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Executive Summary 
Walking and bicycling provide several health, environmental, and economic benefits to those 
performing these actions for transportation, communities, and local traffic areas alike. Due to the 
numerous benefits active transportation offers, it is essential to understand pedestrian and bicyclist 
traffic volumes at various times in order to better design active transportation-related 
infrastructures and establish associated policies. There are many methods available to record these 
volumes, including permanent bike and pedestrian detectors/counters. In recent years, 
crowdsourcing has seen a rise in popularity due to the ease of collecting data this way compared to 
traditional methods. Nevertheless, crowdsourced data have been applied in fewer studies, and in 
the limited research available, crowdsourced data appear to differ from the counts provided by 
other means. For this reason, it is necessary to further check the consistency between the 
crowdsourced and other count data and generate an adjustment factor if needed. These are the 
goals of the present study. Specifically, crowdsourced data were collected from StreetLight, and 
permanent counter data were obtained from the City of San José and the national archive for 
bicycle and pedestrian count data maintained by Portland State University. The data of interest 
originate from various cities in California, including Del Mar, San José, and San Diego, and they 
cover various types of facilities including collector and arterial roads, trails, and shared use paths. 
To understand the statistical difference between the two sets of data (i.e., the StreetLight and 
permanent counter data), we performed a two-tailed t-test and a Wilcoxon signed-rank test.  

Following these tests, both R-squared and Pearson’s correlation coefficient were calculated to 
determine the linear association between datasets. In addition, Spearman’s correlation coefficient 
and Kendall’s τ tests were also conducted to check the association between the two types of data 
in case of a nonlinear relationship. Moreover, the systematic adjustment factor between the 
StreetLight and counter data were determined using both fixed and random intercept models 
based on the Integrated Nested Laplace Approximation (INLA) package in R. Finally, to estimate 
a more useful annual average daily traffic (AADT) of the active transportation counts based on the 
readily available hourly volume of a specific period, the study provided various estimation models 
with different levels of complexity being considered. Such models provide additional insights to 
practitioners engaged in estimating active transportation-related AADT based on the associated 
hourly volume. 

The proposed study dedicated to evaluating the counting performance of emerging technology 
(namely, SL crowdsourcing as a data collection method) is expected to benefit the research 
community and Californians in different ways. The results shed much light on the topics under 
consideration for researchers, planning practitioners, and policy makers, enhancing the 
understanding of non-motorized counting accuracy associated with the emerging passive 
crowdsourcing technology, which is very important information equipping various California 
jurisdictions to make the proper choice among the available counting technologies. For example, 
the Department of Transportation in the City of San José has piloted the StreetLight big data 
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program to track automobile volumes in the City, and now they need a timely research study to 
evaluate the StreetLight data performance for detecting the volume of active transportation-related 
modes. In addition, the better pedestrian and bike counts resulting from this project could aid 
Californians in: (a) accurate modeling of transportation networks and estimating annual volumes; 
(b) better evaluation of the effects of new infrastructure on pedestrian and bicycle activity; (c) 
reliable tracking of changes in pedestrian and bicycle activity over time; (d) precise non-motorist 
exposure information needed for relative risk analyses; and (e) enhanced prioritization of 
pedestrian and bicycle projects.  
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1. Introduction 
Bicycle and pedestrian data collection play a critical role in many aspects of transportation, 
including prioritization and evaluation of new facility provision, calibration of various 
transportation demand models, development of multimodal safety performance functions, 
estimation of active transportation volumes under different conditions, and so on (Cheng et al., 
2018a & 2018b). However, the data available for pedestrians and bicyclists are more limited 
compared to other transportation modes, even though the non-motorized modes preceded their 
motorized counterparts. The possible explanations for this discrepancy stem from the 
technological challenges unique to non-motorized traffic monitoring, which include, but are not 
limited to, more unexpected biking and walking movements, less predictable travel paths, more 
travel in groups, larger temporal variability in demand, greater sensitivity to weather conditions, 
lower speed compared to motorized trips, and difficulty of detecting active mode users, whose 
moving volume is smaller than motorized mode users’ (Ohlms et al., 2019). 

Despite all the obstacles mentioned above, the collection of pedestrians and bicyclist counts has 
enjoyed significant progress in the past decade due to technological advancements, a growing 
demand for detailed information on non-motorized modes, and the availability of a set of 
guidelines for such data collection (Birk et al., 2006; Ryus et al., 2014; FHWA, 2016). Many 
counting methods have been developed with different taxonomies: for example, manual vs. 
automated, passive vs. active, and traditional vs. emerging. In general, the different types of 
methods have their strengths and weaknesses. The manually collected data (directly from field 
observation or video recordings) appear to be more accurate, while automated counting (using 
sensors, tubes, or other devices) has the benefit of requiring fewer personnel hours and therefore 
being less expensive if properly calibrated and subsequently maintained (FHWA 2016). Even 
though the passive data collection methods are more convenient since there is little or no 
interaction required with the pedestrians and bicyclists, the active methods could yield more 
information from the respondents, such as the perceived level of service and socioeconomic input 
at the individual journal level. The traditional counting data (Cottrell & Dharminder, 2003; 
Griffin et al., 2014) are more historically available and include both passive data collection methods 
(e.g., the manual or automated counting) and active ones including various types of surveys such 
as the U.S. Census American Community Survey, national/regional household travel surveys, 
GPS-oriented surveys, and web-based and intercept surveys. 

Compared with the traditional data collection methods, the emerging methodologies have fewer 
applications so far and mainly rely on crowdsourcing based on mobile devices such as mobile 
phones, wearable wristbands, tablets, and so forth. To explore another taxonomic pair, the 
crowdsourced data collection methods could also be divided into active and passive alternatives. 
The active technologies include regional bicycling tracking apps developed by public agencies, 
private companies’ fitness/activity tracking apps, app-based bike-share programs, and map 
inventory apps based on user feedback. The passive data sources can include global positioning 
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systems, location-based services (LBS), and mobile phone positioning (MPP). A literature review 
report (Lee and Sener, 2017) identifies the details of all crowdsourcing types and associated 
commercial vendors: for example, CycleTracks, Strava, or AirSage. It is known from that literature 
review that emerging technologies have the main advantage of providing much broader and more 
diverse samples of the active transportation population with fewer resource constraints. In contrast, 
traditional monitoring methods have heavily relied on massive efforts from data collectors, which 
often lead to limited data collection locations and under-sampled data. Nonetheless, the 
conventional counting methods have widespread applications, and thus, for these methods, more 
historical data are available for various assessment purposes. Most transportation agencies have 
standard practices or guidance for collecting non-motorized data using the typical methods. In 
addition, they have developed “rules of thumb” to adjust the data collected to enhance the accuracy 
based on a multitude of evaluation/validation studies that cover various counting technologies 
(Nordback et al., 2011; Nordback et al., 2011; Kothuri et al., 2017; Mooney et al., 2016), the 
expansion of short-term counts to longer-period ones (Schneider et al., 2009; Beitel et al., 2017 & 
2018; Hankey et al., 2014), estimating average daily volumes (El Esawey et al., 2013 & 2014; 
Figliozzi et al., 2014), the development of weather and other adjustment factors (Schmiedeskamp 
& Zhao, 2016; Nosal et al., 2014), calibration of non-motorized volume modeling (Raford & 
Ragland, 2004; Liu & Griswold, 2009), and so on. In contrast, little research is dedicated to the 
evaluation of emerging counting methods, despite the growing applications of such technologies 
(Barajas et al., 2017; Saad et al., 2019). Thus far, most of these evaluation studies have focused on 
crowdsourced active data (Griffin and Jiao, 2015; Jestico et al., 2016; Watkins et al., 2016). As for 
passively crowdsourced data, little research has been conducted based on small-scale GPS and 
MPP data (see Jahangiri & Rakha, 2015, and Mun et al., 2008, for details). To the authors’ best 
knowledge, no evaluation has been performed based on LBS for walking and cycling count data 
accuracy.  

The present study is dedicated to the comprehensive assessment of LBS data accuracy for non-
motorized count data recently made available by StreetLight (SL) to fill the research gap. 
Moreover, we develop a system adjustment factor between the permanent counter and SL data. 
Finally, we offer models containing the temporal, weather, land use, and facility type variables to 
facilitate the estimation of the AADT of pedestrians and bicyclists.  
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2. Literature Review 
Active transportation refers to human-powered methods of travel, such as walking, bicycling, or 
rolling to get from one place to another (ATSP, n.d.). There are many benefits associated with 
active transportation. One significant benefit is improved overall health, as active transportation 
can reduce the risk of obesity and other chronic conditions such as diabetes and various 
cardiovascular diseases (DoT, 2015). Another benefit of active transportation is neighborhood 
livability: when there is an increased number of people out and about in neighborhoods, the 
likelihood of crime is noticeably reduced (Schlossberg et al., 2012). Active transportation is also 
known to reduce the cost of transportation for individuals and reduce the road maintenance 
required, thus generating economic benefits (Litman, 2013; Litman, 2015). In addition to 
financial benefits, there are also several environmental benefits. Since active transportation relies 
on one’s own power, there is no need for gasoline, diesel, or electricity (Hong, 2018). Finally, the 
wide variety of active transportation methods, primarily walking and biking, as well as their 
relatively low cost compared to vehicles, improves the overall mobility factor in specific areas where 
there is greater access to active transportation facilities. When facilities for active modes of 
transportation are available, people are less inclined to use cars that eventually contribute to traffic 
congestion (Lindblad, n.d.).  

