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Executive Summary 
The emergence of the General Transit Feed Specification (GTFS) standard opens tremendous 
potential for improving the user experience of public transportation. These benefits can only be 
realized if the underlying GTFS information is accurate. This research compares publicly available 
GTFS Static and Realtime feeds for five transit systems in California to generate a suite of 
techniques and metrics for assessing that accuracy.  

This first portion of this research explores the temporal accuracy of the vehicle arrival times 
presented in the trip update messages of the GTFS Realtime feeds.  

This analysis describes two recommended waves of data cleaning to arrive at a canonical data set 
for calculating metrics. The first cleaning wave removes duplicative records while including all 
records for all trips that began during the prescribed study period. This latter feature includes trips 
that began before midnight during the last day but extended into an additional day. The second 
cleaning wave constrains the trip update messages to those sent at or after the scheduled start time 
of the trip. This culling removes the many messages that are broadcast prior to the initiation of 
the trip under consideration. This cleaning wave resolves conflicts with different prediction values 
having the same timestamp by randomly selecting one and only one prediction for each stop on 
each trip for each given time. This cleaning wave also removes stop predictions made after the last 
known vehicle departure event to exclude unnecessary predictions as well as redundant predictions 
included in the data for stops that have already been served. Finally, this cleaning wave removes 
unusual predictions, here called continuity errors, for which the anticipated arrival times are listed 
prior to the timestamp of the message, an impossible outcome given the other cleaning steps. This 
cleaning reveals underlying data concerns regarding time stamp conflicts and continuity errors and 
recommends a ratio of these excised values to the final data set to assess their prevalence (which 
also serve as initial accuracy metrics). 

The cleansed data provides the basis for the remaining accuracy metrics. These metrics build on 
values pulled directly from the GTFS feed as well as additional and easily derived values capturing 
the time to prediction, prediction error, time to stop, and prediction change. These metrics include 
the share of trip minutes for which an update is available, plots of prediction error percentiles, 
interquartile range of predictions scaled by the time to prediction, the likelihood of catching a bus 
given the prediction, the expected wait time (including to the next bus) given the prediction, the 
amount of padding necessary to have a 95 percent change of not missing the bus given the 
predictions, and the prediction inconsistency. The report presents these metrics as numbers and 
visualizes them as charts (at either the systemwide or route level) to demonstrate how they might 
be effectively employed to diagnose prediction accuracy. 
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The second portion of this research explores the spatial accuracy of the GTFS products by 
comparing the schedule data to the vehicle location messages in the realtime feed. This analysis 
focuses on the accuracy of the vehicle paths and stop locations.  

The paths analysis cuts the shapes within the GTFS static product into segments and then 
calculates the straight-line distance from each vehicle ping to the nearest point on those paths. 
This analysis is conducted on a single transit system in California for tractability. A review of the 
cumulative distribution of these ping-path distances suggests a 14-meter threshold as reasonable 
for identifying ping-path discrepancies; however, as discussed in the report, a 10-meter threshold 
could work in many circumstances. The pings exceeding the threshold are flagged to generate 
route- and segment-level accuracy metrics.  

The use of these metrics to flag path inaccuracies is presented. For example, one route with high 
shares of flagged ping-path distances is found to be poorly coded in the GTFS static data. The 
shape of the route does not align with the actual road network, which results in the apparent 
discrepancies. Conversely, at another portion of that same route, which is accurately coded in the 
GTFS static data, the bus drivers are diverging from the path (by leaving a highway an exit early), 
which results in actual discrepancies. Similarly, segments with high shares of flagged ping-path 
distances are identified and explored. These segments reveal specific locations where bus drivers 
appear to be consistently deviating from the path, for example to facilitate turning movements or 
to respond to construction detours, or where global positioning signals seem to drift consistently 
away from the roadway. 

A similar approach is used to assess the accuracy of stop locations. This analysis is limited to a 
different California transit system that includes within its GTFS Realtime feed an indicator that 
the vehicle was at a stop. This analysis also incorporates an additional data cleaning step to reduce 
the data to unique stop events (rather than counting separate pings on the same day on the same 
trip at the same location as different stops). A relatively lenient 30-meter threshold is established 
to flag ping-stop discrepancies to generate accuracy metrics at the route, trip, and stop level. 

The use of these metrics to flag stop inaccuracies is presented. For example, the route-level metrics 
suggest that commuter and school routes are much more likely to have ping-stop deviations than 
other types of routes, but overnight routes are more likely to make large ping-stop deviations. Trip-
level metrics find that the ping-stop exceedance rates vary substantially on trips for the same route 
and demonstrate ways to explore this variation further, for example, by time-of-day. Stop-level 
metrics reveal stops with major disparities between the scheduled location and the actual stopping 
location. Many of these locations are characterized by congested traffic and the convergence of 
multiple bus routes, but some appear to reflect situations in which the driver appropriately stops 
at a bus shelter located some distance from the stop. The ping-stop distances with the greatest 
magnitude suggest possible equipment or coding errors for the agency to investigate. 
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Taken together this report provides techniques for transit agencies to assess the temporal and 
spatial accuracy of the GTFS products they share with the public and to diagnose the causes of 
any inaccuracy. The goal of this work is to provide both metrics and means of applying them so 
that transit agencies can methodically improve their GTFS data accuracy and ensure their 
customers enjoy the benefits of these data feeds. 
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1. Introduction 
The emergence of the General Transit Feed Specification (GTFS) standard opens tremendous 
potential for improving the user experience of public transportation. GTFS enables users to plan 
trips in such a way as to account for the full transit schedule and realtime deviations from that 
schedule. GTFS also enables users to be dynamically apprised of key variables, such as expected 
vehicle arrival time. The former reduces barriers to using transit in the first place while the latter 
reduces the costs of such use. Furthermore, although designed for trip planning, the information 
coded within GTFS offers many alternative applications, from service analysis to performance 
measurement.  

All of these benefits depend on the underlying accuracy of the GTFS Static and Realtime products. 
To date, there has been little research into the assessment of GTFS accuracy. This research will 
advance this effort by presenting methods and metrics to explore and quantify GTFS accuracy. A 
key innovation of this work is to derive these products from the publicly available GTFS feeds 
themselves. This feature ensures the wide applicability of these tools.  

This report is divided into two major sections. The first section focuses on the accuracy of vehicle 
arrival times presented in the trip update feeds as part of GTFS Realtime. This analysis is primarily 
temporal and emphasizes the development of metrics to measure prediction accuracy. The second 
section focuses on the geographic accuracy of the GTFS Schedule information in reflecting actual 
operations. This analysis is primarily spatial, and in addition to presenting accuracy metrics, offers 
techniques to explore divergences between what the GTFS Schedule data says should happen and 
what the GTFS Realtime data says does happen. This section is subdivided to consider the two 
key spatial components of GTFS—travel paths and stop locations.  

1.1 Project Background 

This research builds on the extensive standardization efforts that have taken place to develop the 
GTFS Static and GTFS Realtime feeds.  

GTFS Static 

GTFS Static codes transit schedules as a set of tables with linkable identifiers (and is also called 
GTFS Schedule for this reason). At the core of the system is the trip_id, which identifies the stops, 
stop sequence, stop times, and service days that uniquely define the structure and timing of a single 
transit trip. (In this document, all explicit references to GTFS nomenclature are italicized.) The 
trip_id is also linked to a route_id as a series of related trips comprise a transit route. 

In practice, transit agencies do not always invest in ensuring the accuracy of GTFS Static 
information. For example, while GTFS Static allows for the separate coding of stop arrival and 
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departure times (to reflect the expected dwell times at stops), many systems report these as the 
same exact time (Wessel & Widener, 2017). Similarly, while agencies generally make an effort to 
code these stop times accurately for key time points to guide drivers, less effort is aimed at correctly 
coding the timing of intervening stops (Wessel & Farber, 2019). These shortcuts reflect the reality 
of transit provision. It can be difficult to predict how long dwell times are likely to be for any given 
stop at any given time along a route. Similarly, exhorting drivers to reach a few key destinations 
(often timed transfer locations) at set timepoints is a far more reasonable request (given the 
cognitive load and traffic vicissitudes) than requiring drivers to reach every single stop on a set 
schedule. Fortunately, by providing realtime updates, GTFS Realtime can correct for both poor 
stop time coding and limited schedule adherence endemic to GTFS Static. 

GTFS Realtime 

Most transit agencies track the positions of their fleets in realtime using automatic vehicle location 
(AVL) devices. These devices transmit timestamped geocoded locations for each vehicle, typically 
over a cellular network. While this information was initially sought to manage far-flung fleets, it 
also can be employed in concert with GTFS Static data to predict stop arrival and departure times. 
Transit agencies process the AVL information into several GTFS Realtime feeds for the public, 
usually through outside vendors.  

The most relevant GTFS Realtime message sets for the current research are the TripUpdate and 
VehiclePosition. The TripUpdate feed provides anticipated arrival and/or departure times for stops 
(as well as the timestamp for when those estimates were made) along upcoming and current trips. 
These trips are identified by the same trip_id in GTFS Static, which enables linking the realtime 
information to the schedule. The VehiclePosition feed relays timestamped coordinates of vehicle 
locations, also coded by trip_id.  

1.2 Previous Work 

Any accuracy assessment requires sourcing ground truth vehicle location data. Some GTFS Static 
researchers have ingested external automatic vehicle location (AVL) feeds (Wessel & Farber, 2019) 
while others have relied on the VehiclePosition data from the GTFS Realtime (Abusalim, 2020; 
Steiner et al., 2015) feeds. While the latter solution seems particularly elegant in application to 
realtime assessment, Steiner et al. (2015) found the VehiclePosition data relatively sparse, noting 
that such information was only available for 57% of bus stops across the entire Dutch transit 
network. Similarly Abusalim (2020) jettisoned consideration of bus delays since too few of the 
VehiclePosition records across all bus lines in Boston included an indicator that the bus was at a 
stop location. The Dutch case might be explained by its use of data from 2014 when GTFS 
Realtime was quite new, and the Boston case might be addressed by imputing stop status rather 
than relying on the VehicleStopStatus field of the VehiclePosition messages. Nonetheless, both cases 
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demonstrate difficulty using the GTFS Realtime fields as internal sources of ground truth location 
data.  

Any accuracy assessment also requires measuring the difference between the stated and actual 
transit experience. Wessel and Farber (2019) estimated actual and scheduled travel times between 
the same set of origins and destinations in a given transit system for every minute during a weekday 
peak period. They then visualized systemwide accuracy by creating density plots of the percent 
difference (presented on a log scale) in these values for each scheduled estimate for each city. This 
approach is unique in considering transit travel times rather than route-by-route performance. 
More commonly, researchers compared the actual arrival and/or departure times culled from 
GTFS Realtime feeds to scheduled activities from the GTFS Static feeds. Steiner et al. (2015) 
estimated average delay per bus stop, which they presented as a histogram to show average delay 
frequency experienced at stops across the network. Abusalim (2020) similarly estimated delays 
across all transit modes in Boston, which he presented as a box plot. 

Another set of researchers and practitioners has explored the accuracy of the GTFS Realtime feeds 
themselves, most commonly to assess the accuracy of the TripUpdate predictions (Machlab et al., 
2017; Steiner et al., 2015). An early effort overlayed line charts of the predicted and actual arrival 
delays at successive bus stops along a single route using three TripUpdate and one VehiclePosition 
streams to show limitations in data availability in GTFS Realtime data, particularly the feature of 
TripUpdate delay predictions defaulting to zero beyond the then ten-minute prediction window 
(Steiner et al., 2015). While the authors did not directly analyze GTFS Realtime accuracy, their 
visualization suggests an approach of comparing the delay values at each stop.  

Machlab et al. (2017) used such a stop-level comparison to assess the accuracy of a GTFS Realtime 
feed in Denver prior to its public launch. The authors proposed an approach like that commonly 
used for determining transit on-time performance. They establish four sequential bins of time 
leading up to a bus arriving at a stop (30 to 12 minutes, 12 to six minutes, six to three minutes, 
and three to zero minutes). For each bin, they recommend a threshold of tolerable prediction error 
(defined as the actual arrival or departure time minus the predicted time). Those thresholds shrink 
as the arrival time approaches to encourage more accurate predictions. The thresholds for the first 
three bins are offset slightly to discourage negative predictions, which would place passengers at 
the stop after the bus had departed. Those threshold bandwidths are, respectively, -4.0 to 6.0 
minutes, -2.5 to 3.5 minutes, -1.5 to 2.0 minutes, and -1.0 to 1.0 minute. All predictions that fall 
within those bandwidths are considered acceptable. The accuracy metric, as for on-time 
performance, is the share of predictions that are acceptable.  

This method has several benefits: it allows for a differential consideration of early and late 
predictions, it values increasing accuracy as the time to the bus arrival shrinks, and it uses a binary 
measure of success to make it easy to aggregate the information into a single percentage. In the 
absence of other approaches to determine prediction accuracy, this method is commonly used by 
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transit properties to assess a sample of predictions across their system (Swartz, 2020). This 
method also has several drawbacks: it relies on arbitrary bin widths that make for a disjointed 
consideration of predictions on either side of those dividers, it relies on arbitrary thresholds 
for determining prediction acceptability, its determination of acceptability is binary so that a 
huge error counts the same as a small one—despite the potential impact on a passenger, and its 
assessment window is limited to a half an hour even though the availability of those predictions 
might be longer. The metric also does not consider the transit service frequencies, and thus the 
consequences of a late prediction. 

This research builds on these approaches to assessing GTFS accuracy, particularly the 
complementary comparison of GTFS Static and Realtime feeds to offer an internal ground 
truthing. This comparison is made possible by the more complete GTFS resources available from 
selected transit systems in California. This work offers a series of techniques and metrics that allow 
transit properties to evaluate the quality of the information they share with the public as well as 
strategies for diagnosing areas for effective intervention.  
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2. Arrival Prediction Accuracy 
Transit agencies seek to attract new passengers and retain and expand the patronage of existing 
passengers. This objective serves the pressing public policy needs to reduce the carbon intensity of 
travel (to mitigate climate change), to optimize the use of limited road capacity (to manage 
congestion and avoid construction costs), to fill unused transit capacity (to reap more public benefit 
from sunk costs and justify associated subsidies), and to raise revenues (to support the service).  

The electronic provision of schedule (i.e., routes, stops, and times) and operational (i.e., delays, 
service changes) information has been shown to reduce uncertainty regarding transit use and 
increase both the use and the satisfaction associated with use (Barbeau & Fretheim, 2018). While 
the development of electronic route planners using static schedule information was already a major 
advance in transit navigation, the addition of dynamic arrival time predictions has further reduced 
the uncertainty tied to transit use. Reductions in uncertainty translate into increases in perceived 
reliability—an important human value. Furthermore, realtime arrival predictions allow customers 
to minimize transit wait times, typically seen as the most onerous component of a transit trip, and 
maximize non-transit activity times, such as additional minutes at home or at work locations—a 
net gain to society. Similarly, when the experience of waiting for transit vehicles is physically 
uncomfortable due to inclement weather or security concerns, the ability to accurately estimate 
vehicle arrivals can further reduce stress on travelers. These benefits are dependent on the accuracy 
of the arrival prediction information. While historically, transit agencies used different approaches 
to electronically provide these service data, over the last decade and a half, the industry has 
converged on two related standardized formats: the general transit feed specification (GTFS) for 
fixed schedule information and its realtime extension (GTFS-RT) for operational deviations from 
the fixed schedule. While several researchers have explored the accuracy of the former (Abusalim, 
2020; Steiner et al., 2015; Wessel & Farber, 2019), there has been surprisingly limited work on 
the latter (Machlab et al., 2017). This omission is problematic since in theory, GTFS-RT adjusts 
for the inaccuracies of GTFS Static (Wessel & Farber, 2019). In practice, perfect schedule 
adherence is almost impossible for transit services operating in mixed traffic and passengers often 
rely entirely on the GTFS-RT streams for making near-term trip planning decisions (Abusalim, 
2020). Understanding the accuracy of those realtime fields is therefore essential for transit agencies 
that broadcast GTFS-RT data to the public (Machlab et al., 2017). Such assessment is doubly 
important since most transit agencies contract out the generation of GTFS-RT fields to private 
companies and have a fiduciary duty to assess the quality of the information they are purchasing 
with public monies. 

This section presents a proposed suite of performance metrics that assess the accuracy of the 
realtime updates on predicted arrival times. These metrics are designed to reveal accuracy from the 
perspective of both the transit agencies broadcasting the predictions and the transit customers 
seeking to use this information to improve their travel experience. These metrics are structured to 
be easy to understand and useful for tuning both prediction algorithms and transit service delivery. 
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To facilitate application in practice by any interested party, the proposed metrics can be calculated 
entirely from the TripUpdate messages of the GTFS-RT feed and the GTFS Static transit 
schedule—both freely available from the transit agency—without reliance on any additional 
sources of data.  

