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Executive Summary 
Connected and automated vehicles (CAVs) have started to penetrate into the existing 
transportation system in the past few years. They have the potential to reduce human errors, which 
is the primary cause of crashes, by either aiding drivers through the use of smart features or by fully 
eliminating the role of humans in driving at higher levels of automation. The research on CAVs 
and their potential effects on safety and operations has been analyzed by many researchers using 
simulation techniques. However, identifying the factors that affect crash occurrence would help 
answer outstanding questions related to the overall safety effectiveness of CAVs. 

The studies on fatal crash occurrence in the past have shown that road geometry, traffic control 
devices, and the speed of vehicle are common factors causing crashes. With the inclusion of CAVs 
equipped with smart features, the factors affecting crashes may vary. However, the current 
literature documents little to no research on the factors influencing fatal crashes and fatal crash 
occurrence considering real-world crash data of level 1 and level 2 CAVs. Further, the efficiency 
of smart features tested in laboratories or in controlled environments may vary depending on 
driving conditions. Thus, there is a need to identify the factors influencing fatal crashes involving 
vehicles with varying levels of automation and the effectiveness of various smart features in 
improving safety to proactively plan for infrastructure at higher penetrations, improve safety, and 
reduce the number of fatal crashes. The objectives of this research, therefore, are (1) to collect and 
comprehensively evaluate data pertaining to the levels of vehicle automation and what each level 
entails from a safety perspective, considering selected models/makes, their manufacture year, and 
specifications; (2) to research the trends in the penetration of level 1 and level 2 CAVs; and (3) to
model the effect of level 1 and level 2 CAVs on fatal crashes and fatal crash occurrence. 

Fatal crash data for 2016–2019 was obtained from the Fatality Analysis Reporting System (FARS)
database and vehicle identification numbers (VINs) of all vehicles involved in crashes were 
extracted. Using the VINs, smart features in each vehicle involved in a crash were retrieved from 
the National Highway Traffic Safety Administration (NHTSA) database by creating a tool in 
Python. Crash related datafiles and data of smart features were combined to form a complete 
dataset for modeling. Using the Society of Automobile Engineers (SAE) International levels of 
automation, each vehicle was classified into a level of automation based on the smart features in 
the vehicle. 

For the purpose of comparison of crashes involving level 1 and level 2 CAVs with level 0 vehicles,
three nearest fatal crashes involving level 0 vehicles were identified and considered as 
corresponding samples for level 0 crashes in modeling. A proportional odds (PO) test was carried 
out to identify the slopes of different independent variables and it was identified that some of the 
independent variables have unequal (varying) slopes. Thus, a partial proportional odds (PPO)
model was developed to identify the factors influencing crashes involving level 1 and level 2 CAVs
compared to crashes involving level 0 vehicles. To identify the effectiveness of various smart 
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features, which are designed to enhance safety for corresponding types of crashes, comparative 
analysis was carried out between vehicles equipped with features and other vehicles involved in 
fatal crashes. 

The results from the PPO model indicate that level 1 and level 2 CAVs are less likely to be involved
in crashes at four-way intersections, on two-way routes with medians, at nighttime, and in 
conditions with poor lighting compared to level 0 vehicles. In contrast, the CAVs have higher 
odds of being involved in crashes with non-motorists such as pedestrians and bicyclists compared 
to level 0 vehicles. The CAVs were also found to be more involved in crashes on one lane routes 
compared to level 0 vehicles. The results from the comparative analysis indicated that adaptive
cruise control (ACC) and forward collision warning system (FCWS) are not efficient in improving
safety in case of rear-end collisions. However, vehicles with pedestrian automatic emergency 
braking (PAEB) and lane-keeping assistance (LKA) are efficient in improving safety by reducing 
collisions with pedestrians and roadside departures, respectively. The findings and results from this 
research could be used in identifying the factors affecting fatal crashes involving CAVs, and 
potential areas for improvement in vehicular technologies as well as road geometry. 
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1. Introduction 
In the United States, motor vehicle crashes are one of the top ten causes of death,1 resulting in 
congestion and increasing safety concerns. In 2019, over 2.35 million people were injured or 
disabled, and 36,096 people lost their lives solely because of road crashes.2 The cost of one fatality 
related to a motor vehicle crash is $1,704,000, while the cost of evident injury is $28,500.3 

According to the Centers for Disease Control and Prevention (CDC), the cost of medical care 
and productivity losses due to motor vehicle crashes (injuries and fatality) was reported to be more
than $75 billion in the United States.4 Drivers are at risk of being involved in a crash, regardless of
whether they drive the safest vehicle or on familiar roads in normal conditions. 

Several factors related to driver errors, such as improper lane changes, excessive speed, and 
inattentiveness while driving, cause many crashes. According to Traffic Safety Facts from the 
National Highway Traffic Safety Administration (NHTSA), approximately 94% of crashes in the
United States between 2005 and 2007 were caused due to human errors.5 Connected and 
automated vehicles (CAVs) are expected to enhance traffic safety and operation by reducing
human involvement in various driving tasks with the help of assistance provided by smart features.
In the past few years, a plethora of research work focusing on the effects of CAVs on traffic safety,
operation, and human involvement have been published by researchers working in transportation. 
However, level 1 and level 2 CAVs are already penetrating the market, and their effects on crash 
occurrence needs to be identified. 

The smart features engaged in CAVs reduce the involvement of humans in driving and could 
potentially eliminate human errors. However, driver reliance on these features may also result in 
inattentiveness while driving. While sitting idle in the driving seat, drivers may use mobile phones 
or perform other secondary tasks, which could result in cognitive distractions, affecting attention 
and judgment.6 Thus, it is also important to examine changes in driver’s behavior while driving
vehicles equipped with varying levels of automation to determine the potential safety effects of the 
smart features.7 Further, the attentiveness of drivers has also been found to vary based on 
individuals age and gender, as well as road environment.8 

Investigating the factors affecting crashes involving level 1 and level 2 CAVs provide insights on 
the involvement of CAVs equipped with smart features designed to enhance safety in certain types
of crashes. Furthermore, the findings of this study also help to identify the involvement of CAVs 
in crashes, which would help manufacturers and practitioners modify existing CAVs and design 
new policies. 

1.1 Problem Statement 

Motor vehicles and driver interactions are likely to change significantly in the next few decades, 
perhaps more than they have in the past. Recent and ongoing advances in vehicle automation 
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technology have created very high expectations regarding highway performance, safety 
improvements, and environmental benefits. As human error is the leading cause of road crashes in 
the United States, CAVs are expected to reduce the number of crashes caused by drivers through 
the gradual removal of the role of human decisions in driving. 

Although the deployment of driving assistance and autopilot features has increased over recent 
years, fully automated CAVs are not yet a reality, apart from a few test vehicles. Without a high 
penetration rate, the safety benefits of CAVs may not be maximized. Furthermore, the safety
benefits also depend on how heavily the driver relies on driver assistance, autopilot, and other smart
features. Additionally, some recent crashes involving vehicles with collision avoidance and 
autopilot systems, resulting in deaths, indicate that CAVs may not yet be effective all of the time. 
Potential reasons are related to disengagement and smart features abilities to sense and control 
the CAV irrespective of the geographic location, geometric configurations, environmental and 
traffic conditions, and time of day. 

Understanding the effect of the transition from no CAVs to level 1 and level 2 CAVs, and 
ultimately all CAVs, on the overall safety of the transportation system could be more challenging 
than expected. A comprehensive safety analysis to examine the trends in crashes over time in 
conjunction with the advancements in vehicle technology is the first step. Such analysis should be 
complemented with modeling to identify factors associated with level 1 and level 2 CAV crash 
involvement when compared to non-automated (level 0) vehicles. Therefore, there is a need to 
analyze crash data and identify factors that play a role in crashes involving level 1 and level 2 CAVs.
Due to the potential reduction in driving efforts and the transition to CAVs, the conventional 
perception of ownership of vehicles can also be influenced over time. Therefore, there is a need to 
examine the market trends, probable shift to CAVs (mode shift), and projected effect of vehicles 
with different levels of automation on crashes. This will help in developing a readiness plan to 
proactively address anticipated safety challenges in future years. 

