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Executive Summary 
Driver errors are the leading cause of traffic crashes, contributing to about 94% of crashes. 
Automotive companies strive to enhance their vehicles to eliminate driver errors and reduce the 
number of crashes. Various advanced features are designed to assist with—or in some cases, take 
over—certain driving maneuvers. These features include lane departure warning (LDW), blind 
spot warning (BSW), over speed warning (OSW), lane keep assist (LKA), forward collision 
warning (FCW), adaptive cruise control (ACC), and automated emergency braking (AEB). Each 
of these advanced features is focused on a particular task, reducing the driving load on the driver 
and enhancing safety. They make up critical components of Driver Assistance Technology and are 
vital for the success of connected and automated vehicles in the future. 

The advanced driver assistance systems (ADAS) are focused on reducing crashes. Despite the 
increase in vehicles with advanced features in the market, the total number of crashes increased 
from ~6.45 million in 2017 to ~6.76 million in 2019, as reported by the National Highway Traffic 
Safety Administration (NHTSA). Additionally, the acceptance levels of ADAS among drivers is 
questionable. Many surveys have determined that drivers are unaware of the applications and 
limitations of the ADAS features. Further, drivers admitted to blindly trusting such features, 
worsening the problem. Also, drivers' responses to scenarios when driving vehicles with advanced 
features has been poorly explored. Thus, there is a need to evaluate drivers' response to scenarios 
when driving connected and automated vehicles compared to vehicles with and without Driver 
Assistance Technology. 

The National Advanced Driving Simulator (NADS) miniSimTM was used to capture driver 
behavior in this study. Rural, urban, and freeway scenarios were developed to test on the drivers 
(participants aged sixteen to sixty-five) in various weather and lighting conditions. Other variables 
including socioeconomic and demographic characteristics were also captured through a 
questionnaire provided to the participants. 

The study is categorized into four stages. The first stage involved developing appropriate driving 
scenarios. In order to improve the applicability of the results, rural, urban, and freeway driving 
conditions were simulated as these are the typical scenarios encountered by drivers. The second 
stage involved the careful selection of participants such that the sample population accurately 
reflects the general population. Participants aged sixteen to sixty-five were selected for the study. 
Each participant was tested across all three driving scenarios while a vehicle with or without 
advanced features was provided to them at random. The advanced features can be categorized as 
follows: (1) warning features, including LDW, BSW, and OSW features and (2) automated 
features, including LKA and ACC features. 

The third stage involved data processing and analysis to derive meaningful results. The analysis of 
variance (ANOVA) test was performed to evaluate the effectiveness of the advanced features. 
Driver behavior parameters such as hard braking, hard cornering, lane departure events, speeding 
events, average headway, and brake pedal force were assessed. The fourth stage involved identifying 
and using changes in driver behavior to ascertain behavioral differences among drivers with and 
without advanced features. 
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LDW was observed to reduce lane departure events in all driving scenarios (rural, urban, and 
freeway). OSW was observed to reduce the average and maximum speeds making driving less 
aggressive in rural and urban scenarios only, indicating they were not as effective in freeway 
scenario. Similarly, BSW was also observed to affect the brake pedal force and influence aggressive 
driving. Providing two advanced features at a time also affected brake pedal force indicating they 
were effective in influencing aggressive driving. Further, none of the warning features were 
observed to influence the participant following behavior as the average headway difference with 
and without Driver Assistance Technology was not found to be statistically significant. 

While the ADAS is effective in meeting their intended objectives, they seem to inadvertently affect 
other driving behaviors. The type of driving scenario (rural, urban, or freeway) also seemed to 
influence the way an advanced feature affects driver behavior. Braking behavior is predominantly 
affected by the presence of an advanced feature in most cases, which also influenced vehicle 
handling events like lane-following, turning, and car-following in some cases. Other factors such 
as lighting and weather conditions, and participants’ age and gender also affected driving behavior. 
More lane departures and longer headways were observed at nighttime. Similarly, longer headways 
were observed in rainy weather condition but lane-changing, braking, and turning maneuvers were 
observed to be less aggressive. Participants over twenty-five and male participants were observed 
to exhibit relatively higher levels of aggressive driving behaviors. 

Driving behavior improved further when vehicles with automated systems (ACC and LKA) were 
provided individually or in combination. Automated systems improved braking, vehicle handling, 
and lane-following behaviors in all three scenarios. Less aggressive speeding behavior was observed 
in the freeway scenario. However, more aggressive car-following behavior was observed with 
automated systems. The variation in driving behavior among participants when provided with 
automated systems dropped drastically. The effects of automated systems were influenced by the 
type of driving scenario. The intervention of ADAS with driving tasks led to safer driving 
conditions. The driving safety improved with the level of assistance provided to the drivers. 
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1. Introduction 
Traffic deaths are a major issue in the United States today and they are the leading cause of deaths 
among people up to fifty-four years in age.1 More than 38,000 people are killed in road crashes 
annually in the United States, which equals a rate of 12.4 deaths per 100,000 people.1 An estimated 
$380 million is lost in direct medical bills, while total economic impacts of the crashes—direct or 
indirect—amount to roughly $871 million.1 Further, new vehicles are added to the roads with each 
passing year, with more than 17.6 million passenger cars and trucks sold in 2016 alone and a total 
recorded 3.21 trillion vehicle miles traveled in 2018.2,3 This increases traffic exposure and 
contributes to a higher risk of crashes. 

It is estimated that 94% of crashes occur due to driver errors.4 The nature of driver errors varies 
widely and has been broadly classified into four types: recognition errors, decision errors, 
performance errors, and non-performance errors.5 Recognition errors account for about 41% of 
crashes, making them the most common error type.5 These could be errors such as incorrectly 
estimating the distance or speed of the vehicle. Decision errors cause 34% of crashes and include 
speeding, following too closely, or making illegal actions.5 Performance errors account for 10% of 
crashes and encompass issues such as losing control of the vehicle.5 Non-performance issues—such 
as health issues—led to 7% of crashes.5 

Although it is not possible to address non-performance issues which are largely random and 
unpredictable, 85% of errors can be handled effectively using advanced features. These features 
enhance or automate certain driving tasks and aim to achieve safety. Figure 1 shows a schematic 
of different types of advanced features. 

  



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  4 

Figure 1. Ranges of Advanced Features 

 

All the external advanced features use sensors with varying detection ranges. The smallest range 
of detection is for parking assist systems that are used at low speeds in parking lots that do not 
require long stopping distances. Adaptive cruise control (ACC) has the longest detection range, 
as it is mostly engaged at higher speeds and on freeways. The cone of detection is narrow as the 
vehicle acts in response to its leading vehicle. Blind spot warning (BSW) also has a smaller 
detection range as it responds to vehicles in adjacent lanes. Advanced driver assistance systems 
(ADAS) such as emergency braking and collision avoidance are powered by medium range sensors 
to best suit their purposes. Overall, advanced features require different types of cameras or sensors 
for each purpose. ACC uses long-range radar systems while emergency braking and collision 
avoidance systems use light detection and ranging (LiDAR). The warning or alert systems use 
sensors that have smaller detection ranges while partially automated systems use sensors with 
longer detection ranges. These systems also deliver progressive levels of assistance based on users’ 
needs. The levels are classified as follows.6 

Adaptive systems: these are systems that trigger actions based on inputs from another vehicle 
entering the vicinity (examples: ACC, adaptive head lights, and adaptive light control). 

Automated systems: these are systems that can perform certain actions without the intervention of 
the driver (examples: automated parking, automated braking, and collision avoidance system). 

Monitoring systems: these systems essentially monitor the conditions in the vicinity of vehicle and 
determine if a corrective action needs to be conducted (examples: parking assist, speed monitoring, 
pedestrian monitoring, and proximity monitoring). 
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Warning systems: these systems actively monitor the conditions in the vicinity of a vehicle and 
warn the drivers of any potential safety hazards. These are, for example: lane departure warning 
(LDW), BSW, over speed warning (OSW), and forward collision warning (FCW). 

The advanced features address the first three types of driver-related errors that contribute to the 
majority of crashes. There are ongoing and extensive efforts to improve traffic safety, especially in 
the automotive market where new driver assist technologies are evolving. Despite these efforts, a 
14% increase in road related deaths were recorded from 2014 to 2016.7 There have also been many 
debates over ADAS making drivers more reluctant and distracted, resulting in unwanted side 
effects.7 Past studies revealed that 70% of drivers preferred ADAS for their vehicles.8 However, 
the question of whether they understand these technologies still remains. 

A survey by the American Automobile Association (AAA) revealed that 21% of vehicle owners 
using BSW features did not understand the limitations of the system while Fleet Manager 
expected the number to be about 80%.8,9 On the other hand, 33% of the vehicle owners did not 
understand that the sensors engaging the Emergency Braking System (EBS) could be blocked.8 
Also, 40% of drivers misunderstood the application of FCW and Automatic Emergency Braking 
(AEB) systems believing that the FCW system would automatically apply brakes.9 While the 
limitations of drivers’ understanding of ADAS is evident, what magnifies the issue of driver safety 
is their reliance on such systems. It was reported that 29% of the respondents to a survey felt 
comfortable engaging in other activities when provided with ACC, 30% did not do shoulder 
checks when provided with BSW, and 25% did not look back over their shoulder when provided 
with rear cross traffic alert.8 

ACC and active lane keeping/lane keeping assist (LKA) were tested under multiple driving 
conditions by the Insurance Institute for Highway Safety (IIHS) in a series of track tests.10 ACC 
is an automated system that maintains a designated speed and following distance from the leading 
vehicle. This system can adjust its speed based on the leading vehicle and can also make a complete 
stop if required. LKA is another automated system that keeps the vehicle in its respective lane 
using steering control. These systems do have some limitations, however. The tests by IIHS 
revealed ACC reacted aggressively in some scenarios while failing to react to already stopped 
vehicles in some other scenarios.10 Similarly, LKA was also observed to steer over the shoulder in 
some cases where the lanes weren’t detected.10 

In addition to this, a survey revealed that 74% of the respondents were very satisfied with LKA 
while 85% of the respondents were very satisfied with ACC.11 While 65% of the respondents 
trusted LKA to work every time, ACC was trusted by 72% of the respondents.12 Most tests on 
ADAS like ACC and LKA are performed under safer conditions compared to real-world traffic 
conditions and with better-trained drivers.12 Also, it is possible that such systems make drivers 
more reluctant and less prompt when driving.12 Further, a few consumers also complained of LKA 
not working properly at nighttime and in rainy weather condition.12 

The percentage of users relying on ADAS, the limitations that apply to various advanced features, 
and the lack of knowledge of the applications of ADAS among drivers can lead to unsafe driving 
conditions. While ADAS makes driving tasks easier on one hand, they may inadvertently make 
driving more difficult. The ADAS takes up certain driving tasks making a driver’s job easier to 
some extent, but the driver needs to be alert at all times to take over automated driving functions 
as soon as any of these systems fail to react or disengage. This brings forth the argument whether 
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ADAS lead to other unforeseen effects on drivers. This can be assessed by evaluating the behavior 
of drivers using vehicles with advanced features and drawing comparisons with drivers using 
vehicles without ADAS to better understand the driving patterns and safety implications. 