Several methods are available to determine the volume of bicyclists and pedestrians at specific 
intersections and trails. One of the more traditional methods of recording data is manual counting 
(Somasundaram et al., 2009). While manual counting can produce the count data in a more direct 
way, it is subject to some issues: for example, it is time-consuming, prone to human error, and 
poses a safety risk to those recording data on-site (John & Johnson, 2000; Toth et al., 2013). For 
these reasons, manual counting isn’t an ideal method of data collection. Fortunately, automatic 
data collection methods exist, facilitated by technologies including electromagnetic loop detectors 
(Anderson, 1970) and cameras paired with computer vision algorithms (Uke & Thool, 2013); 
these methods are preferable, since they are capable of passive data collection following installation. 
For this reason, many cities have opted for automatic methods for recording vehicle volumes. 
However, electromagnetic loop detectors in some rare cases cannot accurately detect bicyclists or 
pedestrians, unlike manual counting, despite their ability to passively count larger vehicles within 
an intersection or along a road. Additionally, loop detectors must be installed within the pavement 
and require regular maintenance (Han et al., 2009). On the other hand, while cameras can be 
installed above ground, they are expensive, prone to poor performance in certain weather and 
lighting conditions, and need regular maintenance and proper placement in reference to line-of-
sight obstructions (Fries et al., 2007). Crowdsourced data can fall into two distinct subgroups: 
active data and passive data. Active counting has been used more recently than passive counting, 
and both types of counting utilize crowdsourced data collection methods, specifically, data 
collected from personal phones, smart devices, and other devices that could provide location 
information. Active data are data collected from devices actively launched without explicit user 
consent, such as fitness apps and app-based bike-share programs. Active data are data requested 
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from individuals (Kuik, 2018) whose explicit consent is needed. This method ensures that data are 
gathered from those who wish to provide data, thus providing a natural filter that promotes the 
collection of relevant data (Hub, n.d.). Unfortunately, this method of data collection still requires 
voluntary input from the general public. To ensure that a complete set of data is collected, passive 
data collection is often preferred. Passive data are collected from programs that are passively 
running in the background of the device. These background programs include location services, 
global positioning systems (GPS), and mobile phone positioning (MPP). In the case of providing 
pedestrian and bicyclist counts, collecting and utilizing passive data allows for a more thorough 
understanding of the total volume of pedestrians and bicyclists, as the only major component 
required is a system to record the location and relative proximity of the devices running the 
background programs previously mentioned (Duff, n.d.). In addition, passive data could allow for 
a more instantaneous record of data compared to the manual data input given by active methods 
(Duff, n.d.). Some studies have already examined the benefits of these methods (Battaglia et al., 
2008; Revilla et al., 2017; Keuschet al., 2019). 

  



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  7 

3. Data Description 
To fulfill the previously mentioned research objective, namely, the comprehensive comparison 
between the traditional permanent counter data and emerging StreetLight data, the present study 
collected data originating from four separate sources. The various data sources support the different 
subtasks within the research objective, including checking consistency between SL and permanent 
counter data, development of the systematic adjustment factor, and estimation of AADT based on 
hourly volume and other popular predictor variables. The detailed description of each source is 
presented as follows. 

The first set comes from the location-based services (LBS) crowdsourced database for pedestrian 
and bicyclist counts, StreetLight (SL). StreetLight compiles data collected from smartphones’ 
location-based services, and the database cross-references to satellite locations based on the 
smartphones that are harnessed as sensors. Once the data are collected and cross-referenced, the 
product will contain counts for either pedestrians or bicyclists. The authors collected these data by 
first outlining the specific zones where pedestrian and bicyclist data were available from the 
Portland State University’s Active Transportation Database and the City of San José. Then, the 
data requested were organized into pedestrian and bicyclist counts, which were further categorized 
by year, month, weekday, and hour. The final data provided by StreetLight are presented by either 
SL Index value or calibrated counts, which are obtained based on other sources of counts provided 
by users (e.g. manually collected counts) and presented in the form of average hourly volume within 
a given month/year. 

The second database is the national archive for bicycle and pedestrian count data maintained by 
Portland State University (Bike-Ped Archive, 2021). The national archive collects pedestrian and 
bicyclist count data in a typical way using staffed (personnel), temporary, or permanent counters 
(e.g., loop detectors) along sidewalks and trails alike. These areas cover key cities in California, 
Oregon, Washington, and eastern Canada. Given time availability and various roadway facilities 
covered by the data, the present study focuses on selected permanent counter counts from cities in 
California, including San José, San Diego, and Imperial Beach, to name a few. Each flow detector 
has location information in the form of state, city, longitude and latitude, count type (e.g., 
pedestrian or bicyclist), and functional classification (e.g., a trail detector or a detector along a 
minor or major arterial). The data from each flow detector are organized into 15-minute intervals. 
Each interval has start and end time data as well as the count within each interval. These data are 
then arranged in the same manner as those collected from StreetLight for comparison purposes. 

The third database was provided by the City of San José based on a recently purchased permanent 
bike counter located on the Three Creeks Trail between Coe and Broadway in the Willow Glen 
neighborhood of San José (see Figure 1). This detector, as shown in Figure 2, collected bicyclist 
counts in a similar manner as most permanent counters utilized to collect the data compiled by the 
national archive. This detector was carefully calibrated by the city staff to ensure the data produced 
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are maximally accurate. The bike counter was purchased and installed during the project period, 
so it can provide some recent data. Compared with the national archive data, such data from San 
José can be checked against the SL data quality for more recent periods. Overall, the data are 
organized in the same way as in the national archive. 
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Figure 1. Map of the Location of the Permanent Bike Counter in the City of San José 

 
Source: Google Earth Pro 

 
Figure 2. Illustration of the Permanent Bike Counter owned by the City of San José  
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Once the data from the above three sources were collected, they were compiled to explore the 
consistency between data from SL and the permanent counters. The compiled data were cleaned 
first by removing some outliers (in some cases, the SL counts are unreasonably large). After the 
data cleaning, 6,777 observations are used, with 6,403 for bicyclists and 374 for pedestrians. 
Detailed descriptive statistics for the cleaned dataset are shown in Table 1.  

Finally, weather data from Weather Underground and permanent counter data from the national 
archive for bicycle and pedestrian count data were collected for the development of various 
adjustment factors associated with facility type, weather, time (i.e., hour), day, month, and land 
use, and for the estimation of Average Daily Traffic Volume (AADT) for bicyclists and 
pedestrians. The national archive organizes data by flow detector, and data associated with each 
detector report hourly volume counts, when data were recorded, and each permanent counter’s 
exact location. The counter’s location can be used to find historical weather data for that location 
from Weather Underground. Weather Underground provides weather information organized 
based on date and time, which were then combined with the count data collected from the national 
archive in terms of date and time. Detailed descriptive statistics for this dataset are shown in Table 
2. 
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Table 1. Descriptive Statistics for the Data used for Comparisons between StreetLight 
Calibrated Counts and Counter Counts for Bicyclists and Pedestrians 

Numerical Variables 
Variables Description Minimum Maximum Mean S.D. 

StreetLight 
Calibrated 
Counts 

Average hourly 
volume for 
pedestrian and 
bicyclist of 
calibrated streetlight 
data of specific 
month and year 

0 340 18.70 25.66 

Counter 
Counts 

Average hourly 
volume for 
pedestrian and 
bicyclist of 
permanent counter 
data of specific 
month and year 

0 222 13.33 18.52 

Categorical Variables 
Variables Description Details of Categories (frequency, percentage) 

Year Year in which data 
were collected 

2018 (2495, 36.81%); 2019 (2547, 37.58%); 2020 (1705, 25.15%); 2021 
(30, 0.44%) 

Month Month in which 
data were collected 

January (449, 6.62%); February (418, 6.17%); March (529, 7.76%); April 
(495, 7.30%); May (652, 9.62%); June (701, 10.34%); July (761, 11.23%); 
August (736, 10.86%); September (589, 8.69%); October (495, 7.30%); 
November (505, 7.45%); December (450, 6.64%) 

Day  Day of the week 
when the data were 
collected 

Monday (773, 11.40%); Tuesday (874, 12.89%); Wednesday (863, 
12.73%); Thursday (905, 13.35%); Friday (944, 13.93%); Saturday (1,292, 
19.06%); Sunday (1,126, 16.61%) 

Hour Hour of the day 
when the data were 
collected 

12 AM (20, 0.30%); 1 AM (14, 0.21%); 2 AM (10, 0.15%); 3 AM (4, 
0.01%); 4 AM (17, 0.25%); 5 AM (32, 0.47%); 6 AM (131, 1.93%); 7 AM 
(258, 3.81%); 8 AM (347, 5.12%); 9 AM (448, 6.61%); 10 AM (501, 
7.39%); 11 AM (511, 7.54%); 12 PM (554, 8.17%); 1 PM (540, 7.97%); 2 
PM (573, 8.45%); 3 PM (609, 8.99%); 4 PM (522, 7.70%); 5 PM (507, 
7.45%); 6 PM (452, 6.67%); 7 PM (291, 4.29%); 8 PM (203, 3.00%); 9 
PM (136, 2.01%); 10 PM (65, 0.96%); 11 PM (32, 0.47%) 

Count Type Whether data in 
question are for 
bicyclists or 
pedestrians 

Bicyclist (6,403, 94.47%); Pedestrian (374, 5.52%) 

Note: Not all hours of the day were considered for the comparison between StreetLight and counter data. Only 
those hours when the counts were most likely available were included in the study.  
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Table 2. Descriptive Statistics for the Data used for the Estimation of AADT  
for Pedestrians and Bicyclists 

Numerical Variables 
Variables Description Minimum Maximum Mean S.D. 

