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1. Introduction
Since Pigou (1920), scholars have sought to understand the phenomenon of traffic congestion. The
growing number of recent empirical studies, which provide more reliable estimates on the cost of con-
gestion by taking advantage of modern empirical tools and new data, confirm that the cost of congestion
is substantial (e.g., Couture et al., 2018; Yang et al., 2020; Bento et al., 2021; Russo et al., 2021). How-
ever, these works usually focus on just one element of congestion models, especially the slope of the road
cost function, which is perhaps insufficient as a detailed policy guide toward congestion toll that would
be imposed on real-world drivers who are heterogeneous in multiple dimensions.

The recent availability of real-time traffic information—namely “big data” like Google Maps and the
development of prediction tools based on artificial intelligence, usually known as “machine learning”—is
enabling researchers to explore the problem of congestion with a more structural framework. Among
others, Akbar and Duranton (2017) and Kreindler (2020) have taken initial steps in this direction.1 The
current paper is in line with these recent papers, but ours is more closely tied to Vickrey (1969), which has
become the workhorse model for analyzing scheduling behavior and congestion dynamics in economics
(see also Arnott et al., 1990, 1993).

Specifically, this paper develops a simple model of trip scheduling under congestion to formally define
the congestion delays the commuter faces and identify how commuters adapt to the level of congestion
they face (e.g., by adjusting route or timing choices). We then then empirically quantify the model’s
key elements by utilizing real-time travel time information from Google Maps and machine learning
as a prediction tool. Our theoretical model features a salient fact which has mostly been ignored in
the classical bottleneck models—that individuals live and work at different locations and therefore each
faces their own travel-time profile. Specifically, the commuter in our model chooses her optimal trip
timing to minimize commuting costs subject to the travel-time profile faced on her commuter route as
a constraint. In this situation, there may be a unique optimal trip timing chosen by the individual on
her commute route, which, in turn, implies that the shapes of congestion dynamics faced by individuals
matter in their scheduling choices. Specifically, commuters facing a higher level of congestion during
the peak hour would choose an inconvenient early or late timing to avoid an otherwise longer congestion
delay—a finding for which we find statistically significant evidence.

The two key elements of the model are the travel-time profile faced by an individual and the scheduling
utility, which jointly reveal the commuter’s optimal arrival time choice. We empirically quantify both. A
travel-time profile is the menu of travel times that an individual commuter faces on her commute route
by alternate trip timing choices. We construct the systematic travel time predictions by alternate arrival
time intervals, i.e., travel-time profiles, for a large survey sample of commuters in California by querying
travel times at Google Maps for each origin-destination pair with random timing in a day over a half-
year. Our travel survey dataset consists of 9,127 different zip code pairs of origin and destination, which

1 There are other studies of mobility and congestion using big data, especially in developing countries: e.g., Akbar et al. (2019);
Kreindler and Miyauchi (2020). See Selod (2021) for a literature review on the uses of big data in transportation research more
broadly. Also, for a survey of big data uses in urban economics research, see Glaeser et al. (2018).
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are traveled by 14,544 commuters. This implies that a zip code pair and the corresponding travel-time
profile is almost unique to an individual commuter.

An especially useful quantity directly drawn from each constructed travel-time profile is the commuter’s
congestion delay (or “queuing time,” borrowing from the bottleneck model’s terminology), which is de-
fined by the gap between the commuter’s actual travel time and the counterfactual congestion-free travel
time that would have been realized if she had traveled during times in which there was no congestion.
The classical bottleneck model (Vickrey, 1969; Arnott et al., 1990, 1993) suggests that this congestion
delay is a pure social loss, and the aggregation of these losses equals the economic inefficiency costs from
congestion (see also Kim, 2019). Our constructed travel-time profiles exhibit an average congestion delay
of about 4.7 minutes per trip (about 18% of the sample mean of travel time), which implies inefficiency
costs borne by morning commuters in California of about 6 billion dollars.

The scheduling utility estimated in this paper is composed of a travel time cost and schedule-delay costs
which arise from arriving earlier or later than the commuter’s ideal arrival time. The estimated parameters
in the utility function reveal commuters’ willingness to pay for a schedule delay reduction expressed in
the unit of travel times. The first step toward estimating these parameters is to assign an ideal arrival time
to each commuter, as it directly defines schedule delays as attributes in our random utility framework.
For this, we apply the machine learning method to predict the counterfactual arrival time in the absence
of queuing, learning from a group of commuters who are plausibly assumed to arrive at their own ideal
arrival times. We find large prediction errors in the machine learning estimates, but these are smaller than
the errors generated from a linear regression. We update our estimates using our theoretically grounded
conjecture and the scheduling utility estimates in the previous studies.

Our scheduling utility estimates indicate that commuters are willing to accept about 0.5 additional min-
utes of schedule delay to reduce travel time by 1 minute. While the shape of the estimated scheduling
utility is similar to those presented in previous studies (Small, 1982; Kreindler, 2020), we newly dis-
cover that it is much steeper than travel-time profiles faced by commuters. Because travel time falls too
slowly to compensate for the corresponding increase in schedule delay costs, this situation implies the
tendency of commuters to choose an arrival time that is close to their ideal arrival times. This result also
implies that commuters’ ideal arrival times are quite dispersed, which in turn explains the relatively flat
travel-time profiles. Given the big difference between travel-time profiles and indifference curves found
in this paper, the results indicate that the classical bottleneck analysis (regarding its quantification of
the economic inefficiency of congestion and design of a congestion toll) cannot directly apply under our
model, calling for a welfare analysis in a similar bottleneck framework incorporating the heterogeneity
in travel-time profiles and ideal arrival times.

This paper adds to the literature estimating motorists’ scheduling preferences and the distribution of
preferences. In his seminal work, Small (1982) formulated the scheduling utility, the so-called α−β−γ

preference still used widely in the literature, and estimated these parameters. Peer et al. (2015) de-
composed morning scheduling decisions of car commuters into long-run choices of arrival routines and
short-run choices of departure times subject to the routines chosen in the long run to estimate both
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short-run and long-run preferences.2 Kreindler (2020) estimated the scheduling utility for drivers in
Bangalore, India, using, like us, Google Maps to construct the menu of travel times and adopting an ex-
perimental setting to explicitly estimate the parameters in terms of a monetary unit. Hjorth et al. (2015)
estimated scheduling preferences using stated preference data with the incorporation of non-linearity
and travel time variability. Small et al. (2005) estimated the values of travel time and reliability as well as
the distribution of those values. Hall (2021a) estimated the joint distribution of scheduling preference
parameters as well as ideal arrival times to evaluate the effects of optimal time-varying tolling policy.
Other papers estimate the preferences of public transit users using revealed preference data (Peer et al.,
2016; Hörcher et al., 2017). Our current paper uses a much larger sample of commuters to more accu-
rately estimate the parameters with an application of a machine learning method to predict commuters’
ideal arrival times in a scheduling utility form that is allowed to be non-linear.

Our paper is also closely related to the recent empirical papers estimating the costs of congestion. Most
of these papers focus on estimating Pigouvian deadweight loss by estimating the cost function of trips at
the road or city levels (Walters, 1961; Couture et al., 2018; Yang et al., 2020; Russo et al., 2021). Mean-
while, Akbar and Duranton (2017) use big data to identify the demand curve as well as the cost curve
to more accurately estimate the deadweight loss from congestion. Recent papers such as Tang (2021)
and Tarduno (2021) adopt a quasi-experimental design to estimate congestion costs. Our approach to
the estimation of congestion costs is most similar to that of Kim (2019), who also defines the congestion
delay (queuing time) as the difference between the observed travel time and the counterfactual free-flow
travel time to measure the economic cost of congestion defined in the standard bottleneck model (Vick-
rey, 1969; Arnott et al., 1990, 1993). However, unlike Kim (2019), who used only travel survey data and
thus suffered from the identification problem, this paper observes counterfactual times at all hypothetical
arrival time choices using Google Maps, which allows use to directly identify the congestion delay for
each traveler.

The rest of the paper is organized as follows. Section 2 presents a model of trip scheduling under
individual-specific travel-time profiles and also develops an empirical framework for measuring the con-
gestion delays of individual commuters. In Section 3, we explain the data. In Section 4, we examine
overall shapes of travel time and congestion delay profiles and quantify congestion costs. In Section 5,
we estimate the causal effect of congestion on trip scheduling. In Section 6, we estimate the structural
scheduling preference parameters. In Section 7, we discuss some implications of our findings. Finally,
Section 8 concludes.

2 Verhoef (2020) investigates whether incorporating the empirically validated difference between long- and short-run prefer-
ences affects optimal pricing of congested roads.
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2. The Conceptual Framework

2.1 A Model of Commute Scheduling

This section presents a simple model of trip scheduling for a representative commuter. Every commuter
travels their own route to work, simply because commuters all live and work in different places. Each
commuter therefore faces her own menu of travel times according to alternate trip timing choices, i.e.,
the individual-specific travel-time profile.

The commuter’s goal is to minimize commuting cost by choosing an arrival time, subject to the travel-
time profile as a constraint. Commuting cost—with an arrival time t, denoted by C(t)—is assumed to
have the following form:

C(t) = αT (t) + βSDE(t)ω1 + γSDL(t)ω2 , (1)

where T (t) is travel time for the arrival time of t. With t∗ indicating the commuter’s ideal arrival time,
SDE ≡ max(t∗− t, 0) is schedule delay for arrivals earlier than t∗. The third term is the schedule-delay
cost for arrivals later than t∗, with SDL ≡ max(t− t∗, 0). The parameters α, β, and γ are the unit costs
placed on each component. The commuter’s departure time is simply d ≡ t − T (t). Hence, under the
assumption that the commuter is fully informed about his travel-time profile, the commuter effectively
chooses an arrival time (t) by choosing the corresponding departure time (d).

Note that while the exponent of the travel time is normalized at unity, the exponents placed on the
schedule delays satisfy ω1 ≥ 1 and ω2 ≥ 1. It is useful to draw an iso-cost curve on the plane of arrival
time t against travel time T (t) to appreciate the meaning of this assumption (see Figure 1). The slope
of the iso-cost curve is (β/α)ω1 (t∗ − t)ω1−1 for t < t∗ and − (γ/α)ω2 (t− t∗)

ω2−1 for t > t∗, so the
iso-cost curve gets steeper as the arrival time deviates more from the ideal arrival time t∗ if ω1 > 1 and
ω2 > 1. In words, the required travel time reduction to maintain the cost from an increase in schedule
delay increases as the arrival time deviates more from t∗. When ω1 = ω2 = 1, our cost form is the same
as the customary α−β−γ, the preference of Small (1982) also used in Arnott et al. (1990, 1993), under
which the marginal rate of substitution between schedule delays and travel time is constant at β/α before
t∗ and γ/α after t∗ (see Figure 2).3

3 Other studies use a more general formulation by imposing non-separability of arrival time and travel time. Under that
condition, the optimal trip timing depends on the trip duration (see Fosgerau and de Palma, 2012; Fosgerau et al., 2018;
Fosgerau and Kim, 2019).
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Figure 1: Trip Scheduling of the Commuter
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Figure 2: The Effect of Travel-Time Profile on Scheduling Choice
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(b) High level of congestion

Let TP (t) be the travel-time profile faced by the commuter. TP (t) is the expected travel time conditional
on the commuter’s arrival timing t. With t0 being the time at which congestion sets in and t1 being the
time at which congestion ends, it is assumed that TP (t) is monotonically increasing from t0 until tpeak
and decreasing as t approaches t1. The congestion-free travel of the commuter, TP (t0) = TP (t1) ≡
T free, is the travel time if the commuter had traveled earliest or latest among her possible choices (an
earlier arrival than t0 or a later arrival than t1 cannot be optimal if t0 < t∗ < t1).
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We can also define a congestion-delay profile, which represents the congestion dynamics faced by the
commuter. We denote it by Q(t) ≡ TP (t) − T free. The congestion delay is zero for an arrival of
either t0 or t1, i.e., Q(t0) = Q(t1) = 0. The maximum congestion delay on the commute route is
Qpeak ≡ Q(tpeak) = TP (tpeak) − T free, where tpeak is the individual’s arrival timing for which his
travel time would be the longest.