While it is difficult to precisely capture driver behavior in the real world, there have been few 
research studies where drivers were provided with a test vehicle to capture and analyze driving 
behavior or by conducting surveys.13,14 Though these research studies captured some aspects of 
drivers’ understanding, they are not entirely accurate as they are limited to selected scenarios, and 
may involve a long and cumbersome process. Privacy may also be a trade-off. This brings the 
application of a driver simulator into the play. 

The driver simulator is a platform that can be used to capture driver behavior and ensure the safety 
and privacy of the drivers (participants). Driver simulators also enable researchers to capture a wide 
range of customizable driving characteristics in a shorter span of time. As such, using a driving 
simulator may bridge knowledge gaps which are relatively challenging to navigate in the field. The 
focus of this study is to evaluate driver participants’ response to scenarios when driving vehicles 
with and without advanced features like LDW, BSW, OSW, ACC, and LKA. 

Drivers’ responses or behaviors could vary according to the advanced feature, driving scenario, and 
participant characteristics, as well as lighting and weather conditions. Therefore, rural, urban and 
freeway scenarios were developed in a driver simulator and tested on drivers (participants) aged 
sixteen to sixty-five years who were randomly assigned vehicles with or without advanced features. 
This study aims to capture general driving behavior in all types of settings, discussed later in detail. 

1.1 Need for Research and Problem Statement 

Human errors are a major contributor to road crashes. Automotive companies and researchers have 
made ongoing efforts to reduce human intervention in driving and improve safety, with the 
ultimate goal of complete automation in the future. Federal institutions like the National Highway 
Traffic Safety Administration (NHTSA) and the Federal Highway Administration (FHWA) 
have also been monitoring the performance of various emerging advanced features and evaluating 
their acceptance and ease of use via testing procedures.15 Further, the NHTSA publishes articles 
and provides information on ADAS, explaining their working mechanisms, advantages, and 
limitations to educate drivers.16 

There have been considerable research efforts to investigate the effectiveness of ADAS. The data 
collected for these evaluations mainly stems from reported incidents. Despite the proven records 
of these systems, a low level of acceptance seems to exist among drivers. Many drivers are confused 
with the application of ADAS which could lead to drastic outcomes, which is alarming. 

The ADAS cannot be assessed for specific driving conditions in the real world, and their effects 
can only be anticipated or collected post-event. Employing a driver simulator helps design specific 
driving scenarios that can test the limits of such systems and develop a deeper sense of their 
applicability. A wide range of testing conditions can be simulated which otherwise may be difficult 
to analyze. 

Although there have been significant efforts to evaluate the effectiveness of ADAS, a model with 
a broad sense of applicability is rare. Past studies on the effects of ADAS on drivers are limited to 
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very specific conditions or to a defined set of parameters. However, the driving behavior, use of 
ADAS, and effectiveness could vary based on the road functional class (freeway compared to non-
freeway roads) and area type (urban compared to rural). There is a need to evaluate the effect of 
ADAS on driving behavior under various driving conditions. The findings from such a study 
would guide policymakers and automotive companies to formulate well-defined testing criteria. 
Therefore, this study focuses on developing driver behavior models for different driving scenarios 
such as urban, rural, and freeways. 

Younger drivers are more comfortable using advanced technologies while older drivers may not be 
equally comfortable or even familiar with advanced technologies. Thus, the socioeconomic aspects 
and driving history also have a bearing on driving behavior and the use of ADAS. Considering 
demographic and socioeconomic variables, driving history, and drivers’ prior understanding of 
ADAS could allow researchers to better understand their role, generate defined parameters, and 
design more optimal ADAS for the drivers. 

The purpose of this study is to evaluate the effects of ADAS on driver behavior. The advanced 
features are tested in different driving conditions that include urban, rural and freeway scenarios, 
and capture daytime and nighttime variances, as well as weather conditions such as rain or snow. 
Furthermore, along with socioeconomic and demographic factors, additional variables include 
participants’ driving history, alcohol consumption, and sleep patterns on the day before the study. 
This enables the comparison of the effects of ADAS across multiple facets and also identifies any 
gaps which are highly applicable to the multi-faceted situations that arise in real-world. 

1.2 Study Objectives 

The objectives of this study are: 

• to collect data and assess driver participants’ response to scenarios when driving connected 
and automated vehicles compared to vehicles with and without Driver Assistance 
Technology; 

• to identify the effects of advanced features on driver behavior for different driving 
conditions, demographic, and socioeconomic characteristics; and 

• to model the effects of advanced features on driver behavior with individual systems and 
combinations of two or more systems. 

1.3 Organization of the Report 

The reminder of the report is organized as follows. Chapter 2 presents an extensive review of the 
various methods adopted to evaluate ADAS. The chapter discusses survey methods, field test 
methods, microsimulation methods, and driver simulator methods and identifies prevailing gaps. 
Chapter 3 synthesizes the driver simulator system. The various tools involved in developing the 
simulation conditions and participant selection criteria are also discussed in detail. Chapter 4 
discusses the methodology adopted along with data collection and processing efforts. Chapter 5 
presents results from the research, while conclusions and scope for further work are discussed in 
Chapter 6. 
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2. Literature Review 
Investigating past research efforts on ADAS is vital to understand their effects on driver behavior 
and safety. Also, this exercise helps to identify any knowledge gaps and methodologies adopted by 
past researchers which serve as a foundation to establish a more concrete framework. This chapter 
presents an overview of the past studies categorized based on the relevant research areas. 

2.1 Survey and Mathematical Methods to Assess Driver Behavior 

Abdul et al. (2007) investigated driver behavior based on the pressure applied on brake and gas 
pedals.17 They employed a cerebellum model articulation controller (CMAC) to model driver 
behavior. They observed the application of CMAC to be reasonable for predicting various driver 
behavior characteristics and understand the effects of a drivers’ emotion and subconscious mind. 
Wang et al. (2014) evaluated driver behavior based on the acceleration and brake force parameters 
and steering wheel angle using mathematical models.18 They used these parameters to incorporate 
into ADAS and observed that driver behavior varies for different driving actions and generalizing 
driver behavior based on only a few actions is not ideal. Similarly, Kamaruddin and Wahab (2010) 
tried predicting driver behavior based on speech configuration.19 They found that emotions 
conveyed in speech patterns—especially when sleepy—can be used to profile driver behavior. Kuge 
et al. (2000) evaluated driver behavior using a hidden Markov model (HMM).20 They 
demonstrated the efficient application of HMM for both the application and modeling of driver 
behavior, particularly for lane-changing behavior. Sathyanarayana et al. (2008) also developed an 
HMM framework to identify driver behaviors and distractions using mathematical models.21  

Tran et al. (2012) used vision-based foot gestures and HMM to analyze and predict braking 
behaviors of drivers.22 They used visual methods to capture driver behavior data and employed 
HMM to predict the pedal pressing gestures and achieved a 94% accuracy with this method. 
Similarly, Yannis et al. (2010) investigated the acceptance of ADAS among older driver via surveys 
from 23 European countries.23 The authors developed ordered logit models, and the results showed 
relatively better acceptance of ADAS among older drivers and females. Morignot et al. (2014) 
evaluated the effectiveness of and acceptance of ADAS via a surveying method.24 They presented 
results to help develop ADAS in the future. 

2.2 Field Test Methods to Assess Driver Behavior 

Alkim et al. (2007) investigated the effects of LDW and ACC in congested mixed traffic 
conditions on driver behavior using a field vehicle in Netherlands.25 They observed an 8% 
improvement in traffic safety and a 3% reduction in fuel consumption. Additionally, the estimated 
reduction in emissions was about 10%. 

McCall et al. (2007) focused on developing human-centric ADAS—such as predictive braking 
and ACC—and evaluated its effects on driver behavior using a test vehicle in real-world driving 
conditions.26 Cognition-based adjustments were made to the vehicle to capture driver behavior and 
the framework showed promising results. Ziefle et al. (2008) evaluated the effects of visual and 
auditory ADAS on older drivers.27 They observed better driving performance in the absence of any 
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ADAS, while auditory systems contributed the highest to distraction. Their findings indicate that 
older drivers preferred auditory systems over visual systems. 

Inata et al. (2008) modeled driver behavior using micro-electric sensors mounted on vehicles which 
were driven in real-world traffic environments.28 The sensing equipment recorded the pedal 
operation of the vehicle, which was used for analyses. The researchers developed a theoretical 
model to estimate driver behavior and then compared it to urban driving data to distinguish hurried 
driving from relaxed driving. Angkititrakul et al. (2009) used mathematical models (Gaussian 
mixture model) and algorithms (piecewise auto-regressive exogenous) to understand and 
incorporate driver behavior into car-following models.29 The data was obtained from real-world 
driving conditions. They captured braking and acceleration parameters in response to the distance 
from the leading vehicle. The framework was then used to evaluate and model driver behavior. 

Kondyli and Elefteriadou (2009) investigated driver behavior using data obtained from driver 
responses to various questions that addressed their thinking while merging onto a highway.30 They 
tried to correlate the driver’s behavioral thinking to driver characteristics. Pauwelussen and 
Feenstra (2010) investigated the effects of ACC and LDW on driver behavior in real-world 
driving conditions.31 They observed that the ACC system led to larger headways between vehicles 
while manual override of the system resulted in shorter headways. 