AADTP Average 
Annual Daily 
Traffic for 
pedestrians  

4 95 25.78 31.20 

AADTB Average 
Annual Daily 
Traffic for 
bicyclists  

11 84 45.28 24.36 

HVP Hourly 
pedestrian 
volume count 

0 55 6.40 9.13 

HVB Hourly bicyclist 
volume count 

0 36 11.70 8.14 

Temp Hourly average 
temperature in 
degrees 
Fahrenheit 

46 91 65.44 8.15 

DewPoint Hourly average 
dew point in 
degrees 
Fahrenheit 

17 90 59.12 10.80 

Humidity% Hourly average 
percent 
humidity 

5 361 61.30 22.54 

WindSpeed Hourly average 
wind speed in 
miles per hour 

0 19 6.44 3.75 

PressureHg Hourly average 
pressure in 
inches of 
Mercury 

29 29394 61.83 923.82 

Categorical Variables 
Variables Description Details of Categories (frequency, percentage) 

Time Time of day 6 AM (121, 11.92%); 7 AM (100, 9.85%); 8 AM (80, 7.88%); 9 AM (118, 
11.63%); 10 AM (82, 8.08%); 11 AM (34, 3.35%); 12 PM (41, 4.04%); 1 PM 
(21, 2.07%); 2 PM (63, 6.21%); 3 PM (47, 4.63%); 4 PM (63, 6.21%); 5 PM 
(25, 2.46%); 6 PM (36, 3.55%); 7 PM (51, 5.02%); 8 PM (65, 6.400%); 9 PM 
(68, 6.70%) 

Month Month of the 
year 

January (90, 8.87%); February (96, 9.46%); March (93, 9.16%); April (93, 
9.16%); May (86, 8.47%); June (93, 9.16%); July (90, 8.87%); August (82, 
8.08%); September (79, 7.78%); October (67, 6.60%); November (69, 6.80%); 
December (77, 7.59%) 

Day Day of the 
month 

1 (18, 1.77%); 2 (33, 3.25%); 3 (42, 4.14%); 4 (22, 2.16%); 5 (38, 3.74%); 6 (40, 
3.94%); 7 (13, 1.28%); 8 (27, 2.66%); 9 (74, 7.29%); 10 (20, 1.97%); 11 (39, 
3.84%); 12 (44, 4.34%); 13 (12, 1.18%); 14 (39, 3.84%); 15 (38, 3.74%); 16 (42, 
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Numerical Variables 
Variables Description Minimum Maximum Mean S.D. 

4.14%); 17 (11, 1.08%); 18 (37, 3.65%); 19 (57, 5.62%); 20 (33, 3.25%); 21 (16, 
1.58%); 22 (28, 2.76%); 23 (61, 6.01%); 24 (12, 1.18%); 25 (28, 2.76%); 26 (67, 
6.60%); 27 (10, 0.99%); 28 (37, 3.65%); 29 (32, 3.15%); 30 (43, 4.24%); 31 (2, 
0.20%) 

Facility 
Type 

Type of facility 
where data were 
collected 

Major Collector (159, 15.67%); Minor Arterial (281, 27.68%); Principal Arterial 
– Other (160, 15.76%); Trail or Shared Use Path (415, 40.89%) 

Land Use Land use type 
based on 
location of 
count detector 

Commercial (156, 15.37%); Recreation (734, 72.32%); Transportation (125, 
12.32%) 
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4. Methodology 
As previously mentioned, the primary goals of this study are (a) to understand the consistency 
between crowdsourced data collected from StreetLight and permanent counter data (particularly 
from the national archive and the City of San José) and (b) to generate various adjustment factors 
to convert count data in between different types efficiently. This is accomplished through the use 
of a set of statistical tools. 

4.1 Consistency Checking between StreetLight and Permanent Counter Data 

The first goal of this study is to comprehend the consistency between the calibrated SL and 
permanent counter counts. The statistical tools used to facilitate such a task are outlined as follows.   

4.1.1 Statistical Difference 

T-Test 

The first approach to determining the statistical difference is a two-sample t-test (Statistics 
Solutions, 2021). Due to the unequal variances between the two datasets, it is necessary to 
implement Welch’s t-test (Welch, 1947). Welch’s t-test generates a t-value (t) and the degrees of 
freedom (𝑑𝑓) in Equation 1 and Equation 2. 

 
𝑡 =

𝑚& − 𝑚(

)𝑆&
+

𝑛&
+ 𝑆(

+

𝑛(

 
(1) 

 𝑑𝑓 =
.𝑆&

+

𝑛&
+ 𝑆(

+

𝑛(
/

. 𝑆&+
𝑛&+(𝑛& − 1)

+ 𝑆(+
𝑛(+(𝑛( − 1)

/
3  (2) 

In the above equations, 𝑚& and 𝑚( represent the sample means, 𝑆&+ and 𝑆(+ represent the variances 
of the two types of count data, respectively, and 𝑛( and 𝑛& are the associated sample sizes. In the 
present study, 𝑛( is equal to 𝑛& since the count data were generated for comparison purposes for 
the same locations and periods. Note that for the results from Welch’s t-test to be effective, the 
degrees of freedom between the two sets of data must be greater than 5 (Allwood, 2008), which is 
the case for the present study (see Table 3).  
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Wilcoxon Test 

The second method used to determine the statistical difference is the Wilcoxon signed-rank test 
(Hayes, 2021). The Wilcoxon test operates in the same manner as the t-test. However, it is more 
attuned to non-parametric data (Conover, 1999). This test can be calculated with Equation 3. 

 
𝑉 =56𝑠𝑔𝑛9𝑥+,< − 𝑥=,<> ∗ 𝑅<A

B

<C=

 (3) 

Here, 𝑅< is the rank of the pair as calculated by the position of observation in an ordered list of 
|𝑥+,< − 𝑥=,<|, with 𝑥 repressing the counts. The subscript “𝑖” denotes the observation ID, and the 
subscripts “1” and “2” denote SL and permanent counter data, respectively. 

4.1.2 Linear Association 

Linear Regression R-Squared 

R-squared is a popular method used to calculate the linear association of two variables, and the 
value is obtained from the linear regression (Frost, 2021) and calculated as the ratio between the 
sum of squares of residuals and the total sum of squares: 

 𝑆𝑆FGH =5(𝑦< − 𝑓<)+
<

 (4) 

 𝑆𝑆JKJ =5(𝑦< − 𝑦L)+
<

 (5) 

 𝑅+ = 1 −
𝑆𝑆FGH
𝑆𝑆JKJ

 (6) 

where 𝑆𝑆FGH  is the sum of squares of residuals, 𝑦< is the individual 𝑦 value for a given “𝑖” 
observation, 𝑓< is the result of the equation of the line of best fit for a given 𝑥 value, 𝑆𝑆JKJ  is the 
total sum of squares with 𝑦L representing the average 𝑦-values of the line of best fit, and 𝑅+ is the 
R-squared value (Steel, 1960).  

Pearson’s Correlation Coefficient 

Pearson’s correlation coefficient is another measurement of linear correlation between two datasets. 
In short, Pearson’s correlation coefficient is the ratio between the covariance of two variables and 
the product of their respective standard deviations, resulting in a value between -1 (negatively 
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correlated) and +1 (positively correlated) (Glen, 2017). Pearson’s correlation coefficient can be 
calculated using Equation 7: 

 
𝑟 =

∑(𝑥 −𝑚O) 9𝑦 −𝑚P>

Q∑(𝑥 −𝑚O)+ ∑9𝑦 −𝑚P>
+
 (7) 

where 𝑚O and 𝑚P are the means of the 𝑥 and 𝑦 variables, respectively. 

4.1.3. Ordinal Association 

In addition to the linear association that assumes a normal distribution of the concerned variables, 
the study also explores the ordinal association between the two variables free from any assumptions 
of the data distribution.  

Spearman Correlation 

Charles Spearman proposed Spearman’s rank correlation coefficient in 1904. This method is 
similar to Pearson’s correlation. However, unlike Pearson, which assesses the linear relationship 
between variables, Spearman considers the ordinal relationship within two sets of data (Lehman, 
2005). Spearman’s correlation coefficient can be calculated with Equation 8. 

 
𝜌 =

∑(𝑥S − 𝑚OT) 9𝑦<S − 𝑚PT>

Q∑(𝑥S − 𝑚OT)+ ∑9𝑦S − 𝑚PT>
+
 (8) 

Here, 𝑚 represents the mean, and 𝑥S and 𝑦S represent the ranks of 𝑥 and 𝑦, respectively. 

Kendall’s Tau 

Kendall’s rank correlation coefficient, also known as Kendall’s τ, is another popular metric used to 
measure the ordinal association between two datasets. Developed in 1938 by Maurice Kendall, this 
rank correlation will produce values between +1 (positively correlated) and -1 (negatively 
correlated) to show the correlation between two variables. This index is achieved by first calculating 
the total number of concordant pairs and discordant pairs. The following equations outline how 
Kendall’s τ is calculated: 

 𝑛U = 𝑛𝑢𝑚(𝑦W > 𝑦<) (9) 

 𝑛Y = 𝑛𝑢𝑚(𝑦W < 𝑦<) (10) 
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 𝜏 =
𝑛U − 𝑛Y
1
2 𝑛(𝑛 − 1)

 (11) 

where 𝑛𝑢𝑚() is the function used to count the observations satisfying specific conditions, and 𝑛 
represents the associated counts.  