1.2 Research Objectives 

The objectives of the proposed research are as follows: 

• To collect and comprehensively evaluate data pertaining to the levels of vehicle automation
and what each level entails from a safety perspective, considering selected models/makes, 
their manufacture year, and specifications. 

• To research the trends in the penetration of level 1 and level 2 automated vehicles (AVs). 

• To model the effect of level 1 and level 2 CAVs on fatal crashes and fatal crash occurrence. 

The descriptive statistics from crash data provide an overview of the number of crashes involving 
level 1 and level 2 CAVs. The PPO model results compare the CAVs with level 0 vehicles and 
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identify the factors affecting occurrence of fatal crashes involving level 1 and level 2 CAVs. The 
findings also help in identifying the factors related to vehicle, road geometry, and crash, for 
implementing policies to improve the safety of the existing transportation system and serve as an 
overview of current involvement of CAVs in fatal crashes. 

1.3 Organization of the Report 

The remainder of the report comprises six chapters. Chapter 2 summarizes past literature related 
to the effects of CAVs on safety, factors affecting fatal crashes, occurrence of fatal crashes, and 
market penetration trends of CAVs. Further, the effects of CAVs on the occurrence of fatal crashes
is summarized along with the limitations of past research. Chapter 3 presents the methodological 
framework adopted for this research. Chapter 4 describes the study area, data collection, and 
processing methods along with the descriptive statistics of the data used in this research. Chapter 
5 discusses the modeling technique used and the results from the partial proportional odds (PPO) 
model of level 1 and level 2 CAVs. The summary of vehicles equipped with various smart features 
and their efficiency in reducing fatal crashes is presented in Chapter 6. Chapter 7 presents the 
summary of this research, along with conclusions and the scope of future research. 
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2. Literature Review 
This chapter presents an overview of past research associated with factors affecting fatal crashes, 
levels of automation, and the effects of CAVs on traffic safety and operations. Further, additional 
discussions related to studies on the effect of CAVs on mode choice, trip generation, and 
penetration of CAVs into the automobile market are presented. 

2.1 Factors Influencing Crashes 

In the past, many researchers focused on identifying factors influencing crashes, such as the 
dimension of medians,9 side traffic barriers,10 speed limits,11 road infrastructure,12 highway class, 
demographic characteristics13 and adverse weather conditions.14,15 Some researchers also evaluated 
the effects of red-light cameras,16,17 road surface,18 intersection type,19 and annual average daily 
traffic (AADT) on crashes at intersections.19,20 These studies are a few examples efforts on 
identifying the factors related to crashes or using before and after analysis to determine 
improvements in traffic safety. 

In addition to the road and geometry-related factors, vehicle characteristics (smart features, safety 
standards, size, and type of vehicle) also influence crash injury severity. However, most vehicle 
safety devices are considered as secondary measures as their existence cannot prevent a vehicle from
getting involved in a crash. Their sole purpose is to reduce the effect of a crash on the drivers and 
passengers. For example, vehicle safety devices such as seatbelts,21-23 airbags,22 and antilock braking 
systems21 reduce injury severity in a crash. 

A report published by the NHTSA shows that more than 94% of all motor vehicle crashes are 
caused by human error.2 The causes of human error generally vary for different age groups. Teen 
drivers (below 20 years of age) generally get involved in crashes because of their immaturity, lack 
of skills, inexperience, and aggressive driving nature. Thus, the crash rate per miles driven and 
crash rate per number of license holders are higher for teens than for adults.24 In contrast, elderly 
drivers (above 65 years) generally suffer from age or health-related problems which affect their 
reaction time, ability to divide attention between multiple tasks, and vision,25 due to which their 
chances of getting involved in a crash are higher compared to adult drivers.26 In addition to age, 
several other factors such as gender, distracted driving, and driving under the influence of alcohol 
or drugs also influence the likelihood of getting involved in crashes. 

2.2 Levels of Automation 

CAVs are expected to reduce the number of crashes caused by drivers through the gradual removal
of the role of human decisions in driving. CAVs are characterized as smart vehicles that can 
interact with other vehicles and infrastructure to avoid any possible crashes resulting from human 
errors like inattentiveness, distracted driving, or aggressive driving. They are driving the existing
market because of increasing emphasis towards safety, advancement of the vehicle to vehicle (V2V) 
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and vehicle to infrastructure (V2I) connectivity, and introduction of the internet of things (IoT) 
in the automobile industry. 

According to the Society of Automotive Engineers (SAE) International, CAVs will integrate on 
roads using six different automation levels.27 Vehicles without any smart features are categorized 
as level 0 (or non-CAVs). Vehicles that the driver could control but with features to assist the 
driver in handling lateral movement by ensuring that the vehicle stays in the lane or linear 
movement by controlling the acceleration and braking function qualifies as level 1. Partially 
automated (level 2) vehicles have automated functions that can control both acceleration and 
steering, but, driver has to steer, accelerate or break when needed to maintain safety.27-29 

Level 3 vehicles should perform all driving tasks under limited circumstances such as driving on 
freeways or straight routes. Simultaneously, the human driver has to control the vehicle at any 
time, especially when there are multiple lane markings (mostly at intersections). Level 4 and level 
5 vehicles are not yet available in automobile markets for vehicle owners. Still, several automobile 
manufacturers are working on developing such vehicles that have the capabilities of self-driving 
and require limited to no human efforts in performing driving tasks.27 

2.3 Operational and Safety Effects of CAVs 

Several studies have evaluated the effect of CAVs on road operational performance by considering
various measures such as the average speed,30 travel time and travel time reliability,31-33 number of 
stops,34 and delay at nodes or intersections in a particular network.34 A few researchers have 
evaluated the safety effects of CAVs using surrogate safety assessment model (SSAM).35,36 Some 
researchers identified the effects of smart features of CAVs on safety. Examples include the effects 
of automated braking system (ABS),37 lane-keeping assistance (LKA),38 adaptive cruise control 
(ACC),37,39 forward collision warning system (FCWS),38 and crash avoidance technology37 on 
safety. To analyze the effects of vehicles on safety, researchers have developed different parametric
and non-parametric models such as negative binomial model,40 spatial autoregressive model,40 

modified negative binomial regression,41 multivariate adaptive regression,40 bootstrap-based binary 
logistic regression,42 random parameter models,43 and intelligent driver models.44 

Based on the detailed review of previous research studies, microscopic simulation is the most 
common method adopted to evaluate the safety effects of CAVs.45 However, accurately calibrated 
models and appropriate surrogate safety measures are required to improve the degree of reliability 
of the simulation results.45 This is not feasible for this study due to the insignificant number of 
CAVs in use in the transportation system at this time. Although level 1 and level 2 CAVs are 
available in recent years, only a few studies have used real-world data to identify CAVs safety 
effectiveness. 

There are limited studies comparing the safety effects of CAVs with level 0 vehicles. Researchers 
have conducted a comparative analysis of the driving potential of human drivers and CAVs using 
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real world data of crash rate per million vehicle miles travelled.46 There are potential barriers that 
CAVs must overcome to eliminate human interaction while performing driving tasks in a real-
world scenario. CAVs are considered to be safe and efficient, but are still involved in crashes. The 
potential reasons they are mostly involved in crashes include disengagement of automated features,
false detection of objects, and perception discrepancies.47,48 Additionally, some recent crashes 
involving vehicles with collision avoidance and autopilot systems, resulting in deaths, indicate that
CAVs may not be yet effective all of the time. 

