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Executive Summary 
Objective 

This study sets out to evaluate the impacts of replacing freight trucks with cargo cycles on mobility 
and emissions in West Oakland, California, identifying enabling conditions that may facilitate an 
effective shift and offering policy recommendations to incentivize cargo cycle schemes.  

Background & Significance 

The burning of fossil fuels from motorized vehicles has far-reaching impacts on the environment, 
human health, and the economy. Pollution produced by motorized transportation have significant 
impacts on natural resources and agricultural production. Air pollution is associated with a wide 
range of human illnesses, including asthma, birth defects, lung injures, brain damage, cancer, and 
cardiovascular and coronary heart diseases, as well as cognitive functioning. The positive 
association between diseases caused by poor air quality and mortality has been well documented 
(Liu et al., 2019). Children, people living in low-income neighborhoods, the elderly, and people 
with chronic cardiovascular, respiratory, and metabolic diseases and compromised immune systems 
are at higher risk of adverse health effects from air pollution. Further, noise pollution from 
motorized trucks increases levels of stress, disrupts sleep, and increases the risk of cardiovascular 
disease (Hammer et al., 2014). The economic costs of air pollution are estimated at billions of 
dollars, with transportation being one of four sectors of the US economy causing a disproportionate 
amount of damage from its generation of air pollution (Tschofen et al., 2019). 

Urban planning and urban operations have been shifting away from an economic model that 
emphasizes economic development, productivity, and efficiency. The new model is one of livable 
cities, prioritizing quality of life and the physical, mental, and social wellbeing of all city residents. 
When appropriate and possible, shifts from motorized vehicles to more sustainable and 
environmentally friendly forms of transportation can be a part of such a livability strategy. 
Specifically, replacing motorized trucks with cargo cycles for last mile deliveries is consistent with 
these new priorities. A support of cargo cycle freight delivery would also mark a shift in priorities 
on how neighborhoods are designed; an infrastructure that supports cargo cycle delivery is also one 
that increases the use of bicycles for transportation and recreation, lending to improved physical 
and mental health outcomes, lower levels of air and noise pollution, and lower vehicle miles 
travelled (VMT). 

Empirical evidence to date suggests that cargo cycles can be integrated into last mile deliveries and 
are often a cost-efficient strategy (Choubassi et al., 2016; Fishman et al., 2015; Koning, 2016). By 
replacing truck miles, cargo cycle schemes can also reduce air pollution (Conway, 2015; Melo and 
Baptista, 2017; Ren et al., 2019; Schliwa et al., 2015). On the other hand, cargo cycle use can 
increase risk of injuries or fatalities of cycle users, though research has shown that the health 
benefits of cycling far exceed the risk of injuries (Pucher and Buehler, 2008). Cargo cycle operator 
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safety should be at the forefront of decision-making, considering operator injury from collisions 
with motor vehicles and exposure to air pollution. 

Cargo cycle schemes tend to be most successful in areas with a high level of deliveries from mail, 
courier, or parcel services; a high concentration of retail business and offices; cycle-friendly street 
design; truck regulations; and the availability of possible transfer hubs. Similarly, pollution and 
congestion problems in an area serve as a significant motivation for replacing motorized vehicles 
with cargo cycles. 

There are a number of enabling conditions that can facilitate the shift to cargo use in last mile 
delivery, including the availability of consolidation centers or hubs (Aljohani and Thompson, 
2016; Allen et al., 2012) and public acceptance (Gruber and Narayanan, 2019). In addition, 
municipal, regional, and state policies can accelerate the shift to cargo cycle use (Pucher and 
Buehler, 2008). These policies include providing separate infrastructure for cycles when 
appropriate, offering subsidies to cargo cycle operations, establishing cargo cycle facilities, and de-
incentivizing motorized travel use by imposing traffic restrictions and managing parking. 

West Oakland is a community highly impacted by pollution and its devastating health and 
environmental consequences. Flanked by highway and port activity, West Oakland has a mixture 
of land uses—from industrial to commercial and residential—that make it an appropriate focus for 
a potential shift from motorized truck activity to cargo cycles for last mile deliveries.  

Methods 

To advance the study objectives, primary data were collected using key stakeholder interviews, 
focus groups, field observations, and traffic counts. Interviewees included employees of four 
government agencies, two local nonprofits, five businesses, two residents, two truck drivers, and 
one mobile air pollution monitoring expert. Focus group participants included local business 
owners, delivery persons, cyclists and transit advocates, environmental advocates, and residents. 
Field observations and traffic counts throughout West Oakland were also conducted. There were 
10 data collection sites, split into five vehicle count sites and five truck delivery behavior sites. Each 
of the five pairs of data collectors recorded information from the same two sites each day. 
Secondary data, data utilized from established databases, included the location of parcels and land 
uses in the study area were used to identify potential generators and attractors of freight trips. Both 
primary and secondary data were used to inform a simulation model to examine scenarios where 
businesses, organized by industrial sector, converted different percentages of current freight 
deliveries to cargo cycles based on a transfer hub as the starting point for the cargo cycle delivery. 
We designed seven different scenarios using three possible transfer hub locations and different 
percentages of freight demand that could be carried by cargo cycles. Emissions savings from 
estimated VMT decreases were calculated based on emissions factors for Alameda County and the 
truck fleet observed in the area. 
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Results 

Focus group participants indicated that the benefits of replacing motorized trucks with cargo cycles 
include lower pollution, less noise, job opportunities for operators, less damage to roads from using 
lighter weight cargo cycles instead of motorized trucks, and opportunities for local cargo cycle 
businesses including cargo cycle fabrication and maintenance, as well as a healthy lifestyle for cargo 
cycle operators. This confirms and validates findings from the literature and provides support for 
the potential of cargo cycle schemas. Focus group participants provided the following 
recommendations: (a) establish parking facilities/spaces for cargo cycles to ensure safety and avoid 
illegal parking; (b) perform outreach to businesses/residents and the local community to activate 
demand for cargo cycle services; (c) provide cargo cycle operator trainings; (d) create protected 
cargo bike lanes; (e) use physical traffic management schemas; (f) leverage safe street schemas to 
incentivize cargo cycles; (g) incentivize business to use cargo cycle services and offset the human 
cost of running cargo cycle business; (h) limit speed for motorized vehicles and provide improved 
police enforcement to increase safety for cargo cycles; (i) address safety for cargo cycle operators of 
color as cyclists of color are known to be in more fatal collisions and may be more likely to be cited 
by the police (Barajas, 2021). People of color and females are more likely to be concerned with 
being vulnerable to harassment or being a victim of a crime while bicycling (Hull Grasso et al., 
2020; McNeil et al., 2017); and (j) make cargo cycle operator jobs accessible to community 
members.  

Our simulation also suggests that the implementation of cargo cycles could lead to a reduction in 
emissions. In the best-case scenario, successful implementation of cargo cycles will lead to 
emissions reduction that is equivalent to the elimination of more than 1,000 Class 4 trucks 
traveling in West Oakland per day. In our worst-case scenario, we estimated an equivalent to the 
removal of approximately 80 Class 4 box trucks off the roads of West Oakland per day. In most 
cases, Clawson, McClymonds, South Prescott, and Acorn are four neighborhoods that may benefit 
the most in terms of emission savings. 

Policy Implications 

The following are recommendations for policy implementation that would incentivize cargo cycles 
and facilitate a shift from motorized trucks: 

1. Political and Legal Dimension 

• Restrict access of high-emission, high-noise vehicles in areas where cargo cycles 
are being prioritized for last mile deliveries through parking management, pricing, 
motorized trucks temporary/timed bans, speed limits, and pedestrian zones. 
Consider enforcement via camera monitors. 
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• Pilot test schemas of cargo cycles and reduce financial risk by offering free 
trials/e-bikes. 

2. Physical and Spatial Dimension 

• Integrate cargo cycle plans into overall transportation strategic and land use 
plans. 

• Develop cycle infrastructure with cargo cycle specifications. 

• Provide parking spaces for cargo cycles. 

• Flatten curb heights to allow cargo parking. 

• Develop transfer hubs and provide equitable access. 

3. Economic Dimension 

• Raise awareness among businesses about the cost-effectiveness of cargo cycles. 

• Model cargo cycle best practices by integrating cargo cycles into municipal fleets. 
Cargo cycles can contribute to some governmental operations such as street 
cleaning, waste collection, and the movement of goods and people across 
government facilities. 

4. Social and Cultural Dimension 

• Launch a public awareness campaign to publicize the benefits of cargo cycles’ 
potential for improving quality of life of residents. 

• Hold roundtables with all stakeholders’ participation and promote network 
building and knowledge transfer. 
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 Introduction 
With increased urbanization, population growth, and changes in goods movement (including 
patterns favoring just-in-time delivery combined with reduced stock in stores), freight movement 
in cities has increased (Melo and Baptista, 2017). It is not surprising that freight now makes up a 
large segment of urban daily traffic, contributing to emissions, noise, and safety concerns. In 
addition, urban freight logistics and supply chains are often hindered by “last mile” in areas of high 
population (Choubassi, 2015). Last mile deliveries in urban areas pose a challenge to mobility and 
may intensify congestion on busy city streets where parking spaces are at a premium. Vehicles often 
are forced to double park to unload or park illegally when legal parking spaces are not available.  

Under such unsustainable conditions, decision makers, engineers, and planners are considering 
innovative ways of promoting urban sustainability and guaranteeing mobility and quality of life 
while ensuring an efficient urban goods distribution system (Choubassi, 2015). Similarly, 
businesses are looking for alternative approaches for the transportation of goods in a timely and 
cost-effective manner. 

One innovative mode gaining widespread attention for urban deliveries is cargo cycles, also known 
as cargo bikes. As online shopping has increased, leading to concerns about congestion and climate 
change, cargo bikes have been introduced to several cities, including Paris, London, and Dublin 
(Haag & Hu, 2019). Despite the recognized potential and possible success of transporting at least 
25% of freight via cycle, research in this growing area is limited (Choubassi, 2015). 

Of note, our research was conducted from February 2020 to September 2021. This time period 
took place almost entirely during the COVID-19 pandemic. It is important to put our findings in 
the context of the pandemic. The COVID-19 pandemic changed traffic and freight delivery 
patterns. As travel restrictions were put in place, there was an overall increase in e-commerce and 
home deliveries. Truck travel has remained stable overall, but there has been a shift away from 
deliveries to shopping centers and truck trip generation from major manufacturers and towards 
home deliveries (Haake, 2020). Average truck trip length has decreased during the pandemic. 
With decreased passenger traffic, freight trucks have been able to move at higher speeds in areas 
normally congested by traffic (Murray et al., 2021). The COVID-19 pandemic has had a 
significant impact on commerce, commuting, and traffic patterns, with the long-term impacts still 
unknown. 

This research study sought to cultivate interest in understanding and examining the use of non-
motorized cargo cycles as an innovative strategy to freight-induced congestion, pollution, and noise 
problems in urban centers, as well as the relevant policy and practice implications. 
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1.1 Overall Study Methods 

Our research investigated the potential of cargo cycles to deliver last mile freight in Oakland, 
California, with a focus on West Oakland. Our work was organized into several tasks, the first of 
which was to conduct a literature review on national and international efforts to utilize cargo cycles 
for freight delivery, including identifying Oakland-specific rules for cargo bicycle use in bike lanes, 
sidewalks, or regular traffic lanes. In tandem, we developed relationships with members of the 
Oakland community, including Oakland Caltrans contacts, bicycle and environmental advocates, 
community leaders, and local business leaders. We examined community-level data about the 
nature and extent of the problem of noise and pollution produced by freight vehicles in West 
Oakland, learning from published literature and collecting vehicle count and truck behavior data. 
In addition, we interviewed key stakeholders and held focus groups to learn more about the 
community’s opinions about cargo cycle deliveries. These research efforts informed our traffic 
model simulation, a modeling effort that calculated the possible emissions reductions due to the 
transfer of some motorized truck deliveries to cargo cycles.  

Figure 1. Overall Study Tasks 

 
 
1.2 Research Objectives 

Data collected from the interviews, focus groups, field observations and counts, and traffic 
simulation modeling were utilized to develop cargo cycle policy suggestions for West Oakland, 
which could inform and encourage the adoption of cargo cycles for other municipalities where 
congestion, pollution, and other public health impacts from freight delivery are of concern. Study 
objectives included:  
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(1) Evaluate the impact of replacing freight trucks with cargo cycles on mobility, traffic 
efficiency, and emissions. 

(2) Determine circumstances in which cargo cycles can replace freight trucks and private 
commercial businesses can change their packing/delivery practices to achieve the policy goals 
of sustainability, mobility, and improved environmental and public health outcomes (especially 
those pertaining to noise, air quality, and road safety).  

(3) Provide recommendations to improve the availability of facilities, such as consolidation 
centers and dedicated bike lanes, to facilitate the adoption of cargo cycle freight delivery.  
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 Literature Review 
This chapter of the report includes the literature review supporting this research project, first 
describing the public health, environmental, and economic challenges created by today’s motorized 
transportation. Subsequent sections of the literature review describe sustainable solutions to reduce 
the impacts of transportation on public health, the environment, and the economy, in a broader 
sense. This chapter closes with the current literature about cargo cycles, bicycles adapted for freight 
delivery, as a potential opportunity to reduce the air pollution, noise pollution, and traffic 
congestion issues society currently faces.  

2.1 Intersection of Public Health, Transportation, and the Environment 

2.1.1 Public Health Impacts of Air Pollution 

Certain human activities, such as the transportation sector’s use of fossil fuels, lead to air pollution, 
which has adverse impacts on human health, the environment, and the economy.  

The burning of fossil fuels to power motorized vehicles contributes to the emission of air pollutants 
including carbon monoxide (CO), particulate matter (PM), lead (Pb), nitrogen oxides (NOx), and 
photochemical oxidants (e.g., ozone or O3). The transportation sector contributes to more than 
half of the nation’s CO and NOx emissions (EPA, 2021). There is a positive relationship between 
vehicle miles traveled (VMT), vehicle emissions, and ground-level ozone. 

Air pollution produces negative health impacts including irritation of the nose and throat, asthma, 
cardiovascular disease, lung cancer, birth defects, long-term lung injury, brain and nerve damage, 
and eye damage (Kampa & Castanas, 2008). In addition, adverse health impacts from air pollution 
include damage to the respiratory organs as well as increased cardiovascular diseases, lung cancer, 
skin cancer, leukemia, and mortality (Schwela & Wiele, 2009). Air pollution can also damage the 
ecosystem and adversely impact crops, wildlife, and bodies of water including their aquatic life 
(Environmental Protection Agency, 2007).  