4.2 Systematic Adjustment Factor Development between StreetLight and 
Permanent Counter Data 

The above tools are mainly used to check the consistency between the SL and permanent counter 
data. Once it is determined that these two types of data are not perfectly consistent with each 
other, the professionals may need some adjustment factor that enables an estimation of the 
permanent counter data based on the SL data, and vice versa. The modeling tool employed in the 
present study is the Integrated Nested Laplace Approximation (INLA) method, which acts as an 
alternative to the Markov Chain Monte Carlo (MCMC) approach that has previously served as a 
standard procedure for Gaussian distribution models due to INLA’s capacity to handle complex 
model structures based on the simulation method. The INLA method is a Bayesian hierarchical 
framework that utilizes Laplace approximation to estimate the parameters following into the 
Gaussian Markov Random Field (GMRF), which can significantly reduce the computation time 
while having approximately the same level of accuracy (Martino & Rue, 2007). Hence, the INLA 
method was selected for the study due to its faster computation and ease of use for greater model 
complexity.  

For the development of a count model that allows us to develop the adjustment factors between 
the two types of counts, the pedestrian or bicyclist counts of certain locations or observational units 
are usually assumed to follow a Poisson distribution (Singh et al., 2021). In the present study, two 
types of models are used for more reliable and accurate estimates for adjustment factors: fixed 
intercept model and random intercept model. The models with better evaluation performance will 
be used to develop the corresponding factors. Under the fixed intercept model, the calibrated SL 
hourly volume of pedestrians and bicyclists 𝑦< can be expressed as follows:  

 𝑦<~𝑃𝑜𝑖𝑠𝑠𝑜𝑛	(𝜆<) (12) 

 ln(𝜆<) = 	 𝛽d + 𝑜𝑓𝑓𝑠𝑒𝑡(ln(𝑋<)) (13) 

where subscript 𝑖 represents an observation (hourly count), 𝜆< is the corresponding rate, 𝛽d 
represents a global intercept, and 𝑋	is the independent variable representing the permanent counter 
counts. The fixed global intercept assumes all observations follow the same base condition. We 
employ 𝑜𝑓𝑓𝑠𝑒𝑡(ln(𝑋<)) to ensure there is no model-generated coefficient for ln(𝑋<), and hence 
force 𝑦< and 𝑋< to have the final relationship expressed as follows: 
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 𝑦< = 𝛼 ∗ 𝑋< (14) 

where	𝛼 is the adjustment factor that is calculated as: 

 𝛼 = exp	(𝛽d). (15) 

Under the random intercept model, all equations mentioned above remain the same except the 
following expressions:  

 ln(𝜆<) = 	𝛽d< + 𝑜𝑓𝑓𝑠𝑒𝑡(ln(𝑋<)) (16) 

 𝛽d< = 𝛽d + 𝜀< (17) 

where 𝛽d< is the random intercept, which consists of the fixed global intercept 𝛽d and the white 
noises 𝜀< used to capture the unobserved heterogeneity associated with each observation. 

4.3 Estimation of Annual Average Daily Traffic based on Hourly Volume and 
Other Predictor Variables 

The hourly counts for pedestrians and bicyclists can be easily obtained via all kinds of collection 
methods (that is, manual collection, permanent counter, or LBS). However, such hourly counts 
can only represent the traffic conditions for a short time period, and they cannot display a reliable 
picture of traffic patterns for a long time period: the average over time is usually represented by the 
annual average daily traffic (AADT). Hence, in addition to the systematic adjustment factor 
between SL and permanent counter data, practitioners may also be interested in various adjustment 
factors for AADT of pedestrians and bicyclists, which can be utilized to adjust the estimated 
AADT based on different conditions such as hour, day, month, land use, facility type, etc. To 
accommodate such a need, the study also collected pertinent data to develop models for estimating 
pedestrian and bicyclist AADT. Therefore, in addition to the response variable of AADT, the 
data also contained predictor variables for hourly volume, time (i.e., hour), day, month, land use, 
facility type, and weather conditions (temperature, dew point, wind speed, pressure, and humidity).  

With a large number of covariates, numerous combinations of diverse variables of interest are 
possible. For illustration purposes, the present study selected three sets of independent variables to 
develop models with varying levels of complexity. As with the systematic adjustment factor 
development between SL and permanent counter data, the AADTs are also assumed to follow the 
Poisson distribution. These models are formulated using the following expressions: 

 𝐴𝐴𝐷𝑇<~𝑃𝑜𝑖𝑠𝑠𝑜𝑛	(𝜆<) (18) 

 ln(𝜆<) = 	𝛽d + 𝐻𝑉< + 𝑇𝑖𝑚𝑒< (19) 
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 ln(𝜆<) = 	𝛽d + 𝐻𝑉< + 𝑇𝑖𝑚𝑒< + 𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦_𝑇𝑦𝑝𝑒< (20) 

 ln(𝜆<) = 	𝛽d + 𝐻𝑉< + 𝑇𝑖𝑚𝑒< + 𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦_𝑇𝑦𝑝𝑒< + 𝑇𝑒𝑚𝑝< + 𝐷𝑒𝑤𝑃𝑜𝑖𝑛𝑡< 

	+	𝑊𝑖𝑛𝑑𝑆𝑝𝑒𝑒𝑑< + 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒< + 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦< 
(21) 

Note that 𝑖, 𝜆<, and 𝛽d are the same as shown in previous equations, 𝐻𝑉<	is the hourly volume, 
𝑇𝑖𝑚𝑒< is the time (or hours), 𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦_𝑇𝑦𝑝𝑒< is the type of facility, 𝑇𝑒𝑚𝑝< is the temperature (oF), 
𝐷𝑒𝑤𝑃𝑜𝑖𝑛𝑡< is the dew point (oF), 𝑊𝑖𝑛𝑑𝑆𝑝𝑒𝑒𝑑< is the wind speed (in mph), pressure is the air 
pressure (in Hg), and 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦< is the amount of water in the air in relation to the maximum 
amount of water vapor (in %).  

The predictor variables vary from model to model, allowing the practitioner to estimate the AADT 
based on the HV, considering various variables of interest.  

4.4 Validation 

Several criteria are used to determine the effectiveness and goodness of fit of Bayesian models 
(Muthukumarana & Tiwari, 2016). This study utilizes the mean absolute difference (MAD) to 
select models for the development of systematic adjustment factors. For models aiming to develop 
other adjustment factors, two criteria—Deviance Information Criterion (DIC) and Log Pseudo 
Marginal Likelihood (LPML)—are used to assess model performance, where the former is based 
on in-sample data and the latter is based on out-of-sample data.  

4.4.1 Mean Absolute Difference (MAD) 

MAD is a popular index used to evaluate model performance based on the discrepancy between 
the predicted and actual calibrated counts. In the present study, the MAD was calculated as 
follows:  

 
MAD =

1
n5

|𝑌< − 𝑂<|
~

�C=

 (22) 

𝑌< is the Bayesian-estimated SL calibrated count of observation i by a model, and 𝑂< is the observed 
SL count of the same observations. The smaller the value, the better the concerned model tends 
to perform. 
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4.4.2 Deviance Information Criterion (DIC) 

Developed in 2002, DIC is an informal method used to determine the effectiveness of models in 
explaining the observed data while also maintaining accuracy with new data (Spiegelhalter et al., 
2002). DIC uses the following equation to assign an effectiveness rating to each model generated: 

 𝐷𝐼𝐶 = 𝐷(𝜃̅) + 2𝑃� (23) 

The posterior mean of the deviance is represented by 𝐷(𝜃̅). The DIC value also has a penalty 
applied for the greater model complexity that tends to over-fit the interest data. This penalty is 
represented by 2𝑃�, where	𝑃� is the effective number of parameters. Knowing this, the larger the 
DIC value, the less effective the model is (Spiegelhalter et al., 2002). 

4.4.3 Log Pseudo Marginal Likelihood (LPML) 

LPML was developed based on the Conditional Predictive Ordinate (CPO) (Geisser & Eddy, 
1979). Compared with the previous criteria of MAD and DIC, which are mainly based on in-
sample data, LMPL relies on cross-validation based on out-of-sample (OOS) data (in other words, 
the data used for model development are separated from those reserved for model validation). Due 
to this special property, LMPL has been used in a number of fields of study since its development 
(Cheng et at., 2020). The CPO is calculated as: 

 𝐶𝑃𝑂< = �𝑓(𝑦<|𝜃, 𝑥<)𝜋9𝜃|𝐷(�<)>𝑑𝜃 (24) 

where: 𝜃	is the unknown parameter of interest; 𝑦< and 𝑥< are the response and covariate vectors, 
respectively; 𝐷(�<) is the dataset without the 𝑖th observation; and π(𝜃|𝐷(�<)) is the posterior density 
of 𝜃	based on data 𝐷(�<). Using 𝐶𝑃𝑂<, LPML can then be calculated as follows: 

 
𝐿𝑃𝑀𝐿 =	5log(𝐶𝑃𝑂<)

�

<C=

 (24) 

Contrary to DIC, LMPL uses larger values to represent models with higher prediction capabilities. 
In addition, since LMPL performs cross-validation using OOS data (based on the leave-one-out 
technique where n iterations are implemented with one data record being held out for validation 
in each iteration), there is no penalty dedicated to the complexity of models generated. 
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5. Model Results 
The present study aims to check the consistency between the StreetLight (SL) counts and those 
collected from the permanent counters from various cities and to develop an adjustment factor that 
can be used to estimate one type of count based on the other type.. In addition, models for the 
estimation of AADT for pedestrians and bicyclists are developed based on a set of influential 
factors. The detailed results for each objective are presented in order in the following sections.  