Farah and Koutsopoulos (2014) explored the effect of infrastructure to vehicle (I2V) assistance 
systems on drivers using test vehicles.32 They observed reduced ranges of acceleration and 
deceleration while their car-following was more synchronized. Olaverri-Monreal et al. (2014) 
examined the effect of the location and angle of in-vehicle displays on driver safety.33 They 
observed the driver gaze when looking at driver information systems in the vehicle that are 
currently existing in the market and inferred that they meet the NHTSA guidelines for the gazing 
away from road values. Driver preferences for the in-vehicle display and location converged with 
the market, while mobile applications and social media were found to be unnecessary. 

Son et al. (2015) employed a road-testing method to evaluate the acceptance of FCW and LDW 
based on the age and gender of the driver.34 While females and younger drivers showed lowest 
acceptance for ADAS, males and late middle-aged drivers showed higher likelihood of acceptance. 
Miyajima et al. (2016) developed machine learning models to analyze data collected from real-
world driving conditions over 15 years.35 They observed various driver behaviors including lane-
changing, car-following, and pedal operation. They developed statistical models to predict risky 
driving and frustrated driving behaviors. Sieber et al. (2016) investigated driver behaviors in 
collision avoidance using a field test study.36 They observed driver behavior and perception with 
different times of collision and observed that the speed of the obstacle had the greatest effect on 
driver behavior. 

Cades et al. (2017) investigated the effects of LDW on driver behavior while the participants 
performed a secondary task.37 They observed no significant effect of LDW on reducing workload 
on driver cognition while performing secondary tasks. Lyu et al. (2019) investigated the effect of 
ADAS on driver behavior using field operational tests in China on a test route.38 The effects of 
FCW and LDW were primarily assessed in their study. They observed increased braking time and 
decreased relative speed when provided with ADAS. Also, higher acceptance of FCW was 
observed over LDW. The acceptance was higher on freeways compared to urban roads. 
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2.3 Microsimulation Methods to Assess Driver Behavior 

Kikuchi et al. (2003) used microsimulation to explore the effects of ACC in platooning based on 
the different positions of the vehicle.39 They observed reduced reaction times to achieve stability 
in the platoon. Both ACC-equipped and non-ACC vehicles were found to display enhanced 
safety. Derbel et al. (2012) investigated the effect of mixed traffic—made up of vehicles equipped 
with ACC—in a crash scenario.40 Enhanced safety and also reduced crash risk were observed when 
vehicles equipped with ACC were involved in a crash. 

Jeong et al. (2014) investigated the effect of an inter-vehicle safety warning information system 
(ISWS), which communicates hazardous maneuvers of vehicles that could lead to a crash.41 Probe 
vehicles captured drivers’ behavior and were fed into a VISSIM simulation, while the Surrogate 
Safety Assessment Model (SSAM) was used to measure safety. Rear-end conflicts were observed 
to reduce with penetration rates, while congestion increased. The standard deviation of speed 
decreased by 40%. 

Researching the effectiveness of multiple integrated systems, Li et al. (2016) evaluated the effect 
of integrating I2V with ACC and variable speed limit (VSL) in different combinations on traffic 
safety.42 The time exposed time to collision (TET) which indicates the total time spent by a vehicle 
in safety-critical situation and time integrated time to collision (TIT) which is time remaining for 
a collision to occur if two vehicles continue to maintain the same speed were used as surrogate 
safety measures in their study. Integrating technologies led to better results when compared to 
individual effects. Employing a similar methodology, Li et al. (2017a) evaluated the effects of ACC 
on safety of freeways.43 Enhanced safety was observed with the increase in penetration rates, while 
the combination of ACC and VSL were observed to produce the best results. Li et al. (2017b) also 
investigated the effect of cooperative adaptive cruise control (CACC) on rear-end crash risk on 
freeways.44 A significant reduction in crash risk was observed with CACC while the TET and TIT 
reduced by over 90%. 

Cicchino (2017) analyzed the effectiveness of FCW, AEB—separately and in combination—in 
reducing rear-end crashes.45 FCW and AEB reduced rear-end crashes by 27% and 43% respectively 
and by 50% when combined. The likeliness of vehicles experiencing rear-end crashes reduced in 
the case of vehicles with individual systems but increased when the vehicles were equipped with 
both systems. Yue et al. (2018) examined the integration of connected vehicles with different 
ADAS.46 About a 70% reduction in crashes was achieved by the integration, while FCW was 
found to reduce rear-end crash risk by 35% in foggy conditions. 

2.4 Driver Simulator Methods to Assess Driver Behavior 

Kaptein et al. (1996) found that driver simulator-based study results are valid, and that validity 
increases with the resolution of the simulation and the presence of a moving base.47 Strayer and 
Johnston (2001) investigated the effect of conversing on cellular phones on driving using a driver 
simulator.48 They observed longer reaction times to traffic lights, irrespective of hand-held or 
hands-free devices. Similarly, another driver simulator-based study by Strayer et al. (2003) 
observed that using hands-free devices for conversation increased reaction times when stopping at 
intersections due to reduced visual attention.49 
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Choudhary and Velaga (2017) investigated the effects of talking and texting on driving behavior 
in a suddenly arising situation (pedestrian crossing) using driver simulator.50 Mean speeds were 
observed to reduce if the drivers were on phone, while the probability of a crash increased by three 
to four times. Strayer and Drews (2004) observed that the effect of cell phone conversations was 
higher on young drivers compared to older drivers.51 In another study, Strayer et al. (2006) 
observed that the drivers were involved in comparatively higher number of crashes when talking 
on cell phones due to decreased reaction times to braking, while intoxicated driving led to smaller 
headways from leading vehicles.52 Overall, the effect of using a phone and intoxication were 
observed to have similar effects when driving conditions and time to task were the same in their 
study. Further, text messaging was also observed to constrain driver attention to braking lights, 
significantly leading to crashes (Drews et al., 2009).53 

Lundgren and Tapani (2006) investigated the safety effects of ADAS using a driver simulator.54 
They observed that the functionalities of ADAS and changes in driver behavior for ADAS-
equipped vehicles could affect safety. Driver-vehicle behavior was observed to substantially affect 
safety. van Driel et al. (2007) evaluated the effectiveness and acceptance of congestion assistant 
using a driver simulator.55 They observed improved driver safety behaviors when approaching a 
traffic jam. Lee and Abdel-Aty (2008) captured driver responses to warning messages and VSL 
using a driver simulator.56 They observed that variation in driving speeds reduced, leading to better 
traffic flow and reduced congestion. 

Hoogendoorn and Minderhoud (2002) investigated the effects of intelligent cruise control and 
intelligent speed adaptation on driver behavior.57 They observed improved capacities and reduced 
reliability at bottlenecks when cruise control was engaged, while intelligent speed adaption did not 
improve capacity and reliability. Martin and Elefteriadou (2010) researched the effect of ADAS 
on driver behavior using a driving simulator.58 They observed changes in driver behavior when 
using vehicles equipped with ACC and lane-changing on arterials/freeways. Calvi and Blasis 
(2011) evaluated driver behavior when using acceleration lanes.59 They observed that merging 
behavior was dictated by the traffic volume on main roads and not the length of the acceleration 
lane. Son et al. (2011) assessed the effect of voice recognition system on driver distraction, 
especially for older drivers.60 The distraction effects were evaluated for both urban and highway 
sections, and it was observed that both age and environmental conditions affected driving behavior 
when the driver had to perform two tasks. 

Maag et al. (2012) investigated the effects of ADAS on drivers using single and multi-driver 
simulators.61 They evaluated the effects of merging systems and advanced warning systems and 
supported the use of multi-driver simulators to understand and capture driver behavior. Saleh et 
al. (2013) examined the compatibility of driver and ADAS with LKA using driver simulator.62 
They observed improved lane keeping when the system was engaged, despite varied driver 
behavior. Aziz et al. (2013) investigated the understanding and effects of LDW on driver behavior 
using a driver simulator.63 They found that the dynamic nature of the driving environment could 
limit the driving cognitive model leading to cautious driving scenarios that could result in a tragedy, 
irrespective of any secondary tasks performed by the drivers. 

Rommerkirchen et al. (2014) investigated human-machine interactions to understand the effect 
of ADAS on drivers using a driver simulator.64 They observed that game-time (interaction) 
reduced in complex driving situations. In a similar study, Biondi et al. (2014) investigated the effect 
of a beeping ADAS on driver behavior using a driver simulator.65 They observed that the beeping 
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sounds disrupted the vehicle trajectory as the drivers deviated from the lane. They observed such 
sounds to be distracting for the driver in contrast to their original functionality. 

Using a low fidelity simulator, Spivey and Pulugurtha (2016) evaluated the visibility of two-
wheelers encountered by left-turning motorists at urban intersections in nighttime conditions, 
compared to other hazards.66 The observed response times to a two-wheeler were not different 
from the response times to a passenger car with two headlights. However, the response times were 
significantly shorter than the times to recognize no hazard or a two-wheeler with no headlight. 
Differences were observed when response times were compared for daytime and nighttime 
conditions. 