In urban areas, traffic-related air pollution (TRAP) is a major segment of air pollution and has 
been linked to many adverse health effects. Additionally, many who live in urban areas live near 
major roads and are constantly exposed to TRAP (Matz et al., 2019). Studies have shown a causal 
relationship between TRAP and asthma exacerbation, cardiovascular disease mortality and 
morbidity, and impaired lung function (Health Effects Institute, 2010). TRAP has also been 
linked to higher rates of cognitive diseases. A population-based cohort study found that living near 
major roads is associated with a higher incidence of dementia (Chen et al., 2017). Those most at 
risk of developing adverse health effects as a result of TRAP exposure are individuals who live less 
than 500 meters away from major roadways (Health Effects Institute, 2010). 
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In research by Thurston et al. (2016), the researchers, using a cohort study design, found a link 
between long-term diesel exhaust exposure and the risk of dying from coronary heart disease. An 
et al. (2018) looked at the short- and long-term effects of particulate matter on human health and 
wellbeing. That study found that, in the short term, increased exposure to PM caused an increase 
in cardiovascular disease morbidity. There was also a positive association between cardiovascular 
mortality and exposure to PM, and minor exposure to air pollution over a long period ultimately 
caused cardiovascular deaths in the U.S. (An et al., 2018). Similarly, Liu and colleagues found a 
positive association between short-term exposure to PM10 and PM2.5, inhalable particulate matter 
10 microns and smaller and 2.5 microns and smaller, respectively, and cardiovascular and 
respiratory daily mortality (Liu et al., 2019). The smaller particulate matter, PM2.5, are considered 
fine particles, which are of greater concern because of their ability to lodge more deeply in the 
lungs (California Air Resources Board, 2022; Environmental Protection Agency, 2022).  

Young children, the elderly, and those whose immunity is compromised are at greater risk of 
developing health problems related to exposure to air pollution. Lead exposure from air pollution 
is related to the use of leaded gasoline in motor vehicles. Adverse health impacts of lead exposure 
is pronounced in children since their bodies are still developing. Children exposed to lead are 
known to develop learning disabilities and decrease in intelligence quotients (Simoni et al., 2015). 
Lead exposure can also lead to other adverse health effects such as anemia, kidney damage, and 
changes in blood pressure (Agency for Toxic Substances and Disease Registry, 2022). 

Air pollution, particularly the emission of greenhouse gases, contributes to global warming and 
climate change because it affects the amount of solar energy retained by the earth. Climate change, 
in turn, contributes to air pollution in a vicious cycle. Climate change affects the frequency of heat 
waves and global wind patterns. Global warming can create longer periods of time when the ozone 
levels are elevated, intensifying ozone concentrations (Hartmann, 2000).  

The transportation system’s impact on public health and environmental degradation is undeniable. 
Evidence shows that, besides the direct consequences of air quality and air pollution on 
human illnesses, motor vehicle-related incidents are the leading cause of fatality in the 
United States (Gantz et al., 2003). Motor vehicle accidents disproportionately affect 
communities of color (Gantz et al., 2003). Younger and older populations are also particularly 
vulnerable to fatalities and injuries from motor vehicle crashes (Kim et al., 2008). 

2.1.2 Public Health Impact of Noise Pollution 

Although noise pollution is not recognized as a public health threat to the same degree as other 
environmental threats such as air pollution or water contamination, many emerging studies show 
that noise pollution is associated with a higher incidence of many adverse health effects (Hammer 
et al., 2014). The United States Environmental Protection Agency (US EPA) recommends that 
24-hour average noise levels do not exceed 70 dB, as higher levels can lead to hearing loss over a 
lifetime (Environmental Protection Agency, 2016). The general consensus among researchers is
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that yearly average decibel levels higher than 55 dB are associated with a significant increase in the 
incidence of cardiovascular disease (Hammer et al., 2014). In addition, the US EPA has set a 
standard of 55 dB outdoors and 45 dB indoors as the levels of noise that interfere with daily 
activities (Environmental Protection Agency, 2016). In 2013, it was estimated that 145 million 
Americans were exposed to decibel levels over 55 dB, and 72 million Americans were exposed to 
yearly average decibel levels of over 70 dB that same year (Hammer et al., 2014). 

The causal hypothesis linking noise pollution to cardiovascular disease is that sleep disturbances 
caused by high noise exposure lead to an increase of stress hormones such as cortisol; these stress 
hormones then increase heart rate and blood pressure (Babisch, 2003; Hammer et al., 2014). 
Decibel levels higher than 50 dB cause sleep disturbances, leading to sympathetic nervous 
system activation (Hurtley & World Health Organization, Regional Office for Europe, 
2009). The activation of the sympathetic nervous system from sleep disturbances can also lead 
to an increase of blood lipid levels (Hammer et al., 2014). Chronically elevated heart rate and 
blood pressure will cause heart strain, and, together with increased blood lipid levels, the 
risk for developing atheroschlerosis increases (Hammer et al., 2014). 

One of the primary contributors to noise pollution is road traffic. After airports, areas that are 
exposed to the highest levels of noise pollution are areas surrounding highways and urban areas 
where there is a high amount of road traffic (United States Department of Tranpsortation, 2018). 
It is logical that an effective way to reduce noise pollution would be to reduce road traffic. There 
are many ways to reduce road traffic: one of them is to reduce the amount of delivery trucks. 
Ambient noise levels increase by 4 dB when a truck passes by (Han, 2018). Limiting the amount 
of delivery trucks on the road would lower the ambient noise levels, reducing noise pollution.  

2.1.3 Public Health Impact of Cycling 

The topic of cycling and its effects on public health is a relatively new area of research. After the 
Paris Agreement was signed in 2015, many of the signatory countries looked at cycling as a way to 
cut emissions from the transportation sector by reducing passenger vehicle travel (Keall et al., 
2018). The main benefits associated with bicycling are increased physical activity for those who 
bike and reduced greenhouse gas emissions. The main harms associated with cycling are increased 
exposure to air pollution to the cyclist and increased risk of traffic collision. Local conditions may 
vary, and transportation planners should be aware of the particular factors that influence a cyclists’ 
overall health in the area they are operating. 

Many studies have modeled the health impacts of cycling. The main health benefits from cycling 
stem from the physical activity. Research based in the Netherlands and Ireland found that the 
increased level of physical activity from cycling may incur many benefits, including reductions in 
years of life lost (YLLs) from cardiovascular disease, diabetes, depression, and cancer (De Hartog, 
2010; Doorley, 2017). The reduction of YLLs from physical activity outweighs the YLLs gained 
from increased air pollution exposure and traffic collision risk (De Hartog, 2010; Doorley, 2017). 
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Models from Spain have shown the number of deaths reduced due to physical activity from cycling 
outweigh the number of deaths from air pollution and traffic collision (Rojas-Rueda, 2011). In 
general, the cycling infrastructure, such as dedicated bike lanes, is more developed in Europe. This 
infrastructure difference between the United States and Europe should be taken into consideration 
when applying findings from European contexts to a US city.  

Another benefit from cycling is a reduction in greenhouse gas emissions. In the U.S., the 
transportation sector contributes 29% of total greenhouse gas emissions, the most of any sector 
(Environmental Protection Agency, 2017). In the transportation sector, 59% of greenhouse 
emissions come from light-duty road vehicles (passenger cars, low-load trucks, buses, etc.). Studies 
have modeled how cycling reduces greenhouse gas emissions. In models from New Zealand and 
Spain, the reduction in greenhouse gas emission from cycling has been shown to be up to 1.4% 
(Keall et al., 2018; Mizdrak et al., 2019).  

One of the concerns for advocating the public to switch to cycling is that cycling may increase air 
pollution exposure for the cyclist. For global urban average PM2.5 levels of 22 μg/m3, the physical 
activity benefits far outweigh the harms from PM2.5 exposures (Tainio et al., 2016). At PM2.5 levels 
of 100 μg/m3, the harms of air pollution exposure begin to outweigh the benefits from physical 
activity after 1 hour and 30 minutes of bicycle travel (Tainio et al., 2016). At the time of writing 
this report, the San Francisco Bay Area air quality exceeds thresholds for State and federal 
particulate matter air quality standards, and State air quality standards for ozone (San Francisco 
Planning Department, 2022). Pollution is not uniform throughout the SF Bay Area, with recent 
research conducted in Oakland using hyperlocal air monitoring showing that variation in air 
quality exists within a city, and even within a neighborhood (Southerland et al., 2021). More 
information about air pollution in West Oakland can be found in section 3.1. Local air pollution 
issues and the potential for harmful exposures to cargo cycle operators needs to be taken into 
account when weighing the public health benefit of cargo cycling. 

There is a perception that cycling is dangerous and exposes the cyclist to risk of injuries and 
fatalities. Pucher and Buehler (2008) argue that as bike use increases, injuries decrease because 
infrastructure development that accommodates increased demand enhances safety. Research 
comparing injury data from California, USA, the Netherlands, and Great Britain showed a “safety 
in numbers” effect, where a greater number of people walking and cycling decreases the risk of 
getting in an accident with a motor vehicles (Jacobsen, 2015). In other research, an analysis 
conducted in the San Francisco Bay Area, CA, USA investigated the factors contributing to the 
racial/ethnic differences in risk of being in a bike accident. Taking into account traffic levels and 
bicycle infrastructure, cyclists in communities of color are more likely to be in an accident, with 
Black cyclists at the most risk on a per-capita and per-distance basis (Barajas, 2018). Studies in the 
Netherlands examined the rise of bike use by 25% between 1980 and 1996 and tracked the 50% 
reduction in bike fatalities and injuries in the same period (Fishman et al., 2015). Fishman et al. 
argue that existence of sufficient bike infrastructure and policies are critical to promoting safety 
(2015).  
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Research conducted in the San Francisco Bay Area took into consideration the health impact and 
the greenhouse gas emissions impact of active transportation modes such as walking and bicycling. 
With just moderate increases in walking and biking, cardiovascular disease and diabetes rates 
decreased, greenhouse gas emissions decreased, but traffic injuries increased. The study concluded 
that an overall improvement in population health could result from increased physical activity from 
active transport, but measures to minimize pedestrian and bicycle safety would have to be 
implemented (Maizlish et al., 2013).  

2.2 Sustainable Economic, Social, and Environmental Development, and Street 
Design and Operations  

When we consider the adverse health impacts of air pollution, it is clear there are enormous impacts 
on the economy. Economic impacts are estimated at billions of dollars of increased medical costs, 
loss of work productivity, illnesses, crop damage, damaged soil, threatened forests, polluted lakes 
and rivers, and lower agricultural and commercial forest yields (Narain & Sall, 2016). 

Urban design has always been shaped by two competing value systems: an economic model and 
the livable cities model (Lennard, 2019). The economic model prioritizes the city’s role in fueling 
economic growth and wealth. The livable cities model centers the critical concepts of community 
wellbeing, social life, community connectedness, physical and mental health, civic engagement, 
and sustainability. The livable cities model emphasizes quality of life and encourages the design of 
cities that are walkable, bikeable, and accessible through public transportation. Policies and 
programs that pursue sustainable livable cities include improving the biophysical environment, 
climate protection and adaptation to reduce air pollution, land use regulations, energy efficiency, 
bicycle ridership, expandable public transportation access, and open space. Implementation of such 
policies call for political commitment, partnerships-based approaches, and collaborative 
governance. 
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Figure 2. Economic Model Versus Livable Cities Model 

Economic Model 

• Cities are economic engines that fuel economic 
development 

• Movement of people, goods and services are of 
paramount importance 

• Priorities are given to motorized transportation and 
development 

• Programs and policies prioritize the needs of 
businesses and development 

Livable Cities Model 

• Cities must provide quality of life to its inhabitants 

• City design must provide access and opportunities 
for residents to have physical, emotional, mental 
and social health 

• City design must provide safe facilities that reduce 
risk of injuries and fatalities and provide 
opportunities for residents to be physically active, 
connect with other city residents, civically engage 
with community organization, safely access options 
of walking, biking, public transportation and 
recreational activities 

 

The idea of livable cities is simple: quality of life matters. Prioritizing quality of life and residents’ 
wellbeing mandate that city designs take into consideration users’ safety, the availability of a range 
of multimodal transportation options, the ability to access recreational opportunities, employment, 
and educational institutions, and the ability to acquire goods and services easily. Quality of life is 
also improved when city dwellers can socialize with their neighbors and engage in community 
affairs. Such engagement strengthens community organization, guards against social isolation, 
increases social capital, and makes communities more sustainable and more resilient. Equity is a 
value rooted in the concept of livable cities. Equity considerations mandate that all people—
regardless of age, ability, or mode of transportation—must be able to have the same access to 
opportunities, goods, and services. Economic activities are expected to flourish as residents have 
easier access to schools, work, parks, retail shops, and services. People become healthier as they 
decrease their dependency on private, motorized modes of transportation and use walking, biking, 
and public transportation, which require higher levels of physical activity. Residents reduce their 
expenditure on transportation as they rely less on private vehicles and the air becomes cleaner as 
fewer cars are operating on roadways, reducing emissions. Congestion in the city is alleviated as 
people walk, bike, or increase the use of high-occupancy transit vehicles. 

The concept of complete streets emerged to capture the ideal of the livable city where there is an 
emphasis on (a) building/modifying the transportation sector’s operational and physical 
infrastructure to make non-motorized and transit travel more accessible, safer, and more 
convenient than motorized private travel modes, (b) educating the public on the benefits of the 
modified infrastructure and encouraging its use, (c) enforcing the laws and regulations so that all 
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users are safe using the new or modified infrastructure, and (d) evaluating strategies used to ensure 
their effectiveness (Mid Ohio Regional Planning Commission, 2012). 

Complete streets ushered in a new paradigm that focused on designing infrastructure that meet 
the needs of all users for accessible, sustainable, and connected communities as well as creating 
complete streets designed to serve those needs in a holistic manner. The concept of complete 
streets captures the idea of streets that are designed, used, and operated to enable safe access to 
streets for all traffic such that pedestrians, bicycles, motorists, and public transportation users of 
all ages and abilities are able to safely move through the transportation network. 

The National Complete Streets Coalition defines complete streets as streets that are designed and 
operated to enable safe access for all users (Smart Growth America). The American Planning 
Association’s definition of complete streets is to “serve everyone -- pedestrians, bicyclists, transit 
riders, and drivers -- and consider the needs of people with disabilities, older people, and children. 
The complete streets approach seeks to change the way transportation agencies and communities 
approach every street project and ensure safety, convenience, and accessibility for all” (McCann, 
2010). The United States Department of Transportation Policy Statement on Bicycle and 
Pedestrian Transportation Accommodations Regulations and Recommendations (US DOT 
Policy Statement) supports “fully integrated active transportation networks,” including 
accommodations for bicyclists and pedestrians. The US DOT Policy Statement encourages all 
transportation agencies and local governments to adopt similar policies to ensure all users of streets, 
roads, and highways are taken into consideration when developing new or retrofitting existing 
transportation systems. Pedestrians, bicyclists, motorists, and transit riders of all ages and abilities 
must be able to safely move along and across a complete street (Federal Highway Administration, 
2010). 

Complete streets lead to: a more vibrant local economy since walkers and bikers shop more and 
spend more in the local economy; safer communities with lower risk of injuries and fatalities from 
accidents and crashes; more equitable access to physical activities for underserved communities; 
and a balanced transportation system with varied options for mobility (New York State 
Department of Transportation, 2022)  

Complete streets are policies that promote accessible, safe, and comfortable streets for all users, 
especially the most vulnerable. These policies strive to provide continuity in designing streets for 
all users and are integrated within local and state-level plans. Creating complete streets means 
transportation agencies must change their orientation from building primarily for cars to 
considering the broad set of street users. Instituting a complete streets policy ensures that 
transportation agencies routinely design and operate the entire right of way to enable safe access 
for all users. The key principles of complete streets are: facility connectivity, context sensitivity, 
comfort, safety, promoting traffic mobility for all users, efficiency, reliability, and the creation of a 
multi-modal transportation network that considers the needs of all users (New York City 
Department of Transportation, 2021). 
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Urban development that does not take into consideration the needs of non-automobile users can 
discourage active transportation, create safety risks for active transportation users, and possibly lead 
to longer trips. “Smart growth” is a term coined to convey the need for deliberate planning to 
facilitate the greater use of active travel modes through providing shorter journeys, greener 
landscaping, and overall more pleasant, safer, and more attractive and convenient environments 
for these modes (Smart Growth America). 