To characterize the commuters’ choice, consider, as an example, a bell-shaped travel-time profile, reflect-
ing the real-world observations, which is illustrated in Figure 1. At any given arrival time choice t, any
point below the travel-time profile is not feasible. So, at the cost-minimizing arrival time, the travel-time
profile and an iso-cost curve meet while the iso-cost curve is placed at the lowest position possible. In
the figure, tc is the optimal arrival time chosen by the commuter. The following proposition generalizes
the results on arrival time choice: for the proof, see Appendix B.

Proposition 1 Assume t0 < t∗ < t1.

1. If the iso-cost curves have a larger curvature than TP (t) globally over t ∈ [t0, t1], then there exists a
unique optimal arrival time, tc, between t0 and t1. At tc, the iso-cost curve and the travel-time profile
are tangent.

2. If the iso-cost curves have a smaller curvature than TP (t) globally over t ∈ [t0, t1], then there exists a
unique optimal arrival time, which is tc ∈ {t0, t∗, t1}.

Proposition 1 suggests that each commuter has her own optimal trip timing most suitable to the travel-
time profile she faces, which is a feature that departs from the classical bottleneck model, where com-
muters are indifferent with alternate trip timing choices in the equilibrium.

A significant implication of our model is that travel-time profiles seem to have an impact on scheduling
choices. To explore this point, consider first the case where iso-cost curves have a larger curvature than
the travel-time profile. In this case, note that the condition for optimal choice is that the slope of the
travel-time profile equals the slope of the iso-cost curve. If the former is larger at one point, then a given
delay (to an earlier time if t < t∗ or to a later time if t > t∗) would decrease the travel time more than
the required fall in travel time for the constant cost, inducing a choice that is farther from t∗ and closer
to t0 or t1. This implies that commuters facing a steeper travel-time profile would tend to choose a time
that is more distant from t∗ and closer to t0 or t1, while those facing a flatter travel-time profile would
tend to choose a time closer to t∗.

In Figure 2, we illustrate the other case where the iso-cost curves have a smaller curvature overall than
the travel-time profile, specifically the linear iso-curves, by imposing ω1 = ω2 = 1. In panel (a), we
assume that the commuter faces a lower level of congestion with a flat travel-time profile, according to
which the commuter chooses to arrive at her ideal arrival time. In panel (b), the commuter is facing a
higher level of congestion, and in this scenario the commuter chooses an inconvenient edge time that is
largely different from t∗.
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Based on these different choices, the effect of travel-time profiles on scheduling choices can be stated as
follows:

Corollary 1.1 An increase in the (absolute) slope of the travel-time profile induces an earlier arrival of the
commuter if tc < t∗ and a later arrival if tc > t∗. Since Qpeak measures the overall slopes of the travel-
time profile, all other things being equal, commuters facing a higherQpeak tend to arrive at a time that is more
different from their ideal arrival times, while those facing a lower Qpeak tend to arrive at a time that is closer
to their ideal arrival times.

This corollary states that commuters adapt to the congestion dynamics that they face, especially to the
maximum congestion delay Qpeak, by choosing the trip timing most suitable to it. An interesting ob-
servation from this tendency is that a commuter facing a higher level of congestion may actually have a
shorter “realized” congestion delay than when facing an otherwise a lower level of congestion, because the
commuter could avoid the otherwise long queue by arriving at a non-peak time. For example, in Figure
2, the realized congestion delay, i.e., Q(tc) = TP (tc) − T free, is shorter in panel (b) than in panel (a),
even though panel (b) illustrates a higher level of congestion with a higher Qpeak.

Figure 3 depicts another situation illustrating how two individuals with similar preferences but facing
different levels of congestion make scheduling decisions. Based on Corollary 1.1, this scenario works
from the assumption that the commuter facing a higher level of congestion chooses an edge time, denoted
by thc , while the one facing a lower congestion chooses a peak time, tlc. In the figure, the black dotted curve
is the average travel-time profile, which connects the average travel time values of these two commuters
by arrival time. Meanwhile, the red dotted curve in the figure connects the chosen combination of arrival
time and travel time, exemplifying scatter plots on arrival times and travel times drawn from the data.
The large difference between the two dotted curves is due to the commuters’ adaptation behavior shown
in in Corollary 1.1.

Figure 3: Average and Realized Travel-Time Profiles
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The final comment is on the scope of this simple model. The model focuses on understanding scheduling
choices of commuters when each of them faces their own congestion dynamics on their respective com-
mute routes, without endogenizing the equilibrium congestion dynamics that are heterogeneous across
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commuters. This paper decisively highlights the importance of incorporating the large heterogeneity in
both commuter preferences and congestion dynamics faced by individuals in a congestion model used for
welfare analysis and optimal policy design.

2.2 Measuring Commuters’ Congestion Delays

Here, we provide the framework to measure individual commuters’ queuing times empirically. With i

being the commuter subscript, the individual-specific congestion dynamics faced by the commuter can be
written asQi(t) = TP

i (t)−T free
i . With ti indicating the chosen (observed) arrival time, the individual’s

“realized” queuing time is calculated by evaluatingQi(t) at ti, i.e.,Qi(ti) ≡ TP
i (ti)−T free

i . Travel diary
data mostly report the travel time outcome corresponding to TP

i (ti), but not the congestion-free travel
time T free

i , which is the counterfactual travel time that would obtain if the traveler had alternatively
chosen to travel earliest (or latest) in the morning and encountered no queues.4 We overcome this iden-
tification challenge by constructing each commuter’s queuing-time profile using the data on hypothetical
trips queried via Google Maps.

We first construct the individual-specific travel-time profiles. Let T̂P
i (m) be the systematic prediction

of travel times for the origin and destination pair, namely the “route,” traveled by commuter i, where
m is the set of alternate arrival time intervals, with m ≡ {1, 2, 3, · · · ,M}. The predicted travel time
must be “systematic,” in the sense that the prediction rules out any day-specific unanticipated shocks
such as weather, traffic accidents, and road work that would affect travel time on the particular day, since
commuters would make scheduling choices based on their systematic travel-time profiles.5 To this end,
we queried travel times for a long time horizon from Google Maps and then averaged out the travel time
outcomes to construct the systematic travel-time predictions.

In the bottleneck model of Vickrey (1969), T free
i is the travel time outcome if the traveler had arrived at

t0i, the time at which the road capacity is fully utilized and congestion sets in. We could use the travel-
time prediction at m = 1, i.e., ̂TP

i (m = 1), for T free
i from normal days (before COVID-19). Note

however that the initial times t0i vary significantly depending on the capacity and demand conditions
of the routes. Thus, we may be overestimating T free

i when considering some routes that are already
congested from the first interval m = 1 (before 6:22 AM). We therefore use only travel time predictions
conducted during the lockdown policy under COVID-19, especially counterfactual trips with pre-6:00
arrivals, to construct the individual-specific congestion-free travel time estimates, which we denote by
T̂ free
i .

4 It is useful to see how the counterfactual framework (see Angrist and Pischke, 2009) may be adopted to define the individual’s
congestion delay alternatively. Assume that there are only two alternate trip timing choices: a time when there is congestion
and another time when there is no congestion. Let T1i be the travel time outcome if the traveler chose to arrive in a time with
congestion and T01 be the time if the traveler has chosen to travel at the time with no congestion (very early or very late in the
morning). The congestion delay of the commuter is T1i −T01, which is the causal effect of trip timing on travel time (see Kim,
2019). The traveler cannot choose both, so researchers can only observe either of them and thus cannot identify the congestion
delay directly using travel diary data.

5Indeed, Peer et al. (2015) showed that commuters would form “routine” in response to their systematic travel-time profiles and
then make daily choices on trip timing.
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The estimate for the individual-specific congestion delay profile is then written as Q̂i(m) ≡ T̂P
i (m) −

T̂ free
i . The “realized” delay of commuter i is obtained by evaluating it at the chosen arrival time ti, which

is written as
Q̂i(ti) = max{T̂P

i (m)Dm(ti)− T̂ free
i , 0}, (2)

where

Dm(ti) =

0 if ti /∈ m

1 if ti ∈ m

is a binary variable which takes value 1 if the commuter’s arrival time ti belongs in the interval m and 0
otherwise.

Another quantity estimated below is the peak queuing time of individual i, written as the following:

Q̂peak
i = max{ ̂

TP
i (mpeak

i )− T̂ free
i , 0}, (3)

which evaluates the congestion dynamics at the arrival time interval mpeak
i at which the travel-time

profile of the individual i reaches its peak. This expression gives the expected queuing time conditional
on arrival in the peak congestion condition of the commuter’s own route. Proposition 1 suggests that
commuters with a higher Q̂peak

i tend to avoid the peak timing, which we test by regressing the binary

choice variable for peak hour arrival on Q̂peak
i below.

In Section 4, we calculate congestion delays of a sample of commuters in California and use them to
calculate congestion costs in California. We then test the “adaptation” hypothesis of Corollary 1.1 by
examining how the maximum queuing time, Qpeak

i , affects scheduling choices. We also estimate the
scheduling utility function to draw the iso-cost curves, which, together with the travel-time profiles,
would reveal actual and ideal arrival times. As we will see, commuters in the real world have much steeper
iso-cost curves than their travel-time profiles, as illustrated in panel (a) in Figure 1, which suggests that
commuters’ actual arrival times do not deviate largely from their ideal arrival times.
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3. Data
The data on travelers’ scheduling choices are obtained from the 2012 California Household Travel Survey
(CHTS), which is based on a statewide survey conducted every ten years. From the entire CHTS sample,
we select morning commutes made by passenger vehicles to construct the estimation sample. We further
limit our attention to morning commutes whose arrival times are between 5:00 and 11:15. We exclude
trips taken using public transit or ride sharing. There are several reasons for the selection of this sample.
First, the choice set is relatively clear, so it is easier to estimate the scheduling preferences. Second, our
model is closely tied to the Vickrey (1969) bottleneck model, and one of our goals is to test the power of
this model. Third, time spent on commuting is the largest portion in total travel time spent in cars. In
particular, while the typical American driver spent about 72 minutes driving per day in 2008 (Couture
et al., 2018), commuters in our sample spent about 25 minutes for a morning commute only.