Gaspar et al. (2016) evaluated the impacts of FCW and LDW on driver behavior using a driver 
simulator.67 They compared the effects on both distracted and undistracted drivers and observed 
that the driver behaviors fell into categories based on distraction. Significant variation in driver 
lane-changing behavior was also observed in their research. Mas et al. (2011) investigated the effect 
of lateral control assistance systems on driver behavior in avoiding obstacles using driver 
simulator.68 They observed an equal effect from both assisted and non-assisted drivers in avoiding 
obstacles. However, the lateral control assistance system contributed to faster reaction times. Witt 
et al. (2018) investigated the effect of drivers’ characteristics and personality on their driving 
behavior using virtual and driving simulations.69 They attempted to develop a driver cognitive 
model to help design ADAS. Phone use was found to significantly affect driving for both younger 
and older drivers, with younger drivers having a higher crash risk compared to experienced 
drivers.70 

2.5 Effectiveness of ACC and LKA 

ACC maintains a designated speed and distance for a vehicle with respect to its leading vehicle, 
while the LKA ensures that the vehicle stays in its respective lane. Consumer Reports (2017b) 
considers ACC to be more of a luxury feature than a safety feature due to its functionality.71 
Combining ACC with other ADAS may mask the minimal effectiveness of the system. Further, 
ACC functionality seems to vary across automotive make.72 ACC has been observed to be jerky 
with acceleration and braking maneuvers, and its response to already stopped vehicles was 
identified as a limitation. Additionally, it was observed that drivers with ACC were driving at 
higher speeds compared to drivers without ACC.73 

Similarly, there are anticipated advantages and limitations of the LKA feature. The LKA and 
LDW were expected to mitigate over half a million crashes in 2016 alone.74 The LKA performs a 
lane keeping test every five to fifteen seconds and provides a stipulated steering torque to maintain 
the vehicle in its lane, allowing the driver to take over if required.75 It is expected to have significant 
effects on safety especially on run-off and head-on crashes.76,77 It is estimated that a 100% effective 
lane departure prevention system could reduce single vehicle run off crashes by 65%.78 

The ACC and LKA features in combination control both the longitudinal and lateral movements 
of a vehicle and provide a basis for a more advanced automated driving version. The reliability of 
drivers on these systems also plays a vital role in their effectiveness, as it dictates the attention they 
are paying while driving. Many studies have highlighted the direct impacts of these features but a 
deeper understanding of their effects on driving behavior needs to be investigated. This will help 
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establish parameters that can be used as inputs to evaluate the effects of vehicles with advanced 
features in a traffic stream using microsimulation software. 

2.6 Limitations of the Past Research 

Extensive research has been done on the effect of various tasks that could influence driver behavior. 
Various methodologies have been adopted to investigate the effects of advanced features in a 
vehicle on driver behavior. Methodologies employing surveys and mathematical models generally 
aimed to research the adaptability of the methods in modeling driver behavior, although some 
focused at studying the acceptance levels of different ADAS. Some of these studies were also 
focused on predicting driver behavior, which yielded reasonable results. However, these methods 
often rely on self-reporting and the participants could be biased when answering the questions, 
especially when they are being scrutinized by another person. 

Field test methods were explored to capture driver behavior and drivers’ acceptance of advanced 
features in some cases. Some researchers looked at the acceptance rates of different advanced 
features based on age and gender, while a few others focused on the effect of advanced features on 
driving behavior. Similarly, driver simulator studies have been conducted to examine the effect of 
advanced features in certain conditions. Most of the driver simulator studies did not take 
demographic characteristics into consideration, nor did they compare participants from two 
demographic groups (young and old). 

Previous studies have also been hypotheses driven, leading to concentrated research with reduced 
applicability. Another limitation of past studies is the investigation of only one or two ADAS at 
once. This study focuses on capturing driver behavior in various driving situations and also includes 
different types of advanced features to reach meaningful conclusions. The findings can be used to 
develop driver models that can be applied in many cases. Driver simulators provide a perfect 
platform to model various driving conditions and ensure precision. The results can then be used 
to develop an accurate model of driving behavior. 
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3. Driver Simulator 
The National Advanced Driver Simulator (NADS) miniSimTM was used for this study. 
Developing the desired conditions in the driver simulator involves multiple processes. Figure 2 
depicts a flowchart summarizing the processes of developing simulated driving scenarios. 

 

Figure 2. Functional Flowchart of Driving Simulation Development 

 
 

As displayed in Figure 2, three tools are required to develop the final driving simulation scenarios. 
The initial step involved developing a road network, which is handled in the Tile Mosaic Tool 
(TMT). The initial road network along with terrain conditions was built in the TMT. After 
developing the road network, it was imported into the Interactive Scenario Authoring Tool 
(ISAT). This tool allows users to define various driving conditions including weather conditions 
(rain, snow, fog, or clear weather), lighting conditions (day or night), traffic lights, or for a specific 
type of vehicle with a desired level of traffic. The output file from ISAT is then imported into 
miniSimTM which then simulates the scenario to test driving behavior. The development process 
to attain the final simulation product based on guidance documents from the University of Iowa, 
201679 is discussed next in detail. 

3.1 Tile Mosaic Tool (TMT) 

The TMT allows users to generate world or database files. The world files are constructed using 
tile models, where each tile model contains information about the roads, the terrain, and feature 
objects. Placing tile models adjacent to each other in a desired pattern forms a road network. There 
are multiple categories including city, commercial, fillers, freeway, industrial, mountain, railroad, 
residential, rural, urban, special, and suburb. The tiles are named for the type of road they depict. 
For example, freeway tiles contain roads that replicate freeway conditions, whereas residential tiles 
represent local roads that are typically found in residential areas. Commercial tiles have terrains 
with commercial blocks with trading and shopping locations. Filler tiles can be used to fill in gaps 
between other tiles, varying from small road sections to intersections. Special tiles are similar to 
filler tiles and create locations such as interchanges. 
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The TMT offers several types of roads that can be observed in the real-world, while also providing 
special tiles that create conditions such as snowy or wet roads. The tiles also display road markings, 
terrain conditions, and vegetation, and more complex tiles display both traffic signs and control 
devices such as signals and stop/yield signs. Figure 3 shows a screenshot of a road network created 
with a set of tiles. 

 

Figure 3. Screenshot of a Sample Road Network in the TMT 

 
 

As depicted in Figure 3, the tiles need to be attached so that roads align and there are no gaps 
when they are visualized in the driver simulator. The road section in the blue tile is thinner than 
the adjacent tiles, indicating a two-lane curved road connected to four-lane roads at each end. This 
may lead to small inconsistencies in visualization and proper care needs to be taken. The boundary 
of the tiles is displayed with red lines using the red square symbol in the menu bar. 

The grid in the background helps place tiles easily when developing a network file and can be 
activated using the grid symbol. However, it is important that the tiles are created while developing 
the world files within the TMT so that they can be adjusted in ISAT before the simulation. The 
green cross seen in the tiles indicates that they have been created in TMT and can be activated 
using the traffic light symbol. For example, changing a Stop sign to a Yield sign or assigning signal 
timings. 

TMT is initially set up as a grid on which the tiles are placed. There are a few important points to 
be remembered while developing world files in the TMT. Firstly, not all tiles can be placed 
adjacent to each other. For example, one cannot place a two-lane rural road tile adjacent to a four-
lane urban road tile. A dialog box with the list of compatible tiles with their categories, rotation, 
and size is displayed when the right mouse button is pressed after selecting the adjacent tile, which 
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is then added from the list. A non-compatible tile may also be added forcefully by pressing the 
Shift key. Some issues, such as a gap showing empty space or a failed visualization may occur in 
such cases.  

There are certain tiles that have unique controls, such as tiles that contain traffic signs, traffic 
lights, or road signs that need to be changed in ISAT or while visualizing. For example, all the 
roads are given the same road name in the default condition that can be changed while visualizing. 
Similarly, speed limit signs can be altered to change speed limits. To edit the tiles, the unique 
controls need to be enabled in the TMT by clicking the right mouse button and selecting the 
appropriate option. After the completion of a desired world file, a set of commands need to be run 
in the “command prompt” window that generates a set of visual and logical files to capture 
information from the TMT. It is important to generate both visual and logical files in the same 
session to maintain consistency of information and avoid any mismatches. The TMT tool 
generates a file in the “.mos” format, or the mosaic file. This mosaic file is then imported into 
ISAT for further development. 

3.2 Interactive Scenario Authoring Tool (ISAT) 

The ISAT puts together all the information designed by users and generates a scenario file (.scn) 
that can be imported into miniSimTM for simulated driving. Additionally, the ISAT is also capable 
of extracting data from the final output files. Developing a scenario file involves multiple processes, 
which starts with defining the traffic conditions. Figure 4 shows a screenshot of the same road 
network imported into the ISAT. The task bar to the left shows a list of different elements that 
can be added into the scenario using icons available in the menu bar at the top of the screenshot. 

The icons highlighted using the gray circle deal with the navigation through the map or network, 
including zooming in or out, viewing the entire network, finding any element, or using the undo 
or redo options. The icons highlighted by black circle show the different modes offered by the 
ISAT that allow users to play, record, and analyze driving conditions. The red circle highlights 
icons that are used to add dynamic and static objects such as vehicles, traffic signs, and virtual 
objects to the simulation. The blue circle shows icons that represent different types of weather 
conditions such as rain, snow, lightning, and fog. The green circle represents triggers that are used 
to simulate driving, while the orange circle shows the traffic and traffic light manager that controls 
traffic in the simulation, as desired by the user. The boxes by the side of the road network add 
certain actions into the scenario. 
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Figure 4. Screenshot of a Road Network in ISAT 

 

3.2.1 Traffic Condition 

The ISAT allows users to select pedestrians or any type of vehicle ranging from bicycles to trains. 
Additionally, multiple features such as color, speed, tire condition, brake condition, etc. can also 
be specified. ISAT also allows users to also select the type of drivers in the vehicles, which are in 
turn deemed to be dynamic objects in the ISAT. 

There are two types of dynamic objects that can be added into a scenario. The first type is the 
Deterministic Dynamic Object (DDO) whose actions are pre-determined by the user. These 
objects simply follow a path that is pre-defined and the speed of the DDO can be set at each node 
of the path. These objects do not follow traffic rules and cannot avoid collisions and as such, can 
be called intuition-less objects. The second type of dynamic object is the Autonomous Dynamic 
Object (ADO). These objects resemble human drivers and follow traffic rules. However, they can 
be instructed to perform certain actions that defy the traffic rules. 

Adding each vehicle individually in the scenario is a tedious and time-consuming process. The 
ISAT offers a “traffic source” option that allows users to add multiple vehicles at regular intervals 
throughout the simulation from a designated point in the network. Multiple vehicles can be added 
to each traffic source in a loop. For example, if five vehicles are added to a traffic source, it generates 
the same five vehicles once it has generated all of them. 
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Pedestrians can be added into the scenario as DDOs, defining their path to cross a road. There 
are multiple ways to generate an object in a simulation. By default, the simulation generates objects 
at the start, but this may not work under some conditions. For example, if the user wants to 
simulate a pedestrian crossing the road at a mid-block section when the driver is at the location, 
the default case may generate the pedestrian as soon as the simulation starts, and the pedestrian 
may have already crossed the road by the time the driver reaches the specific point. To overcome 
such challenges, the simulation can also delay the generation of the object. There is an “activation 
delay” option available when adding objects to the scenario which allows the object to be generated 
after a specified period of time. This is a good approach; however, the driving time may differ from 
one driver to another driver, thus each driver may be at a different point in the simulation at the 
given time and as such the previously mentioned simulation may work only in some of the cases. 
The third way of generating an object in a simulation is to define the “creation radius” of the object 
which works with reference to the location of the external driver in the simulation. This ensures 
that a desired scenario is executed in reference to the location of the driver. 