Figure 3. A Human-Centric Model of Urban Development 

 
The mixing of travel modes, from active transportation to heavy freight trucks, is a key challenge 
to urban street operations and street design. Differences in vulnerability of users, maneuverability, 
weight, and visibility create significant difficulties. Planning strategies to address these concerns 
include separating travel modes (for example, through separated bicycle lanes), prioritizing or 
prohibiting routes for a given mode (for example, no-truck-traffic streets), and designing facilities 
with increased visibility and lower speeds.  

However, the challenges of street design and operations solutions to address street-level conflicts 
are magnified by the complexity of freight operations, especially for last mile operations in 
consolidated parts of cities. Conditions in these locations are usually chaotic because of the lack of 
streamlining between freight carriers and receivers (Aljohani and Thompson, 2020). In addition, 
a lack of sufficient parking for loading and unloading often results in double parking, or circulation 
to find parking, thereby increasing fuel cost, emissions, and congestion. 

 

 



M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E 16 

2.3 Cargo Cycles as Sustainable and Smart Alternatives to Motorized Trucks 

Cargo cycle schemes are a sustainable mode of transport in dense urban last miles. Cargo cycles 
use human- or electric-powered pedals as opposed to fossil-fuel-powered vehicles to transport 
goods from one point to another. In contrast with large trucks, cargo cycles have a smaller footprint 
and occupy less space as they operate or park in congested urban areas. They produce zero 
emissions and therefore do not contribute to air pollution, but instead they advance air quality and 
sustainability goals. They are consistent with the objectives of making cities healthier and more 
livable and making streets complete for all users (Orchard and Cluzel, 2018). 

Cargo cycles are slower than motorized trucks, which increases the safety of pedestrians and other 
vulnerable city dwellers. In addition, cargo cycles operate quietly, since they do not have the 
motorized engines and unloading equipment of freight trucks, thus contributing to quality of life 
for city residents (Orchard and Cluzel, 2018). 

As an active form of transportation, use of cargo cycles has a positive impact on drivers’ health. 
Cargo cycle operators may benefit from a risk reduction for a number of diseases linked to 
insufficient physical activity such as cardiovascular disease, diabetes, dementia, breast cancer, and 
colon cancer (Vuori, 2007).  

The use of cargo cycles is also associated with decreased journey time and savings of fuel costs and 
parking fees for business. Cargo cycle use was found to be 2.5-50% faster than vans. Shorter and 
more reliable journey times can produce desirable efficiencies and flexibility. Cargo cycles are 
nimbler and can park closer to their destinations because they do not require a large footprint to 
park. Moreover, there is generally positive public perception of these cycles and approval of their 
contributions to lowered emissions and improved air quality. This, in turn, reflects well on 
businesses that are using environmentally friendly modes of transport (Orchard and Cluzel, 
2018). 

Using cargo cycles as an alternative to motorized freight trucks is an evolving field that holds great 
promise (Orchard and Cluzel, 2018). For the most part, this field is still in its infancy. 
Limited wide scale adoption of cargo cycle schemes as an alternative to motorized trucks is 
attributed to a lack of awareness and recognition of the potential of cargo cycle use. 

Despite the benefits of using cargo cycles, there are several challenges that can hinder large-
scale uptake and scaling up of these modes of transportation, including the following challenges: 

• It is difficult to maintain economies of scale for this mode.

• There is a need to establish a local depot where cargo cycles can load and reload. The
existence of such a facility is often a cost-prohibitive option especially in urban areas where
space is at a premium. This may add to the overall costs of using cargo cycles for business
and/or consumers.
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• Operational cost may increase when considering parking and storing facilities for cargo 
cycles on city streets. On-street secure parking may not be an option in many urban areas. 

• The cargo cycle industry is still small which makes contracting at a large scale (locally or 
nationally) not a feasible option. 

• Labor safety is a concern. Mixing bicycles with motorized vehicles poses a high-level of 
risk for cycle users and pedestrians.  

• Complying with often unclear regulations is a challenge that faces cargo cycle use. 

• There are limitations to carrying capacity and distance (even with electric assist cycles). 
Electric assist vehicles, of course, provide for longer distance and larger capacity than 
human-powered vehicles, and they can allow cargo cycle operators to draw on a large pool 
of employees regardless of physical fitness. They can also enable drivers to access hilly 
terrains.  

Schliwa et al. (2015) called attention to physical interventions needed to address cargo cycle needs 
including bike infrastructure, driving and parking restrictions, and consolidation centers. They also 
called for non-physical interventions such as awareness campaigns and incentive programs 
including incentivizing private logistics companies  

2.4. Cargo Cycle: Empirical Evidence  

2.4.1 Cost Savings and Efficiency 

Studies in the Netherlands estimated cost savings of $575,000 annually as a result of using cargo 
cycles in place of motorized vehicles. (BBC Autos, 2014). The study also showed that use of cargo 
cycles is associated with a decrease of 152 metric tons of CO2 in one year (BBC Autos, 2014). 
Cargo cycles were found to be more cost-effective than their motorized counterparts in dense areas 
of the city and when used for short-distance deliveries (Jorna et al., 2013). 

Koning and Conway (2016) estimate savings of 0.8-1.69 million Euros (approximately 0.94-1.99 
million USD) from 2001-2014 in CO2 emissions at the local level from a shift to cargo cycle in 
the last mile. Similarly, Melo and Baptista (2017) suggest that cargo cycles can be integrated into 
local last mile solutions as a cost-efficient strategy. Examining the context of Porto, Portugal, they 
found that replacing 10% of trips that are 2 km and that occur between 8:30-9:30 am would result 
in reduction in delays, savings in energy consumption, and decrease in CO2 emissions of 250 kg 
in a 10% replacement scenario and 746 kg in a 100% replacement scenario. Simulation studies in 
Portland, Oregon, show that cycle logistical schemes by the company B-Line, which uses micro 
depots in the city center and replaces vans with cargo cycles, can be viable and cost-effective (BBC 
Autos, 2014). Similarly, simulation studies in Central Grenoble, France, of cargo bikes that used 
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consolidation centers located outside the city were associated with 55% saving in motorized miles 
travelled and faster deliveries when sufficient storage at the consolidation center was available.  

Choubassi et al. (2016) conducted an economic feasibility study in Austin, Texas, and discovered 
that electric cargo cycles are more effective than other modes of urban mail delivery in dense urban 
areas. Fishman et al. (2015) quantified the economic health benefits of cycling and estimated such 
benefits to be 19 billion Euros per year (approximately 20.5 billion US dollars), 3% of the Dutch 
domestic product between 2010 and 2013. Fishman et al. (2015) estimated that cycling saves 6,500 
deaths annually and adds half a year to human life in the Netherlands. They posit that there is a 
high-cost benefit return on investing in bike infrastructure in the Netherlands and promoting 
cycling. This finding implies that under certain conditions and in specific enabling contexts, cargo 
cycles can help municipalities reap similar benefits. 

2.4.2 Reduction of Air Pollution 

Schliwa et al. (2015) posit that cargo cycles provide a sustainable alternative to trucks in urban 
areas. Human-powered cycles have zero emission and can transport lighter goods in urban centers. 
Conway et al. (2011) note that the use of cargo cycles reduces social externalities and can replace 
freight in an attempt to decrease traffic congestion and reap environmental benefits. 

In 2020, DOT piloted a cargo cycle initiative in New York City which, in January 2021, recorded 
a 109% increase in deliveries -approximately 45,000 cargo cycle deliveries - and a doubling of 
commercial participants as well as an expansion in geographic coverage. Cargo cycles replaced 
motorized trucks and led to a reduction of 7 tons of CO2 per year per bike or 100 planted trees 
and 15,436 passenger car miles (New York City Department of Transportation, 2021).  

Melo and Baptista (2017) posit that electric cargo bikes can yield environmental and social benefits 
and positively affect traffic performance; however, key stakeholders’ buy-in is critical to 
implementation feasibility. 

Use of micro distribution depots was found to be associated with various benefits and positive 
impacts. Gnewt Cargo in London, England, is a company that conducts local deliveries for 
Hermes and other large companies. Data show that there was a reduction of 81% of diesel mileage, 
88% of fuel use, and 52% of distance travelled per parcel by replacing Hermes’ vans with Gnewt 
vehicles (Cairns and Sloman, 2019). A reduction of 45 tons of CO2 was estimated when electric 
vehicles were used for last mile deliveries from a micro depot operated by DPD company in 
London (Cairns and Sloman, 2019). DHL’s pilot in Frankfurt, Germany, and Utrecht, 
Netherlands, replaced traditional vehicles for last mile deliveries with an estimated savings of 16 
tons of CO2 (Cairns and Sloman, 2019) In Hamburg, Germany, UPS vehicles cover 70% of the 
city center and carry 500-600 packages per day in last mile deliveries from micro depots, with cargo 
cycle delivery resulting in reduced fuel costs (Cairns and Sloman, 2019). Savings of 65 kg NOx, 8 
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kg PM10, and 56 tons CO2 were reported by DPD/GLS, a delivery service company, use of bikes 
in a pilot conducted in Nuremburg, Germany, in 2016 (Cairns and Sloman, 2019).  

2.4.3 Comparison of Human, Electric, and Fossil-Fuel-Powered Vehicles 

Studies have examined the sole use of e-cargo bikes with no access to micro consolidation centers. 
In London, England, in 2018, a study of Sainsburys and e-cargobikes.com found that e-cargo 
bikes were able to fulfill 97% of online orders from one store, delivering 100 orders a day, and the 
study reported reductions in route length, travel time, and parking time. Cargo bikes were proven 
to be faster and found to reduce emissions by 75% (2,171 kg) in a study of a local butcher store in 
Greenwich that substituted 95% of local deliveries under 5 km with cargo bikes. Cargo cycle 
operators have reported feeling more physically fit from riding bicycles for work, and studies of 
operators have recorded them burning excess calories from their active workday (Cairns and 
Sloman, 2019). 

Choubassi et al. (2016) conducted a case study of U.S. postal offices that compared the costs of 
electric assist pedaled bikes, which is a pedal bike with an electric motor, with e-bikes, and e-trikes 
in three locations in Austin, Texas. They concluded that electric assist pedal bicycles provide the 
most cost-effective mode of last mile delivery in congested central business districts (CBDs). E-
bikes were found to be most cost-effective in areas where there is highest population density and 
where a distribution depot is present within the delivery area. They also found that as deliveries 
increase, cost decreases. Melo and Baptista (2017) argue that cargo cycles schemes are appropriate 
for use in specific areas of the city with distances close to 2 km. Ren et al. (2019) report that electric 
vehicles show significant benefits in reducing carbon emissions. 

Sheth et al. (2019) compared electric assist cargo bicycles with delivery trucks that have the same 
delivery route and delivery characteristics in Seattle to determine the conditions under which 
electric assist cargo bicycles would be more cost-effective than delivery trucks (Sheth et al., 2019). 
The chosen routes were observed and modelled using electric assist cargo bicycles. The study shows 
that electric assist cargo bicycles are more cost-effective under the following conditions: in the 
business district center; with a high density of residential and non-residential units; and under 
conditions of low delivery volumes for each stop. Trucks are more cost-effective when deliveries 
are far from the business district and require large-volume deliveries for each stop.  

A study examined the possibility of shifting to cargo cycles in German cities by providing courier 
companies with a fleet of 40 electric cargo bicycles (E-CB). Findings show that 42% of deliveries 
carried out by courier companies, or 19% of mileage in Berlin, can be conducted with cargo cycles 
instead of motorized freight vehicles (Gruber and Kihm, 2015). The study also found that 72% of 
bike couriers were not fully informed about E-CBs but were willing to use them. Research 
indicates that cargo cycles with electric assist can replace up to 85% of car trips made by courier 
services (De Decker, 2012). 
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Using an agent-based simulation, Fikar et al. (2018) conclude that a mixed-mode fleet with 
different types of vehicles and different technologic (diesel and electric) can lead to cost-effective 
deliveries in the last mile. Similarly, Aljohani and Thompson (2018) reveal that when consolidated 
deliveries are carried out using electric bikes, delivery vans, and cargo bikes, they have the best 
chance of receiving the approval of all stakeholders as well as delivering the most contribution in 
noise, emissions, and traffic congestion reductions. 

Conway (2015) studied the use of cargo cycles instead of motorized trucks in New York City. She 
posits that bike speed was similar to motor vehicle speeds in areas of high density, but speed is 
affected by trip distance, load, and urgency. Cycles were associated with travel time reliability and 
low levels of delays due to frequent stops. Reduction in emissions and space needs were variable 
and shaped by logistics. They were highest in severely congested conditions. Gruber and 
Narayanan (2019) compared real-life trip data to examine cargo cycles’ travel time as compared to 
conventional vehicles introduced in commercial trips. They conclude that cargo cycles have lower 
travel times that ranged from 5-40 minutes, an average of 6 minutes faster. 

2.4.4 Incentivizing Cargo Cycles 

Choubassi et al. (2016) suggest that policies that incentivize cargo cycles and improve its 
infrastructure as well as discouraging the use of motorized trucks would help leverage the benefits 
of cargo cycles including quality of life, livability, safety, congestion alleviation, and reduction in 
noise and emissions. Shifts to cargo cycles urban deliveries provide mutual benefits for both public 
and private sectors. Effective implementation of cargo cycle schemes is dependent on the public 
provision of dedicated bike lanes and consolidation centers in urban areas (Choubassi et al., 2016). 

2.4.5 Need for Transfer Hubs 

First and last mile services require that cargo cycles have a transfer hub. The main function of a 
transfer hub is to unload cargo from trucks and load items onto cargo cycles. The transfer hubs are 
different from, but often operated within, distribution centers or consolidation centers. 
Distribution centers and micro-distribution centers are usually operated by large businesses as key 
nodes in their distribution chains, serving the purpose of temporary storage and inventory 
management. The consolidation center can be a permanent or temporary facility and is usually 
operated by third-party companies that function under contract from multiple businesses. An 
urban consolidation center is a facility that groups deliveries to receivers to advance the efficiency 
goals of reducing the numbers of freight vehicles and increasing reliability. In Belgium, large-scale 
urban consolidation centers achieved a 22% reduction in VMT and 36% decrease in consumption 
of fuel (Aljohani and Thompson, 2016). In Britain, consolidation centers achieved reductions of 
75% of VMT, 89 tons of CO2, and 1,000 kg of NOx emissions (Aljohani and Thompson, 2016). 
The success of these consolidation centers, however, is not always guaranteed. Their success is 
closely tied to the ability to select the most appropriate consolidated delivery fleet in terms of types, 
mix, and technology as well as assessment of location (Schliwa et al., 2015).  
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The implementation of cargo cycles does not necessarily need distribution or consolidation centers 
if it is limited to local point to point cycle services. Examples of local point to point services include 
delivery of groceries, mail, small business logistics, retail, and public sector organizations delivering 
internal mail in the United Kingdom. However, for study areas reliant on trucks for last-leg 
deliveries, integrating mode transferring into the operation of distribution or consolidation center 
can provide effective synergy. Studies find that creating a consolidation center at the edge of the 
service area is a critical best practice for the growth of cargo bike logistics (Schliwa et al., 2015). 
Investigations of the impact of cargo cycles urban consolidation and delivery times underscore the 
importance of consolidation strategies to ensure reliable and timely delivery and emphasize the 
need for sufficient numbers of cycles (Fikar, 2018). 