2.1 Methodology 

This section explores five full days of GTFS-RT TripUpdate data from five California bus systems 
to generate quantitative metrics for assessing the accuracy of transit arrival predictions. These 
performance measures are designed to address distinct needs of transit agencies and the traveling 
public. 

2.2 Study Area 

The metrics proposed in this section are based on publicly available GTFS-RT feeds from five 
California transit agencies: Modesto Area Express (MAX), Alameda-Contra Costa Transit 
District (AC Transit), Monterey-Salinas Transit (MST), Big Blue Bus (BBB), and Orange 
County Transportation Authority (OCTA). These agencies were chosen to represent differently 
sized transit operations in various parts of the state. Figure 1 presents the route footprint of studied 
transit agencies as well as their relative locations within California.  
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Figure 1. Map of Studied Transit Agencies  

 

It is worth noting that on July 1, 2021, less than a year prior to the data collection for this project, 
the city-owned MAX merged with the county-owned Stanislaus Regional Transit (StaRT) to 
form a new transit agency, the Stanislaus Regional Transit Authority (StanRTA). Despite this 
legal union, many former MAX assets remain distinct, including the GTFS feeds. For this reason, 
this research refers to MAX, even if that agency no longer exists as a separate legal entity. 

2.3 Data Collection and Cleaning  

A consistent approach to collecting and cleaning data is central to the proposed GTFS-RT 
accuracy metrics. This data cleaning approach sought to extract the stop prediction information 
most relevant for transit riders and therefore also for the transit agencies purchasing and 
broadcasting the data. The cleaning approach has two waves. The first wave cleans the raw data to 
remove duplicates, trim the data to the period of interest, and remove any record without stop 
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predictions to yield a base data set with complete information. The second wave cleans the base 
data set to remove predictions that are either not useable by the consumer or are impossible to 
yield the final data set with complete and actionable information. This subsection presents the 
scope of the data collection and the structure of the data cleaning. 

Data Collection 

The transit agencies all post their current GTFS-RT files in the open-source protocol buffer 
format (.pb) on their respective website for users to download. Five full days of GTFS-RT data 
for all five transit systems were collected from Tuesday, March 1, 2022 through Saturday March 
5, 2022 by downloading the available protocol buffer file every ten seconds during that 120-hour 
period (as well as additional selection before and after the time frame to ensure no missing records 
for trips that spanned days). This five-day span was selected to provide a large sample of data 
covering both weekday and weekend operations. The several hundred thousand protocol buffer 
files downloaded over the study period from the five transit agencies were converted into a single 
comma-separated (.csv) file for analysis. To provide route and scheduling context, the 
contemporaneous static GTFS data for the five systems were also downloaded. 

Data Cleaning: Wave I 

The first cleaning wave creates the base data set of unique rows, all within the study period and all 
with stop predictions. Table 1 shows the number of rows remaining (and the relative shares) at 
each stage of the first data cleaning wave. 
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Table 1. Data Cleaning: Wave I (Download to Base Data) 

Removed Rows MAX AC Transit BBB OCTA MST 

Number of Rows Remaining 

(Nothing Removed) 136,801,210 426,021,170 119,382,333 7,766,917 50,818,594 

Duplicates 53,978,293 260,573,419 17,238,678 7,766,917 33,876,802 

Null Predictions / Wrong 

Dates 

45,736,942 213,214,340 13,387,144 6,357,630 28,029,902 

Share of Rows Remaining 

(Nothing Removed) 100.0% 100.0% 100.0% 100.0% 100.0% 

Duplicates 39.5% 61.2% 14.4% 100.0% 66.7% 

Null Predictions / Wrong 

Dates 

33.4% 50.0% 11.2% 81.9% 55.2% 

The first cleaning step removed duplicative records. This duplication is expected whenever the 
update rate of the protocol buffers themselves was less frequent than the 10-second data collection 
download rate. All systems except OCTA, which has high refresh frequency, witnessed substantial 
data reductions after de-duplication. MST dropped by a third (-33.3%), AC Transit by two fifths 
(-38.8%), MAX by three fifths (-60.5%), and BBB by six sevenths (-85.6%). These findings 
suggest some initial processing efficiencies might be found in tailoring the download rate to the 
upload rate. 

The second cleaning step removed records outside the study period or without a prediction. The 
time filtering introduces a small complication, as some transit trips begin before midnight on one 
day and continue into the following day. This research followed a protocol of including all trips 
that originated during the study period even if they continued into the following day. Therefore, 
some trips that began on February 28 and extended into March 1 were entirely excluded, while 
other trips that began on March 5 and extended into March 6 were fully included.  

GTFS-RT has an experimental start_date field, which makes this selection straightforward, when 
available. All transit agencies in the study sample, except AC Transit, included the optional start 
date information. To populate this field for AC Transit, the lowest stop sequence number (which 
corresponds to the first stop) was identified for each trip reported within the TripUpdate messages. 
The date portion of the timestamp for that record was then added to the otherwise blank start_date 
field for all records both sharing that same trip_id and taking place over the subsequent twelve 
hours. This process ensured all records had the appropriate start date upon which to filter the data 
set. 
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It is important to note that the program that downloaded the data was set to last for the same span 
of time once initiated, but that it was initiated at separate times on the same day for each transit 
system studied. The purpose of this second cleaning step is to ensure the base data sets are for the 
same period. Since the downloaded data sets are slightly staggered temporally, and since the 
number of transit trips made vary throughout the day, the reductions from this stage of the data 
cleaning should not be precisely compared to one another. As noted above, any record without 
either a stop arrival or a stop departure prediction was also removed at this stage, as these data 
cannot be used to assess the accuracy of the predictions. In combination, the filtering by time and 
removing of records without predictions reduced the records by a similar order of magnitude, 
specifically between 22.2%, the largest drop, for BBB and 15.4%, the smallest drop, for MAX. 

Data Cleaning: Wave II 

The second cleaning wave creates the final data set from the base data output from the first 
cleaning wave. Table 2 shows the number of rows remaining (and the relative shares) at each stage 
of the second data cleaning wave. This section details the decisions to pare the base data to the 
final data set for analysis. 

Table 2. Data Cleaning: Wave II (Base to Final Data) 

Removed Rows MAX AC Transit BBB OCTA MST 

Number of Rows Remaining 

(Nothing Removed) 45,736,942 213,214,340 13,387,144 6,357,630 28,029,902 

Timestamps before Trip Start 7,985,117 90,381,225 4,966,186 6,304,955 10,813,054 

Timestamp Conflicts 7,977,617 90,377,255 4,965,557 6,304,955 10,813,054 

Timestamps after Trip “End” 7,308,076 90,375,024 4,965,557 5,105,297 10,799,042 

Stops Already Passed 4,764,643 89,378,262 4,795,844 269,881 9,986,918 

Continuity Errors 4,700,564 89,370,069 4,793,511 0   9,851,628 

Share of Rows Remaining 

(Nothing Removed) 100.000% 100.000% 100.000% 100.000% 100.000% 

Timestamps before Trip Start 17.459% 42.390% 37.097% 99.171% 38.577% 

Timestamp Conflicts 17.442% 42.388% 37.092% 99.171% 38.577% 

Timestamps after Trip “End” 15.978% 42.387% 37.092% 80.302% 38.527% 

Stops Already Passed 10.417% 41.919% 35.824% 4.245% 35.630% 

Continuity Errors 10.277% 41.916% 35.807% 0.000% 35.147% 
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The first decision was to begin the accuracy assessment with the scheduled start time of the trip. 
This approach entailed excluding any predictions broadcast earlier. For all the studied systems 
except OCTA, most of the trip updates were made before there was any actual information on the 
conditions along a given trip—so these reductions were substantial (as high as 82.5% for MAX). 
In theory, it is possible (and recommended) to use the block information available in GTFS-RT 
to identify how delays on one trip might affect a subsequent one on the same block or to 
incorporate historical information in anticipating travel speed. In practice, however, pre-trip 
predictions did not seem to account for this information and incorporating these pre-scheduled 
start predictions only increased the share of errors in summary metrics.  

The second decision was to address timestamp conflicts. In the TripUpdate feed from MAX, AC 
Transit, and BBB (but not OCTA or MST) there were thousands of instances where more than 
one prediction for a single stop shared a timestamp but provided a different predicted arrival time. 
These predictions would suggest that the bus, like quantum particles, could be in two places at the 
same time. While timestamp conflicts are likely the result of processing bottlenecks in the 
generation and transmission of the update, they present a challenge for analyzing prediction 
accuracy. As an expedient, when faced with a timestamp conflict, it was decided to randomly select 
one prediction to keep in the data set and to discard any others. (It would also be entirely reasonable 
to either include or exclude all such conflicts.) The occurrence of such conflicts, however, is a red 
flag for the accuracy of predictions, as will be discussed in the assessment metric section.  

The third decision was to remove all stop predictions broadcast after the last known departure 
event. This event is referred to as the trip “end” in quotations simply because it is the last record 
for the progress of any given trip. In many cases, the trip “end” is not the last scheduled stop along 
the trip. (The MAX data only provides predictions through the penultimate stop, a reasonable 
practice for TripUpdate feeds since no one can board a vehicle at its last stop. The other systems 
do provide predictions of last stop arrivals since that information can still be useful for trip 
planning.) These data appear to be records delayed by computation processes internal to the transit 
vehicle. Such post-trip “end” records are only seen on MAX and OCTA, suggesting hardware 
concerns to be addressed. (It should be noted that while these post-trip updates are excluded from 
the generation of the performance metrics, the information contained within them is incorporated 
when relevant. For example, when a post-trip end update includes actual arrival and departure 
times that were otherwise missing among the trip updates, which happens for MAX, those were 
appended appropriately to stop predictions.)  

The fourth decision was to remove all stop updates generated after the vehicle had departed that 
stop. GTFS-RT feeds can include data for all stops along the active trips, even if those stops have 
already been served. This redundant information does not affect trip planning since the vehicle has 
already passed those stops. This research selected the last available prediction for any given stop to 
represent the actual arrival and departure times. All the systems, except MAX, provide identical 
final arrival and departure times. MAX, by contrast, provides distinct times once the stop has been 
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passed. The MAX approach enables a more nuanced understanding of travel by accounting for 
dwell times.  

The fifth and final decision was to remove a set of unusual remaining predictions whose predicted 
time of arrival were for times prior to the timestamp of the prediction. In plain language, an 
example of this impossibility might read, “the bus will arrive at this stop five minutes ago,” even 
though the vehicle has yet to arrive at the stop based on the sorting from the previous data cleaning 
stage. These predictions for events that are expected to occur in the past are called “continuity 
errors.” Such continuity errors were present in the GTFS-RT feeds of all five transit systems 
studied, but particularly predominant at OCTA. The OCTA TripUpdate feed was distinct in that 
it included no predictions. Rather, the feed only provided the actual arrival time at a stop after that 
event had occurred. Consequently, there were no remaining OCTA predictions in the final data 
set.  

The result of the second wave of data cleaning is the final data set that refers to all reasonable 
predictions during the active period. This number also serves as the denominator for two accuracy 
metrics: the Timestamp Conflict Ratio and the Continuity Error Ratio. These ratios are similarly 
defined as the number of relevant rows removed to each thousand rows in the final data set, as 
shown in Table 3. 

Table 3. Timestamp Conflict and Continuity Error Ratios  

Accuracy Metric MAX AC Transit BBB OCTA MST 

Timestamp Conflict Ratio 1.60 0.04 0.13 0.00 0.00 

Continuity Error Ratio 13.63 0.09 0.49 NA 13.73 

 

Ideally, both ratios would be at or close to zero. For the Timestamp Conflict Ratio, MAX has a 
score of 1.60—more than ten times the next highest ratio of 0.13 at BBB. For the Continuity 
Error Ratio, MAX and MST share ratios above 13.5, substantially higher than those at either AC 
Transit or BBB, which are both less than 0.5. The Continuity Error Ratio is undefined for OCTA, 
since without values for the final data set the denominator of the value is zero. 

2.4 Derived Values 

The previous section discussed fields downloaded from either GTFS-RT or GTFS Static feeds to 
structure the final data set. These downloaded fields, shown in Table 4, are used to derive four 
additional fields, each referring to a different time span necessary for generating the accuracy 
metrics. This section presents those four derived fields, which are also enumerated in Table 4. 
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Table 4. Description of Downloaded and Derived Data Fields  

Values Definition/Formula 

Downloaded Definition 

Timestamp Time of GTFS-RT update 

Prediction Predicted time of arrival/departure at stop 

Actual Arrival Actual time of arrival at stop 

Actual Departure Actual time of departure at stop 

Scheduled Trip Start Scheduled time trip departs first stop (from GTFS Static) 

Trip “End” Actual time of departure at last known stop 

  

Derived Formula 

Time to Prediction Prediction - Timestamp 

Prediction Error If Actual Arrival ≤ Prediction ≤ Actual Departure, then 0 

 If Prediction < Actual Arrival, then Actual Arrival - Prediction 

 If Prediction > Actual Departure, then Actual Departure - Prediction 

Time to Stop Actual Arrival - Scheduled Trip Start 

Prediction Change |Predictionx - Predictionx-1| 

 

Time to Prediction 

Time to prediction is the difference between the predicted arrival time at a given stop and the 
timestamp of the update. This length represents the interval between the time the prediction is 
made and the time of the arrival that is predicted. Given the data cleaning approach presented 
earlier, time to prediction values remaining in the data set are positive. The time to prediction 
interval is important because it represents the time theoretically available to a traveler until the 
arrival/departure of the vehicle – time that might be balanced between productive activities and 
travel to (and waiting at) the transit stop. Time to prediction is also expected to be negatively 
related to prediction accuracy (i.e., prediction accuracy increases as time to prediction decreases), 
and therefore it is useful for adjusting relevant metrics.  

Prediction Error 

Prediction error is the difference between the prediction and the actual stop event defined by the 
actual arrival time and the actual departure time (Machlab et al., 2017). Four of the five studied 
GTFS-RT feeds report the same exact time for the actual arrival and actual departure time. By 
contrast, the more fulsome MAX feed reports distinct actual arrival and departure times. While 
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the calculation of prediction error is the same for all GTFS-RT feeds, this calculation is best 
illustrated on the MAX data, which enables all three possible forms shown in Table 4.  

The prediction error calculation is from the perspective of the traveler who follows the prediction 
exactly. If the predicted arrival occurs between the actual arrival and the actual departure (or exactly 
at these times), the prediction error is considered to be zero, an accurate prediction—the traveler 
experiences the bus exactly when advised it would arrive. If the predicted arrival occurs before the 
actual arrival, the prediction error is positive, an early prediction—the traveler experiences wait 
time at the stop before the bus arrives. In the last case, when the predicted arrival occurs after the 
actual departure, the prediction error is negative, a late prediction—the traveler arrives at the stop 
after the bus has already left. These three options are presented visually in Figure 2.  

Figure 2. Graphical Depiction of Prediction Types 

 

All three types of prediction errors are witnessed on the data collected from the four studied transit 
systems, as shown in Figure 3, although the relative shares vary widely. Notably, MST has the 
most even distribution of the three prediction types. This outcome is likely as all the prediction 
values provided in the MST TripUpdate feed are reported as whole minutes, providing a sixtieth 
of the granularity of the values in the remaining three systems (which report all values to the 



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E   18 

second). Another notable finding from Figure 3 is the low share of late predictions (i.e., negative 
prediction errors) in BBB. This finding suggests that predictions from BBB, if precisely heeded, 
are less likely to result in missed buses. 

Figure 3. Share of Prediction Types for Studied Transit Agencies 

 

Time to Stop 

Time to stop is the difference between the actual arrival and the scheduled trip start. This value 
represents the time interval for which predictions are available for a given stop on a given trip. 
Time to stop is used to understand the variation in prediction accuracy over time. 

Prediction Change 

Prediction change is the absolute value of the difference between one prediction and the 
subsequent one for a given stop on a given trip. This value is important for understanding the 
readings experienced by transit customers watching the TripUpdate feed. Large prediction changes 
frustrate customers. 

 



M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  19 

2.5 Assessment Metrics 

The downloaded and derived values enable the consideration of metrics to assess the accuracy of 
the predictions. The selection of metrics was guided by several overriding principles. Metrics that 
reflect the transit rider experience were favored (as improving that experience is the primary 
rationale for public investment in developing GTFS-RT feeds). Metrics were (generally) 
structured to avoid binary categorizations of stop arrival predictions as either good or bad. Metrics 
were aimed to measure accuracy directly, and therefore allow a transit property to constantly assess 
the quality of their predictions. Metrics were chosen to be easily understood without extensive 
math or statistical training. Metrics were calculated at the stop or trip level but could also be 
aggregated to one or more component aspects of a transit system, such as mode, route, direction, 
time of day or area of town.  