The lifetime option allows users to determine how long an object remains in the simulation. For 
example, a car may be temporarily inserted behind another vehicle to create a lane-changing 
scenario. Static objects can also be added into the scenario to convey additional information like 
the speed of the road, traffic cones, warning signs, etc. While the TMT already provides sign 
information (speed, curve, etc.), more can be added using static objects if the user feels they are 
not abundant enough. However, it is important to remember that these only provide visual 
information and do not play a role in defining the simulation’s behavior. For example, if an ADO 
is set to follow the speed limit, it follows the speed limit set on the default signs imported from 
the TMT. 

The next step in defining traffic conditions is to allocate the traffic signal split times. Figure 5 
shows a screenshot of the “traffic light manager” which shows a list of all the traffic signals available 
in the network. The user can configure the desired number and duration of states using the “add 
state” option. It is important to remember that when a light is green, only its complementing light 
or all the other lights are red. Figure 5 depicts a traffic signal head—which controls traffic 
movements—on the right side. This helps users to determine the cycle of the traffic signal. The 
other signal heads turn red when one is green or yellow. 

While this scenario only contains one traffic signal, this window shows all the available signals 
which can be assigned cycles as necessary, turned off, or triggered when a driver is nearby, at a 
distance determined by users. 

3.2.2 Weather Conditions 

The ISAT allows the user to select weather conditions from rain, snow, fog, and lightning. 
Further, the ISAT lets users simulate weather conditions at specific stretches or for the whole 
network route. Upon selecting the weather option, the user can draw a polygon to define the area. 
Varying levels of intensity (for example, light v. severe rainfall) are also configurable options. 
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Figure 5. Traffic Light Manager for Four-legged Intersection 

 

3.2.3 Light Conditions 

The “initial conditions” tab allows users to configure light conditions according to time of day. 
This is where other vehicle conditions of the external driver can be specified as well. Light 
conditions cannot change during a simulation and remains constant throughout. The properties 
tab allows users to configure headlight options for all the vehicles in the scenario. 

Figure 6 shows the “initial conditions” tab that allows users to configure the light and vehicle 
conditions. The first option is to select the type of vehicle and users can choose between cab and 
trailer options for certain types of vehicles. 

Users can also configure tire and brake conditions, with four and three options respectively. The 
headlights of the vehicle can also be turned on in the “initial conditions” tab and configured as 
well. The vehicle can also be assigned a failure type that allows users to observe behavior of 
participants in failed conditions. The simulation can also be prompted to stop on the detection of 
a collision. Light conditions and the date of the simulation can also be changed. 
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Figure 6. Defining Initial Conditions 

 

3.2.4 Scenario Fabrication 

After all the required elements have been added, the simulation conditions can be fabricated as 
desired using triggers. While all the previous sections simply add elements to the simulation that 
would just normally follow the pre-defined rules, this is where they can be instructed to perform 
certain actions that would help create testable driving conditions for the participants. There are 
different types of triggers that perform various functions. A few terms that help define the actions 
associated with triggers are: firing which refers to performing any action defined by a trigger; target 
set is any set of elements that would be affected by the trigger’s action; and instigator set is the set 
elements whose actions fire a trigger. 

The ISAT offers six different types of triggers that can be used to define the actions for various 
elements in a simulation. They are the global time trigger, roadpad trigger, time to arrival trigger, 
follow trigger, traffic light trigger, and expression trigger. Figure 7 shows an image of a roadpad 
trigger. 
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Figure 7. Roadpad Trigger in ISAT 

In Figure 7, depicts the roadpad which fires when the vehicle is on the pad. The roadpad needs to 
be placed on the driver side to trigger the action while the external driver is placed on the road 
before the roadpad. Other triggers can also be observed to the right of the image. Additionally, 
there are a few more settings that can be explored related to each type of trigger. 

Figure 8 shows the steps involved in setting up a trigger, which in this case is the roadpad trigger. 
There are four tabs in a trigger window. They are predicate, general, action, and comment. The 
instigator set can be assigned in the predicate tab which could be a designated ADO, the external 
driver, or any other desired element in the scenario. 

Figure 8. Setting up a Trigger 

Figure 8 depicts the general tab on the left-hand side. The one-shot option deletes a trigger from 
the simulation after an action has been fired once. The fire-delay option can be used to delay the 
actions that are fired by a trigger until after all the necessary conditions are met. The default value 
used by the ISAT is “0”, which immediately fires the actions. A trigger can be prompted to perform 
an action multiple times during a simulation using the debounce option. The default value is 
usually set to “0” and can be changed as required, which dictates the time gap between each action. 
The effects of activation delay and creation radius options were discussed previously and the action 
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tab defines the action that need to be fired by the trigger, which prompts the system to capture the 
event information in post-simulation reports. The comment tab allows users to make notes for 
future simulations or other users. When there are multiple triggers in a scenario, they can be 
assigned priorities, allowing one trigger to fire after another. 

The global time trigger follows the time of the simulation and fires when the simulation reaches a 
specific time. This trigger does not require any other settings by the instigator and solely follows 
the clock. The roadpad trigger designates actions to objects at certain points in the road. Actions 
can be specific to certain objects—for example, if the user requires a vehicle to drive in the opposite 
lane, they can name and add an ADO to the trigger so only that vehicle performs the specified 
action. The time to arrival trigger is very similar to a roadpad trigger but in addition to a pad, the 
time taken by the instigator set to reach a designated point is less than or equal to a defined value. 
These triggers are typically used to create near collision scenarios. The follow trigger allows the 
user to define the firing conditions when a vehicle follows another vehicle for a specified period 
and distance. In this case, the instigator set could be either the leading or the following car. The 
trigger also allows users to define tolerance levels in the specified values, and also enables the 
vehicles to follow the same or different lanes. 

For example, this function can be used to generate a BSW condition in the simulation. The traffic 
light trigger performs actions that area fired based on signal changes. In this case, the traffic lights 
in the scenario make up the instigator set. Users can select the traffic light and define the color 
(green, red, or yellow) to trigger an action. In addition to all the aforementioned triggers, small 
expressions can also be written in the scenario using the expression trigger where the system can 
be prompted to read if a value is equal to, more, or less than a defined value for a variable. This 
trigger can be fired at the beginning of the simulation or by a creation radius. For example, an 
expression trigger may be used to alert a driver if they cross a speed limit. 

3.2.5 Data Verification/ Extraction 

The ISAT allows for the verification of created scenarios and the extraction of data from the 
simulation. The ISAT provides four different modes that target different levels of scenario 
development. The authoring mode enables users to add new elements to the scenario or edit the 
existing elements. The rehearsal mode generates a walkthrough of the conditions in a scenario. 
The rehearsal mode runs the scenario on the ISAT platform using an autonomous driver model 
and any element can be followed. Since the driver is an autonomous model (similar to an ADO), 
it is more precise than a human participant in the simulation. 

The driving behaviors and dynamics are stored as frames that encompass a defined time-period of 
the run and a collection of such frames is called a buffer. The ISAT also allows users to record the 
rehearsal to be stored for reference in the future. The ISAT also plays the simulations that were 
driven by human drivers in miniSimTM to observe and extract data from the files. The simulations 
are then stored as data acquisition (DAQ) files that can be imported into the ISAT using the 
playback mode. Additionally, the movie option records parts of simulations that capture desired 
time frames. The ISAT also displays certain variables of the external driver during the playback to 
observe how their behaviors were changing at any point of interest. As previously mentioned, the 
behaviors are stored as frames which can be searched for information or conditions. For example, 
the frames could be extracted if speed limits exceed a certain value. The ISAT offers multiple 
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variables that can be extracted from the simulation DAQ file using the playback mode. It can also 
be exported in various formats. 

3.3 miniSimTM 

Along with participant simulations, miniSimTM offers several options that can be handy for users. 
Every simulation automatically generates DAQ files with time and date stamps. In addition to 
this, a text file is generated that can capture eleven different variables. The authoring needs to be 
done in the ISAT to prompt the capture of the variables. However, only up to twenty events can 
be captured by this method. The driving report can be viewed immediately on the screen at the 
end of a simulation by selecting the option in miniSimTM. 

MiniSimTM also enables users to specify multiple levels of selection paradigms by defining the 
priority levels. Additionally, miniSimTM slows users to select different types of vehicles at the start 
of the simulation, such as a passenger car, pickup truck, or a luxury car. The default vehicle type 
assigned to a simulation is a passenger car. Figure 9 shows a screenshot of the window in 
miniSimTM. 

Figure 9. Initialization Window in miniSimTM 

The scenario and the type of vehicle can be selected from the available drop-down menus. The 
DAQ tab allows users to specify the name of the participant and scenario type. A unique folder is 



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  24 

created for each participant which is especially helpful when each participant tests multiple 
scenarios. The DAQ output is generated at the end of a simulation. The screensaver mode simply 
activates a screensaver when the simulator is not in use. The data collection mode lets users collect 
data while the playback option lets them record the simulation. The message tab displays the 
success or failure messages of a simulation. The DAQ tab names the files and segregates them 
appropriately. The settings tab enables users to select options related to simulation while the 
system tab indicates that the associated systems are online and communicating. 

3.4 Technical Paradigm 

While the different stages handled by each tool were discussed in the previous section, a set of files 
carries the information forward, putting together information from these platforms towards a final 
focal point. This section discusses the technicalities and needs for the three tools to work together. 
Figure 10 shows a schematic of the transfer of files that handle the data. 