2.4 Penetration of CAVs 

The benefits of CAV technology largely depend on a higher market penetration rate. The CAVs 
are expected to enhance traffic safety and operational performance of a transportation system 
through reduced reaction times, shorter gaps between vehicles (platooning), and efficient route 
choices. Market penetration is the percent of CAVs in the total fleet mix. Over the years, market 
penetration may vary from level 1 (partial automation) to level 5 (full automation). A few studies 
aimed to predict market penetration over time by analyzing technology trends and travel 
preferences.49,50 Lavasani et al. (2016)49 developed a market penetration model based on the 
adoption patterns of other technologies such as smartphones and the internet. Assuming CAVs 
are available in 2025, the study results indicate 7% CAV penetration in 2035 and 75% CAV 
penetration in 2060 in the United States.49 

Similarly, Chen et al. (2016) also found that it would take between 12 and 25 years for 75% 
penetration of CAVs.50 Kröger et al. (2019) used a vehicle technology diffusion model and 
presented existing trends and extreme adoption scenarios for the year 2035 in United States and 
Germany.51 The penetration of CAVs based on the existing trend scenario was projected to be 
10% and 8% for United States and Germany, respectively. However, considering the extreme 
adoption scenario, the CAVs penetration rate is expected to be higher (38%) in Germany
compared to the United States (29%) due to a higher share of luxury cars and quicker fleet turnover.
Bansal and Kockelman (2017) surveyed 2,167 Americans using a stated preference survey about 
CAV technologies.52 The results suggest that privately-owned CAVs would have 24.8% 
penetration by 2045, assuming an annual reduction of 5% in the price of a CAV. However, the 
share jumps to 87.2% if prices decline by 10% every year. 

Nieuwenhuijsen et al. (2018), in their study on penetration of CAVs, generated three possible 
scenarios by varying parameters such as consumer’s attitude towards CAVs, economic growth, 
technological developments, and policies related to CAVs.53 In the base scenario, varying policies 
related to CAVs and car-sharing success rates were tested. It was estimated that in 2025, the 
market share of level 1 and level 2 CAVs would be 21% and 51% respectively. In the other two 
scenarios, positive attitudes towards CAVs, strong economic growth, and higher technological 
enhancements were considered, and it was projected that in 2025, market penetration of level 1 
and level 2 CAVs would be 8% and 24% under conservative, and 3% and 10% under the progressive
scenario.53 
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2.5 Limitations of Past Research 

Understanding the effect of the transitions from level 0 to level 1 and some level 2 CAVs to all 
CAVs on the overall safety of the transportation system could be more challenging than expected. 
A comprehensive safety analysis to examine the trends in crashes in conjunction with 
advancements in vehicle technology is the first step. It should be complemented with synthesizing 
and identifying risk factors associated with fatal crashes involving level 1 and level 2 CAVs when 
compared to level 0 vehicles. Therefore, this research focuses on bridging this research gap by 
synthesizing and identifying risk factors influencing fatal crashes involving level 1 and level 2 
CAVs compared to level 0 vehicles. Further, identification of makes of all level 1 and level 2 CAVs 
involved in fatal crashes would also provide information to the practitioners as well as industrial 
experts for future vehicular and policy modifications. 

While the penetration of CAVs into the market is expected to increase over time, they currently 
account for hardly 1% of the vehicles using the transportation system. A quick comparison of 
vehicles involved in fatal crashes indicate that level 1 and level 2 CAVs are involved in ~1.8% of 
fatal crashes from 2016 to 2019 in the United States. Considering all level 0 vehicles involved in 
fatal crashes for comparative analysis could skew the research findings. The influence of risk factors 
on crash involvement could be controlled by using crashes involving level 0 vehicles within the 
vicinity of level 1 and level 2 CAVs. Such a nearest neighbor-based study design will help to 
identify and better understand the role of risk factors influencing fatal crashes involving level 1 and 
level 2 CAVs compared to level 0 vehicles. It will also help minimize the effect of unobserved 
heterogeneity and randomness associated with the influencing risk factors. 
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3. Methodology 
This chapter presents the methodology to identify and compare the factors influencing fatal 
crashes involving level 1 and level 2 CAVs with level 0 vehicles. 

3.1 Study Area and Data Collection 

The study area for the research was selected to maximize the number of level 1 and level 2 crashes 
to assess the effects of spatially varying geometric characteristics. To examine the safety effects of 
level 1 and level 2 CAVs on the United States’ transportation system, samples from all states were 
considered for analysis in the present research. For identifying the sale and penetration of level 1 
and level 2 CAVs, various statistical datasets and the current literature on market penetration was 
reviewed. 

To identify the effect of various levels of automation on fatal crashes, fatal crash data of United 
States was collected from the Fatality Analysis and Reporting System (FARS) database. Fatal crash 
data from 2016 to 2019 was considered for the purpose of modeling. Further, to identify the smart 
features in vehicles involved in fatal crashes, the vehicle identification number (VIN) of all the 
vehicles was used and data pertaining to smart features was retrieved from the NHTSA database. 

3.2 Data Processing 

This step involved processing the raw data obtained from FARS and NHTSA databases. The raw 
FARS data was divided into separate files related to crash, vehicle, pedestrian, and other 
characteristics. Initially, the data obtained in separate files from 2016 to 2019 was linked using the 
case ID and year, which were the common fields in all files. Further, the data from each year was 
combined to form a common dataset. Some of the samples had missing values or not-reported 
data, and were subsequently removed.  

The VIN of all vehicles in the combined dataset was extracted as a separate file and data related to 
all vehicles based on VIN was obtained using a Python script. A loop was created to identify 
information of all the vehicles in a single trial. The loop looks up each VIN in the input list, 
connects with the VIN dataset of NHTSA, and returns the information of all smart features in 
the form of a list. Finally, the retrieved data including the VINs and information about smart 
features engaged in vehicle was joined with the FARS dataset.  

Level 1 and level 2 vehicles made up only ~1.8 % of the obtained dataset. Further, various regions 
were identified to have no crashes involving level 1 or level 2 vehicles. Thus, for a more balanced 
comparison, and to minimize the spatial variance in the geometric characteristics, for every crash 
involving a level 1 or level 2 vehicle, three nearest neighbors (level 0 crashes) were identified. 
Samples involving one or more CAVs with different levels of automations were also identified and 
considered as separate data points in the analysis. Before modeling, the samples with unknown or 
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unidentified values were eliminated. Chapter 4 provides a detailed overview of the study area, data 
collection, and processing. 

3.3 Synthesizing the Safety Effects of CAVs 

The factors affecting level 1 and level 2 CAVs may vary due to vehicular characteristics. Thus, 
both levels of automation were considered as separate categories. A variable indicating the highest 
level of automation amongst all vehicles involved in a crash was considered as the dependent 
variable. The partial proportional odds (PPO) model is popular amongst various logistic regression 
models because it provides flexibility by considering varying slopes of the independent variables. 
As the level of automation is considered as the dependent variable, the PPO model provides 
flexibility to model the factors which may not get affected due to level 2 automation compared to 
level 1 automation with equal slope along with unequal slopes for other variables. Thus, a PPO 
model was developed using level of automation as a dependent variable and factors related to road 
geometry, crash and vehicular characteristics, as well as pedestrians and bicyclists involved in crash 
as independent variables.  Chapter 5 provides an overview of the results. 

3.4 Analysis of Safety Provided by Smart Features 

The projected safety benefits of CAVs due to the presence of smart features also needs to be 
evaluated to identify the pros and cons of the CAVs. To identify the effect of smart features on 
the occurrence of fatal crashes, vehicles equipped with various smart features were identified using 
the smart features data obtained from the NHTSA database. Likewise, the purpose for which 
smart features were designed and the corresponding crash types they could mitigate were also 
identified. The involvement of vehicles with and without smart features was summarized in 
Chapter 6 to assess the overall improvement in safety due to presence of smart features. 
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4. Study Area, Data Collection, and Processing Methods 
This chapter provides an overview of the study area, data, and data processing. Descriptive statistics 
are also presented in this chapter. 