Table 5. Descriptions of Accuracy Assessment Metrics 

Metrics Description 

Timestamp Conflict Ratio Ratio of timestamp conflicts removed to thousand rows of cleaned data 

Continuity Error Ratio Ratio of continuity errors to thousand rows of cleaned data 

Update Availability Share of trip minutes with a prediction update 

Prediction Error Percentile Plots Graphic representation of prediction errors with key percentiles 

Scaled Prediction Error IQR Interquartile range of prediction errors scaled by time to prediction 

Bus Catch Likelihood Share of non-negative prediction errors 

Expected Wait Time Mean wait time to catch vehicle if predictions are followed 

Prediction Padding Absolute value of 5th percentile of prediction errors 

Prediction Inconsistency Sum of prediction changes / sum of time to stop values 
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All the proposed metrics are presented in Table 5. Since the Timestamp Conflict Ratio and the 
Continuity Error Ratio were presented previously, this section begins with Update Availability. 

Update Availability 

Update Availability is defined as the share of minutes during a trip for which GTFS-RT 
predictions are made. It measures the availability of new prediction information for users. This 
measure is a fundamental concern of agencies who want to know how often predictions are being 
broadcast to their riders. There can be no consideration of the accuracy of predictions if they are 
not being shared in the first place. 

To derive the Update Availability, the time span of each trip is calculated from the scheduled start 
time of the trip in GTFS Static to the departure time from the last stop broadcast via GTFS-RT, 
i.e., the trip “end,” even if that point is not the last (or, in MAX’s case, penultimate) stop in that 
trip’s stop sequence. That span is cut into one minute bins based on the integer of the minute value. 
All the trips in the four-system sample had scheduled start times that began precisely at the top of 
the minute. This feature ensured that all the bins, except the final one, lasted for a full sixty seconds. 
The timestamp of each prediction is used to allocate those updates to the minute bins. Any bin 
with even a single associated update is dummy coded as a success. (Even though the final bin is 
less than a minute long, it always has at least one associated update.) Update Availability is the 
percentage of total bins coded as a success. 

The specific design of this metric raises two key concerns. First, the reliance on the GTFS-RT 
feed for determining the availability span seems problematic when the goal of the metric is itself 
to evaluate the availability of the GTFS-RT feed. The specific concern was handling cases when 
the GTFS-RT feed cut out prior to providing departure information for the last (or, in MAX’s 
case, penultimate) stop in a trip’s stop sequence. For example, if actual stop departure information 
was available for the first five stops of a ten-stop sequence but not further, there is a temptation to 
revert to the scheduled time of the last (or, in MAX’s case, penultimate) stop to capture the entire 
scheduled time that predictions should be available. 

In examining the scenarios, however, it was found that (with only one exception on MAX) 
whenever the GTFS-RT feed cut out before providing information on the final (or in MAX’s case, 
penultimate) stop in the sequence, the last reported actual arrival time was already later than the 
scheduled time of the final (or in MAX’s case, penultimate) stop. This finding suggested that 
reverting to the scheduled trip end time in GTFS Static would underestimate the actual span when 
predictions were available and thus misstate the actual Update Availability. It appeared that the 
trips whose last reported stops were not the final (or, in MAX’s case, penultimate) ones in the 
sequence were experiencing problems that legitimately caused the vehicles to come offline. For 
these reasons, the actual arrival time at the last reported stop defined the outer bound of the 
availability range. 
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The second concern was the structure of the bins, specifically their size and their impact on metric 
interpretation. The appropriate bin size to reflect transit user expectations was debated. While 
customers would prefer more frequent updates, it was felt that a minimum expectation was one 
update each minute. However, it would not be unreasonable for a transit agency to prefer a smaller 
bin window for assessing the Update Availability, such as thirty seconds. The use of standard bin 
intervals across routes of different lengths will cause the same number of missed bins to have 
differing impacts on Update Availability. Each missed bin has a larger impact on Update 
Availability for shorter routes than longer routes. Transit agencies should therefore keep route 
length in mind when interpreting Update Availability. 

Figure 4 presents the Update Availability scores by route for each transit system studied as a strip 
chart. (Points in this chart are randomly jittered horizontally to disambiguate overlapping values, 
since only the height matters.) For this metric, higher scores are better. These data show that 
MAX and MST report the highest levels of Update Availability, while BBB reports the lowest. 
This variation suggests that aiming for Update Availability scores of 95% or higher is attainable; 
conversely, given this possibility of success, consistently low levels of Update Availability is cause 
for concern regarding a transit agency’s GTFS-RT feed.  
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Figure 4. Update Availability by Route for Studied Transit Agencies 

 
Note: Each dot represents a single route 

The aggregate graphing in Figure 4 is useful for tracking general trends in Update Availability, but 
a transit agency is likely to want to explore low performing routes more specifically. Table 6 
presents the twenty routes from each of the studied systems with the lowest scores of Update 
Availability. A closer look at the specific routes at the bottom of their transit agency’s respective 
rankings for Update Availability suggests that express routes may present a problem for 
transmitting GTFS-RT data. (Please note that BBB’s Pico Boulevard Express was not running at 
the time of this study.) Such focused analysis might reveal route geographies or even hardware on 
a specific vehicle that hamper transmitting TripUpdate information.  
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Table 6. Twenty Routes with Lowest Update Availability (UA) by Transit Agency 

MAX UA AC Transit UA BBB UA MST UA 
BART Express 82.4 Crespi Middle - San Pablo Dam 56.8 Pico Blvd Express 2.3 King City - Paso Robles 92.2 
Route 35 95.3 Buena Vista - Fruitvale 59.9 Downtown LA Freeway Express 47.1 CHOMP-Monterey 95.5 
Stockton Express 96.2 DeJean - Cutting - Macdonald 78.3 Pacific Palisades 56.9 CHOMP- Del Mesa via Carmel 97.0 
Route 29 96.3 De Anza - Crespi - Rollingwood 78.5 Barrington Ave 61.6 Santa Rita via Northridge 97.2 
Route 38 96.7 De Anza - Crespi - Fairmede 81.5 SMC- 17th St Station- Montana 63.6 Carmel Rancho - Sand City 98.2 
Route 41 96.9 MacArthur - Eastmont Transbay 84.3 UCLA - Marina del Rey 67.0 Carmel Valley Grapevine Express 98.6 
Route 31 98.0 Korematsu - El Cerrito - Carlson 86.3 Wilshire Blvd/UCLA 68.6 Aquarium/Sand City via Hilby 98.7 
Route 44 98.2 Bishop O'Dowd High - Montclair 86.4 26th Street 69.0 Aquarium/Sand City via Broadway 98.9 
Route 42 98.3 Skyline High - 35th Ave. 86.5 Main St & Santa Monica Blvd/UCLA 69.9 Veteran's Shuttle 98.9 
Route 33 98.6 Newark Memorial - Newark Blvd. 87.1 17th St Sta - SMC Bundy Campus 70.0 Salinas - CSUMB 99.0 
Route 23 99.1 Irvington High - Horner Jr. High 87.3 Bundy Dr & Centinela Ave 70.1 Pacific Grove - Carmel 99.0 
Route 26 99.1 Montclair - Park Blvd. Transbay 87.3 Wilshire Bl/Bundy Dr-Marina del Rey 70.9 Northridge via Westridge 99.0 
Route 25 99.1 Rich - Oak Transbay All Nighter 87.4 Culver City Sta – UCLA 71.0 Watsonville - Salinas via Prunedale 99.1 
Route 32 99.3 Mission San Jose - Hopkins Jr. 87.8 Lincoln Blvd/LAX 71.4 Asilomar-Monterey 99.1 

Route 36 99.3 St. Mary's College - Montclair 88.3 
Ocean Park Blvd & Westwood 
Bl/UCLA 71.6 Hartnell East Alisal - West Alisal 99.2 

Route 30 99.4 Bay Farm - Park St. Transbay 88.3 Olympic Blvd 72.5 Salinas - King City 99.2 
Route 22 99.4 High - South Shore Transbay 88.6 Venice/Westwood Sta/UCLA Rapid 72.6 East Salinas-Westridge 99.3 

Route 28 99.5 
Bishop O'Dowd High - 
MacArthur 89.1 Pico Blvd Rapid 72.8 Presidio-Marshall Park 99.3 

Route 37 99.6 Montera - Oakmore - Seminary 89.2 Pico Blvd 73.2 CSUMB - Marina 99.4 
Route 21 99.7 Korematsu - E.C. - No. Richmond 89.5 Lincoln Blvd/LAX Rapid 73.4 Salinas - Alisal - Northridge 99.4 
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Prediction Error Percentiles Plots 

Once predictions are made available, it is possible to assess their accuracy by visualizing the 
distribution of prediction errors. Due to the tremendous amount of trip update data (as shown in 
Table 2), it is recommended to separate prediction errors into negative (i.e., late) and non-negative 
(i.e., accurate and early) predictions, identifying percentiles for each set, and plotting those as 
reversed percentiles (which places outliers on the bottom of the graph) as shown in Figures 5 and 
6. 

A useful analogy to understand this visualization is the cross-section of a mound created by a 
person tossing thousands of beanbags at a target on the ground. A person with incredible 
coordination and focus might toss all the beanbags close to the target, resulting in an almost perfect 
column at the target location. Another person with normal coordination and focus will make more 
of a hill of beanbags, gently sloping down from the center outward. A cross-section of the first 
mound will reflect the high accuracy of the tosses and hew closely to the target location. A cross-
section of the second mound will reflect the lower accuracy of the tosses and demonstrate greater 
dispersion from the target. For ease of presentation, these cross-sections are split into throws that 
exceed the target (i.e., negative prediction errors) and throws that met or were shy of the target 
(i.e., non-negative prediction errors). 

This approach not only collapses the data management requirements by reducing the data set to 
one hundred rows (or fewer), but also scales the data in a consistent and meaningful way that 
facilitates comparison independent of the number of observations. The curves in Figures 5 and 6, 
for example, compare the distribution of prediction errors across the four studied systems. This 
visualization facilitates interpretation. Since more accurate predictions reduce prediction error, the 
ideal outcome would be for the curves to hug the y-axis at zero.  

To complement the visualization with specific numbers that are easier to track over time, specific 
reversed percentiles can be recognized as discrete performance metrics. Figures 5 and 6 denote 
median and 10th percentile values of prediction error. The median is always an excellent measure 
of “typical” experience as the middlemost value. However, since the median is insensitive to 
extreme values and passengers are disproportionately aggravated by those high prediction errors, 
transit agencies might also select a percentile that both expressly marks such high values and has a 
reasonable potential to be affected by intervention. Each transit agency faces its own distinct 
reliability challenges that complicate prediction accuracy and will need to mark that high value 
percentile for themselves. This research proposes the 10th percentile as a possible metric, but 
agencies might also select a more rigorous fifth percentile measure.  
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Figure 5. Negative Prediction Error Percentiles Plot 

  

Figure 5 presents the negative prediction error percentiles for the four studied systems. Negative 
prediction errors refer to predictions that, if followed exactly, would result in a passenger arriving 
at the stop after the bus has already departed. The curves in Figure 5 demonstrate that BBB reports 
the smallest negative prediction errors, followed in ascending order by AC Transit, MAX, and, 
finally, MST. Figure 5 also presents the median and 10th percentile values of the negative 
prediction error as a discrete metrics of prediction accuracy. The median negative prediction error 
for BBB is -51 seconds while the same value for MST is more than twice as large at -120 seconds. 
The 10th percentile for MST is -360 seconds, or six minutes. 

MST percentiles are distinct from the other three curves because they are graphed as steps rather 
than as straight lines between each successive percentile. This distinction is made because the 
TripUpdate messages from MST only provide predictions in whole minutes, rather than in seconds. 
Consequently, all the quantile breaks for MST occur at minute intervals. For this reason, when 
using GTFS-RT TripUpdate messages exclusively to assess accuracy, there is no negative 
prediction error between zero and -60 seconds and for the more common values of negative 
prediction error, the MST data demonstrate relatively slight variation. For example, 30% of 
messages with negative prediction error are off by exactly a minute, and a fifth are off by exactly 
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two minutes. By contrast, the other three systems, which have sixty times the granularity of MST, 
report distinct values for almost every percentile. While it would be most accurate to graph these 
percentiles as steps as well, they can be graphed simply as lines, which improves readability without 
unduly compromising interpretation.  

Figure 6. Non-Negative Prediction Error Percentiles Plot 

 

Figure 6 presents the non-negative prediction error percentiles for the four studied systems. These 
values represent how long riders following predictions will need to wait at the bus stop for a bus to 
arrive. These predictions would not result in missed vehicles, just potential waits at the stop. Here 
the curves present a different picture of accuracy, with MAX being the most accurate, followed in 
ascending order by MST, BBB, and AC Transit. The median non-negative prediction error on 
MAX was less than a minute, while the same value for AC Transit was almost 80% larger. While 
all systems have some prediction errors with a value of zero (as discussed earlier for Figure 3), these 
predictions are particularly visible for MAX (which provides distinct actual arrival and departure 
times) and MST (which only reports TripUpdate information at the whole minute level). Of these 
two conditions, only the former is likely to result in no waiting time. Taking the ratio of the 10th 
percentile value to the median value for these curves can offer an additional accuracy metric. 
Smaller values suggest less slope (and therefore less loss in accuracy) between the two percentiles. 
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A comparison of those ratios shows that such ratios for the negative prediction error percentiles 
were typically just over three, while those same ratios for the non-negative prediction percentiles 
were typically four (although in MAX’s case more than six). The finding that negative predictions 
are more accurate is not surprising, since buses are more likely to lose time along a route than to 
make it back. However, these differences are useful to understand the GTFS-RT messages riders 
are receiving. 

Figure 7 presents both negative and non-negative prediction error percentiles for BBB on a single 
chart. This visualization is especially useful for an agency seeking to understand its prediction 
accuracy. This chart shows that negative predictions errors are smaller than non-negative ones. 
Transit agencies might track how these curves compare over time. In any case, it is important to 
understand that the curves represent different absolute numbers of predictions. For BBB, there are 
approximately three non-negative prediction errors to each negative one. While this context means 
that BBB riders experience more prediction inaccuracy than if these two curves represented the 
same number of predictions, it also means that BBB riders are less likely to miss their intended 
vehicles. 

Figure 7. Combined Non-Negative and Negative Prediction Error Percentiles Plot 
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Scaled Prediction Error Inter-Quartile Range (IQR) 

Since it is more difficult to predict events farther into the future, it is reasonable to expect that 
arrival predictions with longer associated time to prediction values would also have higher 
prediction error magnitudes. For example, a prediction that a given vehicle will reach a given stop 
in an hour is more likely to have a higher prediction error than a prediction that the same vehicle 
will reach the same stop in five minutes. The latter prediction has fewer minutes for events to occur 
that might affect prediction accuracy. These expectations were confirmed in practice by graphing 
the data and also undergird the existing practice of considering prediction accuracy (Machlab et 
al., 2017). 

To reflect this impact on prediction accuracy, a scaled error measure was created by dividing the 
prediction error by the time to prediction value. This measure reinterprets the prediction error as 
a share of the associated time to prediction. In other words, a prediction that a bus will arrive in 
half an hour that is off by six minutes has a scaled value of one fifth—the same scaled value for a 
prediction that a bus will arrive in ten minutes that is off by two minutes.  

Using a scaled measure of accuracy introduces two problems. First, when the bus is expected to be 
at the stop for a given timestamp, the time to prediction would be zero; however, a zero value in 
the denominator of the scaled error measure would yield an undefined value. To avoid this problem, 
any zero value for the time to prediction is recoded to equal a single second before calculating the 
scaled error measure. If the bus is in fact in the station, the scaled error would be zero. If the bus 
is not in the station, the scaled error equals the prediction error. Second, a scaled error measure 
accentuates extreme values when a prediction with a very short time to prediction has a large 
prediction error. For example, if the time to prediction is ten seconds, but the bus takes three 
minutes (180 seconds) to arrive, the scaled prediction error would equal 18. If the time to 
prediction was five seconds, the scaled prediction error for the same prediction would double to 
36, an extremely high scaled prediction error. It is the equivalent for a bus predicted to arrive in 
ten minutes actually arriving in six hours. To both avoid these extreme values and use a well-known 
measure, this measure is expressed as the interquartile range (IQR) of the scaled error values. The 
IQR is defined as the difference between the 25 and 75 percentile values. Half of the total 
predictions fall within the IQR.  

Figures 8 through 11 graph the scaled prediction error IQR as bars stretching between the 25 and 
75 percentile values. These charts also include the numeric value of this range along the right-hand 
axis. Each bar represents the range within which the middle half of scaled prediction errors fall. 
Accurate predictions produce narrow bars close to zero while wider bars represent reduced accuracy.  

Figure 8 displays the scaled prediction error IQR for each of MAX’s bus routes. The data along 
the right axis show that almost half (10 out of 22) of MAX’s routes have a scaled prediction error 
IQR of 0.25 or less. These low values denote good prediction accuracy. A transit agency concerned 
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about GTFS-RT TripUpdate accuracy might explore the IQR values that exceed a given threshold, 
such as 0.25. One would expect that, over time, this threshold of concern would be lowered as 
prediction accuracy improved.  