The CHTS dataset reports departure times from home and arrival times at work. We mainly use the
arrival time variable, since departure time may suffer from a large heterogeneity in its values of commuters
traveling difference distances even when they have a similar preference. We convert the original arrival
time variable expressed in 24-hour military time into a continuous form, with midnight normalized at
0. For example, an arrival at 7:30 AM gives the arrival time value of 450 (= 60× 7 + 30).

The other important information we obtain from the CHTS sample is the zip codes of the home and
work locations of each commuter. The geographic centers in each zip code (for home and work) serve
as the origin and the destination when we query from Google Maps. In our final sample composed
of 14,544 commuters, there are 9,127 different zip code pairs (with 1,462 different zip codes for home
or work sites). So, although each zip code pair is not entirely unique to individuals (since commuters
residing at different addresses may travel to or from the same zip codes), we can say that zip codes provide
fairly detailed information on the origin and the destination of the commuters’ trips.6

For each pair of zip codes (“route”), we construct the travel-time profile, i.e., the menu of travel times
by commuter’s alternate arrival time choices. In total, we queried 18,340,541 hypothetical trips from
Google Maps in the period of January 6, 2020, until July 28, 2021 for this purpose. We classify the
arrival times between 5:00 to 11:15 AM into 16 (= M ) intervals, so that each interval spans 15 minutes,
which is done to ensure that each interval contains modes of arrivals such as 7:30, 7:00 in the center. The
first and the last intervals (with m = 1 or m = 16) are set to be much wider, so these intervals cover
5:00–6:22 and 9:52–11:15, respectively, which is done to reflect low arrival rates and slowly changing
traffic conditions during these times.

For each route (each person), we calculate the mean of predicted travel times obtained from Google
Maps from trips queried between January 6, 2021, and March 18, 2020 (the date just before the first
lockdown policy enacted by the California government due to COVID-19 on March 19) to measure the
systematic prediction of travel time by interval, i.e., T̂P

i (m) for m = 1, 2, ..., 16. We used travel time
prediction from many days (more than 2.5 months) to rule out day-specific shocks such as accidents.

6 For more information on how we identify routes for commuters traveling within the same zip code, see Appendix A.
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Once we construct travel-time profiles for each of 9,127 different pairs of zip codes, we then match the
profiles to individual commuters so that each has their own travel-time profile. Our final sample consists
of 14,544 commute observations.

Finally, note that we must also assume that travel-time profiles constructed between January and March
2020 are similar to those of 2012 when the commuters in the CHTS sample made their scheduling
choices. Because Google Maps queries are always real-time, we cannot go back and estimate the travel
time that 2012 commuters would have experienced at that time. Since congestion is determined by
long-term demand and supply factors, the cross-sectional variation in congestion across zip codes would
remain stable. We provide further remarks on the data construction in Appendix A.

Table 1 shows descriptive statistics for the key variables, such as arrival time, travel time, and trip distance.
Asmentioned above, the arrival time variable (t) follows the decimal system, with 00:00 being normalized
at 0. The sample mean for arrival time is 478, i.e., 7:58 AM (478 = 7× 60 + 58). The mean travel time
is 25 minutes and the mean trip distance is 12 miles according to the CHTS sample. The Google Maps
predicted travel times for the commuters—i.e., T̂P

i (m)Di(m) from (2)—have a sample mean of 26. The
mean distance from Google Maps is a bit longer that that from the CHTS sample, implying that people
tend to travel distances shorter than the distance between the central locations of the zip codes reported
in the CHTS. The average speed (distance divided by travel time) from Google Maps is around 33 miles
per hour.

Figure 4 provides scatter diagrams to visualize relationships between variables. From panel (a), we find
that travel times are overall constant over the entire morning time interval. However, panel (b) shows
that the speed (ratio of distance to travel time) tends to decline as the arrival time becomes later. Panel
(c) shows a monotonic relationship between trip distance and travel time. Panel (d) shows that the speed
is higher for longer-distance commutes, reflecting a higher level of congestion for commuters residing
closer to their jobs.7

Figure 5 shows scatter diagram showing the fitness of the Google Maps predicted values to the CHTS
reported values. In each figure, the horizontal axis represents the CHTS reported values, and the vertical
axis plots the predicted value matched to each CHTS observation. As shown in panel (a), Google Maps
data match quite well with the survey respondents’ reported travel times, but there are some errors—
presumably because the survey respondents’ perceptions of their travel times are not always accurate.
Panel (b) shows that the distance values in the two datasets match better than the travel times. The
correlation coefficient for the travel time variables in the two datasets is 0.62, and for the distance variables
it is 0.78.

7 This relationship is further explored in Couture et al. (2018) and Fosgerau and Kim (2019).
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Finally, Figure 6 illustrates the long-run evolution of travel times faced by California commuters through-
out the periods including the pre-COVID-19 pandemic period and subsequent periods. Each point on
the curve indicates the monthly cross-sectional average of Google Maps predicted travel times on the
condition that commuters arrive in the peak hour (7:52–8:52).8 As shown in the figure, in January and
February 2020, the average of expected travel times conditional on arrival in the peak hour is around
28–29 minutes, but it dropped significantly when the statewide lockdown policy was enacted on March
19, 2020. While there was some recovery in travel time during the summer seasons of 2020 and 2021,
travel times remain significantly low relative to the pre-COVID-19 values.

Figure 4: Scatter Diagrams Between Variables
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Notes: The scatter diagrams are drawn to visualize the relationships between different variables. Only
5% of observations from the CHTS estimation sample (14,544) are used to draw the scatter diagrams.
The fitted line as well as its 95% confidence band is drawn in each figure. Travel times and trip distances
predicted at the commuters’ chosen arrival time intervals are used to draw scatter diagrams. The speed
variable plotted in panels (b) and (d) are calculated by dividing the trip distance (measured by Google
Maps) by travel time (predicted by Google Maps) and multiplying it by 60 to normalize into a per-
hour scale.

8 Specifically, we first calculate each individual’s expected travel time if she arrived in the peak hour (7:52–8:52) by taking the
mean of travel times from Google Maps queried trips whose arrivals belong in the peak time interval over each month. These
expected peak travel times are then averaged out from the commuters in the sample with the size of 14,544, which yields each
point on the curve.
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Figure 5: Degree of Fit of Google Maps to CHTS Data

(a) Travel time
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Notes: The scatter diagrams are drawn to evaluate the degree of fit of the Google Maps predicted values
to the CHTS reported values of the key variables. Only 5% of observations from the entire sample
(14,544) are used to draw the scatter diagrams. The fitted line as well as its 95% confidence band is
drawn in each figure.

Figure 6: Average of Expected Travel Time in the Peak Hour by Month

20

22

24

26

28

30

Ja
n
-2

0

Fe
b
-2

0

M
a
r-

2
0

A
p
r-

2
0

M
a
y-

2
0

Ju
n
-2

0

Ju
l-
2
0

A
u
g
-2

0

S
e
p
-2

0

O
ct

-2
0

N
o
v-

2
0

D
e
c-

2
0

Ja
n
-2

1

Fe
b
-2

1

M
a
r-

2
1

A
p
r-

2
1

M
a
y-

2
1

Ju
n
-2

1

Ju
l-
2
1

Tr
a
ve

l 
ti
m

e
 (
in

m
in

u
te

)

Notes: Each point plots the monthly average of expected travel times at the peak hour of the com-
muters in the sample. The expected travel time of the peak hour (7:52–8:52) of each commuter is first
calculated by taking the mean of Google Maps travel times using trips whose arrival times are in the
peak hour over the month, which is then averaged out across commuters to give each point.
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Table 1: Summary Statistics

Obs Mean (SD) Median Min Max

Key variables

Arrival time in minutes (0:00 at zero)a 14,544 478.19 478 300 675

(77.54)

Travel time in minutes (CHTS) 14,544 25.07 20 1 295

(18.50)

Trip distance in miles (CHTS) 14,377 12.28 8.38 0 389

(12.90)

Travel time in minutes (Google Maps)b 14,544 26.08 21.5 1 137

(17.35)

Trip distance in miles (Google Maps)c 14,544 15.30 11.78 0.3 81

(12.35)

Speed (miles per hour, Google Maps) 14,544 33.42 33.38 6.4 67

(10.45)

Quantities measuring congestion

Congestion-free travel time in minutesd 14,544 21.46 18 0.7 81

(13.90)

Congestion delay, realized at chosen arrival timing (in minutes) 14,544 4.65 2.08 0 71

(6.75)

Congestion delay per trip length (minute per mile)c 14,544 0.35 0.2 0 4.88

(0.40)

Congestion delay conditional on arrival is at the peak (Q̂peak) 14,544 8.36 4.3 0 78

(10.09)

Selected control variables

Household incomee 13,460 106.1 87.5 5 300

(68.74)

Race is white 14,544 0.73 0 1

Gender is female 14,544 0.48 0 1

Notes: a. The arrival time variable follows the decimal system, with 00:00 being normalized at 0. The average arrival of 478 means 7:58 AM.
b. Each commuter’s Google Maps predicted travel time is the average of query outcomes between January 6 and March 18, 2020, for arrivals
that fall in the interval chosen by the commuter. c. Note that trip distance may differ for given commute route (zip code pair), as Google
Maps may suggest different routes. For the trip length, we use the distance of the route suggested by Google Maps at the commuter’s chosen
arrival time interval. d. Congestion-free travel time for each commute route (zip code pair) is estimated by taking the average of travel time
outcomes for arrivals before 6:22 queried between March 19 and June 30. e. The original income variable reported in the CHTS is categorical,
but we convert it to a continuous variable by choosing the mid-point of each interval.
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4. Congestion Costs

4.1 Travel Time and Congestion Delay Profiles

By taking the average of travel times of counterfactual trips whose arrival times fall in each interval m,
which were queried between January 6 to March 18, 2020, we construct the individual-specific travel-
time profile denoted by T̂P

i (m). This is the travel time that individual i would face if her arrival time
belonged in the interval m. By arrival time interval m, we calculate the average of expected travel times,
which is written as

T̂ (m) ≡
∑N

i=1 T̂
P
i (m)

N
, (4)

whereN is the size of the sample (= 14, 544). This quantity is calculated for eachm ≡ {1, 2, 3, · · · ,M}
and plotted in Figure 7. Since we use the same sample to calculate the average of expected travel time
consistently for all intervals, we can interpret this curve as the average travel-time profile, or the travel-
time profile of the commuter facing an average level of congestion. According to the drawn curve, a
typical commuter would spend around 23 minutes if she chose to arrive before 7:00, and travel time is
expected to be longer than 28 minutes if she can expect to arrive around the peak time, 8:15.