4.1 Study Area and Data Collection 

The data pertaining to fatal crashes in the United States from 2016 to 2019 was obtained from the 
FARS database. The FARS database contains information related to fatal crashes including 
information on the vehicles involved in the crashes, pedestrian involvement in the crashes, and 
other factors. The geometric condition of the road on which each crash occurred, the weather 
conditions, and time of day are also included in the database. Further, the information related to 
smart features in vehicles involved in each crash was obtained separately from the NHTSA 
database using VIN. 

4.2 Data Processing 

The data related to all the parameters was obtained from the FARS and NHTSA databases. The 
data processing used for this research is summarized as shown in Figure 1. 
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Figure 1. Data Processing Framework 
 

 

 
The crash database consisted of several files with different crash parameters related to vehicles, 
pedestrians, drivers, and visibility while driving. All datasets share a common case number, which 
was used to compile the full dataset used in this research. A Python script was developed to 
generate a loop including all the VINs, which directly calls the NHTSA database and returns all 
the information related to smart features such as ACC, LKA (sometimes referred to as lane 
centering assistance), pedestrian automatic emergency braking (PAEB), and FCWS. 

The data obtained from the NHTSA database had information about several features engaged in 
vehicles. As per the six levels of automation described by SAE International,27, 28 the vehicles were 
classified into three different groups: level 0, level 1, and level 2. The vehicles without the LKA or 
ACC were classified as level 0 vehicles. The vehicles with either LKA or ACC were classified as 
level 1 CAVs, whereas vehicles with both LKA and ACC features were classified as level 2 CAVs. 
Information about engagement of features in a crash was not available in the dataset.  

The VIN data showed that a limited number of level 1 and level 2 CAVs were involved in fatal 
crashes before 2016. While not many level 1 and level 2 CAVs were purchased by vehicle owners 
prior to 2016, the number has increased considerably in recent years. Further, the crash data also 
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indicated that only 46 out of 52,714 vehicles involved in a crash in 2016 qualified as either level 1 
or level 2 automation. Therefore, the crash data of previous years was not considered and only data 
for the years 2016 to 2019 was used for the analysis. In case of a crash involving both a level 1 and 
level 2 CAVs, it was considered in both the categories to capture the effect of vehicular 
characteristics on crash occurrence. Figure 2 shows the location of all crashes involving level 1 and 
level 2 CAVs in the United States. The total number of fatal crashes involving level 1 or level 2 
CAVs was 2,428 (~1.8%) compared to 136,471 (~98.2%) fatal crashes involving level 0 vehicles. 

Figure 2. Fatal Crashes Involving Level 1 and Level 2 CAVs (2016–2019) in the United States 

 

The number of crashes involving level 1 and level 2 CAVs increased from 22 and 24, respectively, 
in 2016 to 537, and 1,062 in 2019. Figure 3 shows the yearly number of fatal crashes involving 
level 1 and level 2 CAVs. It is noticeable that level 2 crashes are almost double the number of level 
1 crashes in 2019 which may be due to the increasing penetration of level 2 CAVs compared to 
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level 1 CAVs. The involvement of level 1 and level 2 CAVs in fatal crashes also varied based on 
the make and model of the vehicle. The number of level 1 and level 2 CAVs involved in fatal 
crashes is summarized in Appendix 1.  



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  16 

Figure 3: Yearly Fatal Crashes in United States Involving Level 1 and Level 2 CAVs  

 

If the sample size is uneven Cover and Hart recommend using nearest neighbors for the analysis.54 
The number of neighbors selected for comparison should be large enough to reduce the chances 
of biased estimates. Selecting neighbors in proportion to the samples in the reference group (in 
this research crashes involving level 1 and level 2 CAVs) ensures that points are close enough to 
provide accurate estimates.54 This is also driven by past research findings that crashes are spatially 
correlated.55,56 Considering fatal crashes involving level 0 vehicles within the vicinity of crashes 
involving level 1 and level 2 CAVs also minimizes unobserved heterogeneity and randomness 
associated with influencing risk factors. Therefore, to compare the CAVs with non-CAVs and to 
identify an appropriate sample size for crashes involving level 0 vehicles corresponding to crashes 
involving level 1 and level 2 CAVs, the three nearest neighbors from locations of crashes involving 
level 1 or level 2 CAVs were identified using the ‘nearest neighbor’ tool in ArcGIS Pro. Further, 
the samples with null values amongst identified crashes involving level 1 and level 2 CAVs and 
nearest neighbors involving level 0 vehicles were filtered to remove the samples with not-specific, 
unknown, or unidentified values as per the FARS database.  

4.3 Descriptive Statistics 

A descriptive analysis was carried out to compute the frequency distribution amongst the different 
categories of the independent variables. The frequency and percentage for various categories of 
variables in the dataset were considered for identifying the suitable technique for analysis. Table 1 
shows the descriptive statistics of the crashes involving pedestrian, bicyclists, and vehicles. 
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Table 1. Frequency and Distribution of Variables Related to Persons,  
and Vehicles Involved in Crashes 

Variable Category Frequency (%) 

Level of automation 
0 10,127 (80.66) 
1 863 (6.87) 
2 1,565 (12.47) 

Vehicles involved 

1 3,974 (31.65) 
2 5,835 (46.48) 
3 1,728 (13.76) 
>=4 1,018 (8.11) 

Pedestrian involved 
No 10,841 (86.35) 
Yes 1,714 (13.65) 

Bicyclist involved 
No 12,309 (98.04) 
Yes 246 (1.96) 

 

The descriptive statistics show that the majority of crashes involved either 1 or 2 vehicles. However, 
8.11% crashes involved more than four vehicles. In addition, pedestrian involvement in fatal 
crashes is higher compared to the involvement of bicyclists. The proportion of level 1 and level 2 
CAVs involved in fatal crashes is 6.87% and 12.47%, respectively. 

The variables related to time, location, and functional class of the road on which crashes occurred 
are shown along with the frequency and percentages in Table 2. They indicate that the majority 
of the crashes occurred on two lane routes, and at non-junction locations compared to other route 
types and locations of route. Further, crashes in the urban areas are higher compared to the rural 
areas. The temporal variation of crashes also indicates that the number of crashes is higher on 
Friday, and Saturday compared to other days of week. The number of crashes is also higher from 
3:00 PM to 9:00 PM compared to other time periods. However, the variation is marginal amongst 
all the categories of time of day and day of the week due to which relying on descriptive statistics 
may not provide clear idea about the factors influencing fatal crashes. 

The descriptive statistics of factors related to safety, traffic control measures, and other factors is 
summarized in Table 3. They indicate that normal conditions such as dry road surface, vehicle 
traveling straight before the crash, and tracking (stable) vehicle before the crash occur with higher 
frequencies compared to other categories of corresponding variables. The categories of all the 
variables were observed to identify the ideal conditions as per the past literature and were 
considered as base categories. 

  



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  18 

Table 2. Frequency and Distribution of Variables Related to Time and Location of Crashes 

Variable Category Frequency (%) 

Day of the week 

Monday 1,753 (13.96) 
Tuesday 1,540 (12.27) 
Wednesday 1,636 (13.03) 
Thursday 1,778 (14.16) 
Friday 2,022 (16.11) 
Saturday 2,010 (16.01) 
Sunday 1,816 (14.46) 

Time of the day 

0:00–2:59 am 1,209 (9.63) 
3:00–5:59 am 1,026 (8.17) 
6:00–8:59 am 1,277 (10.17) 
9:00–11:59 am 1,333 (10.62) 
12:00–2:59 pm 1,821 (14.5) 
3:00–5:59 pm 2,152 (17.14) 
6:00–8:59 pm 2,011 (16.02) 
9:00–1:59 pm 1,726 (13.75) 

Area type 
Rural 4,591 (36.57) 
Urban 7,964 (63.43) 

Functional class 

Interstate 2,121 (16.89) 
Principal arterial—other freeways and expressways 810 (6.45) 
Principal arterial—other 4,400 (35.05) 
Minor arterial 2,618 (20.85) 
Major collector 1,288 (10.26) 
Minor collector 315 (2.51) 
Local 1,003 (7.99) 