Figure 8. Scaled Prediction Error IQR for MAX  

 

Exploring the bus lines with large IQRs might reveal problems with predictions or with the bus 
routes themselves. For example, MAX Route 21, which has the second largest IQR, is a busy loop 
route in the heart of Modesto. It is possible that local traffic results in highly variable bus speeds 
that confound prediction algorithms. Instead of focusing on better prediction accuracy for this 
route (which may not be easily accomplished), MAX might seek to improve service reliability by 
investing in additional infrastructure, like dedicated bus lanes or transit signal priority. 

The bars in Figure 8 do show that while the 75th percentile is often very accurate, the 25th percentile 
values are often substantially negative, meaning the user would miss the bus. In many cases those 
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scaled prediction error magnitudes are around 0.2, meaning that a prediction that is 10 minutes 
out will cause the user to arrive two minutes too late. MAX may seek to adjust its prediction 
algorithm to skew less negative. 

Figure 9. Scaled Prediction Error IQR for AC Transit 
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Figure 9 presents 30 randomly selected routes from AC Transit’s full set of 130 routes. The bars 
in this chart are less negatively skewed than for MAX; furthermore, there are no very distinct 
outliers, as say MAX Route 41 with an IQR of 0.91. Nonetheless, it is important to recognize that 
these data only represent a sample of lines, and the ideal use of this metric is to explore on a line-
by-line basis to identify issues of concern. 

Figure 10. Scaled Prediction Error IQR for BBB  

 

Figure 10 displays the scaled prediction error IQR for each of BBB’s 20 bus routes. Compared to 
MAX and AC Transit, these IQRs are generally much smaller, demonstrating greater accuracy 
(despite the outlier route on Barrington Avenue). Furthermore, they are skewed positive, which 
reduces the likelihood that users relying on stop arrival predictions will miss their intended bus. 
(Please note the Pico Boulevard Express was not in service during the study period, resulting in no 
prediction error.) 
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Figure 11. Scaled Prediction Error IQR for MST 

 

Figure 11 displays the scaled prediction error IQR for each of MST’s 28 bus routes. As for MAX, 
there were several IQR’s for which the 75th percentile is close to zero, while the 25th percentile was 
substantially negative.  
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Bus Catch Likelihood 

The distribution of prediction errors can be better translated into a metric that directly affects 
riders, namely the Bus Catch Likelihood. This metric measures the percentage of updates that will 
lead to a traveler making their intended vehicle. This measure is calculated as the share of 
prediction errors with non-negative values (also presented as accurate or early predictions in Figure 
3). By contrast, late predictions with negative prediction errors will lead to a user arriving after the 
bus has left the stop. This metric is shown aggregated for each transit agency in Figure 12. (A 
similar graphic might also be generated for each route within a given transit agency.) 

Figure 12. Bus Catch Likelihood by System 
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These data show that in three out of the four systems studied, on average, a traveler following 
GTFS-RT predictions precisely will make their intended bus. On MAX, however, most 
TripUpdate predictions result in negative prediction errors, which would lead users to arrive at a 
stop after the bus has left. AC Transit and MST report Bus Catch Likelihoods above 50% but 
below 60%, while BBB stands out in providing predictions that will result in a user catching the 
bus almost three-quarters of the time. These findings suggest that it might be reasonable for 
vendors of GTFS-RT data to adjust their algorithms to encourage early predictions to increase 
their Bus Catch Likelihood. 

Expected Wait Time 

Extending the logic of the Bus Catch Likelihood leads to an additional metric, Expected Wait 
Time. This metric measures the mean wait time at a stop that occurs should each prediction be 
followed precisely. Wait time is calculated as the time interval between the prediction and the 
actual arrival time of the first bus on the desired route that is at or after the prediction. For accurate 
or early predictions, the wait time is simply the prediction error, but for late predictions, the wait 
time is the time from that prediction until the actual arrival of the next bus making the same stop 
sequence. Expected Wait Time weights prediction accuracy by bus frequency to reveal the impacts 
of poor predictions. The measure represents the actual experience of users who follow the GTFS-
RT predictions. 

When aggregating data from many routes, Expected Wait Time is sensitive to very high 
frequencies (which reduce waits) and very low frequencies (which increase waits). For this reason, 
this measure is most productively applied to single routes or clusters of routes of the same type (i.e., 
locals, express, or shuttles). To demonstrate that these metrics are useful at other aggregations, 
Figure 13 presents Expected Wait Time by hour for each of the four studied systems. This chart 
visualizes the average experience if each GTFS-RT message was translated into an actual attempt 
to board that bus.  
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Figure 13. Expected Wait Time for Buses by Hour of the Day  

 

Figure 13 is censored to show only the data from five o’clock in the morning through eight o’clock 
in the evening, inclusive. The other hours are excluded from this graphic to improve core hour 
legibility, since the Expected Wait Times for the off-peak and commuter services during those low 
frequency times are so high as to dwarf the rest of the day. (A full consideration of Expected Wait 
Time should include these excluded service hours.) There is a clear pattern that Expected Wait 
Times are high in the morning and evening when the consequences of missing a low frequency 
bus are high. These values are particularly high for MST, which never reports an hourly average 
Expected Wait Time of less than 30 minutes. This reflects the impact of a low Bus Catch 
Likelihood on a low frequency service. Similarly, AC Transit shows a peak Expected Wait Time 
between seven and eight o’clock in the morning, after which there is a break in service for their 
many school and commuter bus routes. 

To reduce the impact of very low frequency buses (i.e., commuter services), hugely delayed trips 
(i.e., due to severe external events), or the last trip of the day before service ends, the following is 
a moderated Expected Wait Time metric that excludes any wait values of more than two hours. 
This two-hour wait threshold was selected to reflect the outer bound of typical service headways. 
Transit agencies are encouraged to set cutoffs that are relevant for their services. 
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Figure 14. Expected Wait Time for Buses by Hour of the Day (Two Hour Limit)  

 

Figure 14 presents the data for this moderated Expected Wait Time using the same set of hours 
as Figure 13. By excluding any wait time greater than two hours, the resulting visualization has 
much higher granularity. Surprisingly, there is very little overlap between the systems, with only 
MAX and MST crossing lines after seven o’clock in the evening. BBB had very low Expected 
Wait Times between five and ten minutes, with AC Transit just a bit higher between ten and 
(mostly) 15 minutes. Even without any long waits, MST was alone in reporting no hours with 
Expected Wait Times less than 20 minutes.  

Prediction Padding 

Passengers can reduce their own Expected Wait Time by padding the GTFS-RT predictions to 
increase their chance of making their intended bus. While there has been limited research on how 
precisely passengers take GTFS-RT predictions, it is likely that regular users naturally begin to 
handicap the predictions. The size of such a handicap is itself a metric of prediction accuracy, 
which is systematized as Prediction Padding. 
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Prediction Padding is defined as size of the buffer (in terms of the share of the time to prediction 
or the actual number of seconds) that must be added to the GTFS-RT prediction to ensure that 
the passenger will make their intended bus 95% of the time. Prediction Padding is the absolute 
value of the fifth percentile (not reversed) of either the scaled or unscaled prediction error for a 
given stop or route. Prediction Padding is inversely related to prediction accuracy.  

Figure 15. Prediction Padding by Route 

 

Figure 15 presents a scatterplot of the Prediction Padding values in both relative and absolute 
terms for all the bus routes among the four studied systems. This graph demonstrates that the 
predictions for BBB are far more accurate than the other three systems with no absolute Prediction 
Padding larger than 200 seconds and few relative Prediction Padding values of more than 20% of 
the time to prediction. By contrast, other systems see the need to add ten minutes or more to be 
sure to catch certain buses. Similarly, for several routes, passengers should add a buffer to the 
prediction of half the time to prediction value. To clarify, if the GTFS-RT data reports the bus 
will arrive in ten minutes, prospective passengers need to be there in five to ensure they will make 
that vehicle. 
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While an unlabeled comparison plot such as Figure 15 can be especially useful for understanding 
how different transit agencies fare in comparison to each other, for intervention purposes it is 
preferable to label each point by route. Figure 16 plots the Prediction Padding values for 30 routes 
randomly chosen from among the AC Transit network. These data show that the routes with very 
high absolute Prediction Padding (i.e., values of eight minutes or more) are entirely the Transbay 
routes. These routes, referred to by letters and not numbers, are subject to tremendous travel time 
variation due to their extensive use of highway infrastructure (including the Bay Bridge) where 
speeds can vary widely based on traffic conditions. This observation highlights the utility of 
considering Predication Padding (and prediction accuracy in general) by route type. 

One important type of route for any transit system are locals, which on AC Transit are denoted 
by numbers below 400. A clear outlier here is Line 19, which connects downtown Oakland with 
the Fruitvale BART station via the island community of Alameda. The absolute Prediction 
Padding is more than seven minutes, while the relative padding is 45% the time to prediction. 
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Figure 16. Prediction Padding by Route on a Sample of AC Transit Routes  
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Prediction Inconsistency 

The final proposed metric reflects passenger frustration with vertical arrival predictions that jump 
around. Figure 17 graphs the prediction error for successive predictions for a single MAX trip on 
a single stop in Modesto (Route 22 at McHenry and Bowen Avenues). The data demonstrate that 
in many cases, successive predictions reported significant changes in the expected vehicle arrival 
time. Such “jumpiness” can be viewed as a form of prediction inaccuracy. A Prediction 
Inconsistency metric that sums all the prediction changes for a given stop and divides these by the 
time to stop is proposed. For the example in Figure 17, this metric is calculated as a total of 679 
seconds of prediction change over a 1,517 second time to stop, or 0.45. For an entire trip, the sum 
of all prediction changes for all stops is divided by the sum of all time to stops for all stops.  

Figure 17. Consecutive Prediction Error Example from MAX Route 22 
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Prediction Inconsistency is analogous to guidance for hikes in mountainous areas that advertise 
the cumulative change in elevation for the horizontal distance traveled. It is technically a measure 
of slope where the steepness of the incline represents user annoyance with predictions. A 
Prediction Inconsistency score of zero reflects no slope (i.e., perfect consistency and no annoyance), 
with increases in slope demonstrating more inconsistency (and more annoyance) for the passenger. 
A Prediction Inconsistency score of one represents changes in prediction times that equal the times 
to stop. In hiking terms, that would be an incline of 45 degrees, or climbing stairs. 

Figure 18. Prediction Inconsistency by Route 

 

Figure 18 presents the Prediction Inconsistency metric for each of the routes in each of the studied 
systems. BBB demonstrates more consistency and AC Transit demonstrates less consistency 
compared to the other systems. While most systems have clustered Prediction Inconsistency scores, 
MAX’s scores are more dispersed. 
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Figure 19. Prediction Inconsistency by Route for MAX  

 

Figure 19 breaks out the Prediction Inconsistency score for each of MAX’s routes. This chart turns 
Figure 18 sideways to better understand the distribution among MAX routes. Notably, the express 
routes with very few stops and long times to stops show little Prediction Inconsistency, while Route 
29, a tremendously complicated route with two (and sometimes three) sub-loops, shows much 
Prediction Inconsistency. 

2.6 Discussion 

This research presents systematic approaches to considering GTFS-RT prediction accuracy. This 
presentation begins with a structured cleaning of the raw data to ensure that appropriate 
predictions are measured for accuracy. This cleaning has two waves. The first wave eliminates 
duplicates and establishes a consistent period for assessment. The second wave removes predictions 
from before the trip is scheduled to start, ensures there is only one prediction for a given stop for 
a given timestamp, limits predictions to those made prior to the last known departure event, deletes 
redundant updates for stops that have already been passed, and expunges continuity errors. These 
cleaning waves are essential for yielding a consistent and comparable data set. Effective accuracy 
assessment begins with a cleansed data set. This cleaning results in two metrics of GTFS accuracy, 
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namely the incidence of timestamp conflicts and continuity errors. These measures are useful for 
identifying problems in the GTFS-RT feed. 

The cleansed data set is then used to derive additional values necessary to calculate the proposed 
accuracy metrics. These derived values are represented in seconds and measure the time to 
prediction, prediction error, time to stop, and change across subsequent predictions. By convention, 
negative prediction errors represent late predictions, while positive prediction errors represent early 
predictions. The derivation of prediction errors presented is robust to GTFS-RT feeds that include 
distinct (rather than identical) departure and arrival times for a given trip and stop.  

The core of this work offers statistical and visual means for transit agencies to identify the accuracy 
of the predictions they are sharing with the public. These measures are designed to overcome 
existing reliance on thresholds to encourage continuously variable approaches to assessing accuracy. 
These measures are also designed to reflect the experiences of the traveling public. This work is 
not prescriptive over the specific metrics agencies chose to explore their prediction accuracy, rather 
it seeks to offer myriad options for understanding the implications of prediction accuracy on transit 
users. Transit agencies are encouraged to choose among these options (and to tailor the options 
selected) to best meet their needs. This work is prescriptive in emphasizing the importance of a 
systematic consideration of prediction accuracy. It is incumbent on transit agencies broadcasting 
this information to establish a program to track its accuracy. These proposed metrics will help 
agencies with that task. 
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3. Path Accuracy 
The broad availability of General Transit Feed Specification (GTFS) Schedule and Realtime data 
has transformed transit trip planning. While GTFS was designed expressly for this purpose, the 
underlying availability of standardized information on transit provision offers many exciting off-
label applications, from estimating transit accessibility to mapping service equity to identifying 
significant bus corridors.  

All GTFS use cases, both on-label and off, depend upon the fundamental accuracy of the 
underlying spatial data. Despite this critical requirement, surprisingly little has been written on 
practices for assessing whether the locations reported in the GTFS products delivered to the public 
accord with reality. There are no clear guidelines for flagging errant vehicle locations or poorly 
coded route shapes. There is no common yardstick for transit agencies and their GTFS vendors to 
assess the spatial accuracy of these products. Finally, there is no documented understanding of how 
existing accuracy issues might be most problematic for downstream users. 

Traditional approaches to accuracy assessment are to compare data in question to known quantities. 
Bulk scales are calibrated with test weights. Mechanical watches are calibrated with digital 
chronometers. Travel demand model outputs are calibrated with traffic counts. Arranging for such 
a comparison with an entire transit system is more complicated. A spot check in one location 
provides little insight into accuracy elsewhere. More comprehensive solutions, such as placing 
additional global positioning system (GPS) receivers on vehicles or accessing existing automatic 
vehicle location (AVL) feeds, may require express permission from the transit agency and will 
certainly require a custom, and therefore expensive, data analysis structure. The coordination and 
cost considerations of acquiring external ground truthing data reduce the ease with which 
concerned actors can evaluate GTFS spatial accuracy. 

This research offers an alternative approach to assessing GTFS spatial accuracy that requires no 
coordination with a transit agency nor additional data outside of the standard GTFS Schedule and 
Realtime feeds. This approach simply exploits the complementary structure of the GTFS feeds to 
pair actual vehicle pings with scheduled route paths to calculate the resulting ping-path distances. 
Short ping-path distances suggest higher spatial accuracy, while long ping-path distances suggest 
lower spatial accuracy. Applying a distance threshold to flag pings as potentially problematic 
enables statistical and spatial assessment of these discrepancies. This approach, which abandons 
any external ground truthing, relies instead upon the large volume of vehicle location data to 
identify areas of divergence between the GTFS Schedule paths and the GTFS Realtime pings. 
This approach assumes, as an expedient, that areas of ping-path convergence are assumed to be 
accurate. Observations with ping-path distances above the threshold meet one or more of the 
following conditions:  
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1. The path is inaccurate (i.e., not the actual transit route)

2. The ping is inaccurate (i.e., not the location of the transit vehicle)

3. The transit vehicle is not following the actual transit route

This research does not automate identifying which of the above conditions are true. Rather, it 
offers metrics and mapping techniques to guide analysts to visually identify these underlying 
conditions and make their own conclusions about the resulting impacts on data use or the 
implications for policy. It is hoped the accuracy assessment presented here will lead to enhanced 
expectations for GTFS quality and therefore better base data for the array of users who rely on 
these valuable feeds.  

3.1 Methodology 

This quantitative study compares several days of GTFS Realtime VehiclePosition pings from the 
Modesto Area Express (MAX) with the associated spatial paths defined in the GTFS Schedule 
data for the same period. The distances between the pings and the paths are calculated and 
examined to determine an accuracy threshold. This threshold forms the basis for a series of 
accuracy metrics and visualizations. 

3.2 Study Area 

The approach presented in this section is illustrated in reference to the MAX transit system based 
in Modesto, California—a city of 218,464 residents (U.S. Census Bureau, 2021) in the heart of 
the state’s Central Valley. While relevant data were collected for multiple transit agencies, MAX 
was chosen to demonstrate the approach as a midsized system with many different route 
configurations.  

It is worth noting that on July 1, 2021, less than a year prior to the data collection for this project, 
the city-owned MAX merged with the county-owned Stanislaus Regional Transit (StaRT) to 
form a new transit agency, the Stanislaus Regional Transit Authority (StanRTA). Despite this 
legal union, many former MAX assets, including the GTFS feeds, remained distinct at the time 
of data collection in Spring 2022. For this reason, this research refers to MAX even if that agency 
no longer exists as a separate legal entity. 