 

Figure 10. Technical Interaction Schematic of the Driver Simulator 

 
The tile library contains information of different types of tiles offered in the TMT. After putting 
the tiles together in the TMT, the output generated from the TMT is a project file in the “.mos” 
format and acts as an information holding file. The information is passed both ways from the 
TMT to the project files, as depicted in Figure 10. After developing a complete project file, several 
other files also need to be generated from the TMT to access the data in the ISAT and miniSimTM. 
One such file created in this process is a logical road information (LRI) file that stores information 
about the types of roads and the type of authoring that can be allowed for the tiles to be edited in 
the ISAT. This file is further converted into a binary LRI file called the BLI that stores the same 
information in a binary format. It optimizes the memory used to store information to be later 
accessed by the ISAT or miniSimTM. 

Other files that are created in the process include a “scenario control list” (SCL) file that 
summarizes the elements used in the TMT. The open flight or FLT files are necessary to convert 
the 2D tiles into 3D for visualization in miniSimTM. The other file required in this process is the 
“tile reference” (FTR) file that stores information on tile combinations required to configure a 
terrain along with the coordinate information, the rotation angle of a tile, and the category of the 
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tile. Additionally, the system creates a three-dimensional model binary file (with “IVE” as the file 
extension) that optimizes the storage of the necessary information for miniSimTM to access later. 
As per Figure 10, the ISAT uses the logical database to carry the operations further as it only 
handles 2D portions of the process, while miniSimTM uses a combination of both logical and visual 
databases to configure simulation settings. 

Additionally, there are many other files that are generated by default when TMT outputs are 
created. It is important to create both the logical and visual databases at the same time while 
building scenarios to maintain the consistency of information and avoid mismatches. Although 
the TMT allows users to copy built tiles from one file to another, copying large files may cause 
disruptions that needs to be carefully monitored to avoid losing work. 

The ISAT uses the BLI file from the TMT to further add additional elements in the functional 
section. While the BLI files hold the logic of information from the TMT, additional layers are 
added to the same file to keep the comparative information constant. The ISAT then generates a 
scenario file that contains the additional information added while pointing to the base file adopted 
from the TMT. This allows for miniSimTM to cross reference with the other visual files that are 
developed in the TMT. This scenario (SCN) file is delivered to miniSimTM as shown in the 
flowchart. The miniSimTM then generates DAQ files that are sent back to the ISAT for analysis. 
The features and purpose of these files were discussed in the previous section. A DAQ viewer can 
also be used to explore the data individually as shown in Figure 3. 

3.5 Scenario Building 

This section presents the types of scenarios that were developed for analysis. Three types of setups 
were developed (urban, rural, and freeway) in the driver simulator, based on common real-world 
conditions. This ensures results can be attributed to general driving behavior rather than limiting 
their applicability to only one type of setup. Since this study aims to test the effect of different 
types of advanced features on driver behavior, various conditions were also simulated. They are 
discussed next. 

• The base condition is the simulation without special conditions. It is a standard driving 
scenario in urban, rural, and freeway conditions without any advanced features and in 
daylight with clear weather. 

• Varying weather (rain, snow, and fog) was another condition added to one of the base 
conditions. 

• Varying lighting conditions (day or night) were also used in combination with the rainy 
weather condition. It involved changing the time of day in the initial conditions of a 
scenario. 

• LDW, BSW, and OSW were provided individually and in combination to some 
participants in different driving scenarios. 

• ACC and LKA were provided to some participants in different driving scenarios. 
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3.6 Driver Simulator 

The driver simulator simulates the driving scenarios which are used to capture driving behavior 
under different conditions. It resembles the interior of a vehicle to give an accurate driving feel to 
the participants. Figure 11 shows the driving simulator setup. 

 
Figure 11. Driver Simulator 

 

The setup of the driver simulator consists of five screens, seating, and a panel with a driving wheel, 
brake, and accelerator, as well as buttons that handle certain functions in the simulation. While 
the tab in Figure 11 is handled on the screen placed on the table in the left picture, the four screens 
seen in the right picture simulate the scenarios. The three adjacent screens are placed to emulate 
real-world driving. The screen placed below the three screens displays the vehicle panel and 
contains the speedometer, fuel gauge, etc. The driving wheel and panel buttons are placed in front 
of the bottom screen. Figure 12 shows the panel buttons and steering wheel. 

Figure 12. Driving Wheel and Panel Buttons 
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As can be observed from Figure 12, there are multiple panel buttons that handle actions in the 
simulation. The first picture from the left shows the orientation of the steering wheel within the 
setup. The two buttons highlighted by red circles in the first picture have three buttons on each 
side of the wheel. The first button on the top on each side can used for turning signals, the second 
can be used for making half shoulder checks that pan until the first side window, and the third 
button can be used for a complete shoulder check/view rotation until the rear passenger window. 
These can be used in case of lane-changing for shoulder checks. 

The second picture shows the left panel which contains the mirror adjustment panel. The white 
button in the center toggles the mirror selection to left and right, and mirrors can be adjusted using 
the four surrounding black buttons. The green button is used to turn on the headlights while the 
blue button turns on the high beam. The two black buttons handle the aux input for two input 
points. 

The third picture shows the right panel buttons of the simulator. The big red button turns on the 
vehicle in the simulation and a vibration is generated when the vehicle is turned on, like in the 
real-world. The two small red buttons beside the power buttons allow the participant to switch 
between parking, reverse, neutral, and driving gears. The yellow button is used for parking lights 
and the black button is used for wipers. The related symbols are also shown beside each button to 
provide general information for participants. 

The fourth picture shows the brake and accelerator that are set up at the bottom of the screens 
highlighted by a red circle. They operate the movement of the vehicle in the simulation. 

Figure 13 shows the setup of buttons to activate and control ACC and LKA during the simulation. 
The functions of the buttons as discussed from Figure 12 were revised in order to achieve the 
functions as shown in Figure 13. Activating one of these systems enables control of the vehicle at 
a level 1 automation stage, while activating the systems simultaneously simulates the vehicle at 
level 2 automation stage. 

As can be observed from Figure 14, the simulation is set in daylight conditions where the vehicle 
is stopped at an intersection. The traffic lights are red while other vehicles are crossing the 
intersection from right side of the driver. The bottom screen can also be seen displaying the panel 
of the vehicle. The fifth screen in the left picture can be seen recording the time, featuring 
information on the type of scenario and vehicle as well. 
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Figure 13. Buttons to Control ACC and LKA During Simulation  

 

Source: (The University of Iowa, 2016)79 

 

 
Figure 14. Simulating a Scenario in Driver Simulator 
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4. Methodology 
This chapter provides an overview of the methodology adopted for this study. A flowchart of the 
methodology is presented in Figure 15. The first stage involved developing appropriate driving 
scenarios. In order to improve the applicability of the results, rural, urban, and freeway scenarios 
were simulated as these are the typical settings encountered by a driver. The second stage involved 
the careful selection of driver participants so that the sample population accurately represents the 
general population. The participants in the age group of sixteen to sixty-five years were selected 
for the study. Each participant was provided with all three driving scenarios while a vehicle with 
or without ADAS was allocated to them at random. 

The third stage involved data processing and analysis to derive meaningful results. The analysis of 
variance (ANOVA) test was performed to evaluate the effectiveness of advanced features. 
Parameters of driver behavior like hard braking, hard cornering, lane departures, speeding events, 
average headway, and brake pedal force were assessed. The fourth stage involved the identification 
and application of changes in driver behavior to identify the behavioral differences among vehicles 
with and without advanced features. 

Figure 15. Methodology 

 

4.1 Scenario Building and Fabrication 

As stated previously, three types of driving scenarios were developed—the rural scenario, urban 
scenario, and freeway scenario. These scenarios were developed with the intention of mimicking 
real-world conditions for the results to be applicable to general driving behavior rather than one 
type of scenario. Since the focus of this study is to test the effect of different types of ADAS on 
driver behavior, various ADAS conditions were simulated as follows.  
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• The rural scenario was set up with two-lane undivided roads (one lane in each direction) 
later extending into four-lane undivided roads (two lanes in each direction). The scenario 
consists of only one traffic signal and one intersection with an all-way stop. The remaining 
route mostly represents county roads. The vehicles in this scenario consist of passenger cars, 
pickup trucks, and trucks. The speed limits were set at 55 mph. The simulation also consists 
of a gravel road for a small portion, which was intended to capture driver behavior (changes 
in speed or braking). This scenario was developed to last for seven to eight minutes. 

• The urban scenario was set up for drivers to interact with the elements that are typical of 
urban conditions, such as traffic signals, passenger cars, trucks, school buses, motorcycles, 
and pedestrians. The speed limits were set at 45 mph or 50 mph. The scenario is developed 
to last seven to eight minutes and consisted of four-lane roads. 

• The freeway scenario was developed to last for six to seven minutes and consists of two 
interchanges that allow drivers to transition from one freeway to another freeway. The 
freeways were designed to be four-lane divided roads. The speed limits were set at 65 mph 
for the first and 70 mph for the second freeway. The vehicles in this scenario mostly 
comprise trucks and passenger cars. The simulation was set up to force interactions between 
the drivers and trucks while merging onto highways. 

• The scenarios used clear weather and daytime conditions—typically referred to as base 
conditions—until they were specifically set to display other weather or light conditions. 

• The simulator provides the option to add varying weather and light conditions to 
simulations, such as rain, snow, and fog. Further, varying lighting conditions (dawn, dusk, 
and night) can also be used during the simulation. 

• The primary focus of the study is to evaluate the effect of advanced features on the driver 
behavior. Therefore, the simulations are generated with LDW, BSW, and OSW as the 
warning systems. They are used individually and in combination and are then compared to 
simulations without advanced features. The simulator allows users to assign advanced 
features to scenarios rather than vehicles which can be enabled via expressions that can be 
added prior to a simulation. The participants are provided with a vehicle with or without 
advanced features at random. 

• The LDW displays a warning on the screen when the vehicle departs from its lane. BSW 
displays a warning light on the mirror when another vehicle is detected in a blind spot. 
OSW displays a text alerting the driver of over-speeding. The speed limit can be set using 
expressions. 

• Additionally, LKA and ACC were provided as a part of the automated systems to the 
participants which can be activated during a simulation using the appropriate buttons on 
the wheelbase. Once the LKA is activated, it maintains the vehicle in the travel lane during 
the simulation. Likewise, ACC maintains a designated headway from the leading vehicle 
during the simulation. 