Number of lanes 

Non-trafficway or driveway access 94 (0.75) 
One lane 172 (1.37) 
Two lanes 6,910 (55.04) 
Three lanes 1,925 (15.33) 
Four lanes 1,705 (13.58) 
Five lanes 1,238 (9.86) 
Six lanes 333 (2.65) 
Seven or more lanes 178 (1.42) 

Portion of the road on 
which crash occurred 

Acceleration/deceleration lane 16 (0.13) 
Crossover-related 28 (0.22) 
Driveway access related 512 (4.08) 
Entrance/exit ramp related 236 (1.88) 
Intersection-related 3,837 (30.56) 
Non-junction 7,614 (60.65) 
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Variable Category Frequency (%) 
Other location within interchange area 95 (0.76) 
Railway grade crossing 20 (0.16) 
Through road 197 (1.57) 

Type of intersection 

Three-way intersection 1,263 (10.06) 
Four-way intersection 2,550 (20.31) 
Roundabout, traffic circle, or multiple-way 
intersection 24 (0.19) 

Not an intersection 8,718 (69.44) 

Presence of work zone 
No 12,203 (97.2) 
Yes 352 (2.8) 

Trafficway type 

One-way trafficway 140 (1.12) 
Two-way, not divided 5,850 (46.59) 
Two-way, not divided with a continuous left-turn 
lane 851 (6.78) 

Two-way, divided, positive median barrier 2,492 (19.85) 
Two-way, divided, unprotected (painted > 4 feet) 
median 469 (3.74) 

Two-way, divided, unprotected median 2,437 (19.41) 
Entrance/exit ramp 222 (1.77) 
Non-trafficway or driveway access 94 (0.75) 
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Table 3: Frequency and Distribution of Variables Related to Safety, and Crash Related Factors 

Variable Category Frequency (%) 

Vehicle at fault 
No 4,801 (38.24) 
Yes 7,754 (61.76) 

Hit and run 
No 12,355 (98.41) 
Yes 200 (1.59) 

Rollover 
No 10,932 (87.07) 
Yes 1,623 (12.93) 

Manner of collision 

Angle 3,336 (26.57) 
Front-to-front 1,918 (15.28) 
Front-to-rear 1,712 (13.64) 
Rear-to-side 39 (0.31) 
Sideswipe—opposite direction 241 (1.92) 
Sideswipe—same direction 378 (3.01) 
The first harmful event was not a collision with a motor vehicle 
in transport 1,421 (11.32) 

Not a collision with motor vehicle in-transport 3,510 (27.96) 

Damage to the 
vehicle 

No damage 254 (2.02) 
Minor damage 1,163 (9.26) 
Functional damage 1,568 (12.49) 
Disabling damage 9,570 (76.22) 

Light condition 

Daylight 6,380 (50.82) 
Dark—lighted or unknown light 2,713 (21.61) 
Dark—not lighted 2,927 (23.31) 
Dawn 259 (2.06) 
Dusk 276 (2.2) 

Fatalities in crash 
1 11,443 (91.14) 
2 890 (7.09) 
>2 222 (1.77) 

Speeding 
No 10,543 (83.97) 
Yes, exceeded speed limit 1,101 (8.77) 
Yes, too fast or racing 911 (7.26) 

Traffic control device 

No control 9,926 (79.06) 
Traffic control signal (on colors) with pedestrian signal 296 (2.36) 
Traffic control signal (on colors) without or unknown 
pedestrian signal 1,373 (10.94) 

Stop sign 625 (4.98) 
Warning sign 156 (1.24) 
Other regulatory sign 68 (0.54) 
Flashing traffic control signal 40 (0.32) 
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Variable Category Frequency (%) 
Highway traffic signal 9 (0.07) 
Railway crossing device or school zone device 26 (0.21) 
Yield sign or person 36 (0.29) 

Presence of curve 
Straight 10,352 (82.45) 
Curve 2,109 (16.8) 
Non-trafficway or driveway access 94 (0.75) 

Surface condition 

Dry 10,774 (85.81) 
Wet 1,435 (11.43) 
Ice/frost 92 (0.73) 
Snow 86 (0.68) 
Mud, dirt, or gravel 40 (0.32) 
Oil or water 34 (0.27) 
Non-Trafficway or Driveway Access 94 (0.75)  
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5. Synthesizing the Safety Effects of Level 1 and  
Level 2 CAVs 

As all the variables were categorical variables, logistic regression techniques, which are most 
suitable for analysis of categorical variables were explored to identify the potential analysis method.  

5.1 Proportional Odds Model  

The dependent variable is ordinal, and the aim of this research is to model and identify the risk 
factors influencing fatal crashes involving level 1 and level 2 CAVs compared to level 0 vehicles. 
Ordered probability models (ordered probit or logit model), a class of logistic models, are 
regression models which can be used when the dependent variable has three or more categories, 
and the order of different categories is important.57 In this research, the fatal crashes involving 
vehicles with different levels of automation are analyzed. They follow a hierarchical order as various 
smart features in level 1 and level 2 CAVs make them safer.38 Thus, ordered probability models 
were identified as more appropriate method for the present analysis.  

The proportional odds (PO) modeling technique may also be appropriate for analysis of this 
problem as there are many parameters related to a fatal crash, and all of them may directly or 
indirectly influence the occurrence of a crash. The PO model provides the odds (likelihood) of 
occurrence of a particular event for a selected category compared to the base category (optimum 
condition). One of the fundamental assumptions of the PO model is that the independent variables 
influence all the categories of the dependent variable identically (equal slope). In other words, for 
a dependent variable, with order Y= 1, 2,….,p, where p>1, the PO model with ‘n’ independent 
variables (X1, X2,….Xn) has (p-1) intercepts with ‘n’ slopes. The PO model is mathematically 
expressed as shown in Equation 1.58-61 

ln#𝑌%&' = 𝑙𝑜𝑔𝑖𝑡[𝜋(𝑥)] = ln4 5(6)
785(6)

9 =∝&+ (𝛽7𝑋7 + 𝛽>𝑋> + 𝛽?𝑋? + ⋯+ 𝛽A𝑋A)  (1) 

The prediction of the PO model represents the expected logit for the category ‘p’ or above and Y’p 
represents the odds of being in higher categories. In order to estimate the probability, PO model 
predictions are required to be transformed as odds, which can be used to estimate probability using 
Equation 2.61 

𝑃(𝑌 ≥ 𝑝) = EFG	#IJ#KLM''
7N	EFG	#IJ#KLM''

         (2) 

The categories of all the independent variables as well as dependent variables along with the 
frequency and percentages are obtained using Statistical Analysis System (SAS) analytics suite.57  
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5.2 Partial Proportional Odds (PPO) Model 

Three fatal crashes involving level 0 vehicles, which were closest in locations to each fatal crash 
involving level 1 or level 2 CAV, were considered for analysis. Thus, it is assumed that the spatial 
heterogeneity associated with fatal crashes involving level 0 vehicles would also be associated with 
fatal crashes involving level 1 or level 2 CAV. Further, the severity level is the same amongst 
samples as only fatal crashes are considered for comparison. Thus, the partial proportional odds 
(PPO) model, which allows flexibility by providing unequal and equal slopes to different 
independent variables, was used instead of other statistical methods which account for 
heterogeneity.  