This study uses the term “transfer hub” to highlight the mode transfer from trucks to cargo cycles 
at the designated facilities. Distribution and consolidation are not required, but they will obviously 
improve the operation efficiency if implemented.  

In summary, empirical evidence suggests that cargo cycle urban deliveries can result in cost savings, 
cost-effectiveness, and reductions in air pollution. Evidence also points to the fact that cargo cycle 
urban delivery schemes can be successful when favorable policies incentivize their operations, when 
consolidation centers are available, and when there is sufficient bike infrastructure that provides 
increased safety and prevents injuries and fatalities.  

2.5 Cargo Cycle Policies, Regulations, and Standards  

Cargo cycles are consistent with and support the sustainable development, smart growth, and 
complete streets concepts that have dominated public policy. They are also supportive of 
community wellbeing and environmentally friendly practices. Cargo cycle use falls under such 
policies and constitutes one of the tools in the toolbox of city planners to advance goals that are at 
the center of these discourses. Some cities have adopted cargo-cycle-specific standards that would 
guarantee that cargo cycles fulfill their promise and would also minimize the challenges they face. 
In other cases, cargo cycles fall under the broad umbrella of bicycle transportation and are subject 
to its regulations.  

In New York City, all cargo cycles are expected to comply with New York State laws and New 
York City laws. The New York City codes and rules mandate the following: 

• Commercial bike users complete a commercial safety course that provides information on 
equipment needed, safety rules, and biking rules in the city. 

• Businesses post commercial bike safety rules in a visible area in multiple languages. 

• Businesses keep a roster of all employed bikers with their name, address, date of 
employment, and date of course completion. 
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• Businesses equip all employees who are hired as commercial bikers with proper gear 
including helmet, business identification card, and reflective apparel with business name 
and number. 

• Businesses equip cycles with an audible device, headlight, functional brakes, wheel 
reflectors, and business signs. 

Rules also mandate that cargo bikes stay in designated bike lanes and refrain from traveling on 
sidewalks or other non-designated biking areas. Failing to comply with city ordinances incurs fines 
by the City Department of Transportation (New York City Department of Transportation). 

2.6 Cargo Cycle Enabling Conditions  

2.6.1 Stakeholder Engagement 

A comparative analysis between motorized trucks is warranted when considering a cargo freight 
scheme. An effective scheme requires engagement with stakeholders to select the most appropriate 
option. Aljohani and Thompson (2018) emphasizes the importance of integrating multiple 
stakeholders’ perspectives in planning and implementing urban freight policies. Aljohani and 
Thompson (2018) point out that it is critical, when selecting delivery configuration, to address the 
objectives of all stakeholders who are engaged in last mile delivery. They propose a multi-
stakeholder participatory decision support framework to implement a balanced approach to 
addressing varied economic, social, and environmental requirements of stakeholders. 

Applying the analysis framework revealed clashing objectives of different stakeholders and offered 
insights into the interests of each stakeholder group. The authors conclude that there is no single 
solution that could address or satisfy all the objectives of various stakeholders.  

Another proposed framework is The Multi Actor Multi Criteria Analysis (MAMCA) framework 
by Aljohani and Thompson (Aljohani & Thompson, 2018). They point to the need for the 
following staged process phases: 

Phase 1: Acquire information on stakeholders’ objectives  

Step 1: Define the problem and the different possible alternatives for delivery configuration. 

Step 2: Identify all stakeholders engaged in last mile delivery. 

Step 3: Convert stakeholders’ objectives to criteria and assign a weight to each criterion to 
determine worth based on stakeholders’ objectives. 

Phase 2: Conduct multifactor analysis of alternatives based on stakeholders’ objectives 
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Step 4: Establish measurable or qualitative indicators to determine scope and measurement scale 
for each criterion. 

Step 5: Apply multi-criteria analysis to evaluate alternatives against decision criteria. 

Step 6: Rank each alternative based on strength and weakness and performance against 
stakeholders’ criteria. 

Step 7: Identify policy recommendations and implementation plan for best alternative. 

Stakeholders identified by Aljohani and Thompson (2018) included logistics service providers, 
receivers, shippers, local authorities, citizens, and logistics property providers. Stakeholders’ 
objectives were varied and included quality of services, cost, reliability, traffic safety, receivers’ 
satisfaction, profitability, product availability, livability, urban accessibility, quality of life, system 
integration, delivery security, multi-modality, delivery load time, traffic safety, and repair and 
maintenance cost (Aljohani & Thompson, 2018) . 

2.6.2 Public Acceptance  

Widespread acceptance of the shift from motorized vehicles to cargo cycles is an enabling factor 
in the diffusion and scaling of cargo cycle use. In the 2015 study of German use of electric cargo 
bikes, Gruber and Narayanan (2019) found that there was widespread willingness among carriers 
to use electric bikes. Others, including Lenz and Riehle (2013) and Schliwa et al. (2015), posit 
that there is a perception that cargo cycles are not a viable mode of transport and there is lack of 
knowledge that the conditions where cargo cycles are not only feasible but also a source of benefits 
to customers and logistic companies.  

Community advocacy plays a role in changing public opinion and bringing about greater awareness 
of cargo cycle benefits. For example, the European Cycle Logistics Federation is a body that 
advances the use of cargo cycles and their use as an alternative to motorized trucks. The association 
supports businesses or social enterprises that use cycles to deliver services. They share knowledge 
on best practices and lobby for more favorable conditions for cycles across the European Union. 
In the United States, there are a number of advocacy and education groups such as Disaster Relief 
Trials, an annual competition where simulations of the role of cargo bikes in disaster and 
emergency scenarios are held. These groups can play an instrumental role in advancing awareness 
and scale-ups of cargo cycle use.  

2.6.3 Public Policies 

Pucher and Buehler (2008) show that policies that incentivize the use of non-motorized transport 
have led to an increase in the share of these transport modes. When cycle policies within the area 
are aligned with local policies, conditions are deemed cycle-friendly. Cairns and Sloman (2019) 
call on the government to set up sustainable freight demonstration towns to show the possibility 
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of shifting from vans and motorized trucks to cargo cycles in certain city conditions. They suggest 
that policies could advance the use of micro depots in urban areas that would serve as distribution 
hubs, setting up information networks for cycle operations, providing dedicated parking for cargo 
bike operations, improving cycle infrastructure, disincentivizing and restricting use of motorized 
trucks in certain areas that could be better served by cargo cycles, and incentivizing cargo cycle use 
by providing resources.  

Incentivizing cargo cycle use has been a common policy utilized by some European countries. 
Subsidies are offered to cargo cycle operators at 200 Euros in France, 1,200 in Oslo, Norway, and 
up to 1,000 Euros in Sweden (Markham, 2017). In the U.S., a program in Portland, Oregon, 
provides electric freight vehicle subsidies, but not for electric bikes (Maus, 2013).  

Parking pricing is another enabling strategy for cargo cycles. When parking pricing for trucks and 
automobiles in the city center is prohibitive, this provides incentives to cycle freight and make it 
more marketable (Lenz and Riehle, 2013). Urban planners should therefore take into 
consideration the potential for cargo bikes to replace trucks and automobiles in the city center by 
addressing the specific demands of this mode of freight delivery (Lenz and Riehle, 2013).  

Examples of traffic restrictions in the city center exist in Cambridge, United Kingdom, where 
motorized traffic is restricted in the city center from 9:00 am to 4:00 pm daily. Similar schemes 
are implemented in a number of other European cities where traffic restrictions are used as a road 
demand management tool. Examples exist in Berlin, Germany; Malmo, Sweden; Stockholm 
Sweden; Paris, France; Milan, Italy, and Mexico City, Mexico. Those schemes include restriction 
criteria such as even and odd number license plate space rationing or congestion pricing 
(Cyclelogistics Federation, 2014; De Buen Kalman, 2021). These policies serve as enabling factors 
since they create a market for cargo cycles.  

Pucher and Buehler posit posit that there is a need for a comprehensive and integrated combination 
of policies and programs to enable cargo cycle use (2008). Cargo-bike-specific parking facilities 
exist in a number of European cities such as Malmo, Sweden. These cargo bike stalls provide safe, 
convenient, affordable, and covered spaces (Copenhagenize Design Co). Bike infrastructure in 
many European countries allow for the sharing of bike lanes by cargo cycles as the lanes provide 
sufficient room for all types of bikes (Pucher and Buehler, 2008). 

2.6.4 Area Characteristics 

Cargo cycles are an alternative to freight trucks under specific circumstances including first- and 
last mile service in dense urban areas and point-to-point services for short-distance deliveries 
(Orchard and Cluzel, 2018). When considering a cycle freight strategy, a freight management plan 
is a critical first step. The first step of the plan should include identifying areas of prime potential 
such as ones where the following conditions exist: 

• High level of deliveries from mail, courier, or parcels. 
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• High concentration of retail business and offices within a 2-3-mile radius. 

• Cargo-friendly mobility issues, street width, and parking availability which provide a 
favorable climate for cargo cycles. 

• Cargo-friendly local rules and regulations that do not restrict use of cargo cycles. 

• At least one transfer hub in the area. 

These favorable conditions for replacement of motorized trucks with cargo cycles can be identified 
through data on land use motor vehicles traffic restrictions, loading restrictions, and other 
challenges facing motorized trucks in parking and unloading, and traffic conditions. Additionally, 
air quality conditions can provide favorable climate for cargo cycles if there are higher levels of 
pollution in the area. Therefore, cargo friendly locations are those where there is a customer base, 
transfer hub, quality of cycle infrastructure and local policies favor cargo cycles over motorized 
trucks. 

Puncher et al. (2008) argues that to enable cargo cycle use, there is a need for bike lanes and paths; 
intersection crossing, traffic education, traffic regulations enforcement, reduction of motor vehicle 
speed limit, traffic calming interventions, land use policies that facilitate compact, mixed 
development, secure bike parking and integration of bike infrastructure with public transit.  

2.7 Decision-Making Framework 

Factors affecting urban logistics include finances, service quality, customer satisfaction, reductions 
in emissions as well as congestion and pollution. Social and environmental objectives often are 
deemed of higher priority than economic objectives.  

Since cargo cycles are not suitable for every situation, planners and policy makers need a decision-
making aid to help determine whether a cargo cycle scheme that would replace motorized vehicles 
is an optimal approach. Orchard et al. (2018) developed a scoring methodology that would help 
planners assess the feasibility of cargo cycle freight schemes and suggest criteria for selecting cycle 
freight based on the following factors: 

• Employment, retail diversity. 

• Micro consolidation potential. 

• Cycle vs. vehicle favorability. 

• Congestion. 

• Presence of business districts and suitable businesses. 
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• Cycle-friendly environment and mode share. 

• Presence of supportive local policies. 

Areas considered for cargo cycle schemes would be scored based on those factors. Highest scores 
are provided to: 

• Areas that are dominated by retail and offices.  

• Spaces that can be used as consolidation centers that exist in the business center.  

• Restrictions on motor vehicles. 

• Cycle routes.  

• High levels of traffic congestion and delays of more than half a minute per mile.  

• Mix of business-cycle networks.  

• Local policies mandating low emissions and sustainability. 

Metrics of success that can be used to assess effectiveness of a cargo cycle freight scheme include: 

• Number of businesses using cargo cycles instead of motorized trucks. 

• Number of motorized vehicles trips replaced by cargo cycles. 

• Cost saving from replacing motorized trucks with cargo cycles. 

• Effects on congestion and traffic flows in the post-replacement scenario compared to the 
pre-replacement scenario. 

• Extent of emissions and pollutants that were avoided. 

Criteria for the assessment of cargo cycle schemes help planners and policy makers make informed 
decisions that take into consideration the favorable conditions that lend themselves to making the 
cargo shift.  

2.8 Use of Cargo Cycles 

Several case studies of cargo cycle use have been documented around the world, initiated by the 
government, the private sector, and public-private partnerships. While use outside of Europe is 
limited, several U.S. cities have implemented cargo cycles, mostly through private initiatives, either 
as first or last mile alternatives to trucks. In New York City, for example, Revolution Rickshaw 
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uses 10 cycles to make 50-60 deliveries per day for green businesses and organic restaurants. 
Zipments is another cargo cycle company that serves as a broker, coordinating activity for 
independent cycle couriers. The New York City government, in partnership with the economic 
development corporation and private funding sources, provided Zipments with a grant to facilitate 
its operations. Cargo cycle operations exist in a number of cities including Berkeley, Portland, 
Philadelphia, Boston, and Alexandria (Conway, 2011). Initiatives also exist in Denver, Chicago, 
and Austin (BBC Autos, 2014). 

In Europe, there are numerous examples of cargo cycle projects. Cyclelogistics (2011) reports that 
Germany and the Netherlands are leaders in the field of cargo cycle use. The city of Bremen offered 
cargo cycles to firms for free for a period of four weeks to encourage the use of this mode in the 
hopes of reducing emissions and meeting pollution reduction goals. The city invested 100,000 
Euros in the campaign and rented out 38 bikes free of charge. DHL conducted a pilot study of 
cargo cycles in Germany and the Netherlands. They studied the replacement of motorized delivery 
vehicles with cargo cycles in inner-city deliveries to advance the goal of carbon-neutral operations. 
The pilot led to the replacement of 60% of inner-city vehicles with cargo cycles in more than 80 
European countries. 

In the city of Cambridge, United Kingdom, Outspoken operates a fleet of cargo delivery cycles 
that carry 300 items every day from a consolidation center outside the city to areas where motorized 
vehicles are prohibited from entering (European Cycle Logistics Federation, 2015). Trains often 
replace consolidation centers in carrying goods to the city, where they are transported to their 
destinations using cargo cycles. Municipalities in Copenhagen utilize cargo cycles to transfer 
documents, collect public waste, clean streets, landscape, and remove graffiti. Twenty bikes are 
used to conduct street cleaning and maintenance, making the contributions to reducing noise, 
providing awareness about the use of this alternative mode of cargo transport, and alleviating 
emissions from motorized vehicles (European Cycle Logistics Federation, 2015). 

In France, cargo cycles transport up to 180 kg of goods per bike and travel 10-15 km per day, 
serving a number of retail and grocery stores (Fondation Solidarite, 2015). In Spain, cargo cycles 
are used by the taxi industry and in freight transport. A natural advantage exists for these modes 
of transport in historical areas where narrow streets make it difficult for large vehicles to travel 
(Cyclelogistics Federation, 2014). Marketing and advertisements on the sides of the cargo cycles 
provide added revenues to cyclists (E-Commerce News Europe, 2017). 

Several European cities in Austria, Belgium, France, Germany, the Netherlands, Switzerland, and 
the United Kingdom have bike share programs (McCartney, 2016). The programs encourage the 
public to use cycles for several trips by allowing people to rent or borrow the bikes when needed. 
The bikes are conveniently accessed and affordable. For example, consider the Transportrad 
Initiative Nachhaltiger Kommunen. The project tested the provision of 60 cargo cycles for rent in 
two German towns to assess cost and accessibility. Some programs provide bike shares based on 
voluntary contributions and not fixed fees such as the Lastenradkollektif in Vienna, Austria, and 



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  28 

Kasimir in Cologne, Germany. In Ghent, Belgium, cargo cycle programs are provided as part of a 
multimodal strategy. A fixed monthly fee and hourly rates are used to fund the program. The 
objective of these programs is to provide accessible, conveniently located, and affordable 
alternatives to motorized vehicles. Several businesses such as Domino’s Pizza in the Netherlands, 
Whole Foods in the United States, IKEA in Denmark and Sweden, and United Parcel Service 
(UPS) worldwide, have been using cargo cycles for marketing and transport (My Amsterdam Bike, 
2016). 