Figure 7: Travel-Time Profiles Averaged Out Across Commuters
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Notes: The arrival time variable represented on the horizontal axis is in minutes, and time 00:00 is normalized at 0. The solid
blue curve illustrates the average of travel-time profiles of the commuters in the sample. For this, we first construct each
person’s travel-time profile (systematic travel-time prediction conditional on the commuter’s arrival time being in each interval)
by taking the mean of travel times predicted by Google Maps using counterfactual trips whose arrival times fall in each interval
over the data collection period. These are then averaged out across commuters by arrival time interval to give each point in the
blue curve. The data collection period from Google Maps covers January 6 to March 18, 2020. Each point on the red dotted
curve represents the average of the travel-time values calculated only using the commuters who actually chose that interval.
The average travel-time profiles faced by travelers are also drawn in the figure by selecting different data collection periods to
illustrate how the travel-time profiles have changed since the COVID-19 measures entered into force in California: COVID-
19 1st period covers March 19, 2020, through July 31, 2020; COVID-19 2nd period covers August 1, 2020, through November
30, 2020; COVID-19 3rd period covers December 1, 2020, through March 31, 2021; and COVID-19 4th period covers April
1, 2021, through July 28, 2021.
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The overall travel-time profiles that form as result of commuters’ arrival time choices are much different
from the profiles that are faced by commuters. To show this point, we calculate the mean predicted travel
time for each arrival time interval using only commuters who actually chose to arrive in that interval,
which is expressed as

˜̂
T (m) ≡

∑N
i=1

(
T̂P
i (m)|ti ∈ m

)
Nm

, (5)

whereNm is the number of commuters arriving inm. This is plotted bym and illustrated by the red dotted
curve in Figure 7. For example, 1,155 commuters arrived in the interval of 7:37–7:52 (457 < t ≤ 472)
and the mean of their expected travel time is 26.7, etc. As can be seen in the figure, the travel-time profile
based only on the chosen arrivals is flatter than the profile faced by commuters, which is attributed to
the fact that commuters tend to adjust their arrival time choices to the travel-time profiles that they face.
Specifically, commuters traveling a longer distance and thus facing a long travel time at the peak would
plan to arrive at a non-peak time. Since these travelers tend to arrive early in the morning, the mean
travel time for early arrivals is quite high.

Figure 7 also shows how travel-time profiles changed from the travel demand shocks from COVID-
19. In particular, we consider four sub-periods under the COVID-19 condition and draw mean travel-
time profiles for each of them using Google Maps query outcomes drawn from each sub-period.9 As
anticipated, the travel-time profile is flattest for trips occurring just after the state’s lockdown policy. We
see some recoveries of the travel times for the next sub-periods, although they are still much flatter than
under the pre-COVID-19 condition.

Now let us turn to queuing-time profiles. We can construct each individual’s queuing-time profile us-
ing Google Maps by subtracting the individual-specific congestion-free travel time from the individual’s
travel-time profile, i.e., Q̂i(m) = T̂P

i (m) − T̂ free
i . To measure each individual’s congestion-free travel

time for each route, i.e., T̂ free
i , we use trips with pre-6:22 arrivals using queries conducted during the

COVID-19 lockdown policy (between March 19, 2020, and June 30, 2020). We anticipate that the lock-
down policy increases remote working and thus reduces physical car commuting, which would eliminate
congestion for morning commute trips. As confirmed in Figure 6, expected travel times are significantly
lower during these days than before COVID-19. Also, by focusing on pre-6:22 arrivals like in Kim
(2019), we can safely choose only trips that have not encountered any queues. We taking the mean of
travel time predictions for these trips to construct T̂ free

i for each i. Note that Q̂i(m) is the queuing-time
profile that is faced by the individual, which is distinguished from the realized queuing time (2) (the dif-
ference comes from whether the predicted travel time TP

i (m) is interacted with the commuter’s choice
to arrive in that interval).

9 The sub-periods include March 19 through July 31 (2020), August 1 through November 30 (2020), December 1 through
March 31 (2021), and April 1 through July 28 (2021).
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The mean of Q̂i(m) over the entire set of commuters in the sample for each arrival interval m is written
as

Q̂(m) ≡
∑N

i=1 Q̂i(m)

N
, (6)

which is plotted by the interval m and illustrated by the blue curve in Figure 8. This curve describes the
average shape of the queue profiles faced by individuals. This curve has almost the same shape as the
travel-time profile, since the queuing-time profile for an individual is obtained directly from her travel-
time profile with only a level adjustment.

Figure 8: Average Queuing-Time Profiles Faced and Realized
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Notes: The average queuing-time profile faced by commuters is illustrated by the solid blue curve. Each commuter’s expected
queuing-time profile is first constructed by subtracting the estimated congestion-free travel time from the Google Maps con-
structed travel-time prediction of each arrival time interval. These individuals’ expected queuing times at respective arrival time
intervals are then averaged out across commuters in the sample to construct the solid blue curve. Each point on the red dotted
curve indicates the average of the expected queuing times calculated from only commuters who actually chose that arrival time
interval.

Now let us define the queue time profile that results from commuters’ scheduling choices. Specifically,
we define the mean queuing time for commuters who actually arrived in the interval m as the following:

˜̂
Q(m) ≡

∑N
i=1

(
Q̂i(m)|ti ∈ m

)
Nm

, (7)

where Nm is the number of commuters arriving in m. This is plotted by m and illustrated by the red
curve in the same figure. Commuters arriving around the peak time on average experience a longer queue
than those arriving at edge times, but the peak of the red curve is a bit later than the peak of the blue
curve. Also, importantly, the red curve during the peak hours between 7:00 and 8:30 is placed below the
blue curve during the same interval, meaning that the mean of queuing times for trips that actually chose
this interval is smaller than the mean of all potential queuing times during this interval. This implies that
commuters who would meet a relatively longer queue tend to avoid this interval, which possibly validates
the hypothesis of adaptation behavior of commuters from Section 2.
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Figure 9 explores the heterogeneity of congestion profiles by different groups of commuters. In panel
(a), we draw the queuing-time profiles faced by individuals by distance groups, which clearly shows
that commuters traveling a longer distance experience a long queue, which is seen by the large gap in
travel times between non-peak and peak time for the longer-distance groups. Panel (b) draws congestion
profiles for commuters by county of employers. As anticipated, counties known to be highly congested,
such as San Francisco and Los Angeles, have much steeper congestion profiles than counties such as San
Diego and Ventura. To further explore the difference in congestion by county, we report the congestion
ranking in Table A1, where the ranking is based on the mean of per-mile expected queuing time in the
peak hour.

Figure 9: Variation of Congestion
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(b) By county

California

San Francisco

Los Angeles

Alameda

Orange

San Diego

Riverside

Ventura

0

2

4

6

8

10

12

14

16

300 360 420 480 540 600 660

Q
u
e
u
in

g
 t
im

e
 (
in

 m
in

u
te

)

Arrival time

Notes: Panel (a) shows how queuing-time profiles (faced by individuals) differ by trip length. We classify commuters into
five different groups sorted by trip length (the length of each pair of zip codes is the average of distances of different routes
suggested by Google Maps by arrival time interval for the commuter) and draw the average queuing-time profiles of commuters
in different groups. Panel (b) draws queuing-time profiles for different counties. Because congestion on commute route is best
reflected in the county in which the worker’s job is located, I classify according to county. Points on each curve are the average
of expected queuing times at the arrival time interval calculated from commuters working in each county. Among 57 counties
in California, we select several large counties to draw their average congestion dynamics. See Table A1 for the number of
observations used to draw each profile.
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Figure 10: Difference in the Distribution of Arrival Times
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Finally, before empirically exploring scheduling choice patterns by congestion level (Section 5), it is useful
to describe such patterns. In Figure 10, we draw histograms to illustrate how commuters’ scheduling
choices differ by congestion level. Panel (a) illustrates the distribution of arrival times for the relatively
highly congested Los Angeles county and the less congested Ventura county. Panel (b) illustrates the
distribution of arrival times for commuters whose trip lengths are longer than the median distance (11.78
miles) and those whose trip lengths are shorter. Panel (c) illustrates the distribution of arrival times for
commuters whose maximum queue on their commute routes exceeds 30 minutes and that of the rest of
the commuters. All the panels imply that commuters subject to a higher level of congestion tend to avoid
the peak time.
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4.2 Calculating Congestion Costs in California

Here, we aggregate congestion costs from our sample to estimate overall congestion costs in theCalifornia
population. We have estimated the individual’s queuing time that is “realized” as a result of commuters’
scheduling choices, i.e., Q̂i(ti) (see (2)), which is different from the queuing-time profile that is faced
by the individual that was denoted by Q̂i(m) above (the difference comes from whether the predicted
travel time TP

i (m) is interacted with the commuter’s choice to arrive in that interval). The distribution
of Q̂i(ti) is illustrated in the second column in Table 2, and the distribution of peak queuing times that
they would face in the peak point, i.e., Q̂peak

i , is illustrated in the third column in the same table.

Table 2: Percentiles of Estimated Congestion Delays

Delay, realized Expected delay at the peak

5% 0.00 0.38

10% 0.17 0.82

25% 0.76 1.91

50% 2.08 4.30

75% 5.38 10.77

90% 12.81 22.42

95% 19.16 30.77

99% 32.21 46.38
Notes: The second column shows the distribution of the estimated
individuals’ realized delays (denoted by Q̂i(ti)). The third column
shows the distribution of the maximum queuing times that each
commuter would experience if choosing the peak time on her route
(denoted by Q̂peak

i ).

The total of realized queuing times from our sample is expressed in the following:

TQ ≡
N∑
i=1

Q̂i(ti) =
M∑

i=m

N∑
i=1

(
Q̂i(m)|ti ∈ m

)
(8)

and the simple mean of average queuing times is

AQ ≡ TQ

N
, (9)

where N is the number of observations in our sample. We find that TQ for all 14,544 commuters in
our sample is 67,669 minutes, with AQ being 4.65 minutes, which is about 20% of the sample mean of
travel times. The median queuing time is 2.08. The median queuing time is much shorter than the mean
queuing time because the queuing times are skewed toward longer queuing times.
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We also calculate the weighted average of queuing times, using weights based on the proportion of
the in-sample county population to the county population in California; this is to deal with the large
heterogeneity in the congestion levels across counties and the different distribution of county observations
from the population distribution. We calculate

AQw ≡=
M∑

m=1

N∑
i=1

wi

(
Q̂i(m)|ti ∈ m

)
,

N∑
i=1

wi = 1. (10)

The weight place for i is proportionate to the inverse of the proportion of the county observation in the
sample to the county population; this is to compensate commuters from counties with fewer observations
in our sample.10 We find that the weighted mean of queuing times is about 5.14 minutes, which is a
bit larger than the unweighted mean, implying an oversampling of commuters located in relatively less
congested areas in the CHTS sample.

We use the weighted mean of queuing times to calculate the total congestion costs in California. We
note that the total employment in the US in 2009 is about 142 million and that the percentage of workers
who commuted by private vehicle (either driving alone or carpooling) in 2009 is about 86.1%, and we
conclude that about 122 million workers used cars for their regular commutes in that year. We also
assume that the number of work days for typical workers in the US in a year is 220 days, although this
number should vary by worker. We therefore multiply our estimate for queuing time (5.14 minutes)
by 18.9 million workers (i.e., the whole labor force) and 220 (days) to conclude that the total queuing
times of all US car commuters in a year is about 2.3 billion hours. Following Kim (2019), who chose
a value of time (VOT) estimate based on the extensive surveys conducted in Small and Verhoef (2007)
and Wardman (2001), we use $16.8 as VOT, which then yields a total congestion cost of about 6 billion
dollars from morning commutes.11

Now the important issue is whether the total congestion delay is equivalent to the economic inefficiency
cost. The Vickrey (1969) bottleneck model suggests equivalence. But travel-time profile is not the same
as the iso-cost curve, raising a question. Perhaps congestion delay is imperfect as a measure of economic
inefficiency. We need to answer the question of what total travel times would be if all behaved collectively
so as to minimize them. We discuss this issue further below.