Prior to developing the PPO model, an odds proportionality test was conducted using SAS. The 
test showed that all the independent variables are not influencing all the categories of the 
dependent variable (fatal crash involvements by the level of automation) identically. In other 
words, some of the factors affecting fatal crash occurrence are different in crashes involving level 1 
and level 2 CAVs. The null hypothesis that all the independent variables have an identical effect 
on all dependent variables is rejected (p-value less than 0.05). Several independent variables have 
unequal slopes, which violates the basic assumption of equal slopes in the PO model. Thus, the 
PPO model was developed using SAS by identifying and assigning both equal and unequal slopes 
to the independent variables, as shown in Equation 3. 

ln 4𝑌′&9 = ln O 5M(6)
785M(6)

P =∝&+ #𝛽7&𝑋7 + 𝛽>&𝑋> + 𝛽?&𝑋? + ⋯ .𝛽A&𝑋A'   

 (3) 

5.3 PPO Model Results 

The results of the PPO model indicate that all the variables shown in Table 4 are significant, 
except the number of lanes, at a 90% confidence level. Further, the individual significance of each 
category of the independent variable ‘number of lanes’ indicated that the category (road with one 
lane) is significant at a 99% confidence level, thus the parameter is not dropped from the model. 
The final model is developed considering all the variables mentioned in Table 4. It is the result of 
modeling using a backward elimination approach, which was considered to remove one variable at 
a time which were not significant to improve the model fit. 
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Table 4. Analysis of Effects 

Independent variable Wald chi-square p-value 
Vehicles involved 46.18 <.01 
Pedestrian involved 7.81 0.01 
Bicyclist involved 3.94 0.05 
Day of the week 23.34 <.01 
Time of day 17.38 0.02 
Functional class 23.89 0.02 
Manner of collision 138.21 <.01 
Portion of the road on which crash occurred 19.57 0.01 
Type of intersection 4.69 0.10 
Fatalities in crash 12.01 <.01 
Vehicle at fault 9.61 <.01 
Rollover 15.34 <.01 
Damage to the vehicle 15.37 0.02 
Speeding 5.91 0.05 
Traffic way type 82.45 <.01 
Number of lanes 10.08 0.12 
Traffic control device 15.02 0.09 
Pre-crash stability of vehicle 23.89 <.01 
Pre-crash movement of vehicle 10.41 0.06 

 

The effects of the independent variables (Table 4) also indicates that number of vehicles involved, 
manner of collision, traffic way type, and pre-crash stability of the vehicle are the most significant 
independent variables. The results of the PPO model developed using SAS along with the odds 
ratio are summarized in Table 5. The Akaike information criterion (AIC) value of the PPO model 
shown in Table 5 is 14978. It was 15496 for the intercept-only model.  

Further, the likelihood ratio and Wald chi-square statistic values are also statistically significant 
(p-value less than 0.01), which indicates that the model with independent variables is a better fit 
than the intercept-only model. The estimated results in Table 5 also show that three of the 
independent variables have varying slopes and their influence in fatal crashes involving level 1 and 
level 2 CAVs varies. 
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Table 5: Estimates and Odds Ratios for Models by the Level of Automation 

Variable (Reference 
category) Category 

Estimate Odds ratio 
Level 1 Level 2 Level 1 Level 2 

Intercept  -1.822* -2.645* - - 

Vehicles involved (1) 
2 0.086 1.09 
3 0.336* 1.4* 
>=4 0.631* 1.879* 

Pedestrian involved 
(no) Yes 0.283* 1.328* 

Bicyclist involved 
(no) Yes 0.354** 1.425** 

Day of the week 
(Wednesday) 

Monday -0.011 0.989 
Tuesday -0.112 0.894 
Thursday -0.112 0.894 
Friday -0.067 0.935 
Saturday -0.027 0.974 
Sunday 0.235** 1.265** 

Time of the day 
(9:00–11:59:00am) 

0:00–2:59am -0.302** 0.739* 
3:00–5:59am -0.176 0.838 
6:00–8:59am -0.182 0.833 
12:00–2:59pm -0.084 0.919 
3:00–5:59pm 0.002 1.002 
6:00–8:59pm -0.004 0.996 
9:00–11:59pm -0.187** 0.829** 

Functional class 
(principal arterial—
other) 

Interstate -0.026 -0.137 0.974 0.872 
Principal arterial—other 
freeways and expressways 0.127 0.238** 1.136 1.269** 

Minor arterial 0.06 0.055 1.062 1.057 
Major collector 0.064 0.037 1.066 1.038 
Minor collector -0.01 0.251 0.99 1.286 
Local 0.093 0.105 1.097 1.111 

Manner of collision 
(angle) 

Front-to-front 0.227** 1.257** 
Front-to-rear -0.057 0.944 
Rear-to-side -0.669 0.512 
Sideswipe—opposite 
direction 0.072 1.074 

Sideswipe—same direction 0.074 1.077 
The first harmful event was 
not a collision with a motor 
vehicle in transport 

0.639** 1.894**  
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Variable (Reference 
category) Category 

Estimate Odds ratio 
Level 1 Level 2 Level 1 Level 2 

Not a collision with motor 
vehicle in-transport -0.244* 0.783* 

Portion of the road 
on which crash 
occurred (non-
junction) 

Acceleration/deceleration 
lane 0.498 1.646 

Crossover-related -0.328 0.72 
Driveway access related -0.092 0.912 
Entrance/exit ramp related -0.422 0.656 
Intersection-related 0.625 1.868 
Other location within 
interchange area 0.589** 1.803** 

Railway grade crossing -0.535 0.586 
Through road 0.494* 1.639* 

Type of intersection 
(not an intersection) 

Three-way intersection -0.678 0.508 
Four-way intersection -0.811** 0.445** 
Roundabout, traffic circle, 
or multiple-way 
intersection 

0 - 

Fatalities in crash (1) 
2 0.283* 1.327* 
>2 0.184 1.202 

Vehicle at fault (no) Yes -0.191** 0.826** 
Rollover (no rollover) Yes -0.325** -0.228** 0.723** 0.796** 

Damage to the 
vehicle (no damage) 

Minor damage 0.132 0.521** 1.141 1.685** 
Functional damage 0.357* 0.611* 1.43* 1.843* 
Disabling damage 0.258 0.53** 1.294 1.699** 

Speeding (no) 
Yes, exceeded speed limit 0.166 1.181 
Yes, too fast or racing -0.136 0.872 

Traffic way type 
(two-way divided 
with positive median 
barrier) 

One-way trafficway 0.002 1.002 
Two-way, not divided 0.14 1.151 
Two-way, not divided with 
a continuous left-turn lane 0.173 1.189 

Two-way, divided, 
unprotected (painted > 4 
feet) median 

-2.395* 0.091* 

Two-way, divided, 
unprotected median 0.404* 1.499* 

Entrance/exit ramp 0.181 1.198 
Non-trafficway or driveway 
access 0.394 1.482 

Number of lanes 
(two lanes) 

Non-trafficway or driveway 
access 0 - 
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Variable (Reference 
category) Category 

Estimate Odds ratio 
Level 1 Level 2 Level 1 Level 2 

One lane 0.723** 2.068** 
Three lanes 0.057 1.059 
Four lanes 0.014 1.015 
Five lanes 0.011 1.011 
Six lanes -0.038 0.963 
Seven or more lanes 0.001 1.001 

Traffic control device 
(no control) 

Traffic control signal (on 
colors) with pedestrian 
signal 

0.018 1.019 

Traffic control signal (on 
colors) without or 
unknown pedestrian signal 

0.089 1.093 

Stop sign 0.319* 1.375* 
Warning sign -0.236 0.79 
Other regulatory sign -0.467 0.627 
Flashing traffic control 
signal 0.223 1.249 

Highway traffic signal -1.334 0.263 
Railway crossing device or 
school zone device -0.112 0.894 

Yield sign or person 0.689** 1.991** 

Pre-crash stability of 
vehicle (tracking) 

Skidding laterally -0.417* 0.659* 
Skidding longitudinally -0.443* 0.642* 
Other vehicle loss of 
control -9.692 <0.001 

Pre-crash stability not 
specific 0.147** 1.159** 

Pre-crash movement 
of vehicle (stayed in 
original travel lane) 

Stayed on road (left 
original travel lane) -0.13 0.878 

Departed road -0.143 0.867 
Remained off road -0.348 0.706 
Entered road -0.6 0.549 
Returned to road -0.845** 0.43** 

Note 1: ** Significant at a 95% confidence level 
Note 2: * Significant at a 90% confidence level 
 

The negative value of estimates, e.g., for the portion of the road on which a crash occurred 
(crossover related) and speeding (too fast), indicate a lower likelihood of a particular outcome. The 
odds ratio for each parameter represents the odds of a specific outcome compared to the other 
outcomes. It was computed using the exponential of the estimate for a particular category. For 

I I 
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example, for four-way intersections with an estimate (-0.81), the odds ratio is 0.0445 (e-0.081), 
indicating that a fatal crash involving a level 1 or level 2 CAV is less likely to occur at a four-way 
intersection compared to a fatal crash involving level 0 vehicle, than at any location on the route 
other than an intersection. Likewise, the odds of being involved in a fatal crash for level 1 or level 
2 CAVs compared with level 0 vehicles are 1.64 times higher on through lanes than at non-
junction locations, when keeping all other parameters constants. 