5.1 Consistency Checking between StreetLight and Permanent Counter Data 

The subsection demonstrates the difference between LBS-based (or SL) active transportation 
counts and the permanent counter counts using distinct types of statistical techniques (parametric 
vs. non-parametric) and assumptions (linear vs. non-linear).  

5.1.1 Statistical Difference 

The most straightforward way to check the consistency between the two types of counts is to 
explore the discrepancy of the count magnitude. Both parametric (paired t-test) and non-
parametric (Wilcoxon test) approaches are employed to assess the difference.  

Table 3. Paired T-Test Results between StreetLight Calibrated Counts and Counter  
Counts for Bicyclists and Pedestrians 

 t df p-value 95% CI Mean of Difference 
Bicyclists 19.296 6,402 < 2.2e-16 [4.903, 6.012] 5.457 
Pedestrians 4.197 373 3.383e-05 [1.965, 5.430] 3.698 

Notes: df is degree of freedom; CI is the confidence interval; t is defined in Equation 1.  

Consulting Table 3, we see that the SL and counter counts are statistically different for both types 
of non-motorized modes (pedestrian and bicyclist). However, the means of difference are relatively 
small. Figure 3 further illustrates the count difference between the two types of data sources in a 
visual format. For bicyclists, the difference ranges from -200 to 300, with the greater values 
following into the location IDs between 3,000 and 4,000. The differences are much smaller for 
pedestrians, with two points showing a value of more than 200. Given the smaller overall means 
of difference, even with the existence of a few locations where the count differences are 
proportionally large, it can be concluded that LBS-based (or SL) active transportation counts could 
serve as an efficient alternative when the counts from the permanent counter are not available. 
However, it is also noteworthy that the smaller means of difference may result from removing 
some data outliers before the t-test was performed.  
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Figure 3. Plot of Difference between StreetLight and Counter Counts for 
Bicyclists and Pedestrians 

Note: Points below the blue line indicate observations where SL values are greater than counter counts, where SL-
Counter is negative. 

Like the parametric paired t-test, the non-parametric paired Wilcoxon signed-rank test reveals the 
statistically significant difference between the two types of counts based on the p-values for 
pedestrians and bicyclists, as shown in Table 4. The V-value for bicyclists is much larger than for 
pedestrians, as the sample size for the former (6,403) is about 17 times that of the latter (374). 

Table 4. Paired Wilcoxon Signed-Rank Test Results between StreetLight and Counter Counts 
for Bicyclists and Pedestrians 

V p-value
Bicyclists 10,649,226 < 2.2e-16 
Pedestrians 31,627 2.91e-10 

Note: V is defined in Equation 3. 

5.1.2 Linear Association 

In addition to the magnitude difference checking, the similarity between SL and permanent 
counters counts can be evaluated via assessing the linear association in between. 

Linear Regression R-Squared Value 

The first popular linear association index is the coefficient of determination (i.e., R-squared value) 
of a linear model, in this case used to compare the two count types. As shown in Table 5, the R-



M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  23 

squared value for both modes of counts are 0.2765 and 0.2547, respectively. The R2 value indicates 
the ratio of the variation explained by the predictor variables to the total variations among the 
response variable. Usually, the more predictors are included in the model, the larger the R2 value 
tends to be. Since the linear model contains only one independent variable (the counter count), it 
can be concluded that the SL and counter counts demonstrate a notable linear association. 

Table 5. Results of Linear Association between StreetLight and Counter Counts 
for Bicyclists and Pedestrians 

Modes R-squared of simple linear regression Pearson’s correlation coefficient 

Bicyclists 0.2765 0.5259 [0.5079, 0.5472] 

Pedestrians 0.2547 0.5047 [0.4251, 0.5766] 

Notes: 1. The numbers in the square bracket represent the 95% confidence level for the correlation coefficient. 2. 
The bold font indicates the statistical significance at the level of 0.05. 

Pearson’s Correlation Coefficient 

In addition to the R-squared value, Pearson’s correlation coefficient is another prevalent measure 
used to assess the linear association of the variables of interest. It is essentially the R-squared value 
based on the standardized independent and dependent variables. Table 5 shows that the two types 
of counts are statistically positively correlated with somewhat larger coefficient values, 0.5259 and 
0.5047. 

The graphical correlation between the two types of counts is shown in Figure 4, where it is evident 
that the positive correlations are exhibited in both panels. 
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Figure 4. Plot of StreetLight vs. Counter Counts for Pedestrians and Bicyclists 

Note: The blue line indicates the reference line that bisects SL index values and counter counts. 

5.1.3 Ordinal Association 

The previous results reveal that SL and counter counts have a notable positive linear correlation. 
However, these two counts may be related through a non-linear function as well. In this case, the 
above-mentioned Pearson’s correlation coefficient would be low even with a strong association 
between the variables. Therefore, the study also employed two rank-based correlation approaches, 
Spearman correlation and Kendall’s τ, to properly identify the association between counts from
different collection methods, assuming a non-linear relationship in between. 

Table 6. Results of Ordinal Association between StreetLight and Counter Counts 
for Bicyclists and Pedestrians 

Modes Spearman correlation coefficient (𝝆) Kendall correlation coefficient (τ)
Bicyclists 0.691 (< 2.2e-16) 0.517 (< 2.2e-16) 
Pedestrians 0.716 (< 2.2e-16) 0.546 (< 2.2e-16) 

Notes: 1. The numbers in parentheses represent the p-values for the correlation coefficients. 2. The black font 
indicates the statistical significance at the level of 0.05. 3. See the Methodology section for the definition of rho and 
tau. 

As shown in Table 6, there appear to be statistically significant positive correlations for both 
pedestrians and bicyclists. Moreover, under the non-linear assumption, the Spearman correlation 
coefficient values are greater than the Pearson’s correlation ones. Again, such results demonstrate 
the great consistency between the SL and counter counts. 
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The Kendall correlation also measures the non-linear association between the two numerical 
variables. Once more, the tau values are statistically significantly positive, indicating the strong 
association between the types of counts.  

5.2 Systematic Adjustment Factor Development between StreetLight and 
Permanent Counter Data 

The above results reveal the notable level of consistency between the two types of counts (SL and 
counter). Nonetheless, these values are still far from being equivalent to each other. For example, 
the maximum correlation coefficient is 0.716 among all situations (linear vs. non-linear, bicyclist 
vs. pedestrian). The t-test reveals that the two count types are statistically significantly different. 
Systematic error may be the culprit. First, the SL data are based on “pings” from cellular devices. 
Therefore, the non-motorist will not be counted if the mobile devices are not carried. Second, in 
some congested situations, the traveling speeds are very close among the vehicles and the active 
transportation mode users. Such phenomenon significantly increases the difficulty of mode 
classification. Therefore, it is imperative to adjust the SL counts before entirely replacing the 
counts from counters.  

To this end, INLA Bayesian models were developed for both active transportation modes, 
assuming a Poisson distribution for the SL counts. The detailed model results are presented in 
Table 7. Based on the evaluation criteria, including DIC, 𝐷�,	𝑃�, and LPML, the random intercept 
model appears to perform better than the fixed intercept one for pedestrians and bicyclists. 
Moreover, the statistically significant random effects indicate the necessity of including the 
random intercepts to capture the unobserved heterogeneity among all observations.  

Table 7. Posterior Model Parameter Estimates for the Development of System Adjustment 
Factors between StreetLight and Counter Counts 

 
Bicyclists Pedestrians 

Variables Fixed Intercept 
Model 

Random 
Intercept Model 

Variables Fixed Intercept 
Model 

Mean 
(2.5%, 97.5%) 

Mean 
(2.5%, 97.5%) 

Mean 
(2.5%, 97.5%) 

Mean 
(2.5%, 97.5%) 

Intercept 0.333 
(0.328, 0.339) 

0.282 
(0.258, 0.306) 

0.514 
(0.480, 0.547) 

0.384 
(0.290, 0.477) 

Random Effect NA 0.042 
(-1.364, 1.713) 

NA 0.049 
(-0.980, 1.517) 

DIC 124377.9 37070.7 4082.1 1844.8 

𝑫�  124376.1 31891.6 4081.1 1591.7 

𝑷𝑫 1.8 5179.1 1.0 253.1 

LPML -62217.6 -26058.2 -2044.3 -133.2 
Notes: 1. NA means not applicable. 2. The bolded cells represent the variables with statistical significance at the 
level of 0.05.  



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  26 

Even though the random intercept model demonstrates superior performance using the popular 
Bayesian-related evaluation criterion, both models will need to adjust the SL counts to counter 
counts. The reason is that the white noises (𝜀<) in the random intercept model have to be dropped 
when developing the generalized adjustment equations that cannot include any random 
components. Given that the main goal is to get the adjusted SL (or predicted counter count) closer 
to the counter counts, the mean absolute difference (MAD) between the predicted and collected 
counter counts is employed to determine more accurate adjustment equations based on the model 
estimates as shown in the above table. The adjustment equations leading to the smaller MAD 
values are retained for the recommended adjustment equations.  