MAX Transit Service 

In March 2022, MAX operated 61 buses across 22 fixed routes within Modesto and neighboring 
communities, as shown in Figure 20. 
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Figure 20. Map of MAX Transit Routes  

 

MAX routes included 19 numbered local lines, primarily on half-hour (74%) or hourly (16%) 
headways during weekdays. One local route (Route 21) offered fifteen-minute headways while the 
last numbered route (Route 35 or eTrans) made three round trips per day to the nearby community 
of Escalon. (eTrans service has been subsequently discontinued.) On weekends, only the local 
routes with half-hour (or shorter) headways continued to operate, often at reduced frequency. 

MAX routes also included three named commuter express lines. These routes, respectively, 
connect Modesto to the Altamont Corridor Express (ACE) commuter rail station just outside 
Manteca, the Bay Area Rapid Transit (BART) commuter rail station between Dublin and 
Pleasanton, and to the city of Stockton. The ACE Commuter Express line offers seven round trips 
per day, while the other two commute express lines offer less than half that level of service.  

3.3 Data Collection 

This research collected VehiclePosition feeds from MAX’s public posting of GTFS Realtime data 
beginning on February 28, 2022, and ending on March 6, 2022. Included in these data were five 
full days (March 1-5) and two partial days for a total of 251,631 records. This research also 
collected the contemporaneous static GTFS Schedule data for the same period.  

3.4 Ping-Path Distance Thresholds 

This research applied an approach to parse the shape files within the GTFS Schedule feeds into 
variants and segments and then to append the pings to these paths. In this nomenclature, a variant 
refers to those trips on a given route that have the same set of stops in the same order and follow 
an identical path as defined by the associated vertices. A segment refers to the portion of that path 
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that connects two consecutive transit stops. Pings refer to the location of the bus provided by the 
timestamped coordinates within the VehiclePosition message sets. 

Once the pings are associated with the appropriate path, the shortest straight line distance between 
the points and the lines are calculated in meters. Figure 21 presents a cumulative distribution 
function for these distances. The chart is truncated for readability at 50 meters, which accounts for 
98.9% of the data, but the full range extends to 149 meters.  

The first task was to establish a threshold for determining ping-path distances that signify an 
accuracy concern. Ping-path pairs beyond this threshold are flagged for further analysis. A visual 
inspection of these distances showed an inflection point in the cumulative distribution function 
around the 90% level. While recognizing that these data reflect a single transit system, establishing 
a threshold for problematic ping-path pairs at the ninth decile is not an unreasonable statistical 
practice. In this case that decile is 13.8 meters, which is rounded to 14 meters (45.9 feet) for ease 
of application. The red vertical line in Figure 21 denotes this threshold.  

Figure 21. Cumulative Distribution Function of Ping-Path Distances 
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The decision to select this threshold was not simple. Roadway lane widths in the United States 
vary between ten and 12 feet, with buses typically (but not always) running on roads with at least 
four lanes. Some geographic information system (GIS) files of roadways code road centerlines 
rather than actual lanes, and GTFS shape coding practices often follow this simplified convention. 
Therefore, in a major arterial corridor one might reasonably expect a transit vehicle to have up to 
a three-lane distance from the centerline, which—depending on the location of the GPS antenna 
on the bus, the width of the lanes, and the presence of a center median—could easily be 40 feet 
(and even more on a highway). Alternatively, GTFS guidance calls for a vertex in the shape 
description that is within 30 feet from the coded location of the transit stop, and those stops should 
not be placed within roadways. Most buses operate on streets with narrower profiles. Given these 
concerns, a more rigorous threshold was also considered (and tested) at ten meters (32.8 feet), 
which was at the 79th percentile of ping-path distances. While this research selected the more 
permissive threshold of fourteen meters to highlight the most egregious disparities, agencies and 
analysts should select the threshold that meets their specific needs. In many contexts, particularly 
for entirely local services, the ten-meter threshold is appropriate. 

3.5 Route-Level Metrics 

Flagging problematic ping-path pairs makes it possible to readily calculate route-level accuracy 
metrics. A straightforward metric is the share of total records for a given route that exceed the 
distance threshold. Figure 22 presents this metric for each MAX route sorted from highest to 
lowest shares of flagged ping-path distance values. 
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Figure 22. Percent of MAX Route Ping-Path Distances above 14-Meter Threshold  

   

These route-level metrics offer one avenue for agencies and analysts to prioritize the exploration 
of GTFS spatial accuracy. For example, the data presented in Figure 22 might prioritize 
consideration of the Stockton Express and Route 41, both of which report more than a quarter of 
their GTFS Realtime pings beyond the 14-meter threshold from the GTFS Schedule path.  

These route-level metrics might also reveal potential patterns of ping-path disparities for analysts 
familiar with the transit system. For example, the three routes with the highest shares of flagged 
records (Stockton Express, Route 41, BART Express) are all routes that have long highway 
sections. Perhaps GTFS Schedule coding becomes laxer when there is a long distance between 
stops or the multiple, wide highway lanes are more likely to place pings beyond the threshold 
distance from paths. (Incidentally, these data also challenge this position as the route with the 
second smallest share of flagged records, the ACE Express, runs almost entirely on highways.) 

To demonstrate how route-level metrics can foster GTFS spatial analysis, this research focuses on 
the two most problematic routes: The Stockton Express and Route 41. 
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Stockton Express 

The Stockton Express originates at the Modesto Transit Center, travels north along California 
State Route 99 (SR 99)—exiting only twice (at the Vintage Faire Mall and the Manteca Transit 
Center)—before arriving an hour later at the Stockton Transit Center. The route then makes the 
same trip in reverse. A review of this route reveals two common contributors to GTFS spatial 
inaccuracy. 

First, GTFS schedule data is often coded coarsely along long segments between stops. For example, 
Figure 23 shows a section of the Stockton Express path coding just north of the Manteca Transit 
Center. The southbound variant, coded in blue, exemplifies careful coding of a transit path in 
GTFS schedule data. The path runs south along SR 99 southbound, takes the appropriate exit 
lane to depart the limited access highway, and then follows surface streets to the Manteca Transit 
Center, shown in grey. By contrast, the northbound variant, coded in red, exemplifies coarse 
coding of a transit path in GTFS schedule data. From the moment it departs the transit center, 
the path does not follow any roadway until it joins North Main Street near the top of the map. 
Unfortunately, the express route does not in practice traverse that portion of North Main Street. 
Such imprecise coding leads to a high rate of flagged pings when the coded path is farther than 
the threshold distance from the actual route on which the buses are traveling. (It is worth noting 
that in the small section of Figure 23 south of the Manteca Transit Center, the southbound path 
diverges from any roadway while the northbound variant correctly follows North Main Street 
before backtracking around a rail right-of-way to reach the station.) Route-level analysis helps 
diagnose this coarse coding of the path in the GTFS schedule data. Fortunately, the vertices that 
define the path within the GTFS standard can be easily adjusted to align with the actual roadway. 
Such a revision to the static data is recommended to remove the Condition #1 problem of 
inaccurately coded paths. 

  



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E   51 

Figure 23. Inaccurate GTFS Shape Coding for Stockton Express Route 

 

Second, bus drivers do not always follow the scheduled route. While such deviations are not 
contrary to MAX policy (which empowers drivers to take alternative routes if they will better 
maintain the time schedule), the frequency with which such deviations occur might be a reason to 
revisit the official route design.  

Driver deviations can be seen in several locations along the Stockton Express. One of the more 
interesting deviations is on the southbound approach to the Vintage Faire Mall. Instead of 
following the route shown in Figure 24, in which the express bus continues south on SR 99 before 
exiting at Beckwith Road just south of the mall and then backtracking to the bus stop, drivers leave 
the highway at Pelandale Avenue, one exit upstream from the mall, cross over the highway and 
then travel down Sisk Road, a parallel frontage roadway just east of SR 99, to arrive at the mall 
bus stop without backtracking.  

  



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E   52 

Figure 24. Driver Deviations along the Stockton Express Route 

 

Figure 24 includes the pings of buses that leave the prescribed path (which is itself so coarsely 
coded that many buses on the appropriate alignment are flagged as problematic). These driver 
deviation pings are found on the upstream exit ramp, on Pelandale Avenue (unlabeled), and then 
traveling down Sisk Road parallel to the actual scheduled route on SR 99.  

Similarly, most southbound trips departing the Manteca Transit Center (the previous stop) did 
not follow the scheduled path to take California State Route 120 (SR 120) eastbound to SR 99 
southbound; instead, the majority of drivers chose to bypass this highway interchange entirely and 
connect from SR 120 to SR 99 via Moffat Boulevard, a frontage road that serves as the hypotenuse 
between the two highways. The prevalence of these Condition #3 driver deviations from the 
scheduled path on this one segment might trigger a revision of that path to reflect driving practices. 

Route 41 

The second most problematic line serves as a shuttle between the Modesto Transit Center and the 
Vintage Faire Mall along SR 99. It overlaps the southernmost segments of the Stockton Express 
but makes twenty more round trip runs on weekdays and offers service on Saturdays and Sundays. 
These sources of spatial inaccuracy are particularly visible near the downtown terminus, as shown 
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in Figure 25 (which only shows flagged pings for simplicity). These inaccuracies illustrate three 
common concerns.  

Figure 25. Route 41 Pings Beyond the Threshold near the Modesto Transit Center 

 

First, exit ramp construction noted in driver dispatch reports is temporarily causing deviations. 
These deviations are evidenced by the string of purple dots along the highway (rather than along 
the exit ramp) and along 6th Street (from earlier exiting). Despite the extended nature of this 
highway construction, MAX did not update the GTFS shapes to reflect the detours. Consequently, 
many pings were flagged during the period of construction. 

Second, while the path defined by the GTFS Schedule data within the downtown is carefully 
coded to actual roadways, that coding does not reflect the actual bus route. The southbound (blue) 
path is currently coded to continue along L Street before turning right onto 9th Street, where it 
terminates some physical distance from the actual bus stop. The actual southbound route, however, 
turns right earlier onto 7th Street then makes a left onto K Street before making another right into 
the Modesto Transit Center, which is not technically on any street. The path as currently coded 
does not follow that course in the downtown, with the result that all the pings that occur as the 
bus is entering the transit station are flagged as suspect. Compounding this problem, the Modesto 
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Transit Center is not itself coded on the path defined by the GTFS Schedule data. This Condition 
#1 path alignment issue could be easily resolved by recoding the shape to the actual roadways used 
by the route—even if these are not public streets. A comparison of the map shown in Figure 25 
with the aerial view shown in Figure 26 illustrates that the Modesto Transit Center stop is coded 
properly, however. the path to that stop is not.  

Figure 26. Aerial View of the Modesto Transit Center in Relation to 9th Street 

Finally, in certain places GPS pings seem to lose their accuracy. This feature is surprisingly 
consistent in certain locations. For example, Figure 25 demonstrates that as Route 41 departs the 
Modesto Transit Center and travels between 8th and 6th Streets along I Street, the associated 
pings show up not on the roadway, but in the middle of the block. Figure 26 shows those locations 
are either not suitable or not accessible for buses. These Condition #2 erroneous ping locations 
can be identified through mapping but are difficult to resolve. In this case, there is not a known 
street canyon effect that might be blocking the GPS signal, as the surrounding buildings are single-
story commercial structures. Despite the difficulty in addressing Condition #2 inaccuracies, it is 
worth identifying them across a system. Such recognition might lead to some trial and error with 
equipment to reduce these inaccuracies. 
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3.6 Segment-Level Metrics 

Route-level metrics are important for comparing route-level accuracy, but, in most cases, areas of 
ping-path discrepancies are clustered only on small portions of routes. A more targeted way to 
assess (and address) these problematic areas is to calculate segment-level metrics. Since segments, 
the stop-to-stop portions of route variants, do not have readily intuited identities, it is more 
effective to map them than to graph them. While it is possible to simply make a choropleth map 
of all segments that is color coded by the share of flagged ping-path distances, in practice that 
approach is visually overwhelming and difficult to parse. A simpler mapping flags problematic 
segments for consideration by introducing a second threshold.  

Figure 27 presents a histogram of the distribution of segments based on their share of flagged 
pings. Once again, there is a need to arbitrarily select a level at which these spatial units are seen 
as potentially problematic. A visual examination suggests that a useful breakpoint in the 
distribution might be 20% as demarcated by the vertical red line on the graph. This cutoff identifies 
the most problematic segments, however, just as analysts may choose a lower threshold for ping-
path distances, one might choose a lower threshold for the segment share of flagged distances to 
identify more areas of concern. In this case, there also appears to be a reasonable breakpoint at the 
10% level. Once again, setting the threshold should reflect the local concern for GTFS spatial 
accuracy.  
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Figure 27. Histogram of Shares of MAX Segments Beyond the 14-Meter Threshold 

 

Once a threshold is set, it is possible to simply map flagged segments, as shown in Figure 28, for 
the city of Modesto and its close environs. Such a map offers an easy identification of areas of 
GTFS accuracy concern and, when incorporated into a GIS that includes a basemap, an easy 
means to zoom in to visually diagnose their etiologies. For example, in addition to denoting the 
issues on the Stockton Express and Route 41 discussed earlier, Figure 28 also demonstrates 
additional issues around the Modesto Transit Center in the downtown (partly obscured by the 
station symbology), which a more focused analysis would show reflect the same path coding and 
unexplained GPS drift issues discussed for Route 41.  
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Figure 28. MAX Segments with 20% of Pings Beyond the 14-Meter Threshold 

 

Figure 28 also demonstrates new segments of concern scattered throughout the service area. Since 
the selected threshold was relatively high, the number of flagged segments is relatively small and 
checking them all is a manageable task. Many of these segments reflect the common issues noted 
earlier in the discussion of the Stockton Express and Route 41. For example, the vertical paths 
along McHenry Avenue in the upper middle section of the map are perfectly coded to the roadway, 
but demonstrate consistent GPS drift with the pings, suggesting the buses are magically traveling 
over buildings west of the roadway. Similarly, the vertical paths along Oakdale Road, two miles 
east of McHenry Avenue, are centerline coded. When the southbound lane shifts westward with 
the addition of a median during these segments, the pings along the roadway are all flagged as too 
distant from the unwavering path line. Figure 28 also flags segments of concern that reflect 
accuracy issues not discussed earlier. Two of these issues warrant additional discussion, as they add 
insight into the sources of discrepancy between schedule and realtime spatial data. 
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Unreported Driver Deviations 

Exploring these segments of concern led to several cases where the vehicle pings substantially 
diverged from the route design path. It appears that drivers are consistently deviating from the 
scheduled route, however none of these deviations were recorded within MAX’s dispatch notes—
meaning drivers did not report these detours. While in theory it is possible that drivers are avoiding 
areas of street construction, an open records request from the City of Modesto only identified one 
project that aligned with the deviations shown in Figure 28. A sewer replacement along Covena 
Avenue north of Yosemite Boulevard closed the intersection at Miller Avenue. This closure likely 
resulted in the short flagged segment along Miller Avenue parallel to Yosemite Boulevard in Figure 
28. A more probable cause is the decision by drivers to permanently detour to improve on-time 
performance, which might spark a review of the scheduled route path.  

Figure 29. Driver Deviations Along Route 37 

 

Figure 29 presents one such example where it appears that buses on Route 37 that are approaching 
Modesto’s downtown are all detouring to avoid the corner of 10th and D Streets. (There is one 
ping that might remotely suggest the use of the scheduled path.) This deviation avoids a traffic 
light and might offer operational advantages. This segment-level analysis reveals this consistent 
deviation. MAX might treat this inaccuracy as a Condition #1 coding issue and recode the path, 
or it might treat this as a Condition #3 driver deviation issue and require adherence to the 
scheduled route.  
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Incomplete Path Coding 

Exploring the segments of concern revealed another possible source of inaccuracy, namely when 
the GTFS Schedule data is itself incomplete. This feature can be seen in the outbound Route 44 
shown in Figure 30. This route travels eastward along East Hatch Road but is forced to detour 
through a residential neighborhood between Central Avenue and Moffett Road because there is 
no room to make an eastbound stop on that section of East Hatch Road. The detour is necessary 
to place an eastbound stop on Moffett Road to maintain appropriate stop distances along the route. 
MAX seeks to minimize the nuisance to residents of this neighborhood, so it routes alternating 
trips along two different parallel roads—but did not include this path difference within its GTFS 
Schedule feed. The pings that are flagged in Figure 30 are following their intended route—the 
inaccuracy is due to a Condition #1 error of a missing path in the schedule data.  