There are numerous examples of cargo cycles in many other countries. Cargo cycles are used as a 
mode of transportation for freight and passengers. Morris (2008) studied the use of cargo cycles in 
Kampala, Uganda, as a form of transportation for goods and people. Utz and Currie (2008) showed 
that the use of cargo cycle in Rwanda improved quality of life, speed, safety and efficiency (Utz 
and Currie, 2008). Quijano (2011) documented the widespread use of cargo cycles in China for 
transporting goods, garbage, and people (Quijano, 2011). Similarly, in Nepal, cargo cycles are used 
for delivering packages and gasoline, selling goods such as food and snacks, and transporting 
people (Bikes, 2022). Sadhu, Tiwari, and Jain (2014) also documented the use of cargo cycles in 
India, where use extends to transporting construction materials, retail business delivery, and 
industrial activities. Also, in Lebanon, cargo cycles are used by food vendors and for delivery of 
various kinds of goods and services (Deghri, 2015). In Chile and Bolivia, Lipigas (2015) and 
Rough Guides Ltd. (2015) recorded the use of cargo cycles for transporting goods and people 
(Lipigas, 2015; Rough Guides Ltd, 2015). 

In summary, prior research on cargo bicycles has shown it is a promising technology for last mile 
freight delivery in particular urban contexts. Cargo cycles can create environmental, health, and 
transportation benefits for the user and the community. Critical success factors include local 
support policies, a freight demand mix suitable for cargo bikes, a cycle-friendly environment, local 
community support and participation, and freight consolidation centers that enable the transfer of 
freight to and from cargo cycles. In addition, pedal-assisted cargo bicycles and e-cargo bicycles are 
becoming increasingly popular as a way to manage situations where additional power might be 
needed (e.g., slight grades, a heavier-than-usual load). 

Despite the promise of cargo bicycles, our review revealed that stakeholders’ engagement is critical 
to harnessing the potential of cargo cycle in last mile delivery. Enabling conditions and favorable 
policies are also needed to successfully shift operations from motorized trucks to cargo cycles. 
However, local context also matters. Hence, a study of cargo cycles requires centering one’s focus 
on the local context, understanding both the opportunities and the barriers that may exist for cargo 
bicycles. 
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 The Environmental Burden Faced by the West 
Oakland Community 

Chapter 3 provides a brief overview of the disproportionate environmental burdens faced by the 
West Oakland community as a result of transportation related air pollution and noise pollution. 
Information included are West Oakland’s community efforts to reduce diesel pollution through 
the AB617 legislation, local air pollution monitoring efforts and their potential to aid harm 
reduction activities, and the challenges in trying to mitigate past transportation planning decisions.  

3.1 Air Pollution in West Oakland  

Figure 4. Map of West Oakland 
 

 
 

West Oakland, one of the communities most impacted by air pollution in California, is bounded 
by the I-580, I-880, and I-980 freeways, the Maritime Port of Oakland, and the Union Pacific 
Railroad Yard. It is 6.5 square miles, with a population of 45,000 residents (City Data, 2019). This 
neighborhood faces high rates of asthma and other cardiovascular health issues due to diesel 
exhaust from trucks and the high traffic that passes through this neighborhood. The West Oakland 
community is disproportionately affected by air pollution, leading residents of this community to 
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have worse health outcomes than residents of other nearby municipalities. This disproportionate 
burden of environmental hazards experienced by West Oakland residents is evidence of 
environmental racism, whereby development decisions about freeway placement, industrialization, 
and preservation of greenspace, are grounded in racial bias. Communities of color, such as West 
Oakland, are disproportionately affected by environmental justice issues.  

The importance of improving air quality in West Oakland is recognized by the selection of West 
Oakland as a first-year priority community for AB617. AB617 is a California state bill that requires 
the California Air Resources Board (CARB) and local air districts develop plans on how to 
mitigate air emissions in disproportionately affected communities. From this legislation grew the 
Community Air Protection Program, a program with the goal of reducing emissions through 
community-based efforts. In West Oakland, the Bay Area Air Quality Management District 
(BAAQMD), the local air district of the San Francisco Bay Area, worked with the West Oakland 
Environmental Indicators Project (WOEIP) and a community-based steering committee to 
develop the West Oakland Community Action Plan (WOCAP) entitled “Owning Our 
Air.”(BAAQMD and WOEIP, 2019) The WOCAP identifies ways to improve local air quality 
by reducing toxic air contaminants and criteria pollutants by developing Community Air 
Monitoring Plans (CAMPs) and Community Emissions Reduction Programs (CERPs) (MacIver, 
2019). The main goal of the WOCAP plan is to “protect and improve community health by 
reducing disparities in exposure to local air pollution (BAAQMD and WOEIP, 2019).” The 
AB617 legislation and the WOCAP also serve as an institutionalized model of putting planning 
and decision-making power into the hands of both community members and governmental 
agencies (MacIver et al., 2022). The WOCAP was adopted by the BAAQMD in October 2019, 
and the CARB adopted it in December 2019. Details of the WOCAP and committee proceedings 
are publicly available (BAAQMD and WOEIP, 2019). 

The selection of West Oakland as an AB617 community is based upon research about the 
disproportionate air pollution and health effects experienced in this neighborhood. Exposure to 
poor air quality from tailpipe pollution—more specifically, diesel exhaust from trucks—is related 
to the high rates of asthma prevalent in East and West Oakland (Gonzalez et al., 2011). Diesel 
exhaust has also been attributed to causing 1,200 excess cancer deaths per million in West Oakland 
residents (California Air Resources Board, 2008). Diesel exhaust contains “ultrafine particles,” 
which are nanosize particles that are smaller than other PM such as PM2.5 and PM10 that are 
regulated. This particle size makes diesel exhaust dangerous for human health because particles 
this small are not naturally cleared by the body’s defense systems, allowing these ultrafine particles 
to deposit deeply in the lungs and even enter circulation (Gonzalez et al., 2011). When 
communities are exposed to this diesel exhaust, their chance of developing asthma and being 
hospitalized also increases. This was observed through the high rates of asthma hospitalizations in 
Oakland, higher than any other city in Alameda County (Alameda County Department of Public 
Health, 2014), and in East and part of West Oakland neighborhoods, in particular (Alameda 
County, 2016). Also, Alameda County data show that asthma hospitalization for African 
Americans (all ages) is four to six times higher than for any other racial/ethnic group, and 
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childhood asthma rates for African Americans is three to five times higher than for other 
racial/ethnic groups (Alameda County Department of Public Health, 2014).  

The impacts of exposure to TRAP on mortality rates in West Oakland has been examined before. 
The increase in cancer-related mortality from exposure to PM2.5 was projected by the Waterfront 
Ballpark District at Howard Terminal Draft Environmental Impact Report, a report required for 
a re-development project in West Oakland, using a WOCAP modeling approach for different 
pollution sources. This report shows that the number of excess deaths from the cumulative 
contributions of highway sources (trucks and vehicles driving on highways), other sources (ferry 
and truck-related businesses), and streets (trucks and vehicles on driving local roadways) would be 
26.1 excess lifetime cancer risks per million (City of Oakland, 2021). Excess lifetime cancer risks 
are the risk of dying of cancer above the background risk.  

Research has shown that exposure to tailpipe air pollution can vary between neighborhoods in the 
same city, and, furthermore, block-by-block within a neighborhood. Looking at air pollution in 
this smaller scale, at the neighborhood level, is considered “hyperlocal.” Methods to develop 
hyperlocal mobile air monitoring and evaluate its utility have been explored in West Oakland. 
Caubel et al. utilized a dense network of black carbon (BC) sensors and showed spatio-temporal 
variation in pollution levels within the community (Caubel et al., 2019). Other researchers used 
data collected by Google Street View cars to measure NO, NO2, and BC. Apte et al. discovered 
that although air pollution patterns are stable, the spatial variation of the pollution patterns can be 
starkly different from area to area (Apte et al., 2017). Messier et al.’s research study concluded that 
using Street View car mobile monitoring with multiple recordings of street segments can more 
accurately measure air pollution at a hyperlocal level vs. using a technique called land used 
regression modeling (LUR) that predicts air pollution concentrations from a statistical model that 
utilizes just a sub-sample of this data (Messier et al., 2018). Adding additional data points to a 
LUR model can improve the power to predict local-level air pollution. Collecting street-level 
pollution data with Street View Cars may not always be feasible, is time-intensive, and resource-
intensive. When only minimal data are available, a LUR model could create a general map of air 
pollution in a neighborhood (Messier et al., 2018). 

In terms of health effects, a recent study that mapped tailpipe air pollution with Google Street 
View cars in the East, West, and Downtown Oakland neighborhoods found that localized 
differences in exposure to traffic related air pollutants (TRAP) (Alexeef et al., 2018). Long-term 
exposure to elevated concentrations of TRAP is correlated with a higher risk of a cardiovascular 
event in older adults (Alexeef et al., 2018).  

Recent research from Southerland et al. also investigated air pollution and the associated health 
effects at a hyperlocal level (2021). This research effort employed two different air pollution 
measurement tools: (1) mobile monitoring data of NO2 and BC measured by Google Street View 
cars, and (2) land-use variable and satellite imagery to create maps of the air pollution status. They 
compared the air pollution distribution information to health information at the census-block-
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group level and the county level. They discovered a substantial variation in health effects 
attributable to air pollution (namely, cardiovascular mortality and hospitalizations, asthma ER 
visits, and all-cause mortality) within a neighborhood. An understanding of the variation in 
baseline health at a local level is necessary to fully interpret this data (Southerland et al., 2021). 
Communities affected by air pollution over multiple generations, as in West Oakland, may have a 
baseline health that is compromised in comparison the rest of the city or county.  

Hyperlocal air pollution monitoring could be utilized for planning cargo cycle routes and 
evaluating the success of cargo cycle implementation programs. Optimal cargo cycle routes could 
be developed to utilize roads with less pollution and less traffic in order to maximize cargo cycle 
operator safety in regards to air pollution health effects and potential accidents with vehicles. The 
routes could be developed using the publicly available air pollution monitoring data provided by 
Aclima (Aclima, 2022). The data at their web-site (https://insights.aclima.io/west-oakland) 
provides historic, block-by-block data from their mobile monitoring systems. In addition, there is 
real-time information from stationary air monitoring. Another way that the hyperlocal air 
pollution monitoring could be useful is as a tool for comparing air pollution patterns before and 
after the implementation of cargo cycle delivery operations could help evaluate the success of 
programs and areas of improvement.  

3.2 Impact of Transportation Efforts on West Oakland  

While it is essential to keep in mind the above air pollution factors, it is also critical to acknowledge 
the various unintended consequences that come with measures that aim to reduce it, including 
transportation projects. An article by Patterson and Harley investigated how freeway rerouting and 
rebuilding affect exposure to traffic-related air pollution and examined how it could have negative 
socioeconomic and demographic changes, known as environmental gentrification, in West 
Oakland (Patterson & Harley, 2019). On the positive side, the rerouting of the Cypress freeway 
to an alternative location and the transition of the original freeway site to a street-level, landscaped 
boulevard (Mandela Parkway) was an example of how the community was able to influence a major 
transportation project. The rerouting of the Cypress freeway that originally bisected West Oakland 
resulted in a reduction in the annual concentrations of NOx and BC along Mandela Parkway 
(Patterson & Harley, 2019). However, the effort to revitalize communities appears to have caused 
environmental gentrification (Patterson & Harley, 2019). This is because these efforts often 
excluded the very community they were intended to help (Patterson & Harley, 2019). 
Environmental gentrification was observed in the form of an increase in property value (180%), 
but a decrease in the Black population in West Oakland (-28%) (Patterson & Harley, 2019). The 
main reason Black residents leave this area is because of the high cost of housing (Patterson & 
Harley, 2019). In order to alleviate this issue, the authors suggest increasing the supply of 
affordable housing (Patterson & Harley, 2019).  
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3.3 Impact of Noise Pollution in West Oakland 

Noise pollution is a hazard to the population of West Oakland. According to the US EPA 
standards, outdoor noise levels should be below 55 dB and indoor noise levels at 45 dB to avoid 
annoyance and activity interference (Environmental Protection Agency, 2016). Reflecting these 
standards, the City of Oakland has a noise standard of 45 dB for indoor settings (City of Oakland, 
2021). Despite this, a majority of West Oakland residents are exposed to noise levels higher than 
60 dB, which increases their risk for cardiovascular disease (City of Oakland, 2018). The main 
sources of ambient noise are vehicle traffic on major roadways, operations at Oakland International 
Airport, and BART. The main sources of traffic noise are the I-880, I-980, and I-580 freeways, 
as well as Mandela Parkway, West Grand Avenue, Market St., 7th St., and 14th St. (City of 
Oakland, 2018). Ambient noise levels along the freeways in West Oakland can reach 80 dB, and 
noise levels along major arterial roads in West Oakland reach 70 dB (City of Oakland, 2021). The 
noise standards in place in the City of Oakland mainly regulate transient noise, such as 
construction noise (City of Oakland, 2018). Possible solutions to mitigate ambient noise from 
traffic include creating barriers or buffers between roadways and residential areas, re-routing traffic 
away from residential areas, and installing sound insulation in homes (City of Oakland, 2005). 

This chapter’s aim was to give a brief overview to the reader about the historic and ongoing 
environmental health challenges that West Oakland specifically faces. Decades of planning choices 
have created a community that has significant air pollution and noise pollution sources, most of 
which are transportation related. The AB617 legislation is an historic opportunity for West 
Oakland community members to work in partnership with government agencies to reduce the 
environmental health burden that residents have faced for generations and to create a more liveable 
neighborhood. New hyperlocal air monitoring strategies tested in West Oakland could be a 
promising way to document progress in pollution reduction on a block-by-block basis. It could 
also provide an opportunity to find the safest routes for cargo cyclists to ride so that they are 
exposed to the lowest levels of air pollution. 
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 Community Data Collection Methods and Results 
This chapter provides information about the efforts to collect community level data from people 
who live and work in the neighborhood of West Oakland or the city of Oakland and from 
observations of traffic patterns and truck behaviors in West Oakland. The results from the 
interviews, focus groups, and field data collection are presented below. 

4.1 Community Data Collection Overview 

To inform our traffic model simulation and policy recommendations, the research team collected 
West Oakland community-level freight activity information and stakeholder perceptions. Data 
were collected using two main methods: interviews (both individual and group) and field 
observations. In addition, community-level data were collected through regular attendance to the 
WOCAP Transit/Walk/Bike subcommittee and WOCAP Steering Committee meetings, and 
through informal email and phone communications. The main goal of the data collection was to 
learn more about the West Oakland freight delivery issues, community priorities regarding freight 
delivery, knowledge of cargo cycles, challenges/barriers to implementing cargo cycle delivery, and 
interest in cargo cycle delivery in the community. The following sections describe the methods 
employed. 