From Table 8, it is interesting to see that fixed intercept models yield better adjustment equations 
for both active transportation modes. This phenomenon indicates the superiority of the model 
performance (in terms of goodness-of-fit) may not be transferred to the adjustment purpose even 
though the heterogeneity can be considered in the random intercept models. 

Table 8. The Adjustment Equations between StreetLight Index Values and StreetLight and 
Counter Counts for Bicyclists and Pedestrians 

Model Types MAD Adjustment Equations 

 
 

Bicyclists  

Fixed Intercept 
Model 

9.8  
𝑺𝑳 = 𝐞𝐱𝐩(𝟎. 𝟑𝟑𝟑 + 𝐥𝐧(𝑪𝒐𝒖𝒏𝒕𝒆𝒓)) = 𝟏. 𝟑𝟗𝟓 ∗ 𝑪𝑪 

Random 
Intercept 
Model 

10.1  
𝑆𝐿 = exp(0.282 + l n(𝐶𝑜𝑢𝑛𝑡𝑒𝑟)) = 1.326 ∗ 𝐶𝐶 

  Pedestrians  

Fixed Intercept 
Model 

4.1  
𝑺𝑳 = 𝐞𝐱𝐩(𝟎. 𝟓𝟏𝟒 + 𝐥𝐧(𝑪𝒐𝒖𝒏𝒕𝒆𝒓)) = 𝟏. 𝟔𝟕𝟐 ∗ 𝑪𝑪 

Random 
Intercept 
Model 

4.3  
𝑆𝐿 = exp(0.384 + l n(𝐶𝑜𝑢𝑛𝑡𝑒𝑟)) = 1.468 ∗ 𝐶𝐶 

Notes: 1. CC means counter counts. 2. The bold cells represent the recommended adjustment equations based on 
MAD values. 3. MAD is the mean absolute difference.  
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Figure 5. Plot of Difference between Predicted and Collected Counter Counts for Bicyclists 

Note: Points below the blue line indicate observations where actual counter values are greater than predicted counter 
counts, where (predicted-actual) is negative. 

In addition to the MAD values, the graphical illustration of the difference between the adjusted 
SL and counter counts is presented in Figure 5 for bicyclists and Figure 6 for pedestrians. 
Comparing the two figures with Figure 3 clearly demonstrates that the difference between the 
adjusted SL and counter counts is much smaller than the difference between the original SL and 
counter counts for all different situations (that is, pedestrian and bicyclist, as well as fixed and 
random intercept models). Such results imply the importance of adjusting the SL counts before 
they can be used for different purposes. 
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Figure 6. Plot of Difference between Predicted and Collected 
Counter Counts for Pedestrians 

Note: Points below the blue line indicate observations where actual counter values are greater than predicted counter 
counts, where (predicted-actual) is negative. 

5.3 Other Adjustment Factors based on Permanent Counter Data 

Aside from the necessity for systematic adjustment in between the two count types, practitioners 
may also wish for models that enable the estimation of the AADT for pedestrians and bicyclists 
based on the hourly volume (HV) at specific time periods, while the adjustments for various 
conditions are allowed at the same time. To accommodate this need, the Bayesian INLA Poisson 
models are used to develop the models linking the AADT and HV, with standard influential 
variables being considered including the time (hours), day, month, land use, facility type, and 
weather conditions (temperature, dew point, wind speed, pressure, and humidity). With the 
availability of these models, practitioners can better estimate the AADT of the non-motorist 
counts based on the HVs for specific time periods, which are cheaper to collect compared with 
AADT that requires data lasting at least one year. Hence, these models are truly desirable, 
especially for those agencies with limited human resources. Since there are numerous possible 
conditions with the different combinations of these input variables, the project developed three 
different models for pedestrians and bicyclists, representing the different levels of model 
complexity and data availability. The detailed model results, containing formula, model 
performance, base conditions, and adjustment factors are exhibited in Tables 8–13. Thus, 
practitioners can select the most suitable models based on their specific data availability.  
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Table 9. Illustration of Prediction of AADT for Pedestrian based on Pedestrian  
HV and Time 

Formula: 𝑨𝑨𝑫𝑻𝑷 = 𝟐𝟑. 𝟕𝟔𝟎 ∗ 𝒆𝟎.𝟎𝟔𝟗∗𝑯𝑽𝑷 ∗ 𝒌𝑻𝑰𝑴𝑬 
Model Performance: DIC=22042.8; Dbar=22025.6; pD=17.2; LPML=-11240.6 
Base Condition: Time= 6am 
Adjustment Factors for Time ( 𝒌𝑻𝑰𝑴𝑬): 
7am: 0.925;                  8am:0.743;                 9am:0.503;                     10am:0.371;                    11am: 0.278 
12pm:0.208;                 1pm:0.337;                 2pm:0.385;                     3pm:0.352;                      4pm: 0.369 
5pm:0.296;                   6pm:0.454;                  7pm:0.495;                    8pm:0.739;                       9pm:0.943 
Numerical Example: For one location, assume the HVP collected at 8 am is 5. Estimate AADTP. 
Solution: 𝑨𝑨𝑫𝑻𝑷 = 𝟐𝟑. 𝟕𝟔𝟎 ∗ 𝒆𝟎.𝟎𝟔𝟗∗𝑯𝑽𝑷 ∗ 𝒌𝑻𝑰𝑴𝑬 = 𝟐𝟑. 𝟕𝟔𝟎 ∗ 𝒆𝟎.𝟎𝟔𝟗∗𝟓 ∗ 𝟎. 𝟕𝟒𝟑 ≈ 𝟐𝟓 

 
Table 10. Illustration of Prediction of AADT for Pedestrian based on Pedestrian HV,  

Time, and Facility Type 

Formula: 𝑨𝑨𝑫𝑻𝑷 = 𝟐𝟑. 𝟓𝟒𝟕 ∗ 𝒆𝟎.𝟎𝟒𝟐∗𝑯𝑽𝑷 ∗ 𝒌𝑻𝑰𝑴𝑬 ∗ 𝒌𝑭𝑨𝑪𝑰𝑳𝑰𝑻𝒀 
Model Performance: DIC=12469.8; Dbar=12449.2; pD=20.2; LPML=-6352.5 
Base Conditions: Time= 6am; Facility_Type=Major Collector 
Adjustment Factors for Time ( 𝒌𝑻𝑰𝑴𝑬): 
7am: 0.887;                  8am:0.788;                 9am:0.612;                     10am:0.533;                    11am: 0.345 
12pm:0.347;                 1pm:0.417;                 2pm:0.538;                     3pm:0.460;                      4pm: 0.538 
5pm:0.389;                   6pm:0.525;                  7pm:0.562;                    8pm:0.748;                       9pm:0.931 
Adjustment Factors for Time ( 𝒌𝑭𝑨𝑪𝑰𝑳𝑰𝑻𝒀): 
Minor Arterial: 2.246;                  Other Principal Arterial:1.054;                 Trail or Shared Use Path:0.281;                      
Numerical Example: For one location, assume the HVP collected at 10 am is 6, and the facility type is other 
principal arterials. Estimate AADTP. 
Solution: 𝑨𝑨𝑫𝑻𝑷 = 𝟐𝟑. 𝟓𝟒𝟕 ∗ 𝒆𝟎.𝟎𝟒𝟐∗𝑯𝑽𝑷 ∗ 𝒌𝑻𝑰𝑴𝑬 ∗ 𝒌𝑭𝑨𝑪𝑰𝑳𝑰𝑻𝒀 = 𝟐𝟑. 𝟓𝟒𝟕 ∗ 𝒆𝟎.𝟎𝟒𝟐∗𝟔 ∗ 𝟎. 𝟓𝟑𝟑 ∗ 𝟏. 𝟎𝟓𝟒 ≈ 𝟏𝟕 

 

  



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  30 

Table 11. Illustration of Prediction of AADT for Pedestrian based on Pedestrian HV,  
Time, Facility Type, and Various Weather Variables 