Figure 30. Incomplete Path Coding Along Route 44 

   

Figure 30 illustrates a second important insight regarding GTFS spatial accuracy assessment, 
namely pings reported in some GTFS Realtime feeds are not evenly distributed but instead 
spatially clustered. One would expect the purple pings in Figure 30 to stretch across the entire 
missing link in the GTFS Schedule path—but these pings only appear at the entrance and exit of 
the link as if the bus cinematically passed through a tesseract. Unlike most GTFS Realtime feeds 
which offer temporal snapshots of where the vehicle is at that moment, the MAX pings appear to 
show when vehicles are in specific places, as if triggered by geocoded gates. This approach leaves 
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holes in the record of vehicle locations, particularly evident in the example shown in Figure 30 (but 
also visible in Figure 29). In practice, these clustered pings reduce the ability of the method 
proposed in this paper to assess spatial accuracy across the entire service area. 

3.7 Discussion 

The primary goal of this research is to present a method for assessing the spatial accuracy of GTFS 
Schedule and Realtime products that is easy to implement and scalable across transit agencies of 
varied sizes. The secondary goal is to identify the types of inaccuracies that are common and 
consider their implications for downstream users. 

Accuracy Assessment Method 

The proposed method relies on only two inputs, both of which are publicly available and structured 
in a standardized format—the GTFS Schedule and associated Realtime feeds. While the former 
data are altered infrequently (depending on the system) and might only need to be downloaded 
once, the latter are dynamic and will need to be downloaded at regular intervals ideally, but not 
necessarily, matching the rate at which the transit agency updates them. Users will also need GIS-
enabled software to store, relate, query, and display the data. This research presents a particularly 
careful procedure to pair pings and paths for each segment of each variant. While this precise 
approach enables detailed segment-level analysis and increases the likelihood that each ping is 
matched to the correct path, for many users it will be sufficient to simply join the pings to the 
associated shape defined by the GTFS Schedule data. This simplified approach reduces the data 
handling burden and still enables all the route-level analysis. (It is possible but not recommended 
to simplify data management further by first creating a conjoined path from all the shapes 
associated with a route and then calculating the distances from the vehicle pings to that conjoined 
path. This very simplified approach will underestimate actual ping-path distances when pings from 
one variant match with closer paths inherited from another variant. For example, the poor coding 
of the northbound path of the Stockton Express shown in Figure 23 may never be flagged if the 
northbound pings match to the well-coded southbound path. Similarly, the southbound ping 
deviations shown in Figure 24 when Stockton Express buses leave SR 99 early to take a parallel 
frontage road east of the highway may not pass the distance threshold if they pair with the closer 
path of the northbound variant. Analysts who take this highly simplified approach need to 
recognize that only very gross inaccuracies will be flagged—which may still be sufficient for some 
purposes.) 

The approach as presented here relies on setting thresholds for determining problematic ping-path 
distances. Establishing thresholds is useful as it allows for a clear and binary identification of 
whether a given reading is good or bad. Furthermore, the use of thresholds is commonplace within 
the transit industry. On-time performance, for example, is similarly dummy coded at the 
disaggregate level and similarly averaged to serve as a route-level measure. The problem with 
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thresholds is that they are arbitrary. It can be difficult to justify a given value and why values just 
below and just above that threshold are materially different.  

This research explores both a distribution of ping-path distances and a theoretical justification for 
selecting the appropriate threshold for flagging values of concern. As a practical matter moving 
forward, it makes sense to select the threshold value a priori rather than attempt to derive it. Such 
a selection would offer the percentile value of that threshold as a new performance metric. Agencies 
might stick with a given threshold and see how its associated percentile among the ping-path 
distances changes over time. Ideally, that percentile would get higher as the ping-path distances 
became more accurate.  

This research advocated for a 14-meter threshold to flag the most problematic readings. However, 
as more agencies apply this approach, there might be a consensus for a different value, such as ten 
meters. Similarly, transit agencies might apply different expectations of spatial accuracy, and 
therefore different thresholds to different portions of their system. For example, express routes 
might use a larger threshold while local routes on surface roads would use a smaller threshold. 
While an industry consensus approach would be good for generating (and reporting) comparative 
metrics, it would still be advantageous for individual agencies to try different (and progressively 
tighter) thresholds as tools to identify different issues that might be affecting the spatial accuracy 
of the GTFS data. 

The challenge of setting such thresholds extends from flagging problematic ping-path pairs to 
identifying the share of such flagged values in a segment. This research used a 20% share to identify 
segments of concern, but that value could also be adjusted downward to catch more nuanced issues 
of spatial accuracy. While not presented here, it might also make sense to aggregate segment-level 
data to create new performance measures. One measure could be the share of total weekly service 
mileage for which a fifth of its ping-path distances are flagged as above the threshold. The value 
of such metrics is to track improvements over time (and to compare accuracy levels between 
properties and GTFS vendors). 

Impact of GTFS Spatial Accuracy 

This research identifies distinct types of common situations that result in ping-path discrepancies 
above a specified threshold. The value of this identification is in gauging their impacts on different 
downstream users. 

Fortunately, most of the problems identified in this research will have negligible effect on the 
traditional use of GTFS data for trip planning purposes if buses still stop at every stop according 
to the stop sequence. That said, the poor coding of paths in the GTFS Schedule data might affect 
algorithms for predicting stop arrival times to the extent that they rely on the actual GTFS shapes 
rather than historical data. Similarly, driver deviations from scheduled routes might confuse 
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patrons who use online applications that show vehicle locations based on the realtime pings. It is 
common to see a vehicle traveling off the expected path on a trip tracking application. 

The spatial accuracy issues presented here are more likely to affect off-label uses of GTFS products. 
For example, using GTFS Schedule data to identify the paths and service levels of transit to assess 
traffic or noise or air quality impacts for equity analysis might be confounded by both Condition 
#1 and Condition #3 errors. Incorrectly coded paths that place buses where they do not actually 
go (such as the Stockton Express in Manteca in Figure 23 and Route 41 in downtown Modesto 
in Figure 25), correctly coded paths from which drivers frequently (or always) deviate (such as the 
Stockton Express southbound to the Vintage Faire Mall in Figure 24 and Route 37 inbound at 
the intersection of 10th and D Streets in Figure 29), and incomplete paths that do not place buses 
where they actually go (such as Route 44 outbound between Central Avenue and Moffett Road in 
Figure 30) all reflect inaccuracies in the GTFS Schedule data that would yield deceptive 
representations of facts on the ground. This scenario could create a professional nightmare for a 
city planner who uses the GTFS Schedule information to publicly insist that a given residential 
neighborhood has no buses driving through it (say if they looked only at the paths but not the 
pings in Figure 30), while those residents reply that the planner is entirely mistaken and show 
video evidence to prove it. 

Retroactive analysis of GTFS Realtime pings to impute stop arrival and departure times could also 
be confused if the associated GTFS shapes do not reflect the actual transit paths, such as for the 
Modesto Transit Center (Figures 6 and 7), which is the hub of the entire MAX system. Similarly, 
potential future use of GTFS Schedule shapes to direct driverless vehicles could theoretically lead 
to substantial confusion when the scheduled paths do not physically align with the actual stop 
locations. 

The value of this research is that it can easily screen for discrepancies between what the GTFS 
Schedule data says is supposed to happen and what the GTFS Realtime data says is actually 
happening. The sorting algorithms presented here provide an avenue to quickly flag and map such 
discrepancies, ideally so that they can be resolved in some way that improves future spatial accuracy. 
A lingering question is the impact of GPS readings that seem to drift from actual roadways and 
the surprising phenomena of clustered rather than distributed pings found on MAX. This 
proposed method for identifying spatial inaccuracies is predicated on the availability of a vast 
number of pings that reflect a random spatial sampling. If those pings are only collected near 
specific points, they may not identify all the areas of discrepancy in a transit network. 

3.9 Conclusion 

This research presents an elegant approach to marry GTFS Schedule and Realtime data to identify 
spatial inaccuracies. A method for flagging problematic ping-path pairs is proposed along with 
techniques for aggregating that information to the route or segment levels to quantify and explore 
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areas of concern. Common sources of inaccuracy are discussed, along with their potential 
implications for traditional and off-label users of GTFS data products. This approach provides a 
very straightforward method for transit agencies to review and troubleshoot their operations. The 
goal of this work is to make it easier for transit agencies to improve the accuracy of the data they 
provide the public and to increase customer satisfaction and confidence in the accuracy of GTFS 
feeds.   
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4. Stop Accuracy 
The accuracy of the General Transit Feed Specification (GTFS) Schedule and Realtime data is 
particularly important when it comes to bus stop locations, as these are the locations where users 
enter and exit the system. Incorrect stop information can increase the physical and cognitive 
burden for travelers thereby undoing the promised benefits of online trip planning. Furthermore, 
stop inaccuracies can affect all the downstream uses of GTFS data—from system planning to 
equity analysis to a future of driverless provision—since stops define transit access points.  

Fortunately, the complementary nature of GTFS Schedule data, which represent where the bus is 
supposed to stop, and GTFS Realtime data, which represent where the bus actually stops, enables 
an inherent cross-check. To date there have been limited efforts to exploit this self-corrective 
aspect of GTFS; however, since more accurate GTFS data is inherently beneficial to the myriad 
transit riders, planners, researchers, and advocates that rely on GTFS products, this research seeks 
to reverse this situation. Specifically, this work explores strategies to engage GTFS products in the 
assessment of their own stop accuracy. The goal of this work is to showcase easily implementable 
techniques to diagnose and resolve problematic stop information.  

These techniques are all based on the core identification of divergent location data between 
designated and actual bus stop locations. Flagging these divergences allows for the generation of 
different spatial and aspatial visualizations to characterize and address the underlying accuracy 
problems—primarily undesignated stopping locations, but also incorrectly coded GTFS Schedule 
data and, depending on the system, errant GTFS Realtime pings—which might warrant 
adjustment of the transit design, provision, or hardware. 

4.1 Methodology 

This quantitative study compares several days of GTFS Realtime VehiclePosition pings from the 
Alameda Contra Costa Transit District more commonly known as AC Transit (ACT) with 
associated stop locations defined in the GTFS Schedule data for the same period. The distances 
between the pings and the stops are calculated and examined to determine an accuracy threshold. 
This threshold forms the basis for a series of accuracy metrics and visualizations. 

4.2 Study Area 

The approach presented in this section was explored on the AC Transit system based in the East 
Bay of the San Francisco Bay Area. AC Transit was chosen as the only transit provider among the 
five sampled whose GTFS Realtime feed codes for whether the vehicle is at a stop at the time of 
the ping. This coding is an optional aspect of the GTFS Realtime standard and therefore not 
present in feeds from all transit providers.  



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E   65 

AC Transit Service  

In 2021, the latest federal data available, AC Transit maintained 466 buses, 69 commuter buses, 
and 27 bus rapid transit buses to serve their fixed-route operations (Alameda-Contra Costa Transit 
District, 2021). In March of 2022, when these data were collected, this network included 129 
uniquely named routes, of which 60 are the main East Bay services (#1-399), 44 are school services 
that serve arrival and dismissal times (#600-699), three are early bird express services that serve 
selected Bay Area Rapid Transit District (BART) links before those rail services open (#700-799), 
six are late night services that serve key corridors after midnight (#800-899), and 16 provide service 
across the San Francisco Bay. These transbay routes are designated by letters rather than numbers. 
The full network, many of whose routes overlap, is shown in Figure 31. 

Figure 31. Map of AC Transit Routes 
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4.3 Data Collection and Cleaning 

A key aspect of this project is the care in collecting and cleaning the initial data. 

Data Collection 

This research collected VehiclePosition feeds from AC Transit’s public posting of GTFS Realtime 
data beginning on February 28, 2022, and ending on March 6, 2022. Included in these data were 
five full days (March 1-5) and two partial days. This realtime information was collected by 
downloading the available data every ten seconds during the study period. The contemporaneous 
GTFS Schedule data were collected for the same period.  

For the purposes of this research, pings refer to the location of the bus provided by the timestamped 
coordinates within the VehiclePosition message sets. AC Transit vehicles have GPS antennas in the 
front of the vehicle so ping locations should closely represent bus boarding locations. All pings are 
also coded within the GTFS Realtime messages with the stop_id of the approaching stop location 
from the GTFS Schedule data. That designated location is referred to here as the stop. 

Of the data collected, only those pings with the optional current_status field with a status of 
stopped_at (which signifies that the ping was sent while the bus was engaged in a stop event) were 
selected for analysis. A small number of these selected records lacked trip identifiers and were 
therefore dropped for further consideration.  

Data Cleaning 

The data cleaning of the selected stop-event pings included multiple steps. First, duplicate records 
were removed to leave only unique GTFS Realtime data. This ensures that each transit event is 
recorded only once. Downloading all available data every ten seconds leads to duplicate records 
whenever the download rate exceeds the GTFS Realtime polling rate as the same information 
becomes archived more than once. If the number of duplicates were exactly the same for each 
record, this duplication would increase the data processing demands but not affect aggregate 
statistics. However, varying rates of duplication would result in incorrectly weighted data for 
aggregate measures. Removing duplicates ensures the appropriate consideration of the data (and 
reduces computational demands).  

Second, all GTFS Realtime records more than a minute prior to the official start time of the route 
in the GTFS Schedule data were excluded from consideration. This exclusion is meant to insulate 
the data analysis from the common practice of bus drivers stopping and opening their doors in the 
few minutes preceding the trip’s designated departure time from the first stop, among other reasons, 
to accommodate boarding passengers (and transit staff)—often before bringing the vehicle to the 
scheduled start location. This excluded information can be useful for understanding pre-embarking 
behaviors, but affects the accuracy analysis by misrepresenting transit activities, particularly for 
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trips with few stops. The minute buffer was selected to capture stop accuracy at the initial stop—
even though it may introduce some pre-trip start activity.  

Excluding pings more than a minute prior to the trip start time requires joining the GTFS 
Realtime records to the GTFS Schedule data. Since the AC Transit GTFS Realtime feeds label 
many trips with identifiers that are not within the GTFS Schedule data (typically with large 
negative numbers) and these records cannot therefore be joined to the GTFS Schedule data, 
removing pre-trip pings also removes trip records with non-standard identifiers. This reduction 
was seen as a reasonable trade off to exclude pre-trip stopping activities.  

Third, pings were consolidated so that each stop event is only represented by a single record in the 
data. The raw data set reports ping events, which occur based on the polling rate of the GTFS 
Realtime system. This research, however, focuses on stop events, which inherently include some 
duration to allow passengers to board and alight. Given that duration, multiple pings are possible 
during a single stop event. In addition to consistency concerns like those noted above for duplicate 
records, pings themselves are not the unit of analysis of this research—stops are. Consequently, 
any ping that shares a date, trip identification, and geolocation (with the latitude and longitude 
coordinates expressed to fifteen decimal places) to a previous record is removed from the data set. 
This consolidation results in one ping record representing one stop event, an essential condition 
for this research.  

4.4 Ping-Stop Distance Thresholds 

The focus of this research is to explore the accuracy of stop data. This analysis requires calculating 
the distance between the ping location and the scheduled stop location and then determining 
whether that distance is of concern. 

Ping-Stop Distance Calculation  

The first step of this analysis is to identify the ping-stop distance between where the bus actually 
stops and where the bus is supposed to stop. The straight-line distance (in meters) for each ping 
location to the associated stop location is calculated. Figure 32 presents the cumulative distribution 
of these distances in black. For readability purposes, the chart is censored at 200 meters, which 
accounts for 98.8% of the data, but the full range extends to 8.2 kilometers for a ping that was 
incorrectly coded, as will be discussed later in this report. 
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Figure 32. Cumulative Distribution Function of Ping-Stop Distances. 

 

This distribution, surprisingly, shows that only about 5% of the stop-event pings occur right at the 
scheduled stop location (i.e., within one meter). From that inflection point, there is a parabolic 
curve to a second inflection at 46 meters that accounts for 90% of the stop events. From that second 
inflection, the curve is more linear and flatter towards the end of the chart.  

Some ping-stop distance above zero is expected. Scheduled stop locations are typically geocoded 
to the sidewalk location of the bus stop. Bus drivers, at best, can pull up only next to that point, 
not on top of it, which creates some inherent ping-stop distance. Similarly, despite a move towards 
automation, bus drivers remain human and cannot exactly align the bus with the associated bus 
stop every single time. Furthermore, since most buses operate in shared rights-of-way, there cannot 
be certainty that there will not be another vehicle or roadway impediment that forces the bus driver 
to stop either a little behind or a little in front of the designated stop location. The data in Figure 
32 suggest that most stop events occur at a significant distance from the designated stop location. 
For example, only 11.5% of ping-stop distances are less than 20 meters (denoted by the start of 
the shaded area in Figure 33). In sports terms, twenty meters (65.6 feet) is the distance between 
the pitcher’s mound and the catcher’s box in baseball or from the foul line to the end of the lane 
in bowling. In transit terms, this distance is just over one and a half standard bus lengths (40 feet) 
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or one articulated bus length (60 feet). In other words, according to these data, at 88.5% of stop 
events, AC Transit riders walk (or more likely scurry) more than the distance it takes to throw a 
strike or to traverse an articulated bus to board their vehicle. (While this distance distribution 
seems not entirely aligned with the author’s multi-year experience as an AC Transit rider, it is 
directly generated from the information that is presented to the public. Given how unexpected 
these findings are, the underlying data and associated calculations have been thoroughly reviewed 
to be used for the remainder of the analysis.) 