Crashes were statistically significantly less likely to occur in two time of the day periods (9:00 pm 
to 11:59 pm and (0:00 am to 2:59 am) at a 95% confidence level compared with the reference time. 
Further, it is 27% more likely that fatal crashes involving CAVs occur on Sunday (weekend) than 
on Wednesday (weekday). 

Pedestrians are the most vulnerable road users. The odds of a crash involving pedestrians or 
bicyclists was greater than 1, indicating a higher likelihood of fatal crashes involving CAVs and 
pedestrians or bicyclists. Further, from a safety perspective, head-on collisions are generally more 
severe than angle collisions and the likelihood of a head-on collision is higher compared to an 
angle collision. Among all the portions on the road, odds that fatal crashes will occur on a through 
road or at a location within the interchange area are higher. 

CAVs are considered safer vehicles, and the model results in the case of rollovers also convey that 
the likelihood of level 1 and level 2 CAVs being involved in a rollover is less compared to no 
rollover. In addition, the odds of CAV crash involving minor, functional, and disabling damage is 
also high compared to no damage, which is as expected in case of a fatal crashes. 

Road geometry plays an important role in the occurrence of a crash. The model results show that 
the likelihood of a fatal crash on a two-way divided road with a median wider than 4 feet is less 
compared to a two-way road with a positive median barrier. Contrarily, a two-way divided road 
with a positive median barrier is safer than the road with an unprotected median. Further, the 
likelihood of a fatal crash on a one-lane road is 107% higher compared to two-lane roads, and the 
odds of a fatal crash at a stop sign and yield sign are, respectively, 37% and 99% higher than at 
intersections with no traffic control. 

The CAVs with smart features could also influence the driving behavior of drivers, as while relying 
on technology they could become less attentive, which may be why drivers are less attentive at 
locations with stop or yield signs. Finally, the likelihood of getting involved in a fatal crash while 
returning on the road is less compared to the vehicles traveling in the same lane. 

The variables such as rollover, damage to the vehicle, and functional class with unequal slopes 
show that the response of level 1 and level 2 CAVs is not the same. Independent variables such as 
rollover and damage to the vehicle show that level 1 CAVs are safer than level 2 CAVs, whereas 
the odds ratio of different functional classes shows that level 2 CAVs are safer than level 1 CAVs 
on interstates, minor arterials, and major collectors. On principal arterials, minor collectors, and 
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local roads, level 1 CAVs were found to be safer than level 2 CAVs. As level 2 CAVs have both 
LKA and ACC, they can provide enhanced safety in the case of freeways by controlling the 
acceleration as well as lane departure, which are often causes of crashes on freeways. Further, the 
odds of crashing for vehicles traveling too fast are less compared to vehicles that are not over-
speeding in the case of CAVs, indicating that CAVs could provide better safety at high speeds, 
primarily due to the smart features. 
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6. Analysis of Effect of Smart Features on Fatal  
Crash Occurrence 

The involvement of level 1 and/or level 2 CAVs in fatal crashes compared to level 0 vehicles varies 
with the smart features. Thus, based on the VIN, details regarding fatal crashes involving vehicles 
with smart features that are designed for performing specific tasks and enhancing safety were 
extracted. The ACC system controls acceleration and deceleration of vehicle to maintain a 
significant gap from the vehicle in front,39 which affects the likelihood of the vehicle being involved 
in a rear-end collision. If the leading vehicle slows down, the sensor detects that movement and 
automatically applies brakes. If no vehicles are present in front, the vehicle travels at a set speed.37 
The LKA pushes the vehicle towards center of the lane if it is moving outside the lane and makes 
the driving task smoother. The PAEB system automatically engages brakes when it identifies a 
pedestrian in front of the vehicle and reduces chances of a crash with the pedestrian.37 The blind 
spot monitoring (BSM) system, also known as side-view assist system, provides a warning to the 
driver when other vehicles or objects are present in the blind spot of the vehicle and improves the 
safety from sideswipe or rear-to-side collisions.38 The FCWS provides a warning to the vehicle in 
the case of forward collision risk and reduces the chances of being involved in rear-end collisions 
when the driver is at fault.38 The data for all the features and different collision types for which the 
specific features are designed for was extracted from the FARS database and summarized as shown 
in Table 6. Further, similar to the previous models, data for years 2016 to 2019 is used for the 
purpose of comparison.  

In Table 6, the proportion of pedestrian crashes from all fatal crashes is higher than the 
corresponding proportion for vehicles equipped with a PAEB system. In the case of ACC and 
FCWS, the percentage of rear-end collisions is almost double compared to other vehicles without 
these features. Similarly, the proportion of sideswipe or rear-to-side collision of vehicles with BSM 
is also double compared to the data of all crashes. In the case of vehicles with LKA system, fatal 
crashes involving roadside departure are considered for the analysis. Crashes involving roadside 
departure include only cases when the vehicle runs off the road. Other cases where the vehicle ran 
off the road while trying to avoid collision with other vehicles/pedestrians or due to traction loss 
are not considered in this comparison. These trends can be mainly attributed to only considering 
fatal crash data in the evaluation. Considering injury crashes and property damage crashes in the 
evaluation could further improve the clarity of these findings. 

Overall, smart features are designed to enhance safety and avoid particular types of crashes. 
However, research findings indicate that these smart features may not be yet effective all the time. 
Potential reasons are related to localization and the ability of features to sense and control the 
CAV irrespective of the geographic location and geometric, environmental, and traffic conditions. 
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Table 6: Comparison of Vehicles with Smart Features and All Vehicles 

Safety features Total 
crashes 

Pedestrian 
crashes 

Rear-end 
collisions 

Rear-to-side 
collisions or 
sideswipe 

Total 
vehicles 
involved 

Roadside 
departure 

# of Crashes 1,36,471 26,366 
(19.32%) 

9,650 
(7.07%) 

324 
(1.70%) 2,09,375 30,374 

(14.51%) 
Crashes 
involving 
vehicles with 
PAEB system 

1,327 217 
(16.35%) - - - - 

Crashes 
involving 
vehicles with 
FCWS 

2,889 - 425 
(14.71%) - - - 

Crashes 
involving 
vehicles with 
ACC 

2,356 - 346 
(14.69%) - - - 

Crashes 
involving 
vehicles with 
BSM 

2,253 - - 77 
(3.42%) - - 

Vehicles with 
LKA - - - - 2,845 

288 
(10.12%) 
 

 

  



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  32 

7. Summary & Conclusions  
7.1 Summary 

The risk factors influencing fatal crashes involving level 1 and level 2 CAVs compared to level 0 
vehicles within vicinity were explored using PO and PPO models. The PO test showed that all 
the independent variables do not have equal slopes, and their effect on the dependent variable 
varies, which violated the basic assumption of the PO model. Thus, the PPO model was 
considered appropriate and developed using all the independent variables. 

The factors such as rollover of vehicles, pre-crash movement of a vehicle, type of intersection, and 
pre-crash stability of a vehicle indicate that the likelihood of a fatal crash for level 1 and level 2 
CAVs is less compared to level 0 vehicles. The CAVs are safer when vehicles depart the travel lane 
or skid laterally or longitudinally before the crash, indicating their safety benefits in snow or rainy 
weather. Level 1 and level 2 CAVs are safer on interstates and in conditions when the vehicle is 
moving too fast than the speed limit, ensuring their higher safety, especially on high-speed routes. 
Further, the odds of a fatal crash involving level 2 CAVs are less on minor arterial and major 
collectors than level 1 CAVs. In comparison, level 1 CAVs are safer on low-volume roads such as 
minor collectors and local roads. Further, the chances of a fatal crash involving CAVs on a two-
lane road is lower than a road with single or multiple lanes. 