10 Specifically, we first calculate the ratio of county sample size in our CHTS sample to the county population size and assign
a weight to each county by the inverse of this ratio. We then aggregate them all over individuals, which we based on to assign
an individual’s weight to make sure that the sum of weights is unity.

11 One could interact the individual specific queuing time to apply different VOT to individuals with different incomes, which,
however, must assume that we have information about the distribution of VOTs by income.
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Finally, in Figure 11, we illustrate a cumulative function of total queuing time by arrival time, which is
written as

F (t) ≡
∫ t

−∞
f(m)dm, (11)

where

f(m) =

∑N
i=1

(
Q̂i(m)|ti ∈ m

)
lm

, (12)

where lm is the width of the arrival time interval (minutes in the interval). Note that since the total
queuing time for those arriving in m is divided by the interval width in minutes, f(m) gives the rate
of increase in total queuing time TQ by each minute. As expected, the F (t) curve is increasing at the
highest rate during the peak time, while the curve is flattened during non-peak times. This means that
commuters who arrive in the peak times (7:30–9:00) contribute most to the aggregate congestion costs,
which is due to both their long queue per person and the high rate of arrivals during these peak times.

Figure 11: Cumulative Function of Total Queuing Times
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Notes: This graph shows how the total queuing time of the commuters in the
sample, i.e., expression (8), increases over time in a given day. The vertical
axis represents expression (11).
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5. The Effect of Congestion on Scheduling Choices
The key theme of this paper is that people all have different routes (paths) to works. A natural question
would then be, how would an individual commuter respond to the condition of her specific route? If
there is certain adaptation pattern, how is it significant for the estimation of scheduling preferences?
What is the implication of such a pattern on congestion costs and optimal tolling policy? We now turn
to focus on these questions.

We use a regression model to test the adaptation hypothesis of whether commuters (randomly) allocated
on a highly congested route tend to avoid the long queue at peak by choosing to arrive either earlier or
later than the peak time. In effect, we aim at estimating the causal effect of congestion of the route on trip
timing choice. The key explanatory variable should measure Qpeak, the longest queue if the commuter
had arrived at the peak time tpeak (see Figure 1 visualizing Qpeak), which is measured by expression (3)
defined above.

We estimate a simple model of binary choices between an arrival at the peak hour (7:52–8:52) and non-
peak hours. In our sample, about 30% of commuters arrive during this peak hour. Our estimating
equation is written as

arrpeaki = δ0 + δ1Q̂
peak
i +XiΓ + ϵi, (13)

where arrpeaki is an indicator whose value is 1 if arrival is in the peak hour (between 7:52–8:52), Xi is
the vector of observable worker and trip characteristics, and ϵi is the error term. The adaption hypothesis
implies a lower chance of choosing the peak hour if the commuter were to travel a more congested
route under which δ1 < 0. Importantly—unlike the realized queuing time (2)—travel time outcomes
are not interacted with the commuter’s trip timing choice in expression (3), which implies that the key
explanatory variable is not a function of the arrival time itself, and there is no reverse causality issue, at
least not by construction of the variables themselves.

Table 3 reports the estimation results. (Note that the CHTS classifies 21 industry categories and 25
occupation categories.) First, from the simple regression reported in column (1), we find a negative
coefficient on the queue variable, confirming that commuters meeting a longer queue at the peak tend
to arrive at a non-peak time. The simple correlation found in column (1) may be due to the tendency of
longer-distance travelers to arrive at a non-peak time.

Column (2) controls for the trip distance, from which we find that we lose some significance, but we
still find a negative estimated coefficient. In column (3), we include the home-county fixed effects as
well as a set of personal characteristics as controls. In column (4), we include detailed information on
the workers’ occupation and the industry dummies. As we include more meaningful controls, we have a
more significant adaptation pattern (a more negative estimate for δ1), which implies that the failure to
control for these variables would underestimate commuters’ tendency to adapt.

We need to be careful about the possibility of sorting, under which scenario our estimate may be biased.
Specifically, a higher level of congestion on a route at the peak hour may mean that the users of the
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route tend to have a stronger preference toward the peak hour, so a commuter’s arrival at the peak hour
may explain the congestion on her route. While we try to control for factors determining commuters’
scheduling preferences, the concern of omitted variables remains.

We use the instrumental-variation regression to address this concern. We use the mean congestion of
workers who have the same workplace as the commuter. This variable reflects the level of congestion
around the workplace of the commuter, not her particular scheduling preference. The IV estimates re-
ported in columns (4)–(5) are a bit larger than the OLS estimates, implying that the adaptation pattern is
a bit stronger than what is observed by the OLS estimates. This result is intuitive, since the unobservable
characteristics related to the choice of arrival at the peak hour would be associated with a higher level of
congestion along the route at the peak hour, which leads to an overestimation (less negativity) of the true
effect of congestion on peak trip timing choice. Finally, column (7) reports the Probit estimation result,
which exhibits a rather large effect of congestion on the peak-time arrival choice.

The adaptation tendency implied in our estimates is small. In particular, for an 8-minute increase (i.e., the
sample mean for Q̂peak

i ) in the peak queuing time, there is only about a 2% reduction in the probability
of choosing the peak hour. As we shall argue later, the small adaptation tendency does not imply that
commuters are very inflexible. Our scheduling preference parameter estimates imply that commuters are
somewhat inflexible, but not very inflexible. We will provide our explanation reconciling these findings
below.
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Table 3: Testing the Adaptation Hypothesis

Dependent variable: Dummy for arrival in 7:52–8:52

(1) (2) (3) (4) (5) (6) (7)

OLS OLS OLS OLS IV IV Probit

Expected queuing time at peak
-0.00211*** -0.00114** -0.00180*** -0.00296*** -0.00274*** -0.00322*** -0.00938***

(-4.72) (-2.31) (-3.48) (-4.74) (-2.65) (-3.03) (-4.53)

Home/work distance (miles)
-0.00167*** -0.00112*** -0.000449 -0.000529 -0.000358 -0.00148

(-4.70) (-3.03) (-1.05) (-1.01) (-0.68) (-1.08)

Number of household members
-0.00363 0.00181 0.00180 0.00183 0.00555

(-0.87) (0.42) (0.42) (0.43) (0.41)

Multi-worker household
0.000195 0.00131 0.00133 0.00128 0.00354

(0.02) (0.13) (0.13) (0.13) (0.11)

Has students
0.0320*** 0.0325*** 0.0326*** 0.0325*** 0.0973***

(2.84) (2.83) (2.84) (2.84) (2.78)

Homeowner
-0.00549 -0.00631 -0.00631 -0.00631 -0.0197

(-0.48) (-0.53) (-0.53) (-0.53) (-0.53)

Annual family income in $1,000
0.000252*** 0.0000779 0.0000776 0.0000782 0.000222

(3.40) (0.97) (0.97) (0.98) (0.95)

Female
0.0669*** 0.0400*** 0.0400*** 0.0399*** 0.122***

(7.55) (4.05) (4.08) (4.06) (4.11)

College degree or more
0.0898*** 0.0741*** 0.0740*** 0.0741*** 0.226***

(9.51) (6.91) (6.94) (6.95) (6.96)

White
0.0154 0.0135 0.0137 0.0133 0.0431

(1.57) (1.32) (1.34) (1.31) (1.36)

Has less than 5 full work days
-0.0424*** -0.0453*** -0.0454*** -0.0453*** -0.142***

(-3.57) (-3.70) (-3.72) (-3.72) (-3.63)

Flexible worker
-0.0136 -0.0276** -0.0276** -0.0277** -0.0809*

(-1.01) (-1.99) (-2.00) (-2.01) (-1.90)

County fixed effects No No No Yes Yes Yes Yes

Industry fixed effectsa No No No Yes Yes Yes Yes

Occupation fixed effectsa No No No Yes Yes Yes Yes

N 11,774 11,774 10,854 10,578 10,578 10,578 10,577

R-sq 0.002 0.003 0.025 0.051 0.051 0.051
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In Table 4, we estimate several alternative specifications to further test the adaptation hypothesis. First in
column (1), we use only the sample of trips with arrivals earlier than 8:52 to observe the choice between an
arrival at the peak (7:52–8:52) and an earlier arrival (than 7:52), and we find a slightly stronger adaptation
tendency. In column (2), we use only the sample commutes arriving at the peak hour and later times
(7:52–8:52 vs. later than 8:52) and find a similar adaptation tendency as those in Table 4.

In columns (3)–(4), we use the queuing time per mile as the explanatory variable. Regardless of inclusion
of the distance variable as control, we again find a statistically significant effect of congestion on the
tendency to choose the peak hour. However, the magnitude of this effect is still small. For a 10-minute
increase in the queuing time per mile, there is only around a 3% lower chance of arriving at the peak
hour.

In column (5), wemodify the queuing time to the log scale and find that the elasticity of choice probability
with respect to log of travel is actually small. For a 100% increase in the queuing time at the peak, we
find that there is a 1.2% lesser chance of choosing the peak time as the arrival time. Finally, we used the
log of queuing time per mile, which exhibits a similar estimate for the elasticity.

Overall, we find a statistically significant evidence of adaptation behavior, which is consistent with the
hypothesis from our conceptual framework. Specifically, commuters (randomly) assigned on a route
that is highly congested at the peak time tend to adapt to the condition by arriving at a non-peak time,
i.e., congestion on a route causes commuters to adjust their trip schedule. This pattern is robust to the
inclusion of many control variables, especially the commute distance, and commuters even adapt to the
queuing time per mile traveled; addressing the omitted variable concern preserves our results by using
IV. However, the adaptation tendency is quite weak. For a 100% increase in travel time at the peak hour,
there is only a 3% lower chance of choosing the peak time. For the small adaptation tendency, we need
an explanation, which we provide below after estimating the scheduling preferences in the next section.

MINETA TRANSPORTATION INSTITUTE 26



Table 4: Testing the Adaptation Hypothesis, Alternative Specifications

Dependent variable: Dummy for arrival in 7:52–8:52

(1) (2) (3) (4) (5) (6)

Early vs. Peak Late vs. Peak

Expected queuing time at peak
-0.00421*** -0.00296***

(-5.47) (-2.88)

Queuing time per mile
-0.0323*** -0.0245**

(-2.62) (-2.00)

Log of queuing time
-0.0123**

(-2.39)

Log of queuing time per mile
-0.0126**

(-2.35)

Home/work distance (miles)
-0.00113** 0.000573 -0.00166*** -0.00102** -0.00170***

(-2.23) (0.83) (-4.54) (-2.37) (-4.49)

Household and personal characteristicsa Yes Yes Yes Yes Yes Yes

County fixed effects Yes Yes Yes Yes Yes Yes

Industry fixed effects Yes Yes Yes Yes Yes Yes

Occupation fixed effects Yes Yes Yes Yes Yes Yes

N 8,082 5,574 10,578 10,578 10,317 10,317

R-sq 0.117 0.087 0.050 0.048 0.050 0.049

Notes: a. See Table 3 for the list of control variables. b. OLS are used in all specifications.
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6. Estimation of Scheduling Utilities
In this section, we estimate the schedule preferences of California commuters. The knowledge on
scheduling preferences is used to develop useful implications for tolling policy.