• The navigation instructions are provided to the participants in text on the driving screen, 
which represents a heads-up display (HUD). 
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4.2  Selecting Participants 

Permission was obtained from the Institution Review Board (IRB) to conduct this study. Drivers 
between sixteen and sixty-five years of age with a valid driver’s license were determined as the 
target participant population. The selection of participants was scrutinized carefully such that the 
sample is an accurate representation of the general population. The selection criteria included 
many factors, including demographic and socioeconomic characteristics. While the selection 
cannot be pre-controlled, identifying gaps in the data (demographic and socioeconomic) at every 
stage of the data collection process and selecting participants to accommodate for the missing data 
points is necessary. This was done throughout the data collection. 

Once a participant was finalized for the study, they were given a small survey that captured 
demographic information. No personal information was collected in the survey to maintain 
anonymity. Participants were also informed that their participation was completely voluntary and 
they could choose to drop out of the study at any point. Similarly, if desired, they were permitted 
to skip questions in the survey. 

Three types of driving conditions were provided for the participants—rural, urban, and freeway. 
The vehicle type was assigned based on the type of vehicle the participant drives for their regular 
commutes. This was captured from the responses to the survey questions before the start of 
simulated driving. The consent forms were provided to the parent/guardian for participants below 
the age of eighteen.  

The survey provided to the participants captured information including their education, income, 
gender, ethnicity, and driving experience. Along with such information, other information like 
their driving history (previous crash involvement/ citations), vehicle ownership, and if they have 
already driven a vehicle with any kind of advanced features was gathered. This type of information 
was used to account for the driving behaviors based on their previous experience to different 
conditions. 

Other information like alcohol consumption or lack of sleep on the previous day, that could affect 
the driving behavior were also collected in the survey. The participants were also given consent 
forms for them to understand their rights before participating in the survey. 

4.3 Data Collection 

This study collected data from two sources that were combined to form a single database. The 
socioeconomic and demographic data was collected from the survey questionnaire that the 
participants answered during the simulator study, as depicted in Figure 15. The questionnaire also 
collected participants’ driving history, as well as variables such as age, gender, ethnicity, type of 
vehicle owned, education, household income, any record of prior crashes or citations, alcohol 
consumption in last twenty-four hours, hours of sleep, medication, marital status, and any 
advanced safety features in their personal vehicles. This data was used to determine the type of 
vehicle and ADAS to be assigned randomly to participants. Data on participants’ driving behavior 
was collected by the driver simulator and extracted using the ISAT via the DAQ file viewer. 
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4.4 Data Collection 

Ensuring that the right data extracted from the ISAT is assigned to the right participant is very 
vital for the research. Considering the diversity of various variables from the questionnaire, any 
mismatch of data could lead to faulty results. Each participant was assigned the same ID on the 
questionnaire and DAQ files that are generated from their driving profiles. Each DAQ file was 
changed and assigned the corresponding participant ID immediately after driving each scenario to 
avoid any confusion later. The DAQ files allow users to extract a wide range of variables that 
capture driving behaviors such as hard braking, hard cornering, lane departures, accelerating, 
minimum speeds, average speed, maximum speeds, speeding events, and average headway. This 
data was combined with the survey responses for further analysis. This enables an in-depth analysis 
of driver behavior considering the extent of information collected. 

Table 1 summarizes the distribution of samples collected for this study. The participant selection 
was made with an intent to fill any gaps to ensure a representative. This is to ensure the 
applicability of the research results to typical rural and urban areas. 

Table 1. Summary of Survey Responses 

Variable Category Frequency Percentage 
Age 16–25 years 20 46.5 

25–45 years 15 34.9 
46–55 years 5 11.6 
56–65 years 3 7 

Gender Male 27 62.7 
Female 16 37.3 

Ethnicity Caucasian 20 46.5 
African–American 10 23.25 
Hispanic 3 7 
Asian 10 23.25 

Education High School 11 25.6 
Associate 4 9.3 
Bachelor’s 14 32.6 
Master’s 13!Unexpected 

End of Formula 
30.2 

Doctorate 1 2.3 
Income Less than 25k 8 22.2 

25k–49k 5 13.9 
50k–75k 2 5.6 
75k–99k 4 11.1 
100k–150k 6 16.7 
150k or more 11 30.5 
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4.5 Data Analysis 

The variables that can be used to evaluate the effectiveness of the advanced features were selected. 
For example, average speed and maximum speed were used to analyze OSW. Similarly, lane 
departures were used to analyze LDW. 

The primary aim of the research is to capture differences in driving behavior when driving a vehicle 
with advanced features compared to driver behavior when driving a vehicle without advanced 
features. Given the number of groups to compare and relevant variables, an ANOVA test was 
applied. ANOVA compares the mean values of multiple groups and determines if they are 
statistically different.80 An example hypothesis for ANOVA test is as follows. 

Null hypothesis: The number of times participants exceed the speed limit with OSW is the same 
as the number of times participants exceed speed limit without OSW. 

Alternate hypothesis: The number of times participants exceed speed limit with OSW is less than 
the number of times participants exceed speed limit without OSW. 

An ANOVA test determines if we reject or fail to reject this hypothesis. The expected outcome is 
a rejection of the hypothesis, due to the difference in driving behavior with advanced features. 
Once the results from ANOVA are established, evaluating the magnitude of the difference helps 
capture the nature of effects of advanced features.  

4.6 Descriptive Statistics 

Tables 2, 3, and 4 depict descriptive statistics for various driving behaviors in rural, urban, and 
freeway scenarios, summarizing the following variables: number of hard braking events; number 
of hard cornering events; number of lane departure events; average speed; average headway; 
maximum speed; and brake pedal force. Hard braking represents the total number of times a 
participant applied sudden brakes during a simulation. Similarly, hard cornering is the total 
number of times a participant made sudden turns in the simulation. The number of times the 
participant deviated from their lane is represented by lane departures. These variables indicate 
aggressive or unsafe driving behaviors. 

The average speed is the speed maintained by a participant throughout a simulation and is 
measured in miles per hour. Similarly, the maximum speed is the maximum speed reached during 
a simulation by a participant in miles per hour. The average headway is measured in feet and is the 
distance maintained by a participant from the leading vehicle. The brake force is the average force 
applied on the brake by a participant during a simulation measured in pounds. 
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Table 2. Driver Behavior Parameters (Rural) 

Driver Behavior Minimum Mean Maximum Std. Dev. 
Hard Braking 0.00 1.36 4.00 1.05 
Hard Cornering 0.00 3.10 12.00 2.76 
Lane Departures 0.00 7.38 30.00 6.91 
Avg. Speed (mph) 14.60 41.13 62.10 9.23 
Avg. Headway (ft) 49.50 386.57 853.70 229.12 
Maximum Speed (mph) 42.80 61.69 107.50 15.41 
Brake Force (lbs) 0.33 21.29 60.00 13.87 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 
corresponding action was performed per participant per simulation. 

Table 3. Driver Behavior Parameters (Urban) 

Driver Behavior Minimum Mean Maximum Std. 
Dev. 

Hard Braking 0.00 1.54 4.00 1.20 
Hard Cornering 0.00 1.62 5.00 1.26 
Lane Departures 0.00 4.84 21.00 5.14 
Avg. Speed (mph) 30.50 42.20 55.30 6.03 
Avg. Headway (ft) 157.70 750.63 1660.20 425.01 
Maximum Speed (mph) 49.40 61.77 102.20 8.99 
Brake Force (lbs) 3.90 21.45 61.20 16.91 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 
corresponding action was performed per participant per simulation. 

Table 4. Driver Behavior Parameters (Freeway) 

Driver Behavior Minimum Mean Maximum Std. Dev. 
Hard Braking 0.00 0.36 2.00 0.56 
Hard Cornering 0.00 3.34 10.00 1.87 
Lane Departures 0.00 15.18 39.00 9.68 
Avg. Speed (mph) 40.40 56.54 67.80 5.40 
Avg. Headway (ft) 77.30 342.71 823.70 206.95 
Maximum Speed (mph) 64.50 77.40 95.50 7.49 
Brake Force (lbs) 0.70 9.08 41.00 9.74 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 
corresponding action was performed per participant per simulation. 

Table 5 displays the types of advanced features (LDW, BSW, OSW, LKA, and ACC) that were 
provided to the participants, organized by each scenario type. The advanced features were provided 
individually as well as in combinations to the participants. 
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Table 5. Provision of Vehicles with or without Advanced Features to Participants 

ADAS Rural Urban Freeway 
LDW 6 7 7 
BSW 7 7 7 
OSW 7 6 5 
LDW & BSW 2 2 5 
LDW & OSW 7 8 4 
BSW & OSW 5 4 4 
All 2 3 5 
ACC 4 4 4 
LKA 4 4 4 
ACC & LKA 8 8 8 
None 7 6 6 

4.6.1 Rural Driving Scenario 

Table 6 shows the descriptive statistics comparing the participant groups where one group was 
provided with one of the warning systems (LDW, BSW, and OSW) and the other group was not. 
The mean values for hard braking, hard cornering, and lane departures for the group without 
LDW are higher, as indicated in Table 6. Additionally, the average headway for the participant 
group without LDW was lower than for the participant group with LDW. This indicates 
aggressive driving behaviors from participants without LDW while participants with LDW 
demonstrated safer driving behaviors. Average speed, maximum speed, and brake force have 
similar values between the two participant groups. 

The average headway and brake pedal force values are distinct between the participant groups 
while the other parameters are similar. The participants with BSW seem to maintain shorter 
headways, while the other behavior parameters such as hard braking, lane departures, and average 
speed have lower values compared to participants driving a vehicle without BSW. It can be 
observed that hard braking, average speed, average headway, and maximum speed have higher 
mean values for the participant group without OSW compared to the participant group driving a 
vehicle with OSW. On the other hand, hard cornering events, lane departure events, and brake 
pedal force have higher mean values for the participant group driving a vehicle with OSW. 

Young people are classified as people aged ten to twenty-five years by the World Health 
Organization.81 The participant groups were segregated accordingly to evaluate their driving 
behavior. Table 7 shows descriptive statistics of the parameters comparing young (fifteen to 
twenty-five years) and adult participants (above twenty-five years), male and female participants, 
daytime and nighttime conditions, and clear and rainy weather conditions in the rural scenario. 
The mean of hard braking events is higher for adult participants compared to young participants. 
The mean values of average speed and maximum speed are also higher for adult participants 
whereas the mean values of other driving behavior parameters are similar in the rural scenario. 