Exceedance Threshold Determination 

The second step of this analysis was to establish a threshold for determining ping-stop distances 
that signify an accuracy concern. Ping-stop pairs beyond this threshold are considered 
“exceedances” and are flagged for further analysis.  

The visual inspection of these distances, as noted above, reveals two main inflection points, at one 
and 46 meters, respectively—both of which are imperfect thresholds for determining exceedances. 
A threshold of one meter is unreasonable given the physical realities of bringing a bus to the curb, 
and as evidenced by the 5% of ping-stop distances that meet this threshold. A threshold of 46 
meters (150.9 feet) offers an evidenced-based threshold for determining the top 10% of outlying 
values. This distance is, however, half the length of an American football field. Passengers waiting 
at a bus stop should not be expected to complete a fifty-yard dash to catch a bus. Furthermore, 
while several buses converging on a single stop is not entirely unusual (given stops shared by 
multiple routes and the endemic issue of bus bunching where buses on the same route end up at 
the same stop at the same time), it is rather unusual for a bus in such a queue to be more than three 
and a half standard (or almost two and half articulated) bus lengths from the scheduled stop. In 
short, this threshold is too long for determining stop data inaccuracy, although it might be a good 
measure of outlying distance values. 

The lack of a clear break between the two inflection points shifts the threshold determination from 
an empirical exercise to a professional one. One option, to be as inclusive as possible in identifying 
ping-stop divergence (while acknowledging the reality of some curb competition at bus stops), is 
to set the exceedance threshold at 20 meters. This level, discussed earlier, is a restrictive standard 
that penalizes excessive bus bunching—a reasonable objective for a transit agency. A second option 
that is more accommodating of operational issues like bus bunching, while still flagging major 
ping-stop discrepancies, is to set the exceedance threshold at 30 meters (98.4 feet)—slightly longer 
than the length of a regulation National Basketball Association (NBA) court (94 feet). This level, 
marked in Figure 32 with a blue line, is a permissive standard that still identifies almost four-fifths 
of AC Transit stop events as exceedances. While early rounds of research on this project evaluated 
the tighter 20-meter threshold, the looser 30-meter threshold was ultimately selected to flag 
exceedances. Nonetheless, transit agencies should feel comfortable selecting any point between 
these two thresholds, denoted by the shaded area on Figure 32, as a reasonable expectation for 
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determining GTFS stop accuracy. It is also reasonable (and recommended) to reduce this threshold 
distance over time as issues are addressed and service improves. Once a given exceedance threshold 
has been selected, all ping-stop distances beyond that can be flagged. The remainder of this paper 
demonstrates how these flags enable the creation of metrics to explore stop inaccuracies at the 
route, trip, and stop levels.  

4.5 Route-Level Metrics 

Since transit planning and service delivery focuses on routes, route-level metrics represent a key 
avenue to assess (and address) stop accuracy. These metrics are scaled to the number of stops tied 
to the route. The scaling is helpful in that it facilitates comparisons across routes with different 
numbers of stops, but it is problematic in that it inflates the impact of exceedances for routes with 
few stops. The purpose of route-level analysis is to identify route types that might systematically 
produce stop inaccuracies as well as to identify specific routes that might benefit from deeper 
exploration. 

Route-Level Exceedance Rate 

A straightforward accuracy metric is the route-level exceedance rate defined as the percentage of 
ping-stop distances for a given route that exceeds the selected threshold. This metric is calculated 
as the quotient of flagged to total stop events along a route (to determine the proportion) 
multiplied by one hundred (to express as a percentage).  
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Figure 33. Route-Level Ping-Stop Distance Exceedance Rate (%) 

   

Figure 33 presents this metric for the AC Transit routes in descending order. For illustrative 
purposes, this presentation includes the twenty routes (regardless of type or frequency of stop 
events) with the highest exceedance rates. In practice, route-level metrics should be stratified by 
route type (i.e., all school routes, all transbay routes) for an apples-to-apples comparison and 
triaged by stop frequency within those strata to maximize the impacts of any intervention. Again, 
for practical purposes, the complete list for each stratum should be considered (rather than the 
censored approach presented here) to avoid border case disparities in mitigation policies. This 
point is especially relevant here when there is such minor variation among the rates. 

  



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E   72 

Table 7. High Exceedance Rate Routes as a Share of All Routes  

 Total Main School Early Bird Late Night Transbay 

Routes  #1-399 #600-699 #700-799 #800-899 Lettered 

All Routes 129 60 44 3 6 16 

Highest Exceedance Rate Routes 20 1 14 0 0 5 

Shares (%) 16 2 32 0 0 31 

Difference of Proportion (p)  0.005 0.017 0.500 0.324 0.111 

One-Tailed Direction  - + - - + 

 

Table 7 shows the distribution of the twenty bus routes with the highest exceedance rates by type. 
If the type of route had no impact on the exceedance rate, it would be expected that the high 
exceedance routes would account for around 16% of each type. Instead, the shares of school (32%) 
and transbay (31%) routes are roughly double this expected number while the shares of main (2%), 
early bird (0%), and late night (0%) routes are practically (or actually) zero. Since the twenty 
highest exceedance rate sample is small, the differences between expected and observed 
proportions are only statistically significant at the 95% confidence level for the main and school 
routes. However, the transbay routes are statistically significant at an 89% confidence level, which 
is fairly suggestive. 

School and transbay routes are commuter services that make few trips a day—almost entirely in 
one direction in the morning and the opposite in the afternoon. The infrequency results in many 
riders scheduling their travel to make the same trips each day, while the directionality results in 
most stops being used either for boarding or alighting—but not both. Bus drivers come to know 
their clientele and can tailor the stop locations to that clientele without compromising the route 
schedule. For example, an afternoon stop on a transbay route is likely to only involve dropping off 
commuters; boarding passengers would be exceedingly rare. Consequently, a driver of such an 
afternoon route, knowing that there is unlikely to be anyone waiting at the scheduled bus stop, 
might be willing to drop off regulars at an earlier point closer to off-transit destinations since that 
driver would not lose time with another stop at the designated location. This decision might be 
commonplace or affected by external conditions, such as slow-moving traffic or inclement weather. 
Such decisions might also reflect greater sensitivity to emerging local conditions than were 
embedded in the original route design.  

For example, the NX/NX3 transbay routes serve commuters who work in San Francisco but live 
along the MacArthur Boulevard corridor in Oakland. In the eastbound direction, the NX exits the 
MacArthur Freeway (Interstate 580) earlier to serve riders closer to downtown Oakland, while the 
NX3 exits the freeway later to serve riders further out along the same corridor. Together, they 
represent the transbay routes with the highest ping-stop exceedance rate, as shown in Figure 33. 
In the afternoon, the NX bus exits from the freeway and travels along a narrow one-way section 
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of MacArthur Boulevard south of the interstate. Figure 34 shows the approach to the second stop 
in Oakland east of Wesley Avenue. None of the stop events in the data set show a bus stopping at 
the designated stop. Instead, all stops in the data set are made at upstream locations closer to 
housing and in better access to connecting streets. (Figure 34 also shows one westbound stop event 
with a similar pattern demonstrating the ease of waving down a driver.) 

Figure 34. AC Transit Route NX in Oakland 

 

Similarly, school route drivers alter their stopping locations with sensitivity to locations that 
minimize pedestrian backtracking and facilitate street crossing. This feature can be seen clearly 
with #663, which serves several schools in Alameda. Figure 35 shows a stop event across from St. 
Philip Neri School. The scheduled stop in the northwest direction is at the corner of High Street 
and Sterling Avenue, but the bus instead stops about forty meters before the stop at a location both 
directly opposite the school and before a marked crosswalk which is serving many pedestrians at 
that point in the day. The decision to stop here facilitates safe crossing for students and reduces 
their distance between the bus and the school. Furthermore, it is possible that the bus driver has 
no choice if the vehicle is stopped anyway at the crosswalk and students request to board it right 
there. 
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Figure 35. AC Transit Route #663 Across from St. Philip Neri School 

 

The sensitivity to local conditions extends to the one main bus route that fell into the twenty routes 
with the highest exceedance rates, AC Transit’s Route #65. That route has an unusual path, as it 
travels from downtown Berkeley up along the narrow and winding Grizzly Peak Boulevard 
through the Berkeley Hills to the Lawrence Hall of Science. Figure 36 presents a portion of this 
route near that outbound terminus. While this image shows scheduled and actual stops in both 
directions, it makes clear that the designated stops are mostly suggestions, and the actual stop 
locations occur throughout the twisty route. Given the difficult terrain for pedestrians, the 
apparent bus driver discretion concerning where to pick up and drop off passengers is 
understandable, even if it is counter to the AC Transit policy to stop only at designated stop 
locations. 
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Figure 36. AC Transit Route #65 Near Lawrence Hall of Science 

 

Route-Level Exceedance Magnitude 

Another route-level approach is to consider the average magnitude of the ping-stop exceedances. 
This metric shifts the focus from the incidence of exceedance along a route to the typical distance 
of those exceedances. These distances are of greater concern to both transit planners and users 
since they reflect the spatial divergence between actual and designated stop locations. Figure 37 
presents the twenty routes with the highest average exceedance distance.  
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Figure 37. AC Transit Route-Level Ping-Stop Average Exceedance Magnitude (m). 

 

These data represent a different pattern than the exceedance rates presented earlier in Figure 33. 
First, all route types are represented, including the two route types that were not represented 
among those with the highest exceedance rates, namely early bird (#701, #706) and late-night 
routes (#801, #800). Furthermore, these two types are over-represented among high exceedance 
distance routes, as shown in Table 8, although this finding is only statistically significant at the 
95% confidence level for early bird routes. Second, main routes, which were underrepresented 
among high exceedance rate routes, and transbay routes, which were overrepresented among high 
exceedance rate routes, demonstrate precisely the statistically expected share of high exceedance 
distance routes. Third, school routes, which were overrepresented among high exceedance rate 
routes, appear slightly underrepresented among high exceedance distance routes. These last 
findings are not statistically significant at a 95% confidence interval, so they should be considered 
suggestive rather than definitive. The differences in exceedance patterns are also seen in that only 
one route, #65, is found on both lists. These findings suggest that the special services that serve 
patrons at night (including pre-dawn) times, when headways are longer and passenger safety is a 
greater concern, are more likely to make larger deviations from scheduled stops to accommodate 
passenger needs. These findings also suggest that while school routes deviate from designated stop 
locations, the magnitude of these deviations are limited. 
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Table 8. High Exceedance Magnitude Routes as a Share of All Routes  

 Total Main School Early Bird Late Night Transbay 

Routes  #1-399 #600-699 #700-799 #800-899 Lettered 

All Routes 129 60 44 3 6 16 

Highest Exceedance Magnitude Routes 20 10 4 2 2 2 

Shares (%) 16 17 9 67 33 13 

Difference of Proportion (p)  0.500 0.209 0.059 0.277 0.500 

One-Tailed Direction  + - + + - 

 

Early bird buses are unusual among AC Transit routes in that they each have only a few trips per 
day, embark from a large parking lot at a BART station, run in one direction only, and typically 
have only one designated stop for which GTFS Realtime data are available (since the terminal stop 
in San Francisco occurs underground). The high exceedance distances seem to come from the 
practice of picking up passengers at undesignated locations within and around the BART parking 
lots, or just pausing to relax with the door open before starting the trip. For example, the #701 
route boards passengers on weekday mornings for three runs in close succession (3:55, 4:05, and 
4:15am) at the Pittsburg/Baypoint BART station with no additional stops before disembarking 
passengers at the Salesforce Transit Center in San Francisco three-quarters of an hour later. As 
the Salesforce Transit Center is indoors and there are no pings from the final stop, all the data for 
the #701 route are tied to the initial stop activity, which accentuates the impact of any deviation.  

Figure 38 shows registered stop events in GTFS Realtime near the parking lot entrance before 
arriving at the official boarding location marked with a red square. Given the size of the BART 
park and ride lot, these stops are quite a distance from their scheduled location. It is difficult to 
assert with certainty what is driving these stop events in the minute before departure. (One 
interesting finding from before the data were limited to a minute before departure is that a stop 
was made on Leland Road further east, between Bailey Road and Oak Hills Drive, where an AC 
Transit stop does exist, but for different bus lines. Perhaps a confused rider was waiting there and 
flagged down the bus.) 
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Figure 38. AC Transit Route #701 at Boarding Stop (Pittsburg/Baypoint BART) 

 

The late-night buses provide a more clear-cut understanding of the cause of high average 
exceedance distances. These buses provide essential service along key East Bay corridors during 
the overnight hours. For example, the #801 provides half-hourly service between the San Leandro 
and Fremont BART stations, primarily along Mission Boulevard (State Route 238/185, the 
historic El Camino Viejo), between midnight and seven in the morning. This route emulates the 
BART corridor to serve an additional four intervening BART stations as well as numerous bus 
stops. This route is also the late-night route with the highest average exceedance distance of 103 
meters—more than the length of the shortest Olympic track event. An analysis of the stop events 
in the data set suggests that bus drivers regularly stop throughout the corridor. For example, Figure 
39 presents stop events made along Mission Boulevard between the designated stop locations at 
Sunset Boulevard and Grace Street. Figure 39 color codes the stop events so that each gradation 
reflects an additional thirty meters (the threshold for determining an exceedance) distance. These 
data show that stops are made more than 180 meters or six times the threshold distance from the 
designated locations in the GTFS Schedule data. The land use along this section is characterized 
by car-oriented commercial services (i.e., body work, tires, window tinting) where one might want 
to travel at all times but feel uncomfortable walking at night. Bus drivers may be making stop 
deviations to minimize the need for riders to walk at night. 
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Figure 39. AC Transit #801 High Magnitude Exceedances Along Mission Boulevard 

 

4.6 Trip-Level Metrics 

Route-level metrics provide an important filtering role to identify routes that have systematic ping-
stop exceedances, however they do not capture variation within a route. Since the experience of 
providing transit trips—even along the same route—changes throughout the day, there is a need 
for more detailed trip-level metrics. These metrics can reveal problems related to external traffic 
conditions, specific trip characteristics (such as those trips that have more or fewer stops than 
typical along a route), or even a specific driver/vehicle. For example, a driver may be particularly 
lax in their stop location adherence, or a vehicle might have a malfunctioning GPS transponder.  

Trip-Level Data Pre-Processing 

Trip-level analysis requires sufficient data collected so that trips can be compared to one another. 
This report emphasizes trip-level analysis among different trips for the same route, but trips from 
different routes could also be compared to one another, for example, to look at time-of-day effects. 
Similarly, this report emphasizes trip-level analysis aggregated to a single trip identifier, but trips 
with the same identifier made on different days could be separately considered, for example, to 
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look at variation throughout a week. The goal of this report is to point to analytic possibilities 
given sufficient data availability, not necessarily to demonstrate all of them. 

To ensure a robust data set for the purpose of demonstrating trip-level analysis, only the ten routes 
for which at least three hundred unique trip identifiers exist are considered in this report. 
Furthermore, since trips, even on the same route, might have vastly distinctive characteristics, this 
report further culls trip identifiers that have few stop events associated with them during the study 
period. These specific constraints are aimed at selecting the routes with the greatest number of 
trips and, of those, the trips with the most stops. As noted earlier, these constraints are aimed at 
fulsome data sets for displaying these metrics. In practice, analysts might apply different (or no) 
constraints in filtering data for trip-level analysis of GTFS stop accuracy.  

Figure 40 presents the distribution of stop events associated with each trip identifier. The chart 
shows a high peak followed by a small depression and then a much smaller secondary peak. The 
red vertical line at that depression represents an arbitrary cutoff to distinguish between trip 
identifiers with low (less than 20) and high (20 or more) associated numbers of stops. To avoid 
trip-level metrics from being skewed by the high number of trips with few stop events reported in 
their GTFS Realtime feeds, trip identifiers below this 20-stop cutoff are excluded from further 
analysis. 
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Figure 40. Density Plot of Stop Events by Trip Identifier in the Data Set 

 

Trip-Level Exceedance Rates 

Figure 41 presents trip-level ping-stop exceedance rates for all ten AC Transit routes that have 
more than three hundred unique trip identifiers during the study period. These data are plotted in 
a strip chart that jitters points so that trips with the same or similar exceedance rates are randomly 
nudged up or down rather than simply overplotted. This approach makes it possible to see the 
exceedance rate for each trip on a given route. A vertical line representing the 80% exceedance rate 
is superimposed on the chart to denote an arbitrary threshold of concern. This threshold is chosen 
as it reflects the expected share of stop events with ping-stop distances of thirty meters or more. 
Marking a threshold helps visually identify trips of highest concern.  
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Figure 41. Trip-Level Ping-Stop Exceedance Rates by AC Transit Route 

 

A visual analysis of the trip-level data in Figure 41 shows that some routes (i.e., #1T and #40) have 
few trips whose exceedance rates are above 80%, while other routes (i.e., #51B and #57) have 
relatively more trips above this level. These observations suggest other systematic uses of trip-level 
stop accuracy data. For example, Route 51B travels between the Rockridge BART station via the 
University of California, Berkeley campus to the Berkeley AMTRAK station. Roughly, half of 
Route 51B trips extend further west beyond the rail station to the Berkeley Marina. One potential 
area of inquiry is whether the route extension leads to a higher rate of stop inaccuracies.  
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Figure 42. Trip-Level Exceedance Rate Variation by Route Extensions 

 

By splitting 51B trips into those that serve the marina and those that do not, it is possible to 
compare average exceedance rates to confirm or reject that hypothesis. The data in Figure 42 
suggest that, contrary to conjecture, this route extension has no meaningful impact on average 
ping-stop exceedance rates.  