6.1 The Scheduling Utility Formulation and the Logit Model

An individual is assumed to choose an arrival time interval among 13 intervals, with each interval’s width
being 15 minutes from 6:22 to 9:52 AM. We exclude the trips ending outside of this range, since these
travelers would have quite different preferences. The systematic utility that the commuter i obtains by
choosing arrival time interval m is specified as

Vmi =

J∑
j=1

(
−αjT

j
mi − βjSDEj

mi − γjSDLj
mi

)
, (14)

where: Tmi is the travel time that i would face if choosing the interval m; SDEmi = max(0, t∗i − tmi),
where t∗i is i’s ideal arrival time and tmi is the mid-point time of the interval in which i’s arrival time
belongs; and SDLmi = max(0, tmi − t∗i ). Note that this specification allows ideal arrival time t∗i to
be individual-specific. Just below, we use machine learning to assign the individuals with their desired
arrival times. We include the polynomials of the utility components to allow the non-linearity of the
utility.

With ϵim being the individual-specific factors determining the utility, the utility is Vmi + ϵmi. In the
multinomial logit framework, in which the extreme value distribution of ϵmi is assumed, the probability
of choosing alternative m from choice set M by decision maker i is given by:

Pmi =
expVmi∑M
l=1 exp(Vli)

, (15)

and the likelihood is written

LL ≡
N∑
i=1

log(Πymi
mi ), (16)

where ymi = 1 indicates that m is i’s chosen alternative (and ymi is otherwise 0). The maximum likeli-
hood estimation is used to estimate the values of the preference parameters αj , βj , and γj .

6.2 Estimating Ideal Arrival Times

Conjecture

It is essential to first estimate individual-specific ideal arrival times, since they define the schedule delays
as a key attribute considered in decision making. It is useful to first make a conjecture on them based on
our framework. Our conjecture is mainly based on our finding that the adaptation tendency is quite weak.
We suspect that the weak adaptation tendency is mainly due to rather flat travel-time profiles, even for
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routes that are highly congested during rush hours. From the travel-time profiles drawn from Google
Maps, the travel time on average increases only about 7 minutes during the first half of the morning
period (from an early time, say 6:00 AM, to the peak time, 8:00 AM). These travel-time profiles should
be much flatter than most commuters’ iso-cost curves, according to earlier studies estimating scheduling
preferences (Small, 1982; Kreindler, 2020), which report an estimated β to α ratio of 0.3–0.5, which
implies a one-hour increase in travel time corresponding to two-hour changes in arrival times.

Because the condition for an arrival at a non-preferred time is a steeper travel-time profile that that of the
iso-cost curve around the commuter’s ideal arrival time (see Section 2), it is difficult for the flat travel-
time profiles for congested routes to induce a rescheduling of arrivals. We can also say that commuters
choosing non-peak times choose them mainly because these times are actually close to their preferred
times and not because they adapt to potential long delays at the peak time.

This situation is described in Figure 12. In the graph, we hypothesize non-linear iso-cost curves, whose
slopes are higher than that of the travel-time profile. Comparing each different individuals’ ideal arrival
times t∗i with their actual arrival times ti, we observe that commuters tend to arrive just near their ideal
arrival times, so that one’s ideal time is closer to one’s actual arrival time than to others’ arrival times.

Figure 12: Conjecture
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Based on our framework, we therefore offer the conjecture that commuters’ actual arrival times are over-
all quite close to their ideal arrival times. Since a commuter’s actual arrival time tells us most of the
information on her ideal arrival time according to our conjecture, we use the actual time to infer the
ideal arrival time. We incorporate this conjecture in finally assigning ideal arrival times to individual
commuters below.
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Machine Learning Estimation and Update

We use our conjecture and the machine learning estimation to finally assign individuals with their own
ideal arrival times. For themachine learning estimation, the first step is to define the “example group,” i.e.,
the group of commuters who would reveal how agents would behave in a certain condition. Because our
goal is to know commuters’ ideal arrival times, we define the example group as commuters who actually
arrive at their ideal arrival times. They arrive at their ideal times because they do not meet any congestion
on their routes. In the variants of the bottleneck model in which residents are distributed over space and
travel different distances, including Fosgerau and de Palma (2012), Fosgerau et al. (2018), and Fosgerau
and Kim (2019), commuters traveling the shortest distance tend to arrive at their most preferred arrival
times. Motivated by this observation, we define the example group of commuters as the commuters who
have the same zip code for home and work, with a distance under 3 miles and a self-reported trip duration
that is less than 10 minutes. There are 1,388 such commuters in the example group sample.

Figure 13 illustrates the distributions of the arrival times of the commuters in the example group and those
of the commuters in the “learning group” (for whom the ideal times should be estimated). As expected,
the arrival times of the commuters in the example group (ideal arrival times) are more concentrated
around the peak than those of the learning group. However, the difference is not very large, which is
consistent with our conjecture that actual arrivals are close to the ideal times.

The “machine” first learns how observed characteristics, such as incomes, occupation, and family size,
affect the arrival times of commuters in the example group. We find that the information on workers’
jobs (composed of 21 industry dummies and 24 occupation dummies) have an especially large contribu-
tion to the prediction of arrival times. To test the prediction power, we randomly select 30% of the 1,388
observations in the example group and predict their arrivals using the rest of the group (70%). We then
plot predicted arrival times against the (known) actual arrival times in Figure 14. The figure indicates
that machine learning tends to over-estimate the arrival times for earlier arrivals and under-estimate for
later arrivals, so that the distribution of predicted ideal arrival times is systematically too concentrated
around the center. This is probably because early or late arrivals are not quite predicted by any systematic
factors, so they are regarded as being determined mainly by individual-specific factors. We try to correct
these errors using our own conjecture below. While our machine learning estimates exhibit large system-
atic prediction errors, they still offer much better prediction power than out-of-sample linear regression
prediction.12

Using the information learned from choices made by commuters in the example group, we finally predict
counterfactual arrival times at work that would be chosen in the absence of queues, i.e., ideal arrival times,
for the learning group. Since we assume that commuters traveling a short enough distance would arrive
at their ideal times, we impose the average distance of the example group (1.4 miles) as the common
trip distance for the learning group in predicting their counterfactual arrival times. Then, the machine

12 From the predicted and actual values plotted in Figure 14 drawn from machine learning estimates, the correlation coefficient
is 0.31, and the R-squared from their linear regression is about 0.1. When like plots are drawn from the predicted values made
from out-of-sample linear regression prediction, the correlation between them is smaller.
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learning effectively matches commuters with the same quality between the example and non-example
group to make predictions on ideal arrival time conditional on the short trip distance.

Figure 13: Distribution of Arrivals for Example and Learning Groups
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Figure 14: Scatter Plots for True and Predicted Arrival Times
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Now, we try to correct the prediction errors generated from machine learning. We consider an error-
correction mechanism which incorporates our conjecture that ideal arrival times are close to actual arrival
times. Since the machine learning estimates do not utilize the information on commuters’ actual arrival
times directly, we directly incorporate them simply by weighting the two in the following form:

t̂∗i ≡ π0 + π1t̃∗i + (1− π1)ti, (17)

where t̂∗i is our final estimate for t∗i , t̃∗i is the machine learning estimate for ideal arrival time, ti is i’s actual
arrival time, and π1 is a parameter with 0 < π1 < 1. A constant π0 is introduced to flexibly correct errors
in level in the machine learning estimates. Under the assumption that ideal arrival time is close to actual
arrival time, the update would certainly tend to reduce prediction errors.13 The weighting of the two
may be interpreted in the other direction: first randomizing ideal times around the actual arrival times,
and the generated errors then being corrected by incorporating individuals’ observed characteristics using
machine learning.

The parameter values for π1 and π0 determine the distributions of estimated ideal times and schedule
delays—and, thereby, our scheduling preference estimates.14 We choose these parameter values to seek
the best fit of the estimated specification to the data. We particularly ensure that the slope of the es-
timated quadratic utility is about zero around the ideal time by imposing the condition β1 = γ1 = 0

in specification (14). If one of them is positive, for instance, the scheduling utility profile is increasing
locally around t∗, which would imply that the estimates of ideal times are systematically biased. While
we report only estimates given our chosen parameter values of π1 and π0 below, we also tried other rea-
sonable sets of these parameter values, but the preference parameter estimates are quite robust, so our
conclusion does not largely rely on these parameter values.

13 To see this point, let ei = t∗i − t̂∗i be the error from the machine learning. Plugging this expression to (17) to eliminate t̃∗i
and rearranging terms, we can write the error in prediction from using t̂∗i as the following (imposing π0 for simple exposition):

t∗i − t̂∗i = (1− π1)(t
∗
i − ti) + π1ei. (18)

From the figure above, we can see that for earlier arrivals than ideal times with t∗i − ti > 0, ei tends to be negative, and for late
arrivals with t∗i − ti < 0, ei tends to be positive. Since 0 < π1 < 1 is assumed, the first and the second term therefore would
tend to cancel out, which would reduce the prediction errors. There is also the potential for a selection bias concern, because
the example and the learning group may be systematically different in scheduling behaviors. The large set of predictors would
contribute to addressing this concern. Also, as weighting effectively applies to both groups, weighting may help to mitigate this
concern.

14 In particular, as π1 gets smaller, since we utilize less of the machine learning estimates and more of our conjecture, the
distribution of the estimated ideal times get flattened and the distribution of schedule delays get sharpened.
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6.3 Scheduling Preference Parameters Estimates

We choose the parameter values of π1 = 0.6 and π0 = −4.5, which yields minimum standard errors of
the estimates and ensure that the quadratic utilities have a zero slope at the ideal times. Figure 15 depicts
the distribution of estimated ideal arrival times under the imposed parameters as well as the distribution
of actual arrival times.15

In panel (a) of Figure 16, machine learning estimated ideal arrival times are plotted against actual arrival
times. The large deviations of the points from the fitted line imply large prediction errors. In panel (b),
we plot the conjecture-based adjusted ideal times against actual arrival times, which exhibits a stronger
relationship between the two.

In Figure 17, we report the distribution of schedule delays, tmi − t∗i , calculated based on conjecture-
adjusted estimates for ideal arrival times. In this figure, note that a negative value of the schedule delay
means an earlier arrival. The median value is the schedule delay is 27.96 (minutes in absolute value) for
arrivals earlier than the ideal time, and that of later arrivals is similar at 27.97.

Figure 15: Distribution of Ideal and Actual Arrival Times
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15 Note that the density of ideal times in this graph is relatively sharp compared to that in Figure 13, which we are using as a
benchmark distribution of ideal arrival times. We could impose a small value for π1 to flatten the curve. However, our goal is
to ensure a good fit of each of the commuters rather the unidimensional distribution of ideal times. Our worry about having
a small pi is that the ideal time estimates get too close to actual arrival times and generate overly small schedule delays, which
would then bias the result.
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Figure 16: Scatter Plots for Ideal and Actual Arrival Times
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Figure 17: Distribution of Schedule Delays
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Table 5 reports our preference parameter estimates. In the simplest specification in column (1), we find
that the coefficient of travel time (i.e., α1) is -0.0695, and that of SDE is -0.0377, so the ratio of β1
to α1 is about 0.54. From the coefficient of SDL, the ratio γ1/α1 is 0.49. These numbers mean that
commuters are willing to arrive early or late by an hour on average in order to reduce the travel time by
30 minutes. Or, the cost of staying at work early before one’s shift starts (and the cost of being late) is
about half of the time spent in the car.