The chances of level 1 or level 2 CAVs getting involved in a fatal crash with non-motorists such 
as pedestrians or bicyclists is higher than level 0 vehicles. One of the reasons behind the higher 
odds of getting involved in fatal crashes with non-motorists may be due to decreased attentiveness 
of drivers due to reliance on the technology. Similarly, the chances of a fatal crash involving a CAV 
at a flashing signal or stop sign is also higher than a level 0 vehicle. The odds of more than one 
fatality in crashes involving level 1 or level 2 CAVs are also higher compared to level 0 vehicles. 
CAVs are more likely to be involved in fatal crashes on different portions of the road, like in 
acceleration or deceleration lanes, intersections, and any location within interchange areas. 

LKA usually works based on the information regarding lane markings provided by the cameras 
attached to the vehicle. Locations like intersections with multiple or no markings may increase the 
uncertainty of such systems when making decisions, which could be the potential reason for the 
high likelihood of fatal crashes at those locations. The likelihood of a rear-end collision or rear-
to-side collision is less compared to a head-on collision or sideswipe collision. 

The odds ratio of different variables such as functional class, traffic control devices, traffic way 
type, the portion of the road, and manner of collision vary significantly for level 1 and level 2 CAVs 
compared to level 0 vehicles. Therefore, an analysis to identify the effect of smart safety features 
was carried out. The findings indicate that the vehicles with smart features are still involved in 
specific types of crashes for which they are designed to avoid. Overall, parameters such as pre-
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crash stability and movement of a vehicle, and crash at high speed, which are primarily related to 
the vehicles, indicate that level 1 and level 2 CAVs are safer. In contrast, fatal crash involvement 
with non-motorists and at stop and yield signs where drivers have to make decisions (be attentive) 
had a higher likelihood of occurrence in level 1 and level 2 CAVs. Therefore, level 1 and level 2 
CAVs are improving the overall safety of vehicles. At the same time, it also affects drivers’ 
attentiveness, resulting in an increased likelihood of a fatal crash in some situations. 

7.2 Conclusions  

This research aimed to identify the effect of level 1 and level 2 CAVs on the occurrence of fatal 
crashes. A review of existing studies on the penetration of level 1 and level 2 CAVs, the effect of 
CAVs on mode choice and travel behavior, factors influencing fatal crashes, and the occurrence of 
fatal crashes was carried out. Fatal crash data obtained from the FARS database and smart feature 
data based on VINs retrieved from the NHTSA database were combined to identify the level 1 
and level 2 CAVs. To identify the effect of levels of automation on fatal crash occurrence, a PPO 
model was developed comparing level 0 vehicles with level 1 and level 2 CAVs involved in fatal 
crashes. A comparative analysis of vehicles equipped with smart features and other vehicles was 
carried out to determine the efficiency of smart features designed to enhance safety in various types 
of crashes. 

A nearest neighborhood analysis was carried out to identify crashes involving level 0 vehicles that 
occurred in the vicinity of crashes involving level 1 and level 2 CAVs. The PPO model was 
developed based on the identified sample of crashes involving level 1, level 2 CAVs, and three 
nearest crashes involving level 0 vehicles.   

The results of the PPO model indicate that the involvement of level 1 and level 2 CAVs in fatal 
crashes with pedestrians and bicyclists is higher compared to level 0 vehicles which may be due to 
the inattentiveness or overreliance of drivers on smart features. Further, level 1 and level 2 CAVs 
have higher odds of getting involved in fatal crashes on one-lane routes and near locations with 
stop, yield, or flashing yellow signs. The CAVs were also found not to be safe in the case of head-
on collision and collision with non-motorists. 

The vehicles with smart features such as ACC and FCWS, which are designed to improve safety 
in the case of rear-end collisions, are getting involved in such collisions more than level 0 vehicles. 
However, LKA and PAEB systems are more efficient than level 0 vehicles in the case of roadside 
departures and crashes with pedestrians. 

The findings of this research provide an overview of the factors influencing the occurrence of fatal 
crashes involving level 1 and level 2 CAVs. These research findings can assist automobile 
manufacturers in modifying the existing technologies underlying various smart features engaged 
in level 1 and level 2 CAVs. In addition, the overview provided by this research can aid 
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practitioners and transportation engineers to better plan, design facilities, and modify existing 
policies. 

7.3 Limitations and Future Scope 

The primary purpose of this research was to identify the effect of smart features on safety. The 
safety performance of a vehicle may vary depending on the manufacturer of the vehicle and the 
type or functionality of the technology. For example, ACC works either based on a camera or 
radar. The effect of different technologies on which ACC works was not identified or explored in 
this research. Thus, an analysis incorporating the manufacturer and the type of technology as 
independent variables would provide insights on the variation in the safety performance of different 
vehicles with the same level of automation. Further, the PPO model used in this research is a fixed 
parameters model, which restricts parameters to remain the same for all observations. However, 
random parameters modeling allows each observation to have its own parameter estimate and can 
account for variability in individual crash-specific characteristics.55 Such an approach would be 
more applicable as larger and more detailed datasets (with the type of technology and their 
functionality at the time of crash by vehicle manufacturer) become available.  

The proportion of level 1 and level 2 CAVs is very low, as only 1.8% of all fatal crashes in the years 
studied involved either a level 1 or level 2 CAV. Therefore, most of the crashes involving level 1 
and level 2 CAVs are with level 0 vehicles. Thus, analysis at higher penetration rates may yield 
different results and merits further investigation. In addition, the analysis considering only at fault 
vehicles would also provide insights about the risk driver possess to other drivers while driving 
vehicles with different levels of automation.  

The effect of levels of automation was identified using the crash data covering four years in this 
research. However, analysis to accommodate the variation in risk factors influencing crashes with 
time may yield better results.  
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Appendix A 
This appendix summarizes the make of level 1 and level 2 CAVs identified based on VIN from 
the FARS database. 

Table A1. Vehicle Make Details of Level 1 and Level 2 CAVs Involved in Fatal Crashes 

Make Level 1 CAVs Level 2 CAVs 
Acura 2 21 
Alfa Romeo 1 0 
Audi 0 21 
BMW 44 35 
Buick / Opel 6 7 
Cadillac 46 23 
Chevrolet 305 19 
Chrysler 16 27 
Dodge 40 65 
Ford 123 229 
GMC 56 38 
Honda 33 316 
Hyundai 29 113 
Infiniti 0 18 
Jaguar 3 0 
Jeep / Kaiser-Jeep / Willys- Jeep 72 159 
KIA 145 14 
Land Rover 1 17 
Lexus 10 33 
Lincoln 4 20 
Mazda 3 43 
Mercedes-Benz 2 77 
Nissan/Datsun 3 6 
Other Domestic Manufacturers 0 28 
Other Import 6 5 
Porsche 3 8 
Subaru 20 123 
Toyota 190 529 
Volkswagen 4 38 
Volvo 1 16 
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Abbreviations and Acronyms 
AADT Annual Average Daily Traffic  

ABS Automated Braking System  

ACC Adaptive Cruise Control 

AIC Akaike Information Criterion  

BSM Blind Spot Monitoring 

CAV Connected and Automated Vehicle 

CDC Centers for Disease Control and Prevention  

FARS Fatality Analysis Reporting System  

FCWS Forward Collision Warning System  

LKA Lane-Keeping Assistance 

NHTSA National Highway Traffic Safety Administration 

PAEB Pedestrian Automatic Emergency Braking  

PO Proportional Odds  

PPO Partial Proportional Odds  

SAE Society of Automotive Engineers 

SAV Shared Automated Vehicles  

VIN Vehicle Identification Number  
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