Another use of trip-level data is to explore time-of-day impacts. For example, by sorting trips 
based on their scheduled start time in the GTFS Static feed, it might be possible to identify 
systematic impacts of traffic patterns on stop accuracy. Figure 43 presents a scattergram of trip-
level exceedance rates by the scheduled trip start time for Route 51B. The separation for marina 
and non-marina trips is maintained to demonstrate how exploratory techniques can be combined. 
It is difficult to see any distinct pattern in the raw plot. The addition of locally estimated scatterplot 
smoothing (LOESS) regression line of bandwidth 0.3 provides some additional insight. During 
the morning peak and evening periods, exceedance rates for marina-serving trips are higher than 
non-marina trips. This information might structure an assessment of the stop accuracy along this 
route.  
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Figure 43. Trip-Level Exceedance Rates by Time of Day for Route 51B 

 

While these applications of trip-level data focus on exceedance rates, the same ideas easily port to 
average exceedance distance. The goal of this section is to raise the importance of intra-route 
variation as a cause for stop inaccuracy and to showcase some simple approaches to using trip-level 
data to understand those inaccuracies.  

4.7 Stop-Level Metrics 

While transit design and provision focuses primarily on routes and the trips that make up those 
routes, there are many reasons an exploration of ping-stop exceedances might be best addressed at 
the stop level. First, these inaccuracies might be more closely tied to the unique geography of a 
specific stop location than to an etiology endemic to the entire route. Second, since many routes 
share the same stops—and the very act of sharing curb space may be a cause of ping-stop 
exceedances—it makes sense from a system operations perspective to focus on problematic stops. 
Finally, and perhaps most importantly, transit agencies should focus troubleshooting efforts on 
fixing the most problematic ping-stop inaccuracies. This filtering demands some understanding of 
the magnitude of the ping-stop deviations, which can be more readily seen at the stop level.  
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Problematic Stop Identification 

Figure 44 presents a scatterplot of the AC Transit stops with the most ping-stop exceedances. The 
x-axis presents the share of all pings for that stop that are flagged, which is analogous to the route-
level analysis above. This metric is useful for identifying the stops where pings most often diverge 
from the scheduled location, but not the stops which have the highest number of exceedances—
and therefore are most problematic from the customer perspective. The y-axis presents the share 
of systemwide exceedances that occur at that stop to offer this critical information on the 
magnitude of the problem. Only the stops whose exceedances account for at least 0.3% of the 
systemwide total are shown. This threshold is entirely arbitrary and transit agencies are encouraged 
to select the cutoff points that make sense for the level of exceedance in their systems. It is expected 
that, overtime, these thresholds would shift downward as the high exceedance share locations are 
remedied. (After a certain point, agencies may declare they have reached a sufficient level of 
accuracy as to require no additional intervention.)  

This presentation suggests a methodology for triaging problematic stops. A transit agency might 
proceed from the stops with the highest to the lowest share of exceedances (i.e., from the top to 
the bottom of the scattergram). When more than one stop reports a similar share of total 
exceedances, the agency might proceed from the stops with higher shares of exceedances to those 
with lower shares (i.e., from the right to the left of the scattergram). For example, on the bottom 
of Figure 44, there are several stops that each account for roughly 0.3% of systemwide exceedances, 
however the two stops (#2511, #3637) on the right side of the chart have stop-level exceedance 
rates over 90% and might be prioritized for intervention over the one stop (#862) on the left side 
of the chart whose exceedance rate is less than 60%. 
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Figure 44. AC Transit Stop-Level Exceedance Rates (Stop and Systemwide Shares). 

 

The stops in Figure 44 are labeled with their stop_id from the GTFS Schedule data. These codes 
fit conveniently onto a graph but provide little obvious information to planners or the public on 
their actual location within the system. For this reason, it is best to map these locations within the 
transit service area as shown in Figure 45. These data show a cluster of problematic stops around 
the University of California, Berkeley campus as well as stray problematic stops in North Berkeley 
(just south of Albany), Oakland, and San Leandro. 
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Figure 45. AC Transit Stops with Highest Shares of Systemwide Exceedances 

 

The locations shown in Figure 45 tend to be stops that serve several routes, otherwise they would 
not account for such a high share of systemwide exceedances. Such locations are prone to situations 
in which buses from the same or different routes compete for limited space at the curb. This 
bunching can be exacerbated by local traffic conditions. 

Figure 46 illustrates the stop events within the data set that are associated with the northernmost 
stop in Figure 45. This stop is northbound on San Pablo Avenue (State Route 123) just north of 
Gilman Street. San Pablo Avenue is served by the #72, which was AC Transit’s first branded 
“Rapid” bus route. The intersection is signalized and a common place where traffic backs up. The 
actual stop locations suggest patrons seek to alight (and possibly board) substantially upstream 
from the scheduled stop location. The availability of such information on actual stop locations 
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might inform a policy review from working with relevant traffic authorities on signal timing to 
relocating the stop upstream rather than downstream of the intersection.  

Figure 46. AC Transit Stops on San Pablo Avenue north of Gliman Street 

 

Ping-Stop Distance Outliers 

Another important application of stop-level data is to identify those pings that are at the greatest 
distance from the associated stop. These outliers warrant exploration and, more importantly, 
explanation. Figure 47 displays all the ping-stop distances greater than a kilometer. This high 
number was selected to identify the most unusual findings, but the analytical approach would be 
equally useful at the 46-meter outlier threshold determined in Figure 32. 
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Figure 47. AC Transit Ping-Stop Distance Outliers (Above One Kilometer) 
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The data presented in Figure 47 suggest that many high ping-stop distances are associated with a 
single stop. This finding hints at a systematic problem of the data collection rather than actual 
stops being made at great distances from the designated stop location. This idea is affirmed with 
a detailed look at two clusters of ping-stop outliers highlighted in Figure 48. These clusters are 
both collected from Route 96 on the same day (March 6), and both represent stop locations that 
are not actually along the path of the bus route. The northern cluster is along two interstate 
highways where one would not expect any stopping. The associated stop is the first stop in the 
westbound direction, but the pings are moving away from and not towards that stop. It seems that 
the bus driver might have been called away to a different location, but that change is not registered 
with the GTFS Realtime data. Similarly, the southern cluster is associated with the first stop in 
the eastbound direction, but the bus is traveling away from that stop also along a corridor with no 
scheduled bus stops but with no stopping the GTFS feeds.  

Figure 48. AC Transit Ping-Stop Distances Outliers on Route 96 

 

The regularity of pings for both clusters reflects the polling of bus locations. The larger spacing of 
these pings along the interstate highways in Oakland compared to the arterial in Alameda reflects 
the variation in respective traffic speeds, however it seems that there is some error in the signal 
that suggests the vehicle is at a stop in each of these moments. Stop events would not be expected 
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to be so regularly spaced, nor would they be expected on routes that have no designated stop 
locations. These strange results suggest a combination of errors—both registering a trip that is not 
a trip and registering a stop that is not a stop. The former might be due to a decision to alter the 
route in the field, while the latter might be due to hardware malfunction, such as a faulty door 
sensor or a door that does not properly close. 

Stop-Shelter Distance 

One common feature that emerges through a stop-level analysis of ping-stop disparities is the 
tendency for buses to stop where bus shelters or street furniture are located rather than where the 
official stop is designated. Figure 49 demonstrates one such location along the #51A route in 
Alameda where the actual bus stop is downstream from a nicely appointed shelter with seating. 
This location (eastbound on Santa Clara Avenue just beyond Chestnut Street) typifies a dilemma 
often facing bus drivers, namely, to stop where people are already waiting or force them to walk to 
the official stop. This dilemma can be seen in the stop-level data on ping-stop disparities when 
pings are consistently at a specific location which is not the official stop. Those data can be helpful 
for identifying situations, such as that found in Figure 49, where the official stop location is not 
aligned to the natural waiting location. Transit agencies can therefore use the information revealed 
through ping-stop disparities to make micro adjustments to their network in order to reduce user 
confusion and, consequently, to improve GTFS stop accuracy. 

Figure 49. Stop-Shelter Distance along the #51A Route (Google Street View Image) 
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4.8 Conclusions 

The goal of this section was to compare GTFS Schedule and Realtime data to assess the accuracy 
of stop locations. This analysis relied exclusively on data from AC Transit whose GTFS Realtime 
feed includes the optional current_status field that identifies whether the vehicle is at a stop. 
Strangely, the pings flagged with this status were rarely within even thirty meters from the stop, 
the distance set as a threshold for determining a ping-stop distance exceedance. This disjunction 
was surprising and may reflect a deeper issue in the algorithm used to convert AC Transit vehicle 
location data into the GTFS Realtime feed shared with the public. Those disjunctions did not 
come from miscoded locations in the GTFS Schedule data as checks of sampled locations within 
the data aligned with the location of marked bus stops in Google Street View. Those disjunctions 
also did not come from poor quality geocoding from faulty GPS receivers. No pings were observed 
to be in places that a bus could not reasonably be. Instead, the stop inaccuracies appeared to come 
primarily from drivers stopping upstream from designated stops and secondarily from incorrect 
stop flagging within the GTFS Realtime feed. In both cases, the approaches demonstrated within 
this research would allow for refinement of policies and software/hardware to reduce these stop 
inaccuracies. 

These approaches to stop accuracy assessment began with a structured cleaning of the raw data. 
First, only those pings that were coded within the GTFS Realtime data whose current_status was 
coded as stopped_at were considered. These records were purged of duplicates and pings that 
occurred more than a minute prior to the scheduled trip start time in GTFS Static. Finally, the 
remaining data were consolidated to represent stop events by removing subsequent pings made on 
the same date for the same trip at exactly the same location. 

This work set a ping-stop distance of thirty meters as the threshold for determining an exceedance, 
and then flagged each ping accordingly. These data were then aggregated at the route, trip, and 
stop level to aid in the identification of inaccuracies. The analysis of the AC Transit data showed 
statistical differences in route-level exceedance shares and magnitudes by different route types, 
time of day differences in trips made along a single route, and particularly problematic stop 
locations throughout the East Bay. This work also revealed unusual patterns of ping-stop outliers 
made by incorrect attribution of bus movements outside designated paths, and a more prosaic 
problem of formal stop locations located at some distance from associated shelters and street 
furniture.  

The techniques presented to compare GTFS Schedule and Realtime data to identify ping-stop 
inaccuracies also served to monitor the success of interventions to reduce these inaccuracies. It is 
hoped that transit agencies will implement these straightforward approaches to analyze their 
operations, identify areas of concern, craft appropriate interventions, and monitor the outcomes of 
those actions over time.  
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The intention of this section was to demonstrate the ease by which GTFS products can be used 
to align formally designated stopping locations with the locations where buses actually stop. 
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5. Conclusion 
The exciting transition to GTFS entails a commitment to the accuracy of its underlying data 
products. This accuracy is essential to achieve the full benefits promised by GTFS. Unfortunately, 
the GTFS Static and Realtime feeds are not pristine. They contain inaccuracies that affect their 
effectiveness for trip planning and other purposes. Fortunately, because these feeds reflect real-
world phenomena that are both spatially and temporally bound, there are ways to assess this 
accuracy. The innovation of the work presented in this report is to make that assessment by 
comparing the different GTFS products to each other within the constraining context of the built 
environment and the linear structure of time. This approach triangulates these various sources of 
data to identify GTFS inaccuracies and suggest the source of this discrepancy. This work can help 
transit agencies refine the GTFS products they share with the public. The elegance of this 
approach is that it can be readily replicated by anyone using the publicly available data broadcast 
by a given transit agency alongside basic geographic information systems software. 

This study finds one source of inaccuracy in the GTFS Schedule products that define what the 
system should do. In many cases, the actual paths defined for the vehicles are poorly coded in the 
shape.txt file. Common problems include flows in two directions snapped to a single roadway 
centerline, sloppy coding of path vertices that result in shapes unaligned to the actual roadways, 
and well-coded shapes that do not reflect the paths bus drivers actually use. Such problems are easy 
to fix simply by updating the vertices in the shapes file within the GTFS Schedule data. This 
research demonstrates how the preponderance of vehicle point locations in the GTFS Realtime 
feed can be harnessed to identify the location of these GTFS Static coding inaccuracies by flagging 
route segments whose ping-path distances exceed a threshold of acceptability. 

Conversely, ping-path exceedances can also flag inaccuracies with the GPS systems that report the 
vehicle positions. For example, this report documents blocks in downtown Modesto in which the 
GTFS Realtime feeds placed vehicles—despite the reality that these blocks are occupied by 
buildings and not roadways. The clustering of these errors to specific areas rather than their spread 
across the system may suggest local conditions affecting the GPS signal. Unfortunately, the 
Modesto pings always occur in clusters as if they are geographically triggered rather than spread 
throughout the system as would be expected if they are temporally triggered—and this clustering 
might result in a limited view of the incidence of inaccuracies throughout the network. The 
solutions here are less simple than a careful recoding of the GTFS Static resources but are still 
worth exploring. Pings should be polled based on time, not space intervals, to ensure a 
representative sample across the systems. Areas in which ping locations for transit vehicles are 
found to be impossible need to be examined to better assess what is causing such inaccuracies and 
how to remedy them. 
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These identified inaccuracies in the path descriptions (including those due to driver deviations 
from those intended paths) and in the ping locations of vehicles are likely to confound the 
algorithms that predict stop arrival times in the TripUpdate messages. Those algorithms compound 
this confusion by broadcasting rather than filtering out nonsensical data, such as the continuity 
errors and multiple predictions with the same timestamp noted in this report.  

This research provides an approach to assess the arrival prediction messages that allow users to 
minimize their transit wait times. That approach entails the careful cleaning of the extensive trip 
update messages and then the generation of a series of performance measures, including Update 
Availability, Prediction Error Percentile Plots, Scaled Prediction Error IQR, Bus Catch 
Likelihood, Expected Wait Time, Prediction Padding, and Prediction Inconsistency. These 
metrics allow transit agencies to evaluate and refine the information they provide to the public. 
These metrics also provide a consistent manner to compare the quality of different proposed 
algorithms for predicting arrival times to facilitate a more complete consideration of what 
constitutes good prediction accuracy. In short, this research provides a myriad of ways to consider 
and thus refine the accuracy of the TripUpdate messages. 

Transit agencies are responsible for providing customers the best arrival information possible. This 
research offers metrics for calculating the accuracy of these predictions, and more importantly, 
measuring these inaccuracies in terms of their implications for users. For example, one metric 
identifies the time padding necessary to buffer the predicted arrival time to ensure catching the 
desired bus. Another metric provides an accounting of how long the user will wait should they 
follow the prediction precisely (and possibly miss the desired bus and need to wait for the 
subsequent vehicle). Some of these metrics, such as the one that tracks the availability of updates, 
or the one that calculates the absolute change across subsequent predictions for the same stop 
arrival, represent aspects of the consistency and reliability of prediction information transit agencies 
share with their customers. While one might argue these metrics are not direct measures of 
prediction accuracy, they certainly reflect the customer experience of those predictions. In other 
words, if predictions are not made available or are maddeningly variable, users will discount their 
value. These measures reiterate a central premise of this work: That the goal of sharing GTFS 
products with the public is to facilitate transit use. 

The findings presented in this report offer techniques to systematically identify inaccuracies within 
the GTFS Static and Realtime ecospheres. It is hoped transit agencies will adopt these approaches 
to review the information they share with the public to continually prune problems and thus, over 
time, reduce the incidence of inaccuracies. 
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List of Acronyms  
Acronyms Description 

GTFS General Transportation Feed Specification 

GTFS-RT General Transportation Feed Specification (GTFS) Realtime 

AVL Automatic Vehicle Location 

MAX Modesto Area Express 

AC Transit Alameda-Contra Costa Transit District 

MST Monterey-Salinas Transit  

BBB Big Blue Bus 

OCTA Orange County Transportation Authority 

StaRT Stanislaus Regional Transit 

StanRTA Stanislaus Regional Transit Authority 

.pb Protocol Buffer 

GPS Global Positioning Systems 
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