Formula: 𝑨𝑨𝑫𝑻𝑷 = 𝟑𝟗. 𝟑𝟑𝟎 ∗ 𝒆𝟎.𝟎𝟑𝟎𝑯𝑽𝑷 ∗ 𝒆�𝟎.𝟎𝟕𝟐𝑻𝒆𝒎𝒑 ∗ 𝒆𝟎.𝟎𝟔𝟖𝑫𝒆𝒘𝑷𝒊𝒐𝒏𝒕 ∗ 𝒆�𝟎.𝟎𝟎𝟑𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚% ∗
																																							𝒆𝟎.𝟎𝟎𝟖𝑾𝒊𝒏𝒅𝑺𝒑𝒆𝒆𝒅 ∗ 𝒆𝟎.𝟎𝟎𝟎𝑷𝒓𝒆𝒔𝒔𝒖𝒓𝒆_𝑯𝒈 ∗ 𝒌𝑻𝑰𝑴𝑬 ∗ 𝒌𝑭𝑨𝑪𝑰𝑳𝑰𝑻𝒀 
Model Performance: DIC=10640.8; Dbar=10615.6; pD=25.2; LPML=-5279.0 
Base Conditions: Time= 6am; Facility_Type=Major Collector 
Adjustment Factors for Time ( 𝒌𝑻𝑰𝑴𝑬): 
7am: 0.927;                  8am:0.855;                 9am:0.727;                     10am:0.629;                    11am: 0.467 
12pm:0.532;                 1pm:0.641;                 2pm:0.670;                     3pm:0.667;                      4pm: 0.674 
5pm:0.540;                   6pm:0.660;                  7pm:0.667;                    8pm:0.856;                       9pm:0.956 
Adjustment Factors for Time ( 𝒌𝑭𝑨𝑪𝑰𝑳𝑰𝑻𝒀): 
Minor Arterial: 2.622;                  Other Principal Arterial:1.078;                 Trail or Shared Use Path:0.359;                      
Numerical Example: For one location, assume the HVP collected at 1 pm is 8, and the temperature, dew point, 
humidity, wind speed, and pressure are 51oF, 49oF, 53%, 5 mph, and 30.12Hg, respectively, while the facility type 
is other principal arterials. Estimate AADTP. 
Solution: 𝑨𝑨𝑫𝑻𝑷 = 𝟑𝟗. 𝟑𝟑𝟎 ∗ 𝒆𝟎.𝟎𝟑𝟎𝑯𝑽𝑷 ∗ 𝒆�𝟎.𝟎𝟕𝟐𝑻𝒆𝒎𝒑 ∗ 𝒆𝟎.𝟎𝟔𝟖𝑫𝒆𝒘𝑷𝒐𝒊𝒏𝒕 ∗ 𝒆�𝟎.𝟎𝟎𝟑𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚% ∗
																																							𝒆𝟎.𝟎𝟎𝟖𝑾𝒊𝒏𝒅𝑺𝒑𝒆𝒆𝒅 ∗ 𝒆𝟎.𝟎𝟎𝟎𝑷𝒓𝒆𝒔𝒔𝒖𝒓𝒆𝑯𝒈 ∗ 𝒌𝑻𝑰𝑴𝑬 ∗ 𝒌𝑭𝑨𝑪𝑰𝑳𝑰𝑻𝒀 
                   = 𝟑𝟗.𝟑𝟑 ∗ 𝒆𝟎.𝟎𝟑𝟎∗𝟖 ∗ 𝒆�𝟎.𝟎𝟕𝟐∗𝟓𝟏 ∗ 𝒆𝟎.𝟎𝟔𝟖∗𝟒𝟗 ∗ 𝒆�𝟎.𝟎𝟎𝟑∗𝟓𝟑 ∗ 𝒆𝟎.𝟎𝟎𝟖∗𝟓 ∗ 𝒆𝟎∗𝟑𝟎.𝟏𝟐 ∗ 𝟎. 𝟔𝟒𝟏 ∗ 𝟏. 𝟎𝟕𝟖 
                   	≈ 𝟐𝟐 

 
Table 12. Illustration of Prediction of AADT for Bicyclist based on  

Bicyclist HV and Time 

Formula: 𝑨𝑨𝑫𝑻𝑩 = 𝟒𝟏. 𝟕𝟔𝟑 ∗ 𝒆𝟎.𝟎𝟓𝟏∗𝑯𝑽𝑩 ∗ 𝒌𝑻𝑰𝑴𝑬 
Model Performance: DIC=15067.8; Dbar=15050.5; pD=17.3; LPML=-7610.8 
Base Condition: Time= 6am 
Adjustment Factors for Time ( 𝒌𝑻𝑰𝑴𝑬): 
7am: 0.893;                  8am:0.643;                 9am:0.497;                     10am:0.458;                    11am: 0.427 
12pm:0.402;                 1pm:0.325;                 2pm:0.385;                     3pm:0.369;                      4pm: 0.387 
5pm:0.411;                   6pm:0.473;                  7pm:0.471;                    8pm:0.671;                       9pm:0.902 
Numerical Example: For one location, assume the HVB collected at 8 am is 10. Estimate AADTB. 
Solution: 𝑨𝑨𝑫𝑻𝑩 = 𝟒𝟏. 𝟕𝟔𝟑 ∗ 𝒆𝟎.𝟎𝟓𝟏∗𝑯𝑽𝑩 ∗ 𝒌𝑻𝑰𝑴𝑬 = 𝟒𝟏. 𝟕𝟔𝟑 ∗ 𝒆𝟎.𝟎𝟓𝟏∗𝟏𝟎 ∗ 𝟎. 𝟔𝟒𝟑 ≈ 𝟒𝟓 
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Table 13. Illustration of Prediction of AADT for Bicyclist based on Bicyclist HV,  
Time, and Facility Type 

Formula: 𝑨𝑨𝑫𝑻𝑩 = 𝟕𝟕. 𝟔𝟑𝟒 ∗ 𝒆𝟎.𝟎𝟐𝟓∗𝑯𝑽𝑩 ∗ 𝒌𝑻𝑰𝑴𝑬 ∗ 𝒌𝑭𝑨𝑪𝑰𝑳𝑰𝑻𝒀 
Model Performance: DIC=7412.5; Dbar=7392.2; pD=20.3; LPML=-3709.8 
Base Conditions: Time= 6am; Facility_Type=Major Collector 
Adjustment Factors for Time ( 𝒌𝑻𝑰𝑴𝑬): 
7am: 0.933;                  8am:0.797;                 9am:0.691;                     10am:0.642;                    11am: 0.621 
12pm:0.646;                 1pm:0.586;                 2pm:0.645;                     3pm:0.615;                      4pm: 0.630 
5pm:0.623;                   6pm:0.662;                  7pm:0.681;                    8pm:0.811;                       9pm:0.912 
Adjustment Factors for Time ( 𝒌𝑭𝑨𝑪𝑰𝑳𝑰𝑻𝒀): 
Minor Arterial: 0.373;                  Other Principal Arterial:0.877;                 Trail or Shared Use Path:0.405;                      
Numerical Example: For one location, assume the HVB collected at 10 am is 8, and the facility type is other 
principal arterials. Estimate AADTB. 
Solution: 𝑨𝑨𝑫𝑻𝑩 = 𝟕𝟕. 𝟔𝟑𝟒 ∗ 𝒆𝟎.𝟎𝟐𝟓∗𝑯𝑽𝑩 ∗ 𝒌𝑻𝑰𝑴𝑬 ∗ 𝒌𝑭𝑨𝑪𝑰𝑳𝑰𝑻𝒀 = 𝟕𝟕. 𝟔𝟑𝟒 ∗ 𝒆𝟎.𝟎𝟐𝟓∗𝟖 ∗ 𝟎. 𝟔𝟒𝟐 ∗ 𝟎. 𝟖𝟕𝟕 ≈ 𝟓𝟑 

 

Table 14. Illustration of Prediction of AADT for Bicyclist based on Bicyclist HV,  
Time, Facility Type, and Various Weather Variables 

Formula: 𝑨𝑨𝑫𝑻𝑩 = 𝟕𝟗. 𝟕𝟓𝟖 ∗ 𝒆𝟎.𝟎𝟐𝟐𝑯𝑽𝑩 ∗ 𝒆�𝟎.𝟎𝟏𝟏𝑻𝒆𝒎𝒑 ∗ 𝒆𝟎.𝟎𝟏𝟐𝑫𝒆𝒘𝑷𝒊𝒐𝒏𝒕 ∗ 𝒆�𝟎.𝟎𝟎𝟏𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚% ∗
																																							𝒆𝟎.𝟎𝟎𝟑𝑾𝒊𝒏𝒅𝑺𝒑𝒆𝒆𝒅 ∗ 𝒆𝟎.𝟎𝟎𝟎𝑷𝒓𝒆𝒔𝒔𝒖𝒓𝒆_𝑯𝒈 ∗ 𝒌𝑻𝑰𝑴𝑬 ∗ 𝒌𝑭𝑨𝑪𝑰𝑳𝑰𝑻𝒀 
Model Performance: DIC=7210.2; Dbar=7184.9; pD=25.3; LPML=-3608.6 
Base Conditions: Time= 6am; Facility_Type=Major Collector 
Adjustment Factors for Time ( 𝒌𝑻𝑰𝑴𝑬): 
7am: 0.947;                  8am:0.824;                 9am:0.731;                     10am:0.676;                    11am: 0.658 
12pm:0.698;                 1pm:0.675;                 2pm:0.682;                     3pm:0.663;                      4pm: 0.672 
5pm:0.653;                   6pm:0.703;                  7pm:0.718;                    8pm:0.834;                       9pm:0.933 
Adjustment Factors for Time ( 𝒌𝑭𝑨𝑪𝑰𝑳𝑰𝑻𝒀): 
Minor Arterial: 0.386;                  Other Principal Arterial:0.886;                 Trail or Shared Use Path:0.444;                      
Numerical Example: For one location, assume the HVB collected at 1 pm is 8, and the temperature, dew point, 
humidity, wind speed, and pressure are 51oF, 49oF, 53%, 5 mph, and 30.12 Hg, respectively, while the facility 
type is other principal arterials. Estimate AADTB. 
Solution: 𝑨𝑨𝑫𝑻𝑩 = 𝟕𝟗. 𝟕𝟓𝟖 ∗ 𝒆𝟎.𝟎𝟐𝟐𝑯𝑽𝑩 ∗ 𝒆�𝟎.𝟎𝟏𝟏𝑻𝒆𝒎𝒑 ∗ 𝒆𝟎.𝟎𝟏𝟐𝑫𝒆𝒘𝑷𝒐𝒊𝒏𝒕 ∗ 𝒆�𝟎.𝟎𝟎𝟏𝑯𝒖𝒎𝒊𝒅𝒊𝒕𝒚% ∗
																																							𝒆𝟎.𝟎𝟎𝟑𝑾𝒊𝒏𝒅𝑺𝒑𝒆𝒆𝒅 ∗ 𝒆𝟎.𝟎𝟎𝟎𝑷𝒓𝒆𝒔𝒔𝒖𝒓𝒆𝑯𝒈 ∗ 𝒌𝑻𝑰𝑴𝑬 ∗ 𝒌𝑭𝑨𝑪𝑰𝑳𝑰𝑻𝒀 
               = 𝟕𝟗. 𝟕𝟓𝟖 ∗ 𝒆𝟎.𝟎𝟐𝟐∗𝟖 ∗ 𝒆�𝟎.𝟎𝟏𝟏∗𝟓𝟏 ∗ 𝒆𝟎.𝟎𝟏𝟐∗𝟒𝟗 ∗ 𝒆�𝟎.𝟎𝟎𝟏∗𝟓𝟑 ∗ 𝒆𝟎.𝟎𝟎𝟑∗𝟓 ∗ 𝒆𝟎∗𝟑𝟎.𝟏𝟐 ∗ 𝟎. 𝟔𝟕𝟓 ∗ 𝟎. 𝟖𝟖𝟔 
              	≈ 𝟓𝟔 

