks and our analysis is anchored and linked to existing road 
networks. Vehicular travel on road networks accounts for a majority of trips in the Bay Area and 
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our study incorporates these trips. In the future, this research can be expanded to include transit 
routes. By integrating the street graph, we were able to circumvent the constraint of simply 
matching OD pairs to one another and comparing the individual street segments used to facilitate 
the flows allowed us to compare different flows with much higher granularity. We found that the 
street segment data deviate significantly, especially during rush hours. This suggests that Twitter 
flows capture regular trips with purposes other than commuting. We also used the street-level data 
to show that a large portion of Twitter flows cover very short distances compared to LODES. We 
attribute these to trip purposes other than direct travel to work, even though many of them fall 
into rush hour times. The differences between LODES and Twitter data in the land-use class 
connections support this interpretation. They show that LODES data contain fewer connections 
between residential areas compared to Twitter flows. Aside from residential-to-residential 
connections, the proportions of the remaining land use classes are also very dissimilar for the two 
datasets, which is yet another indicator of different trip purposes.  

Our original goal was to use the finer temporal grain of twitter data (minute by minute rather than 
year to year) available in a densely populated and tech-savvy region such as the Bay Area could 
support a different kind of planning: planning in close-to-real time, to allow for decision-making 
related to  modest capital improvements and other planning and policy interventions that are likely 
to benefit the public.  For the reasons stated earlier, we were not able to make this case to our 
complete satisfaction. We were able to fill in information gaps in the LODES data by using twitter 
data in two-year time partitions but not for shorter temporal windows because of the data 
availability challenges resulting from relying on geolocated tweets only. Other methods of passive 
data sensing may address this problem, but those approaches were not the focus of our 
investigation.   

A significant portion of the land-use class connections are residential to residential trips. This is 
not a surprising result for the Twitter flows, since we expected movement between different private 
residences as part of day-to-day social interactions. In the LODES data, however, this was 
unexpected, since we did not expect many residential areas to function as workplaces. We suggest 
possible reasons for this unexpected observation: areas classified as residential areas in our land-
use data could in fact be compound areas of different land-use classes. Also, by integrating the 
land-use data on the census block level, compound areas would have been aggregated to the most 
dominant land-use class, thereby obscuring some commercial land-use class parcels. 

LODES data are available for the entire US, as are Twitter data. Therefore, it is possible to transfer 
our study design as-is to other geographical areas, although local variations in Twitter usage 
patterns will determine the explanatory value of the results. Depending on the area of interest, 
different mobility data like mobile phone usage statistics or data from other geo-tagged social 
network platforms may be better suited for the task. Another factor to be taken into account in 
this discussion is the representation of the underlying population in the data. Population groups 
who are not willing or able to participate in social media are likely to be underrepresented and need 
to be included by means of different data sources like surveys. 
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We now have the answers to our four research questions. 

1. It is relatively straight forward to extract travel flow patterns from geo-social network 
data. Even without any further semantic analysis, there is enough voluntarily 
georeferenced data available to arrive at tens of thousands of tweets for a study area the 
size of the none-county Bay Area. With temporal constraints added (repeat tweets by 
the same user, multiple tweets having to fall within a 3-hour window from distinct 
locations within the study area), we can extract movement information.  

2. The geo-social network data evidently does not represent commuter flows as provides 
by LODES data. The traffic patterns derived from tweets consist of significantly shorter 
(repeat) trips. 

3. This is especially true for large-scale (neighborhood level) flows. Only at the scale of 
overall county-to-county flows, which are captured by the longer trips, can we find a 
relatively high match rate between the LODES and the geo-social network data. 

4. Virtually all geo-social network-derived trips are complementary to the LODES-based 
commuter trips. As such, this new source of data forms an excellent addition to the sparse 
survey data that has so far been used to infer about non-commuting trips. 

As determined by the FHWA, only 16.6% of vehicle trips on US streets are work-
related, which means these trips are accounted for by LODES data. The remaining 
83.4% of trips are not, however, covered by this dataset. We showed that non-work-
related traffic flows have different spatiotemporal characteristics from work-related ones, 
which makes traffic models purely based on LODES insufficient for a wide range of 
applications. We therefore see the need for data complementary to LODES to cover the 
remaining flows at a comparable spatial granularity. We see the methods presented in 
this paper as a step toward the development of such a dataset. 

Our research was originally aimed at determining to what degree geo-social network data could be 
used to substitute for or augment LODES data at finer temporal grains. The answer to this 
endeavor is a clear no; geo-social network data is a poor substitute for the LODES data, especially 
for smaller temporal windows. However, quite to our surprise, it turns out that extremely high 
correlation rates of street segment use between the two data sources suggests that although 
LODES data is intended to capture only commuter flows, it is actually an excellent predictor of 
overall traffic loads for non-rush hour and weekend trips. This should be a relief for the 
transportation planning community because it validates the existing practice of using LODES data 
as a stand-in for all kinds of traffic demands. 

The question of whether a geo-social network data-derive trip is a commute can be addressed by 
integrating various types of information. In this study, we chose land-use data as an additional 
source of information. However, it is also possible to extract semantic information from the tweets 
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by analyzing their text content (Steiger et al., 2015). It would be worthwhile to compare the merits 
of these two approaches. 

We began this research while the nation was navigating the demanding challenges imposed by the 
pandemic. Travel flows were altered dramatically. We anticipate that we will be able to assemble 
and review geosocial network data from 2020 to 2022 and compare with previous years in order to 
draw conclusions about changes in travel flows and their potential impacts. Our research and our 
approaches have prepared us to conduct this new research which would allow for a more robust 
discussion about where people were going during the pandemic year, which routes were used more 
frequently. By conducting sentiment analyses of the tweets, we could also draw conclusions about 
why they traveled at all. Given that the much of the Bay Area region observed a shelter-in-place 
order for 2020, this may yield interesting and new findings about non-work trips which continues 
to be a neglected component of conventional transportation flow analyses.  
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Abbreviations and Acronyms 
DBSCAN Density-Based Spatial Clustering of Applications with Noise 

FHWA Federal Highway Administration 

LEHD Longitudinal Employer-Household Dynamics 

LODES LEHD Origin-Destination Employment Statistics 

OD  Origin-Destination 

OSM  Open Street Map 
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