In specification (2), we include the square terms of the schedule delays. As mentioned above, in this
specification, we ensure that the coefficients the schedule delays (for early and late arrivals) are not pos-
itive, since otherwise there would be a locally increasing utility moving away from the ideal time. The
large and significant coefficients on the quadratic terms supports the non-linearity of the utility, approx-
imated by the quadratic form. In specification (3), we include the square of the travel time and the cubics
of the schedule delays. From the positive coefficient on the square of the travel time, we can see that the
marginal disutility from travel time diminishes. The coefficients on the cubics of the schedule delays are
only weakly significant or not significant at all, so we prefer the quadratic specification.

In the specifications reported in columns (3)–(5), we include interaction terms to see how commuters
in one group value the utility components differently from those in the other group. First, in column
(3), we interact the utility components with the dummy for “rich” commuter, which indicates an annual
income exceeding $100,000. We find that the higher-income group is more sensitive to all the utility
components than the lower-income group. Especially, the rich group’s unit cost of travel time is larger
than that of the “poor” group by the largest amount (relative to the gap of the unit costs of the schedule
delays between the two groups). The ratio of β1 to α1 is 0.479 for the high-income group and 0.644
for the low-income group, which makes sense if we consider the higher value of time for higher-income
earners than lower-income earners, which is well-documented in the literature. In specification (4),
we include the interaction terms with the female dummy, which shows that women are relatively more
sensitive to schedule delays, or that they are more inflexible, than men. In specification (5), we define
a “flexible” worker dummy which indicates workers in the CHTS sample who said that they are fairly
flexible to adjust their work schedules or that their days at the primary workplace are fewer than 5.
We can anticipate that these workers are also flexible to adjust their scheduling within a work day. As
expected, flexible workers have relatively smaller schedule delay costs—evidence which may be regarded
as validating our estimates.

Here is a short retrospective discussion on our assumption to use Eq. (18), which was made from our
theory-based conjecture. A presumption behind this conjecture was a that the iso-cost curve is steeper
than the travel-time profile, which may be unduly forcing the revelation of such situation. However, even
with a higher value for π1 (using less of the conjecture), or even with π1 = 1 (which does not use the
conjecture at all), our estimated parameters still imply steeper iso-cost curves. Thus, the conjecture itself
does not drive the conclusion that the iso-cost curves are steeper, but rather, we use it to more accurately
estimate the scheduling utility parameters.
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Table 5: Scheduling Utility Estimates

(1) (2) (3) (4) (5) (6)

T -0.0695*** -0.0764*** -0.145*** -0.0570*** -0.0682*** -0.0667***

(0.00490) (0.00517) (0.0125) (0.00735) (0.00657) (0.00560)

SDE -0.0377*** -0.000419 0.00473 -0.0367*** -0.0360*** -0.0394***

(0.000587) (0.00201) (0.00375) (0.000871) (0.000836) (0.000701)

SDL -0.0343*** -0.00121 0.00584* -0.0313*** -0.0323*** -0.0354***

(0.000477) (0.00186) (0.00352) (0.000604) (0.000633) (0.000546)

SDE2 -0.000529*** -0.000717***

(0.0000318) (0.000117)

SDL2 -0.000419*** -0.000642***

(0.0000268) (0.000101)

T 2 0.000676***

(0.000113)

SDE3 0.00000152

(0.000000976)

SDL3 0.00000168**

(0.000000772)

T × rich -0.0250**

(0.00984)

SDE × rich -0.00258**

(0.00118)

SDL× rich -0.00749***

(0.000965)

T × female -0.00357

(0.00983)

SDE × female -0.00359***

(0.00117)

SDL× female -0.00430***

(0.000957)

T × flex -0.0139

(0.0116)

SDE × flex 0.00619***

(0.00125)

SDL× flex 0.00475***

(0.00114)

Interval ends with 15 or 45 -0.277*** -0.276*** -0.276*** -0.277*** -0.277*** -0.278***

(0.0221) (0.0220) (0.0220) (0.0221) (0.0221) (0.0221)

Sample size 118048 118048 118048 118048 118048 118048

Number of cases (trips) 7378 7378 7378 7378 7378 7378

Log likelihood -18236.8 -17945.7 -17923.2 -18211.3 -18228.1 -18220.0

β/α 0.54 0.4790 (rich) 0.5516 (female) 0.4120 (flex)

0.6439 (poor) 0.5279 (male) 0.5907 (non-)

γ/α 0.49 0.4730 (rich) 0.5100 (female) 0.3803 (flex)

0.5491 (poor) 0.4736 (male) 0.5307 (non-)

Notes: a. Logit is used for estimation. The choice set is intervals 2 to 15 spanning from 6:22 to 9:52. b. Intervals of 1 and 16
are dropped so the individual is assumed to choose among 13 intervals with each interval width being 15 minutes. c. Parameter
values for π1 = 0.6 and π0 = −4.5 are imposed. d. Standard errors are in parentheses. ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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7. The Implications of the Findings and Discussion
In this section, we provide some further insights on trip scheduling behavior based on our empirical
evidence. We also discuss some issues around measuring the economic inefficiency resulting from con-
gestion and the design of a congestion tolling policy.

7.1 Scheduling Choices and Ideal Arrival Times

In panel (a) of Figure 18, we use the parameter estimates on the linear-utility specification to draw an
indifference curve, with the commuter’s ideal arrival time assumed to be 8:15 at which the mean travel
time is the longest. The average travel-time profile of Figure 7 is also placed to examine the commuter’s
arrival time choice. Given β/α (and γ/α) of about 0.5, travel time must fall by about half an hour to
compensate for the increase in schedule-delay costs arising from arrivals one hour earlier or later than
the ideal time. However, the much flatter travel-time profile means that travel time on average falls by at
most 2–3 minutes during the one-hour interval. As a result, the commuter chooses to arrive at her ideal
time, which is 8:15 in this example.

In panel (b), we use the quadratic utility estimates to draw an indifference curve, which shows that
the commuter is quite flexible locally around the ideal time. However, travel time still falls too slowly
to compensate for the increasing schedule delay costs from arrivals later or earlier than the ideal time,
under which the optimal choice is, again, to arrive at her ideal time. If we assume a different ideal arrival
time and a convex utility curve, then the commuter’s optimal choice would be different from the ideal
time. However, as long as the indifference curve is steeper than the travel-time profile, the chosen arrival
timing would be close to the ideal time. Of course, there must be a large degree of heterogeneity in travel-
time profiles and scheduling utilities among commuters. But the large difference between the average
travel-time profile and the average scheduling utility suggests a strong tendency to arrive near one’s ideal
arrival time, which validates the conjecture made in the preceding section.

This situation would also have an implication for the distribution of ideal arrival times. Note that we
confront a seemingly contradictory result: commuters exhibit a strong tendency to arrive around their
desired arrival times while the resulting travel-time profiles are quite flat. This can be resolved if com-
muters’ desired arrival times are quite dispersed.16

Finally, the large gap in slopes between travel-time profiles and schedule utility curves suggests that a
small change in the level of congestion would not be enough to induce a choice of arrival at an inconve-
nient early or late time for the majority of commuters, which explains the the small adaptation tendency
found in Section 5.

16 The large dispersal of ideal arrival times is consistent with Hall (2021a). Small et al. (2005) also found a larger heterogeneity
in the preference of road users. The relatively stable travel times caught researchers’ attention in other literature (see Anas, 2015;
Hall, 2021b).
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Figure 18: Scheduling Utility and Travel-Time Profiles
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7.2 Discussion on the Economic Cost of Congestion and the Policy of
Congestion Tolling

We first discuss the quantification of the economic cost of congestion given our framework and empirical
estimates. To narrow down the scope of our discussion, we rely on the bottleneck model tradition by
conjecturing that the social optimum involves no queues, i.e., if all travelers could coordinate their choices,
then they would arrive with no queues while fully utilizing the capacities of the roads.17 Under this
conjecture, the total queuing times quantifying the difference in total travel time costs between the social
optimum and the laissez-faire condition estimated in this paper would be equivalent to the inefficiency
cost arising from traffic congestion if the travel-time profiles were the same as the iso-cost curves (see
Vickrey, 1969; Arnott et al., 1990, 1993).

However, given the large difference between the travel-time profiles faced by individuals and their schedul-
ing utility curves discovered in this paper, measuring the cost of congestion becomes a non-trivial issue.
The trade-offs implied in the two curves are quite different. In particular, the travel-time profile gives
the schedule delays the commuter must accept to have a zero queuing time under the laissez-faire con-
dition. The indifference curve gives the schedule delays she would be willing to accept for the removal
of queuing she would otherwise experience under the laissez-faire condition. A difficult issue is which
one to use when evaluating the economic benefit available from the removal of queues (or equivalently,
when evaluating the cost from the presence of queues). Using the indifference curve may be best, given
that it gives the reference utility level for comparison between the laissez-faire and the social optimum
involving no queues. However, for the area under the indifference curve to correctly measure the eco-
nomic inefficiency, it must ensure that all the commuters complete arrivals within a shorter morning time
interval (since the interval implied in the indifference curve is much shorter than that of the travel-time
profile as seen in Figure 18), which may not be possible due to the capacity of roads. If arrival times at
the destination are instead preserved under the social optimum involving no queues, which is the result
in the standard bottleneck models, then using the travel-time profile would give the correct inefficiency
cost from congestion (and the benefit from the removal of queues).

Thus, to measure the economic cost of congestion more correctly, one would have to not only characterize
the social optimum but also identify arrival times under the social optimum with heterogeneous travel-
time profiles and endogenous scheduling choices in a similar framework to ours, which would then
quantify the difference in total costs (not just total travel time costs) between the social optimum and
the laissez-faire. This would be a difficult task, because each commuter is just one person contributing
to the formulation of an individual travel-time profile that is shaped by others who in turn are shaping
their own travel-time profiles.18

17 Duranton and Venables (2018) argue that the congestion-free time may not be the reference point for identifying the social
optimum. The model in their approach is based on Pigou (1920), where the externality is the source of drivers’ failure to reach
an outcome that is best for them collectively as a whole. Meanwhile, the framework that we use in this paper is the bottleneck
model, where drivers’ failure to coordinate their departure schedules lead to market failure.

18 A similar analysis was carried out in Arnott et al. (1994), with an explicit consideration of the preference heterogeneity of
commuters, but there is no heterogeneity in commuters’ travel-time profiles in that paper.
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The next issue is to how to design a tolling policy to achieve the social optimum in a decentralized setting.
In the classical bottleneck model, in which the travel-time profile faced by individuals under the laissez-
faire condition is the same as the iso-cost curve, the optimal time-varying toll schedule could be either.
However, since the travel-time profile faced by an individual and her utility curve are largely different as
discovered in this paper, neither may correspond to the socially optimal toll. Specifically, a toll resem-
bling the travel-time profile (suggested in Kim, 2019) would not induce commuters to reschedule their
trips, since the maximum benefit from rescheduling is the full removal of queuing times (7–8 minutes
at most for typical commuters), which would not be enough to compensate the schedule-delay costs of
several hours for those having average preferences. A utility-compensating toll (having the shape of the
indifference curve) may impose an inefficiently large toll for an arrival around the peak time, given that
arrivals are already quite dispersed. Thus, the conventional toll regime of the standard bottleneck model
would be either ineffective or too harsh for commuters, and the large toll may face significant political
resistance.