 

The above examples demonstrate the application of the proposed models, under different 
conditions, to develop a systematic adjustment factor between SL and permanent counter data and 
estimate the active-transportation-related AADT based on hourly counts and other predictor 
variables related to weather, land use, time, day, and so on. Despite their ease of use, these 
statistical models represent a small proportion of tools available to fulfill the same goals. The 
practitioner can also choose their preferred statistical models (such as the typical non-Bayesian 
ones) and/or machine learning algorithms (e.g., artificial neural networks, tree-based models, deep 
learning methods) and detect the best-performing ones based on their specific data.   
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6. Conclusions and Recommendations 
Active transportation has become more popular due to the numerous health, environmental, and 
economic benefits it provides. With the rise in popularity comes the need for adequate facilities to 
accommodate those who wish to walk or ride a bike for transportation instead of using a motor 
vehicle. In an effort to plan for the design and construction of proper facilities (i.e., sidewalks, bike 
lanes, trails, etc.), it is necessary to understand the respective volumes of transportation by mode. 
These volumes can be collected through several methods. However, most of them rely on typical 
approaches, such as manual counts by personnel or automatic counts by loop detectors or other 
devices. In recent years, crowdsourced data is becoming popular due to the potential ease of data 
collection of large areas compared to traditional methods. Yet there is a lack of comprehensive 
comparison between the crowdsourced data and those counts obtained from the typical methods. 
To this end, this project collected crowdsourced data from StreetLight and permanent counter 
data from the national archive maintained by Portland State University and the City of San José. 
To determine whether SL data are viable for determining non-motorized counts, a consistency 
analysis comprising statistical differences, linear association, and an ordinal association was 
performed to comprehend the statistical similarities and differences between the SL data and 
counter data. In addition, R-INLA, a package oriented in Integrated Nested Laplace 
Approximation, is used to generate both fixed and random effect models that would help adjust 
the SL to the typical counter data by accounting for the systematic error that may be associated 
with the SL data. Finally, a set of models was developed to demonstrate how to estimate the 
AADT data based on the easily collected hourly volumes with different influential factors being 
included. Subsequent to the distinct analyses, the following conclusions and recommendations can 
be made. 

1. The SL count data for pedestrians and bicyclists appear to be a viable alternative to the 
permanent counters under different evaluation methods when the data outliers were 
removed (see point #2 below). The former demonstrates a notable consistency with the 
latter from different perspectives, including statistical difference, linear association, and 
non-linear association. 

2. However, there are some caveats to the above conclusion. First, the results were obtained 
by removing data outliers satisfying the arbitrary criteria established by the authors. Second, 
a large volume of the more recent permanent counter data (e.g., most of the bicycle count 
data for the City of San José) was removed as outliers due to unreasonably large SL count 
values for these observations. Hence, it is highly recommended that SL data be carefully 
examined for accuracy given the somewhat new nature of this kind of data. For example, 
practitioners could use their prior experience or knowledge to determine whether the 
magnitudes of the SL counts are reasonable for certain types of active transportation 
facilities at certain locations. 
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3. The discrepancy between SL and counter data is much smaller after the SL data are 
adjusted by applying the developed adjustment factors using the different count models. 
Therefore, it is highly recommended to adjust the SL data before its use due to the 
systematic error associated with the SL data, which are reliant on cellular devices. 

4. For agencies wishing for the AADT of the non-motorist counts but subject to limited 
resources, they may refer to the models developed in the study that link AADT with an 
hourly volume of specific time periods, or develop their preferred models for their particular 
needs. Such models can estimate the AADT based on the hourly volume, which is much 
easier and more economical to collect than AADT, which requires continuous data 
availability for a longer time period, say, at least one year. The estimated AADT can also 
be adjusted based on different conditions such as hours, month, weekday, temperature, 
land use, facility type, etc.   

The abovementioned findings demonstrate that crowdsourced SL data are promising and could 
serve as a viable alternative to the conventional data sources. Even though the SL data accuracy 
still has some room for improvement compared with the permanent counter data, the former 
collection method can collect the large-scale data in a more economical way, making it a truly 
appealing method especially when a large volume of data with a certain level of accuracy is needed. 
This is exciting considering the other enormous benefits of crowdsourced data relative to the 
typical methods. However, it is essential to note that the results are presented along with some 
cautionary notes.  

First, the data collected are based on active transportation counts from various cities in California 
only. More data from other locations or locations are needed for more reliable findings of the 
accuracy of the SL data, whose performance was explored based on the removal of certain data 
outliers satisfying somewhat arbitrary criteria established by the authors. Different criteria for 
identifying outliers may yield totally different results. Second, the study utilized the permanent 
counter data as the benchmark and focused on checking on the consistency of SL data with the 
former alternative. Due to time and resource limitations, the authors assume the permanent 
counter data collected from the national archive database and the City of San José correctly 
represent the real-world situations. Improperly calibrated or maintained permanent counters may 
lead to misleading results, as shown in the report. Third, there are numerous reports showing the 
successful application of machine learning methods to predict and/or classify different categorical 
instances, which is also used by StreetLight to distinguish the different transportation modes when 
providing the count data; however, some special situations may diminish the mode differences, 
making the classification of modes based on cellular data almost impossible. For instance, some 
serious runners prefer pavement to sidewalk facilities and may be mistaken for bicyclists. Likewise, 
in congested situations, bicyclists in the lane may be mistaken for vehicles. All these circumstances 
would complicate the mode classification and lead to additional biases.   
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Appendix 
Weighted Box Plots of Variables Related to the Built Environment (Figures 7–12) 

Weighted box plots are box plots that represent the number of observations within each category 
by the width of the box. The upper and lower sides of each box represent the third and first 
quartiles of the data, respectively. The horizontal line within each box represents the average value. 
The whiskers that extend past the box indicate one standard deviation past the first or third 
quartile. Any point visible past the end of the whisker is considered an outlier, however, for this 
study, these outliers were the result of post-filtered data; therefore, despite these values being 
considered outliers, they were still part of the analysis and results outlined above. 

Figure 7. Box Plot of StreetLight Data and Year Distribution 
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Figure 8. Box Plot of Portland Count Data and Year Distribution 
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Figure 9. Box Plot of StreetLight Data and Month Distribution 
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Figure 10. Box Plot of Portland Count Data and Month Distribution 
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Figure 11. Box Plot of StreetLight Data and Day Distribution 
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Figure 12. Box Plot of Portland Count Data and Day Distribution 

Table 15. List of Variables Present in Dataset Collected from Portland State University 

Variables available from Portland State University Active Transportation Database 
segment_area_id color directions long 
segment_name color_type bicycle lat 
state buffer pedestrian detector_id 
city overpass equestrian org_id 
tmg_type_id underpass off_road detector_description 
facility_id sharrows motor_vehicles detector_make 
facility_description bike_rte_signs other_flow_type detector_model 
paved bike_boulevard flow_detector_id detector_automated 
side intersection flowdetector_startdate functional_classification 
facility_width flow_id flowdetector_enddate organization_name 
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Figure 13. Generation of Zone in StreetLight 

 
 

Figure 14. Generation of Calibration Zone in StreetLight 
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Figure 15. Generation of Analysis After Attaching Zone and Calibration Zone 

 
 

Figure 16. Example of Data Exported by StreetLight Analysis 
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Figure 17. Average Annual Daily Traffic Pedestrian Count Data Distribution 
Plot According to Location 
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Figure 18. Average Annual Daily Traffic Bicyclist Count Data Distribution Plot  
According to Location 
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Figure 19. Hourly Pedestrian Volume Count Distribution Plot According to Location 
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Figure 20. Hourly Bicyclist Volume Count Distribution Plot According to Location 
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Figure 21. Temperature (oF) Distribution Plot According to Location 
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Figure 22. Dew Point (oF) Distribution Plot According to Location 
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Figure 23. Humidity (%) Distribution Plot According to Location 
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Figure 24. Wind Speed (mph) Distribution Plot According to Location 
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