4.1.1 Community-Level Interviews 

The research team collected community-level information through individual interviews and 
group interviews. Before research commenced, the research plan was reviewed and approved by 
the San José State University Human Subjects Institutional Review Board (IRB Protocol Tracking 
Number: 20119).  

4.1.2 Key Stakeholder Interviews 

The first stage of community-level data collection took place through key stakeholder interviews. 
The research team sought key stakeholders with knowledge from their work in non-profit agencies 
and government agencies supporting West Oakland, local bicycle advocates, business owners, 
delivery persons, and West Oakland residents. All interviews were semi-structured, proceeding 
with a set of questions adapted to the particular interviewee. Interviews were conducted through 
the web conferencing tool Zoom, recorded, and transcribed. Key themes were developed from the 
transcriptions. 

The research team collected data from nineteen community members. Descriptions of the 
interviewees’ roles in the community are presented in Table 1.  
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Table 1. Key Stakeholder Interview Descriptions 

Category  Descriptions of Interviewees 

Local government agencies Four government agency employees were interviewed, representing city, 
county, and state agencies. Interviewees were from transportation 
agencies, air districts, and public health departments.  

Local non-profits Two local non-profit employees were interviewed, representing West 
Oakland and Alameda County environmental health interests 

Bicycle shops/education/advocacy 
groups 

Five people were interviewed, representing local bicycle shop owners, 
bicycle educators, and bicycle advocacy groups  

Oakland business 
districts/Community Benefits 
Districts 

Three people were interviewed, representing the Central CBD, Uptown & 
Downtown, Temescal, Koreatown and Northgate CBD of Oakland 

West Oakland/Oakland residents Two people were interviewed, representing West Oakland and Downtown 
Oakland, from the youth and senior perspectives  

Truck drivers/Trucking business 
owners 

Two people were interviewed, representing truck drivers and trucking 
business owners in the Oakland area  

Mobile air pollution monitoring  One person was interviewed regarding the data collection methods and data 
available for air pollution in West Oakland  

 

4.1.3 Focus Group Interviews 

Our focus group recruitment aimed to target the following community members to contribute to 
the study: West Oakland business owners, delivery persons, bicycle/transit/environmental 
advocates, and residents. Focus group participants were recruited through the assistance of many 
community members and organizations. Recruitment efforts included announcements in the 
WOCAP Transit/Walk/Bike subcommittee meeting, using the WOEIP email distribution list, 
online posting (to the West Oakland neighborhood watch groups, a Facebook group, Nextdoor, 
and Twitter), as well as email outreach to key stakeholders. All interested parties were directed to 
enter their information at our research website. The website provided additional information about 
the research study, a consent form to review, and information about the research study. Participants 
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under the age of 18 had their parent/guardian review and sign the consent form. Participants of 
the focus groups were provided a gift card of a nominal amount as a gesture of thanks for their 
time.  

Focus group interviews were conducted using structured interview methods and the web 
conferencing service Zoom. The focus group questions were designed to collect information about 
bicycle use behavior, barriers to bicycle usage, knowledge of cargo cycles, benefits of cargo cycle 
use, challenges of cargo cycle implementation, and the best placement of transfer hub locations in 
West Oakland. Focus groups interviews also included written data collection using the real-time 
collaborative web platform padlet and visual data collection using Zoom whiteboards to allow 
participants to add data to West Oakland maps. Audio and video of all focus groups were recorded 
and audio portions were transcribed.  

4.1.4 Field Observations and Counts 

To inform our traffic model simulation, West Oakland vehicle count data and traffic behavior data 
were collected on March 30 and March 31, 2021. Research assistants were trained on data 
collection methods on Saturday, March 27, or Monday, March 29. The training consisted of an 
overview of the cargo cycle study, overview of vehicle count data collection tasks, specifics about 
data collection sites, methods, and staff expectations. The research team also needed to adhere to 
strict COVID-19 safety guidelines. These guidelines were developed by Dr. Hartle and Brandon 
Nguyen (SJSU MPH program Graduate Research Assistant), and they were reviewed and 
approved by SJSU VP of Innovation & Research, the College Dean, and the Environmental 
Health & Safety department before research commenced. Dr. Hartle consulted the SJSU IRB, 
and no changes needed to be made to the study’s existing IRB for this study as this portion of the 
research was not considered to include human subjects. 

The data collection site selection was informed by knowledge from previous vehicle count data 
collection efforts including the West Oakland Truck Survey Report (WOTSR) (Lau et al., 2009) 
from 2009 and from personal communications with Brian Beveridge, the co-director of the West 
Oakland Environmental Indicators Project (WOEIP). We selected data collection sites where we 
thought would capture the most lighter-duty truck traffic, which is the type of traffic that could 
potentially be replaced by cargo cycle delivery. Our initial sites were listed in the WOTSR Table 
3 as: considered a major intersection, had significant truck traffic, near the post office (with high 
daily volume of delivery activities), a high-activity street, or proximity to a school that would 
presumably receive numerous daily deliveries. Another factor that was considered was if the traffic 
was considered port or non-port traffic. Port traffic would include heavy duty trucks carrying 
freight, such as shipping containers, to and from the Port of Oakland. Data collection was not 
placed in locations with majority port traffic as this heavy freight cannot be delivered with cargo 
cycles. Based on the WOTSR, the initial locations were cross-referenced with the sites with a high 
volume of non-port traffic vehicles, according to the report’s Table 7.  
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For the truck delivery behavior sites, where the goal was to collect information about the number 
of deliveries, length of deliveries, truck parking status (legally or illegally parked), and truck 
operational status (idling or parked), data collection sites were selected that were a mix of industrial 
and residential locations. Data collection sheets were developed for truck counts: these were based 
on the WOTSR log sheets in Appendix A and adapted to collect data for each class of trucks 
(Class 1-8). Truck count delivery behavior data collection sheets were developed separately.  

Data were collected on Tuesday, March 30, and Wednesday, March 31, 2021. There were 10 
collection sites, 5 vehicle count sites, 5 truck delivery behavior sites, and 5 pairs of data collectors 
(10 total data collectors). 

Data collection occurred at each location in the morning on one day and afternoon on the second 
day, or vice-versa. 
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Table 2. Field Data Collection Sites, Original 

Intersection or Block Designation for Truck 
Delivery Behavior 

Type of Survey Tues AM / Wed 
PM 

Tues PM / Wed 
AM 

7th St. and Adeline St. Vehicle count X 
 

7th St. (Mandela Pkwy. and Center St.) Truck delivery 
behavior 

X 
 

7th St. and Wood St. Vehicle count X 
 

Poplar St. (14th St. and 16th St.) Truck delivery 
behavior 

 
X 

Adeline St. (28th St. and 30th St.) Truck delivery 
behavior 

 
X 

26th St. (Mandela Pkwy. and Peralta St.) Truck delivery 
behavior 

X 
 

W. Grand Ave. and Mandela Pkwy. Vehicle count 
 

X 

Peralta St. and Hollis St. Vehicle count 
 

X 

Chestnut St. (28th St. and 30th St.) Truck delivery 
behavior 

 
X 

W. Grand Ave. and Market St. Vehicle count X 
 

 
Materials were distributed to the data collection team on the morning of the first data collection 
day, Tuesday, March 30, 2021. Teams then traveled to their sites and started data collection for 
the first day at approximately 10:00 am. Data collection was conducted in two shifts per day, with 
a change in data collection location between morning and afternoon. The shifts were 
approximately two hours each, with the following timing: morning data collection took place from 
10:00 am to 12:00 pm, and afternoon data collection took place from 1:00 pm to 3:00 pm. 
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After the first day, adjustments were made to data collection sites due to low traffic volume at some 
locations. Two locations were changed, and the data collection strategies of two other locations 
were changed (presented in Table 3). For Wednesday, March 31, the following changes were 
made: Chestnut between 28th and 30th was changed to Wood between 14th St. and 15th St., and 
14th St. and Poplar was changed to 18th and Peralta. As a result, these four locations only have a 
half day of data. 
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Table 3. Field Data Collection Sites, Modified 

Intersection or Block Designation for Truck 
Delivery Behavior 

Type of Survey Tues AM / 
Wed PM 

Tues PM / Wed 
AM 

7th St. and Adeline St. Truck count X 
 

7th St. (Mandela Parkway and Center St.) Truck delivery/Truck 
count 

X 
 

7th St. and Wood St. Truck count X 
 

Poplar St. (14th St. and 16th St.) Truck delivery 
behavior 

 X (Tuesday pm 
only) 

18th St. and Peralta St. (updated) Truck delivery/Truck 
count 

 
X (Wednesday am 
only) 

Adeline St. (28th St. and 30th St.)  Truck delivery 
behavior 

 
X 

26th St. (Mandela Parkway and Peralta St.) Truck delivery 
behavior 

X 
 

W. Grand Ave and Mandela Pkwy Truck count 
 

X 

Peralta St. and Hollis St. Truck count 
 

X 

Chestnut St. (28th St. and 30th St.) Truck delivery 
behavior 

 X (Tuesday pm 
only) 

Wood St. (14th St. and 15th St.) (updated) Truck delivery 
behavior 

 
X (Wednesday am 
only) 

W. Grand Ave and Market St. Truck count X 
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4.2 Results from Community Data Collection 

4.2.1 Key Stakeholder Interviews and Focus Group Interviews 

Community members provided expertise from many perspectives on the acceptability, feasibility, 
and challenges of using cargo cycles to deliver last mile packages in West Oakland. There was a 
sense of acceptability surrounding measures that would reduce traffic, air pollution, and noise. A 
shared community sentiment of “everyone is slowly being killed by the pollution and the noise” 
was expressed, making the potential of cargo cycles to reduce traffic congestion, air pollution, and 
noise pollution a promising alternative.  

Focus group participants agreed that benefits of replacing motorized trucks with cargo cycles 
include:  

1. Lower pollution  

2. Less noise  

3. Job opportunities for operators  

4. Less damage to roads from using lighter weight cargo cycles  

5. Opportunities for cargo cycle manufacturing  

6. Opportunities for cargo cycle maintenance  

7. Opportunities to revitalize communities by creating cargo cycle business  

8. Opportunities for healthy lifestyle for cargo cycle operators.  

This confirms and validates findings from the literature and provides a strong case for cargo cycle 
schemas.  

Focus groups participants provided the following policy implications:  

1. Establish parking facilities/spaces for cargo cycles to ensure safety and avoid illegal parking 

2. Outreach to businesses/residents and the local community to activate demand for cargo 
cycle services 

3. Provide cargo cycle operator trainings 

4. Create protected cargo bike lanes; use physical traffic management schemas 
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5. Leverage safe street schemas to incentivize cargo cycles  

6. Incentivize businesses to use cargo cycles and offset human cost of running cargo cycle 
businesses.  

7. Limit speed for motorized vehicles and provide improved police enforcement to increase 
safety for cargo cycles  

8. Acknowledge and address safety for cargo cycle operators of color who are more vulnerable 
to harassment and citations from the police.  

9. Make cargo cycle operators jobs accessible to community members.  

4.2.2 Vehicle Count Data Collection 

The vehicle count data, by class, are summarized in Table 4. The highest total vehicle count was 
at the intersection of Grand Ave. and Mandela Pkwy., with 291 vehicles per hour during our 
collection time period. The lowest total vehicle count was at the intersection of 18th and Peralta, 
with only 28 vehicles per hour. Appendix B contains pictures of select intersections where data 
were collected. 
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Table 4. Vehicle Count Summary Table 

Location: 

Intersection 

Truck Count by Classification (per hour)* Total 
Count (per 
hour) Class 

1 
Class 
2 

Class 
3 

Class 
4 

Class 
5 

Class 
6 

Class 
7 

Class 
8 

W. Grand Ave. and 
Mandela Parkway 

153 68 10 10 9 14 12 15 291 

32nd St. and Adeline 
St. 

116 37 5 6 3 4 7 4 180 

7th St. and Mandela 
Parkway 

30 21 7 5 5 13 45 45 170 

7th St. and Adeline 94 25 3 4 4 2 5 6 143 

Peralta St. and 26th 
St. 

57 10 5 4 1 16 6 23 120 

7th St. and Wood St. 44 20 3 2 4 7 10 11 101 

W. Grand Ave. and 
Market St. 

20 22 5 4 2 7 11 6 77 

Peralta St. and Hollis 
St.  

36 15 4 2 1 1 3 4 66 

14th St. and Poplar 
St. 

11 12 2 2 2 6 10 7 51 

18th St. and Peralta 
St. 

8 5 2 0 1 1 5 7 28 

*Values rounded to closest whole number 

4.2.3 Truck Behavior Analysis 

This section provides some basic statistical analysis of truck behavior data collected from select key 
intersections in West Oakland. Data collected included truck parking time and truck idling time, 
used as a proxy for the length of deliveries and the availability of legal parking for delivery trucks, 
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respectively. Truck idling has implications for air and noise pollution, and illegal parking can cause 
traffic congestion and traffic accidents.  

The average parking duration (in minutes) for each location is shown in Figure 5.  

The average parking duration calculation indicates that trucks tend to park around one hour at 
Wood St. Chestnut St. has the second-longest average parking time at about 35 minutes. Parking 
times at the other locations are less than 20 minutes which indicates a fast loading/unloading 
operation. 

Figure 5. Average Parking Duration of Delivery Vehicles 

 

The average idling rate and illegal parking rate are calculated and plotted in Figure 6. Trucks at 
7th St. and Market St. & W. Grand have the highest rates of idling when they are parked; 7th St. 
has the highest rates of illegal parking.  
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Figure 6. Average Idling/Illegal Parking Rate 

 
 

Morning Peak vs. Afternoon Peak 

The average parking duration at six locations are calculated for both morning peak and afternoon 
peak. As shown in Figure 7, parking time at Market St. & W. Grand is very short on average. 
Note that data were only collected at Wood St. on one day in the morning and Chestnut St. for 
one day in the afternoon.  
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Figure 7. Average Parking Time for Morning Peak/Afternoon Peak 

 

Next, we consider idling rate and illegal parking rate. Due to the fact that we only collected 
morning peak data or afternoon peak data for some locations, the data in Figures 8 and 9 are 
incomplete. According to the current data, there is no significant difference between morning peak 
and afternoon peak in idling rate and illegal parking rate. 

Figure 8. Average Idling Rate Morning Peak and Afternoon Peak 
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Figure 9. Average Illegal Parking Rate 

 
 

Double parking existed at Peralta St. and 7th St. 7th St. has serious double parking problems. On 
March 30, 10 trucks double parked at 7th St. and 5 trucks double parked at 7th St. on March 31. 
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Figure 10. Double Parking 

 

 

Information from the community level data collection, such as recommended locations for transfer 
hubs, percentage of deliveries that could be transitioned from trucks to cargo cycles, vehicle counts, 
and vehicle behaviors, were used to inform the traffic simulation models explained in Chapter 5.  

  



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  49 

 Traffic Simulations Methods and Results 
Traffic simulation models were developed to predict the amount of air pollution reduction that 
could be expected from the use cargo cycles in West Oakland, given information about the types 
of businesses in this area and the type of freight usually delivered to these businesses. Information 
collected at the community level, as described in Chapter 4, such as potential transfer hub 
locations, the percentage of freight deliveries that can be transitioned from trucks to cargo cycles, 
vehicle counts, and vehicle behavior were utilized to develop these models. 