Our discussion highlights that because of the salient but often-ignored fact that commuters each face
their own travel-time profiles, we are encountering challenges in the application of the key results of
the standard bottleneck model to the quantification of the economic cost of congestion and the design
of a congestion tolling policy. We may need a new or extended framework from the existing models
that would incorporate the heterogeneity of travel-time profiles and the dispersal of ideal arrival times to
revisit these fundamental issues in the economic models of congestion.
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8. Conclusion
In this paper, we developed a simple model of trip timing choices faced by commuters facing their own
travel-time profiles. We empirically quantified the key elements of the model such as the travel-time
profiles and the scheduling utility function of car commuters in California. Using these parameters, we
quantified the total congestion costs from morning commutes in California. We also empirically tested
a hypothesis that commuters adapt to congestion dynamics by departing earlier or later in the morning if
they would face a long congestion-related delay during the peak hour and found statistically significant
evidence for it. Our estimated scheduling utility for commuters indicates that the unit cost of schedule
delays is about half of the unit cost of travel time.

Perhaps the most important discovery is the large difference between travel-time profiles and indiffer-
ence curves, from which we offer new insights on trip scheduling patterns and on the distribution of ideal
arrival times. This finding raises some fundamental questions that cannot be easily answered in the clas-
sical bottleneck models. This paper therefore highlights the importance of considering the heterogeneity
of location and routes when modeling congestion to solve these problems.

One limiting assumption of our model is the exogenous nature of ideal arrival times, so a possible ex-
tension would therefore be to endogenize the formulation of ideal arrival times. For example, we could
distinguish the short-run and the long-run ideal arrival times, with the latter being determined by the
long-run preference that shapes commuters’ routines in the morning periods and determines the short-
run ideal arrival time (see Peer et al., 2015; Verhoef, 2020, for more on this idea). We also need more
research that investigates the topic in the same direction as our paper, using big data and new empiri-
cal tools to better apply economic models of traffic congestion and provide further insights into travel
behavior.
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Appendix A. Further Notes on Data Construction
The first point pertains to how we deal with commuters traveling within the same zip code, since Google
Maps would be unable to differentiate the locations between origin and destination for these commuters
(with their expected travel time being always zero, since Google Maps would have the same zip code
for home and work). Among the 9,127 different zip code pairs in the sample, 668 pairs have the same
work and home zip code. For their home zip codes, we match the nearest home zip codes among other
commuters traveling to the same work zip code as the commuter. Since the matched zip code is different
and thus may overestimate the trip distance, we rescale the travel time outcomes using the ratio of the
CHTS reported travel time and theGoogleMaps travel time predicted at the worker’s chosen trip timing.

The second point pertains to the data collection algorithm we use to work with Google Maps data. We
first set up the list of zip code pairs, and we then queried travel times for each of them at random timings
between 5:00 and 11:00 AM on each weekday over the period from January 6, 2020, until July 28, 2021.
The query time for each zip code pair is random since Google Maps randomly selects a zip code pair out
of the set of listed zip code pairs at each timing and queries for it. The random selection of a route at
each time is chosen to avoid the bias that may arise due to a systematically higher frequency of particular
routes chosen at particular (peak) times within travel days; we try to collect full travel-time profiles for
as many routes as possible.

The third point concerns the estimation of systematic travel time expectations that individuals have by
alternate arrival time interval during days when congestion is anticipated. The notion in our framework
is that each commuter would respond to her own systematic anticipation of travel times at her alternate
choices, which would be formed from her own experiences of traveling over many days. Our goal is to
estimate this anticipated menu of travel times, not one on a specific day, since it would involve unexpected
delays due to a weather shock or accidents. This is the reason why we collected the data over a long
horizon. However, out of the entire data collection period from January 6, 2020, to July 2021, we had to
exclude the data collected subsequent to the lockdown policy enacted in California on March 19, 2020,
in response to the soaring COVID-19 cases. Figure 6 shows a significant drop in travel times around
this date and the trend has not fully recovered as of the summer of 2021. It is appropriate to exclude the
travel time outcomes during these periods, because the commuters in the CHTS sample were subject
to travel-time profiles similar to those of the pre-COVID-19 period and we want to explore scheduling
choices under the congested situation. Thus, we limit our usage of Google Maps data to the “normal”
period before March 19, 2020. We are left with 1,255,426 queried trips from January 6 to March 18,
2020, and we use these to construct the travel-time profiles during the congested (normal) time periods.
When designing this research, we had not anticipated COVID-19, but we were fortunate to have begun
data collection before the pandemic, as we obtained enough travel time predictions for each pair of home
and work zip codes to construct the systematic travel-time profile for each commuter. Queried trips
subsequent to COVID-19 lockdown measures were instead used to construct the congestion-free travel
time for each route.
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Finally, note that our final sample consists of 14,544 commute observations that have a “full” travel-
time profile with no missing values on travel times in any interval or congestion-free travel period. This
number is fewer than the 16,376 commuters in the raw CHTS sample: we lose 1,832 observations. The
removed observations may have a missing value for the mean travel time in an interval for the route, since
our query is random at each timing, so these zip code pairs failed to fill all the defined intervals. We drop
the travel time menu for a route if it misses at least one value in the intervals, doing so in order to ensure
that commuters in our sample face the “full” menu of travel times. Note however that the selection is
effectively random, given the data collection algorithm for Google Maps.

Table A1: Ranking of Congestion Level by County

County Population sizea Obs (CHTS) Mean of Q̂peak
i Mean of per-mile Q̂peak

i
b

San Francisco 881,549 322 17.52 1.59

Los Angeles 10,039,107 2839 14.64 1.08

Santa Clara 1,927,852 1159 13.02 0.91

Alameda 1,671,329 664 12.52 0.82

San Mateo 766,573 471 12.20 0.80

Marin 258,826 140 10.31 0.72

Orange 3,175,692 962 10.25 0.73

San Diego 3,338,330 598 9.70 0.68

Sacramento 1,552,058 359 8.74 0.65

Contra Costa 1,153,526 461 7.92 0.59

San Bernadino 2,180,085 547 6.25 0.41

Santa Cruz 273,213 188 5.65 0.53

Riverside 2,470,546 441 5.35 0.39

Monterey 434,061 365 4.88 0.50

Sonoma 494,336 305 4.36 0.38

Napa 137,744 130 4.34 0.28

Continued on next page
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Table A1, continued

County Population sizea Obs (CHTS) Mean of Q̂peak
i Mean of per-mile Q̂peak

i
b

Solano 447,643 226 3.74 0.25

Ventura 846,006 378 3.56 0.33

Lassen 30,573 34 3.47 0.18

Stanislaus 550,660 166 3.38 0.35

Fresno 999,101 440 3.31 0.33

Yuba 78,668 61 3.20 0.18

San Joaquin 762,148 211 3.14 0.23

Yolo 220,500 86 2.94 0.20

Placer 398,329 151 2.94 0.31

Santa Barbara 446,499 218 2.86 0.24

Kern 900,202 369 2.56 0.18

El Dorado 192,843 98 2.56 0.27

Butte 219,186 122 2.51 0.23

Humboldt 135,558 95 2.36 0.28

Merced 277,680 144 2.32 0.18

San Benito 62,808 41 2.24 0.19

Madera 157,327 78 2.17 0.16

Sutter 96,971 53 2.05 0.12

Shasta 180,080 49 1.94 0.16

Tuolumne 54,478 62 1.90 0.17

Continued on next page
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Table A1, continued

County Population sizea Obs (CHTS) Mean of Q̂peak
i Mean of per-mile Q̂peak

i
b

Sierra 3,005 7 1.88 0.20

Siskiyou 43,539 46 1.87 0.12

Amador 39,752 32 1.80 0.13

Nevada 99,755 51 1.79 0.14

Tulare 466,195 270 1.53 0.15

San Luis Obispo 283,111 276 1.49 0.11

Lake 64,386 44 1.41 0.12

Calaveras 45,905 29 1.37 0.08

Kings 152,940 85 1.17 0.06

Mendocino 86,749 56 1.09 0.06

Mariposa 17,203 25 1.03 0.06

Glenn 28,393 44 0.96 0.13

Tehama 65,084 40 0.92 0.08

Imperial 181,215 205 0.87 0.07

Mono 14,444 29 0.80 0.04

Colusa 21,547 30 0.72 0.04

Plumas 18,807 47 0.56 0.04

Modoc 8,841 26 0.52 0.04

Trinity 12,285 27 0.50 0.06

Del Norte 27,812 74 0.20 0.02

Continued on next page
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Table A1, continued

County Population sizea Obs (CHTS) Mean of Q̂peak
i Mean of per-mile Q̂peak

i
b

Inyo 18,039 68 0.08 0.00

All CA 39,512,223 14,544 8.36 0.62

Notes: This table shows the levels of congestion by work site county. Commuters are sorted by the county in which their
workplaces are located, and the mean of peak queuing times and the mean of per-mile peak queuing time by the county groups
are calculated. While the table sorts the counties (the mean of peak queuing times) from the highest to the lowest, note that the
ranking based on the mean of per-mile queuing times is almost the same. a. The population size is of 2019 (Source for County
Population Totals: 2010–2019, US Census Bureau). b. In calculating per-mile Q̂peak, we use the Google Maps distance for
the suggested route at each commuter’s chosen arrival time.
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Appendix B. Proof of Proposition 1
The proof of this proposition is as follows.

1. Points above the travel-time profile are not optimal, since the commuter could drive faster at any
chosen trip timing and reduce commuting cost. Points below the travel-time profile are not fea-
sible. Given the larger curvature of the iso-cost curves and t0 < t∗ < t1, there exists at least one
point at which an iso-cost curve and the travel-time profile meet, so it is sufficient to examine only
the points on the travel-time profile. Given the curvature difference, the iso-cost curve is steeper
than the travel-time profile at t0, under which the commuter could have a lower-positioned iso-
cost curve by arriving later than t0, so t0 is not optimal. The same reasoning is applied to show
t1 is not optimal. As another possibility, if an iso-cost curve crosses the travel-time profile at two
points between t0 and t1, then neither of them can be optimal since the commuter could reduce
the cost by choosing a time closer to t∗. The remaining possibility is that an iso-cost curve and the
travel-time profile meet at a unique point, at which these two curves are tangent.

2. As an illustrating case, consider a convex travel-time profile and a linear iso-cost curve. If the two
curves cross at any two points, then the commuter could shift the iso-cost curve downward by
choosing a time closer to t0, t1, or t∗. Under the smaller curvature of the iso-cost curve, the two
curves cross twice as long as the crossing points are not among t0, t1, or t∗, which implies that the
only possible optimal choices are t0, t1, or t∗. This reasoning applies to any situation where the
iso-cost curves have a smaller curvature than the travel-time profiles.

■
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