5.1 Methods for Traffic Simulation Model 

Emission reductions are closely tied to freight demand pattern, including freight attraction and 
freight production. The distribution of freight demand in each spatial unit will lead to different 
amounts of emission savings. Given the freight demand, the cargo cycle adoption rate or truck 
replacement rate is another important factor. If more trucks can be replaced, more emissions can 
then be avoided. Additionally, the geographical location of the transfer hub is essential. Setting 
the transfer hub at different locations will lead to different routes and consequently different 
emission savings. 

To incorporate all these influential factors and comprehensively analyze their joint effects, this 
study designs a multiple-scenario simulation framework. This behavioral-consistent simulation 
framework will quantify the expected emission reduction in different scenarios, enabling 
comparisons and the formulation of policy implications. The design and scenario settings will be 
explained in the following section. 

5.1.1 Analysis Procedure 

Figure 11 shows the general procedure used in this simulation model. Field data are first collected 
and compiled to support the simulation. Freight demand from both local residences and local 
businesses are then quantified. For local residences, we assume Class 4 trucks are used as the major 
type of vehicles for home deliveries. For local businesses, we consider Class 1 to Class 8 trucks 
with different replacement percentages. Given the change of freight demand in each scenario, 
emission rates are used to calculate the amount of emission savings. Various types of pollutants 
generated through different processes are considered. As different pollutant rates have different 
units, the freight demand is converted into different units (i.e., VMT, number of trips, and number 
of vehicles per day). The total emission savings are then calculated by multiplying emission rates 
with the reduced freight demand. Each step is further explained in the following sections.  
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Figure 11. Simulation Model Framework 

 

 
Data Preparation 

We collected related data from multiple sources so we may merge useful information into the map 
of West Oakland. The data explored include: 

1. Roadways, containing detailed road network information in West Oakland 

2. Traffic signals, including types all traffic lights and their coordinates 

3. Bikeways, covering information about bike lanes in West Oakland 

4. Land use plan, which contains land use type information for each polygon. 

5. Establishments, including all establishments’ coordinates, employment, and other related 
information. 

Some of the data sources are geocoded and others are not. The data are first compiled in QGIS to 
form an integrated geo file for further analysis. Table 5, below, lists all the useful data and their 
sources.  
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Table 5. Data Sources Used in the Simulation Model 

Data Source Type 

Land use plan City of Oakland (https://data.oaklandca.gov/dataset/General-Plan-Land-Use/7xy4-
dv3x) 

shapefile 

Roadways The Metropolitan Transportation Commission (MTC) open data catalog 
(https://opendata.mtc.ca.gov/datasets/san-francisco-bay-region-
roadways/explore?location=37.887791%2C-122.969650%2C9.92) 

shapefile 

Establishments Dun & Bradstreet data for 2018, accessed through UC Berkeley libraries csv file 

 

Specifically, two steps are conducted to prepare the data. 

(1) Setting the land use plan shapefile as a base map. The spatial unit is a polygon. Each polygon 
has its own land use type and other geographic information.  

(2) Mapping all establishments to the base map according to their street addresses. 

Specifically, to identify establishments in the area, we extracted the 2018 Dun and Bradstreet data 
for all registered businesses in Oakland. These data included addresses, industrial classification 
codes, employees at the site, business name, business description, and, if available, actual or 
estimated annual sales. Addresses within the study area were geocoded using QGIS and matched 
to a shapefile with parcel data. The resulting map is shown in Figure 12. Points are establishments 
in the studied region. 

Figure 12. Map of Establishments 
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Freight Trip Estimation 

Businesses and households have very different truck trip generation processes. Most businesses 
receive deliveries from multiple vendors, with different delivery frequencies. Some industrial 
sectors may also send out cargo, thus producing freight trips. Households, especially in recent 
years, have also created large volumes of truck trips through requesting home deliveries. The 
demand pattern and vehicles used, however, are very different. Therefore, the freight trips 
generated by local business and residents are estimated separately.  

(1) Estimating freight trip attraction and production for local businesses.  

Businesses of different industrial sectors may have different delivery demands. Some industrial 
sectors may be freight-intensive, generating higher freight demand, while others may be non-
freight-intensive. We used the Freight Trip Generation (FTG) models to quantify the freight 
trips. The FTG models can be applied at establishment and 2-digit NAICS code levels (Holguín-
Veras, 2017). All covered NAICS codes are presented in Table 5. The establishment data were 
used to estimate the number of freight trips generated per day for each establishment. FTG models 
contain the estimation of freight trip attraction (FTA) and production (FTP), where FTA 
represents the freight flow into each spatial unit and FTP is the freight flow out of each spatial 
unit. 

We used a set of linear models to estimate FTG as a function of employment for different 
industrial sectors. Specifically, FTA and FTP for each spatial unit or polygon can be estimated 
according to the equations below.  

• 𝐹𝑇𝐴$ = 𝛼 + 𝛽 × 𝐸$ 

• 𝐹𝑇𝑃$ = 𝛼 + 𝛽 × 𝐸$ 

where i is the index for polygon, 𝐸$  represents the number of employees in polygon i, and 
𝛼	and	𝛽	are industry sector-specific parameters. Their values can be found in Holguin-Veras et al.  

(2) Estimating home deliveries for local residents. 

Residential freight demand, measured by home delivery frequency per day, can be similarly 
considered. Compared to freight trips generated by businesses, home deliveries are more 
homogeneous in terms of frequency. Although individual and household features have impacts on 
home delivery frequency, which can be captured with the disaggregate count data model, a simple 
estimation based on average household delivery rate is usually accurate enough at the polygon level. 
Also, considering the rapid change of home delivery behavior, we feel the aggregate approach is 
sufficient for providing reasonably good estimates of local residence freight trip generation. The 
calculation of home deliveries for each polygon is shown below.  
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𝐹𝑇𝐴$ = 𝑃𝑜𝑝𝐷𝑒𝑛𝑠$ × 𝐴𝑟𝑒𝑎$ × 𝐴𝑣𝑔𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠 

where 𝑃𝑜𝑝𝐷𝑒𝑛𝑠$ represents the population density of spatial unit 𝑖; 𝐴𝑟𝑒𝑎$ represents the area of 
spatial unit 𝑖; and 𝐴𝑣𝑔𝐷𝑒𝑣𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠 represents the average number of deliveries per person per day, 
derived from the national household travel survey (United States Federal Highway 
Administration, 2017). 

With the implementation of cargo cycles, some trucks will unload cargos at the transfer site. The 
last-leg delivery will be completed by the emission-free cargo cycles. The emission reduction can 
be estimated based on the reduced truck trips between the transfer site and each polygon. Different 
scenarios are set by assuming a different percentage of truck trips that can be replaced by cargo 
cycles. 

Convert Freight Demand to Truck Trips 

As emission rates differ significantly across vehicle types, the total number of truck trips estimated 
in the previous section needs to be further disaggregated into truck trips of different types. For 
business FTA and FTP, the calibration is based on the field-collected truck composition data. 
Class 1 through Class 8 trucks are considered. As discussed in the previous chapter, data were 
collected from ten major intersections in the studied area. It is then assumed that the polygons 
around each intersection tend to share the same truck type composition. From here, we convert 
business FTA and FTP to number of different types of trucks. For home deliveries in each 
polygon, we convert the delivery frequency to the number of Class 4 trucks. The fact that multiple 
home deliveries may be made along one delivery tour is also considered.  

Vehicle Miles Travelled (VMT) 

As mentioned previously, a transfer site is needed to transfer cargo from trucks to cargo cycles. 
The selection of the transfer hub location is important, since it directly determines the travel 
distance and consequently the reduced VMT.  

The travel distance between the transfer hub and each polygon is calculated from QGIS, assuming 
that the truck drivers use the shortest path. One example is shown in Figure 13. The red line 
represents the shortest path from the centroid of one polygon (id = 1) to the transfer hub. The 
shortest path would be if the truck driver starts driving south from Hollis St. to 32nd St., briefly 
goes east on 32nd St. to Union St., travels south on Union St., west on 30th St., and ends their 
route by driving south on Peralta St. The total length is 1563.8 m (0.97 mile). The VMT reduction 
can be calculated by multiplying the reduced number of trucks serving this polygon and this 
distance.  
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Figure 13. Shortest Delivery Path: Transfer Hub to Delivery Site 

 

Emission Rates 

With the output from the previous steps, we would calculate the saved emissions. The emission 
rate is generated from California air resources board using the Emission Factor model (EMFAC) 
of 2021. We consider the following pollutants: carbon monoxide (CO), nitrogen oxides (NOx), 
hydrocarbons (i.e., Total Organic Gases or TOGs, Reactive Organic Gases or ROGs), THC (total 
hydrocarbon), CH4 (methane), carbon dioxide (CO2), particulate matter (i.e., PM2.5, PM10), sulfur 
oxides (SOx), and fuel generated through different types of emission processes (e.g., Running 
Exhaust Emissions or RUNEX, Idle Exhaust Emissions or IDLEX, Exhaust Tailpipe Emissions 
or STREX, etc.)  

Given the emission rates for different types of trucks, we calculated the emission savings for each 
polygon. Specifically, we adopted the EMFAC2021 V1.0.1 and focused on the Alameda (SF) 
region (California Air Resources Board, 2021). Emission rates for different types of pollutants 
from different processes are generated. It should be noted that emissions generated from different 
processes require different inputs.  

• VMT: Running Exhaust Emissions (RUNEX), Tire Wear Particulate Matter Emissions 
(PMTW), Brake Wear Particulate Matter Emissions (PMBW) 

• Emission rate unit: grams/mile 

• Number of trips: Start Exhaust Tailpipe Emissions (STREX), Hot Soak Evaporative HC 
Emissions (HOTSOAK), Running Loss Evaporative HC Emissions (RUNLOSS) 

• Emission rate unit: g/trip 
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• Number of vehicles per day: Idle Exhaust Emissions (IDLEX), Diurnal Evaporative HC
Emissions (DIURN)

• Emission rate unit: g/vehicle/day

For each pollutant, the total emissions saved is the sum of emissions generated by all these activities 
(i.e., VMT, trips, and vehicles).  

5.1.2 Scenario Design 

Based on the previous procedure, we can simulate the potential emissions savings that could be 
anticipated thanks to the implementation of cargo cycles. Given the uncertainty in the cargo cycle 
implementation plan at this stage, multiple scenarios are assessed and compared. Different 
scenarios can be designed by changing the values of the following key parameters.  

• Approximate percentages of freight demand that can be replaced by cargo cycles for each
industrial sector;

• Types and distribution of commercial vehicles currently used to deliver cargos;

• Number of deliveries made within one truck trip; and

• Feasible location(s) of cargo cycle transferring sites.

Truck Trip Replacement Percentage by Industrial Sector 

Due to size and weight restrictions, not all freight can be delivered by cargo cycles. Based on 
information from the literature review and interviews with local stakeholders, the possible range 
of percentages of freight demand that can be replaced by cargo cycles for each industrial sector is 
summarized in Table 6. 
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Table 6. Percentage of Truck Trip Replaced by Cargo Cycles for Each NAICS Code 

  Percentage of Truck Trips Replaced by 
Cargo Cycles 

NAICS Industry Sector Minimum Maximum 

11 Agriculture, Forestry, Fishing and Hunting 5% 20% 

22 Utilities 0% 0% 

23 Construction 0% 20% 

31-33 Manufacturing 5% 20% 

42 Wholesale Trade 5% 40% 

44-45 Retail Trade 30% 100% 

48-49 Transportation and Warehousing 20% 60% 

51 Information 50% 100% 

52 Finance and Insurance 40% 80% 

53 Real Estate Rental and Leasing 20% 60% 

54 Professional, Scientific, and Technical Services 40% 80% 

55 Management of Companies and Enterprises 20% 60% 

56 Administrative and Support and Waste Management and 
Remediation Services 

40% 80% 

61 Educational Services 40% 100% 
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  Percentage of Truck Trips Replaced by 
Cargo Cycles 

NAICS Industry Sector Minimum Maximum 

62 Health Care and Social Assistance 40% 100% 

71 Arts, Entertainment, and Recreation 0% 40% 

72 Accommodation and Food Services 50% 100% 

81 Other Services (except Public Administration) 30% 80% 

92 Public Administration 30% 80% 

 

Truck Trip Replacement Percentage by Truck Type 

The percentages of truck trips that can be replaced by cargo cycles are also sensitive to the vehicle 
types. Intuitively, cargos carried by large trucks are usually those with high volume or weight, and 
these are difficult to be transferred to cargo cycles. Cargos carried by smaller vehicles, in contrast, 
are usually small shipments that are more likely to be transferred to cargo cycles. Similarly, the 
percentages of trucks that can be replaced by cargo bikes are selected based on literature review 
and local stakeholder input, as summarized in Table 7. 

  



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  58 

Table 7. Percentage of Truck Class 

Truck Class Weight Class Percentage Replaced 

1 < 6,000 lbs 100% 

2 6,000 - 10,000 lbs  80% 

3 10,001 - 14,000 lbs 70% 

4 14,001 - 16,000 lbs 60% 

5 16,001 - 19,500 lbs 30% 

6 19,501 - 26,000 lbs 20% 

7 26,001 - 33,000 lbs 5% 

8 > 33,000 lbs 5% 

 

Number of Deliveries per Tour 

The number of deliveries made within one truck tour is another critical input parameter that varies 
widely across different regions. For example, the number of stops per delivery route typically ranges 
between 1 and 3 (Lin et al., 2017). The number of deliveries per stop is usually 1 or 2. Considering 
both factors, the number of deliveries per route in the study area may range between 1 to 6. For 
home deliveries, the number of stops per route could range between 1 to 50, depending on the size 
of the study region). The number of deliveries per stop is also 1 or 2, making the possible number 
of home deliveries per route range between 1 and 100. 

Potential Transfer Hub Locations 

Finally, several possible transfer site locations are suggested by local stakeholders, and the research 
team selected three of the most frequently recommended ones, shown in Figure 14. 
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Figure 14. Possible Locations for Transfer Sites 

 
 

Among these three suggested locations, location 1 (Central West Oakland) is recommended by 
most focus groups. Therefore, we conducted a five-scenario sensitivity analysis based on the 
assumption that the transfer hub is at location 1. For the other two locations, we only assessed 
emissions reduction for the most likely scenario. In total, seven different scenarios are designed by 
considering hub location, percentage of freight demand that can be replaced by cargo cycles for 
each industrial sector, and number of deliveries in a truck tour (Table 8).  

  

Location 1:  
Central West Oakland 

Location 2: 
Lower Bottoms 

Location 3: 
Near Port 

Clawson 

McClymonds 

Acorn 
South Prescott 
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Table 8. Cargo Cycle Delivery Scenarios 

Scenario Description Transfer Hub 
Location 

Truck Trips 
Replaced 

Business Deliveries 
per Trip 

Home Deliveries 
per Trip 

1 Best-case scenario 
with location 1 

1 max 1 3 

2 Second-best-case 
scenario with 
location 1 

1 max 2 50 

3 Most likely 
scenario with 
location 1 

1 mean 2 50 

4 Conservative 
scenario with 
location 1 

1 min 2 50 

5 Worst-case 
scenario with 
location 1 

1 min 3 100 

6 Most likely 
scenario with 
location 2 

2 mean 2 50 

7 Most likely 
scenario location 3 

3 mean 2 50 

 
5.2 Results from Traffic Simulation Model 

5.2.1 Impacts of Cargo Cycle Adoption Rate and Delivery Pattern 

Table 9 shows the emission savings for several key pollutants when the cargo cycle transfer hub is 
placed at Location 1. 

  



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  61 

Table 9. Detailed Emissions Saved per Day for Scenarios 1 to 5 (all with Location 1) 

Scenario VMT (miles) PM2.5 (g) PM10 (g) NOx (g) ROG (g) Total Emissions Saved (tons) 

Best case 2,620.6 158.5 353.0 27,399.1 3,042.3 16.8 

Second best 558.6 28.6 65.8 2,687.3 1,265.8 1.9 

Most likely 415.6 21.8 50.0 2,317.8 879.4 1.6 

Second worst 272.5 15.0 34.1 1,948.4 493.0 1.3 

Worst case 164.6 8.9 20.2 1,048.7 322.9 0.7 

 
The overall results suggest that the implementation of cargo cycles could lead to a meaningful 
amount of emission reduction. According to the EMFAC emission rate, a Class 4 truck’s emission 
rates for PM2.5, PM10, NOx, and ROG are roughly 0.04 g/mile, 0.12 g/mile, 0.26 g/mile, and 0.02 
g/mile, respectively. As the average travelling distance within West Oakland is around 1 mile, the 
best-case scenario, which has a VMT reduction of 2620.6 miles per day is equivalent to the 
elimination of more than 1,000 Class 4 trucks traveling in West Oakland per day. 

The reduction in PM2.5, PM10, NOx, and ROG emissions decreases from the best-case scenario to 
the worst-case scenario. Evidently, increasing the percentage of replaced freight demand leads to 
an increase in the total emission savings, which is expected. If the number of deliveries within one 
truck trip is high, the total emission savings is low. This is because a higher number of deliveries 
with one truck is more efficient with respect to emissions, so there is a smaller margin of 
improvement to convert to cargo cycles.  

5.2.2 Impacts of Transfer Hub Locations 

As can be seen from Table 10, PM2.5, NOx, and ROG are relatively stable regardless of the hub 
locations. VMT and PM10 seem to have greater variation, especially VMT. By comparing the three 
potential hubs, we can see that location 3 seems to be the one with the most savings. As can be 
seen from Figure 14, location 3 is out of the study region, which means more VMT occur when 
travel occurs from each polygon to the hub. More VMT would generate more emissions. 
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Table 10. Saved Emissions per Day for Different Transfer Hub Locations  

Location VMT (miles) PM2.5 (g) PM10 (g) NOx (g) ROG (g) Total emissions saved (tons) 

Location 1 415.6 21.8 50.0 2,317.8 879.4 1.6 

Location 2 564.4 27.7 67.0 2,334.0 884.4 1.7 

Location 3 848.0 37.1 94.2 2,369.0 890.1 2.1 

 
5.2.3 Spatial Variation 

The spatial distribution of PM10 and NOx for each of the seven scenarios (as described in Section 
5.1.1) is shown in Figure 14. The spatial distribution patterns of different scenarios are similar, 
although different scenarios have different scales of PM10 and NOx savings.  

Specifically, Clawson, McClymonds, South Prescott, and Acorn (the locations of the 
neighborhoods as shown in Figure 14) are four neighborhoods with major emissions savings. 
Clawson is a residential area, and McClymonds and Acorn are designated as business use. South 
Prescott is mainly for business and has a USPS center in it. By replacing some freight demand 
with cargo cycles, the emissions can be reduced accordingly. 
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Figure 15. Spatial Distribution of PM10 and NOx Emission Reductions per Day 
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 Policy Implications  
This chapter synthesizes our findings from the literature review, community level data collection, 
and traffic simulation and proposes policy recommendations that would improve the feasibility of 
implementing cargo cycles for last mile delivery.  

6.1 Dimensions of Policy Influence  

There is no doubt that non-motorized modes of transportation generally advance sustainability 
goals, decrease emissions, lower pollution levels, and improve health outcomes and quality of life. 
Replacing motorized trucks with cargo cycles for last mile trips can provide a desirable option 
under certain conditions, as discussed earlier, including certain area characteristics and the 
availability of transfer hubs. The shift to cargo cycles requires policy interventions at the municipal 
government level to change behaviors and effectively promote the acceptability and diffusion of 
this mode of transport.  

There are four dimensions of influence where interventions are recommended to achieve cargo 
cycle diffusion in a particular corridor.  

6.1.1 Dimension 1: Political and Legal 

Local government can enact restrictions on the use of motorized vehicles in particular zones during 
certain times (usually when high levels of congestion are present), create pedestrian zones, or 
enforce speed limit restrictions. These restrictions serve as impediments for motorized forms of 
transportation and create incentives for the use of non-motorized or e-cargo vehicles.  

Local government can also further incentivize cargo cycle use by piloting cargo cycling and 
evaluating its effectiveness and feasibility in real-life scenarios. Pilot tests can provide a jump start 
for companies by making it more affordable and easing the financial burden of purchasing cargo 
cycles by providing them for rent or for free on a trial basis. Tax incentives can also provide 
incentives for start-up cargo cycle businesses. 

6.1.2 Dimension 2: Physical and Spatial 

The physical environment is critical to the diffusion of cargo cycle use as a last mile alternative to 
motorized vehicles. Mainstreaming cargo cycle use in strategic local transportation plans will 
ensure that considerations specific to cargo cycles are integrated into those plans. Cycling 
infrastructure and other active transportation measures must also be developed with cargo cycle 
considerations and specifications in mind. 

Moreover, parking for cargo cycles is critical to the success of these plans. Having parking 
infrastructure built with cargo cycle specifications promotes the use of this type of vehicle. 
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Appendix B shows a picture of a current city-provided bike corral. One of the goals of cargo cycles 
is to reduce congestions, so parking considerations is an integral measure to ensure that parked 
cargo cycles do not create more congestion in roadways and sidewalks.  

Specific physical infrastructure features enables the accessibility of cargo cycles to navigate curbed 
streets. Lowering curb stones is a measure that is often needed to provide such accessibility. Wide 
enough bicycle lanes to accommodate cargo cycles and to reduce possible accidents with and the 
disruption of the flow with commuting and recreational bicyclists should also be considered. 

Cargo cycles schemes are successful only when micro consolidation centers are available in the city 
center to allow loading and distribution in the last mile trips. Local government can make these 
centers available and provide equitable access to cargo cycle businesses. 

6.1.3 Dimension 3: Economic 

Local government can model the change in behavior by adopting cargo cycle use within its 
municipal fleet for last mile deliveries and services such as street cleaning, waste collection, etc.  

There is a need for an awareness campaign targeting businesses to ensure that cargo cycle use is 
scaled up. Creating public-private partnerships to ensure business development for cargo cycle is a 
best practice.  

6.1.4 Dimension 4: Cultural and Social  

While focus groups have indicated a general cultural and social acceptability of non-motorized 
modes of travel and a concern over pollution and the impact of unsustainable modes of 
transportation on human health and quality of life, there is a need to ensure that residents, business 
owners, and other key stakeholders are on board with the change. Public awareness campaigns are 
critical to ensuring successful diffusion, scale-up, and behavioral change. The use of social and 
professional networks, community forums, and roundtables are proven avenues to ensure 
community acceptability and adoption of change. 

Observers noted that the pandemic, with the restrictions it has necessitated on social gathering 
and the emphasis placed on distancing and remote operations of every kind, has increased demand 
for online shopping and the delivery of goods and products, and this pattern will probably remain 
in a post-pandemic world. Demands for goods fueled by panic buying increased demands on the 
trucking industry. Murray et al. (2021) posit that the pandemic increased demands for specific 
goods and large trucking industry experienced an increase in their operations (Murray et al., 2021). 
This has significant implications for cargo cycle operations. Cargo operators, policy planners, and 
government officials can leverage this window of opportunity that opened and the change in users’ 
behavior to incentivize cargo operations to meet the increased demand.  
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Qualitative and quantitative evaluations of cargo cycle schemes’ impact is critical to the 
improvement of these schemes. Evaluation efforts must track intermediate and long-term 
outcomes and impacts.  

The above policy recommendations are consistent with the strategic directions of West Oakland, 
which announced in July 2021 that it is pursuing amendments to the planning code to protect the 
health of residents and create industrial land use policies that embrace sustainability, prioritize jobs 
for Oakland residents, and advance environmental justice goals (City of Oakland, 2018). West 
Oakland’s Community Action Plan includes strategies that have been adopted that are favorable 
to the effort of replacing motorized trucks with cargo cycles (BAAQMD and WOEIP, 2019). 
Ongoing support from the local government, community members, and research can facilitate the 
implementation cargo cycle schemes. 

6.2 Strategies that De-Incentivize Truck Operations  

There is a movement in Oakland policies to lessen air emissions from truck traffic through 
promotion of freight movement by alternative means. The West Oakland Community Action 
Plan (WOCAP), which outlines strategies to reduce transportation-related emissions, includes 
recommendations that are consistent with overall directions of de-incentivizing truck operations 
(BAAQMD and WOEIP, 2019) . WOCAP’s Strategies #7 and 8 call for amending existing 
business ordinances and administrative policies to accelerate the relocation of non-conforming 
businesses that support trucks (Strategy #7) (BAAQMD and WOEIP, 2019). Those supporting 
businesses include truck yards and service, repair, and fueling businesses in West Oakland. These 
amendments are in line with de-incentivizing the use of trucks in the area which would allow for 
the emergence of alternative modes of freight delivery in West Oakland including cargo cycles.  

Other strategies consistent with overall strategic direction of limiting truck operations in West 
Oakland also include:  

• Consider ways to manage truck operations in the West Oakland neighborhood, including 
ways to address concerns about parking, idling, noise, and emissions. 

• Traffic calming measures and truck management including mandatory reporting by 
businesses of number of trucks and parking demand as conditions for licensure. 

• Implementation of traffic demand management strategies as part of development of new 
buildings, as described by WOCAP Strategy #40 (BAAQMD and WOEIP, 2019) . 

• Strategies that incentivize non-motorized schemes. 

• WOCAP Strategy #56 describes several projects to improve bicycle and pedestrian 
infrastructure including upgrading sidewalks, curb ramps and crossings as well as providing 
protected bikeway lanes (BAAQMD and WOEIP, 2019). As the city moves to implement 
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these strategies, it can take into considerations the need of cargo cycles and adopt designs 
that accommodate the weight and size of these vehicles. Bicycle and pedestrian 
improvement plans in Oakland also include establishing permanent parking locations for 
cargo which would serve as a solid foundation for a shift in freight modes in the city. 

• WOCAP Strategy #81 requires the City of Oakland to “work with local businesses, partner
agencies and community members to develop a green business strategic plan to attract,
retain and support innovative green companies (BAAQMD and WOEIP, 2019).”

The findings of this study provide empirical evidence that substantiates the merits of introducing 
cargo cycle schemes in West Oakland. This direction is also consistent with several strategic 
directions the city adopted to reduce pollution of all kinds, enhance safety, and improve public 
health.  

Figure 16. Recommendations for Cargo Cycle Schemas along Dimensions of Influence 
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 Summary & Conclusions 
From the literature review, we found that there are public health benefits to air and noise pollution 
reduction such as a reduction in rates of cardiovascular disease, respiratory disease, and mortality. 
In addition, although bicycle riding could expose riders to air pollution and possible collisions with 
vehicles, Europe-specific research has shown that bicycle riding has an overall net benefit.  

Focus group participants shared opinions about the benefits of using cargo cycles for freight 
delivery instead of using motorized trucks. The main opinions were that the use of cargo cycles 
could decrease air pollution levels, lower noise pollution levels, create job opportunities for cargo 
cycle operators, reduce damage to roads, and develop opportunities for local cargo cycle businesses 
including making customized cargo cycles and cargo cycle maintenance. The physical activity 
requirements of cargo cycle delivery can also contribute to a healthy lifestyle for cargo cycle 
operators. The focus group data validate findings from the literature and support the further use 
of cargo cycles for freight delivery on a commercial scale. Focus group participants provided the 
following recommendations to support an increase in use of cargo cycles: (a) establish parking 
facilities/spaces for cargo cycles to ensure safety and avoid illegal parking; (b) perform outreach to 
businesses/residents and the local community to activate demand for cargo cycle services; (c) 
provide cargo cycle operator trainings; (d) create protected cargo bike lanes; (e) use physical traffic 
management schemas; (f) leverage safe street schemas to incentivize cargo cycles; (g) incentivize 
business to use cargo cycles and offset the human cost of running cargo cycle business; (h) limit 
speed for motorized vehicles and provide improved police enforcement to increase safety for cargo 
cycles; (i) address safety for cargo cycle operators of color who are more vulnerable to harassment 
and discrimination and more exposed without the physical shield of motorized vehicles; and (j) 
make cargo cycle operator jobs accessible to community members.  

The traffic simulation found that there would be a meaningful reduction in air pollution with a 
transition to cargo cycles for a portion of freight deliveries. When simulating scenarios based on 
location 1, at W. Grand Ave. and Mandela Pkwy., the scenario with the maximum estimated 
percent of freight delivery converted to cargo cycles found that the use of cargo cycles could 
potentially reduce the vehicle miles traveled (VMT) by over 2,600 miles per day. This VMT 
reduction offers an emissions reduction (for PM2.5, PM10, NOx, and ROG) equivalent to taking 
about 1,000 Class 4 box trucks off the roads of West Oakland per day. The location of the transfer 
hub matters. Location 3, near the current Good Eggs distribution center on Maritime St. on the 
west side of West Oakland, brings the greatest VMT reduction because it is the furthest distance 
from potential delivery endpoints in West Oakland. West Oakland will need infrastructure support 
for motor vehicles and bicycles to make the transition to cargo cycles feasible, since the transfer 
hub is a place where delivery trucks will drop off freight and the cargo cycles will pick up the cargo 
and begin the last mile delivery. Careful planning is needed to support the safety of all operators 
in this purposeful connecting point of ongoing truck and bicycle traffic.  
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We estimated a total emissions savings range of between 0.7 and 16.8 tons per day based on the 
location of the transfer hubs and assumptions about freight attraction and delivery. In addition, 
the decrease in truck traffic is also likely to decrease noise and improve the safety of other road 
users, as well as creating local options for sustainable freight movements and increased community 
involvement. Although modest, these impacts are to be viewed from the lens of a community 
already affected by cumulative exposures to air, noise, and traffic concerns from decades of public 
and private decision-making. Each local truck trip that can be transitioned to a cargo cycle delivery 
has the potential to reduce air emissions, noise pollution, and traffic congestion at the local level 
and benefit West Oakland residents. 
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Appendix A 
Vehicle Count and Vehicle Behavior data collection sheets are included in this Appendix. 

Figure 17. Guide to Vehicle Class Data Collection 

 

This data collection sheet was adapted from a graphic from the Alternative Fuels Data Center 
(United States Department of Energy, 2012).  
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Figure 18. West Oakland Truck Survey Log Sheet 

 

This data collection sheet was adapted from a West Oakland Truck Survey data collection sheet. 
(Lau et al., 2009) 
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Figure 19. Truck Delivery Behavior Data Sheet
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Appendix B 
Photos from the fieldwork in West Oakland, CA.  

Figure 20. City of Oakland Bike Corral on Peralta St. at Helen St. 
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Photos of select vehicle count/truck delivery behavior data collection efforts in West Oakland, CA 

Figure 21. 7th St. at Wood St. 

 

Figure 22. Peralta St. at 26th St. 
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Figure 23. Mandela Pkwy at Grand Ave. 

 

Figure 24. Grand Ave. at Market St. 
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