The mean values of the average headway and brake force are slightly higher for female participants 
compared to male participants. The other driver behavior parameters are similar in the rural 



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  36 

scenario. The mean values of hard cornering, lane departures, and average headway are higher for 
the participants group that drove in nighttime condition compared to daytime condition. The 
mean values of average speed and maximum speed are higher in daytime condition. More 
aggressive driving can be observed during daytime condition, while risky driver behaviors like hard 
cornering and lane departures are higher in nighttime condition. The mean values of average 
headway and brake force are higher for the participant group that drove in rainy weather condition 
compared to the participant group that drove in clear weather condition. The mean values of other 
parameters such as hard braking, hard cornering, and lane departures are higher for participants 
that drove during in clear weather condition. More aggressive driving behavior was observed 
during clear weather condition while rain tended to make participants more careful. 

Table 6. Driver Behavior Parameters - ADAS (Rural) 

Driver 
Behavior 

Minimum Mean Maximum Std. Dev. 
Without 
ADAS 

With 
ADAS 

Without 
ADAS 

With 
ADAS 

Without 
ADAS 

With 
ADAS 

Without 
ADAS 

With 
ADAS 

Lane Departure Warning (LDW) 
Hard Braking 0.00 0.00 1.46 0.88 4.00 3.00 1.07 0.93 
Hard 
Cornering 

0.00 0.00 3.92 2.24 12.00 6.00 3.40 1.60 

Lane 
Departures 

1.00 0.00 10.12 5.65 30.00 16.00 7.90 4.18 

Avg. Speed 
(mph) 

29.90 14.60 41.12 41.14 62.10 60.30 8.98 9.89 

Avg. 
Headway (ft) 

65.50 49.50 400.24 478.71 631.30 853.70 196.56 240.40 

Maximum 
Speed (mph) 

47.70 42.80 64.94 59.05 95.40 107.50 15.27 18.10 

Brake Force 
(lbs) 

0.33 3.20 23.50 26.01 60.00 48.50 13.89 9.37 

Blind Spot Warning (BSW) 
Hard Braking 0.00 0.00 1.33 1.06 4.00 3.00 1.14 0.85 
Hard 
Cornering 

0.00 0.00 3.19 3.38 12.00 10.00 2.77 3.26 

Lane 
Departures 

0.00 1.00 8.70 7.75 30.00 27.00 6.99 7.15 

Avg. Speed 
(mph) 

14.60 33.40 41.45 40.59 62.10 55.6 10.57 6.67 

Avg. 
Headway (ft) 

49.50 65.50 467.24 370.56 853.70 664.80 210.24 217.67 

Maximum 
Speed (mph) 

42.80 48.30 61.44 64.59 107.50 95.40 16.65 16.56 

Brake Force 
(lbs) 

1.26 0.33 27.41 19.58 60.00 36.40 11.67 11.94 

Over Speed Warning (OSW) 
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Driver 
Behavior 

Minimum Mean Maximum Std. Dev. 
Without 
ADAS 

With 
ADAS 

Without 
ADAS 

With 
ADAS 

Without 
ADAS 

With 
ADAS 

Without 
ADAS 

With 
ADAS 

Hard Braking 0.00 0.00 1.45 1.00 3.00 4.00 0.91 1.14 
Hard 
Cornering 

0.00 0.00 2.36 4.19 10.00 12.00 1.97 3.49 

Lane 
Departures 

1.00 0.00 6.41 10.38 23.00 30.00 5.34 7.99 

Avg. Speed 
(mph) 

29.9 14.6 45.05 37.02 62.10 47.60 9.46 7.10 

Avg. 
Headway (ft) 

65.50 49.50 449.41 412.25 757.6 853.70 186.15 246.10 

Maximum 
Speed (mph) 

49.10 42.80 71.33 53.48 107.50 56.90 19.11 4.08 

Brake Force 
(lbs) 

1.26 0.33 22.37 26.72 38.00 60.00 9.82 14.26 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 
corresponding action was performed per participant per simulation. 

Table 7. Driver Behavior Parameters - Age, Gender, Lighting Condition,  
and Weather Condition (Rural) 

Driver Behavior Minimum Mean Maximum Std. Dev. 
Age ≤ 25 

Years 
> 25 
Years 

≤ 25 
Years 

> 25 
Years 

≤ 25 
Years 

> 25 
Years 

≤ 25 
Years 

> 25 
Years 

Hard Braking 0.00 0.00 0.90 1.50 4.00 3.00 1.00 1.00 
Hard Cornering 0.00 0.00 3.10 3.40 12.00 10.00 2.90 3.00 
Lane Departures 0.00 1.00 8.00 8.70 30.00 27.00 6.80 7.30 
Avg. Speed (mph) 14.60 29.90 38.60 43.30 55.60 62.10 7.70 10.00 
Avg. Headway 
(ft) 

49.50 72.30 431.70 430.80 853.70 664.80 250.70 185.70 

Maximum Speed 
(mph) 

42.80 47.70 58.10 66.50 92.50 107.50 14.00 17.70 

Brake Force (lbs) 1.30 0.30 24.20 24.80 48.50 60.00 12.10 12.60 
Gender Male Female Male Female Male Female Male Female 
Hard Braking 0.00 0.00 1.30 1.10 4.00 3.00 1.00 1.10 
Hard Cornering 0.00 0.00 3.40 3.10 10.00 12.00 2.80 3.20 
Lane Departures 3.00 0.00 8.70 7.70 27.00 30.00 6.60 7.80 
Avg. Speed (mph) 29.90 14.60 41.90 39.80 62.10 55.60 8.60 10.40 
Avg. Headway 
(ft) 

49.50 49.50 423.50 444.30 853.70 757.60 212.60 227.20 

Maximum Speed 
(mph) 

46.10 42.80 61.90 63.80 95.40 107.50 14.40 20.00 

Brake Force (lbs) 1.30 0.30 21.90 28.90 37.10 60.00 10.50 13.90 
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Driver Behavior Minimum Mean Maximum Std. Dev. 
Age ≤ 25 

Years 
> 25 
Years 

≤ 25 
Years 

> 25 
Years 

≤ 25 
Years 

> 25 
Years 

≤ 25 
Years 

> 25 
Years 

Lighting 
Condition 

Day Night Day Night Day Night Day Night 

Hard Braking 0.00 0.00 1.20 1.30 3.00 4.00 1.00 1.20 
Hard Cornering 0.00 0.00 2.90 3.80 10.00 12.00 2.80 3.10 
Lane Departures 0.00 2.00 5.30 13.10 16.00 30.00 3.70 8.20 
Avg. Speed (mph) 14.60 29.90 42.30 39.40 62.10 51.60 10.40 6.90 
Avg. Headway 
(ft) 

49.50 81.50 355.70 546.90 625.90 853.70 200.00 190.10 

Maximum Speed 
(mph) 

42.80 46.10 66.10 57.30 107.50 101.10 17.60 13.50 

Brake Force (lbs) 0.30 1.30 24.00 25.30 60.00 42.00 13.40 10.60 
Weather 
Condition 

Clear Rain Clear Rain Clear Rain Clear Rain 

Hard Braking 0.00 0.00 1.30 0.90 4.00 2.00 1.10 0.80 
Hard Cornering 0.00 0.00 2.60 1.90 6.00 5.00 1.50 1.70 
Lane Departures 1.00 0.00 8.00 4.60 23.00 14.00 5.70 3.80 
Avg. Speed (mph) 29.90 14.60 41.50 40.10 62.10 60.30 8.70 11.80 
Avg. Headway 
(ft) 

49.50 417.80 418.90 567.30 757.60 853.70 207.80 115.50 

Maximum Speed 
(mph) 

48.30 42.80 63.90 62.10 107.50 101.10 17.70 17.50 

Brake Force (lbs) 1.30 1.30 24.20 26.60 38.00 60.00 9.50 15.70 
Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 
corresponding action was performed per participant per simulation. 

4.6.2 Urban Driving Scenario 

Table 8 shows descriptive statistics comparing the participant groups with one of the warning 
systems (LDW, BSW, and OSW) and without any advanced features in the urban scenario. Hard 
cornering and lane departures have lower mean values for the non-LDW participant group while 
the average headway is higher when compared to the LDW participant group. On the other hand, 
hard braking, average speed, maximum speed, and brake force are similar in values for both 
participant groups. The difference in the mean values indicate non-aggressive driving behaviors 
among participants provided with LDW, but these participants also tended to speed more 
compared to participants who did not have LDW features. 

The mean values for hard braking, hard cornering, lane departures, average speed, and maximum 
speed for participants without BSW are lower compared to participants with BSW. Further lane 
departures, average headway, and brake pedal force for participants without BSW are higher 
compared to participants provided with BSW. Overall, BSW seems to make participants’ car-
following and speeding behavior more aggressive as they also exhibited fewer safe driving 
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maneuvers such as speeding, braking, and handling the vehicle. Similar to the rural scenario, the 
mean values of the number of lane departure events and brake force are higher for the participant 
group provided with OSW but, the mean of average headway is lower for the participant group 
provided with OSW.  

Whereas other driving behaviors, like handling the vehicle, speeding, turning, and sudden braking 
seem to be more frequent among drivers for the participant group that drove a vehicle without 
OSW. 

Table 9 depicts descriptive statistics of driver behavior parameters comparing participant groups 
containing young and adult participants, male and female participants, daytime and nighttime 
conditions, and clear and rainy weather conditions in the urban scenario. The mean values of hard 
braking are higher for the adult participant group compared to the young participant group. On 
the other hand, the mean values of lane departures, average headway, and brake force are higher 
for the young participant group compared to the adult participant group. Higher braking force was 
applied by younger participants along with a greater frequency of lane departures. The mean values 
of hard braking, average headway, maximum speed, and brake force are higher for the male 
participant group compared to the female participant group. The other driver behavior parameters 
are similar for both the participant groups. The male participants seem to apply hard brakes and 
more pressure while braking. They also drove at higher speeds compared to female participants. 
The higher speeds may also lead to maintaining a higher average headway in urban conditions. 

Table 8. Driver Behavior Parameters - ADAS (Urban) 

Driver 
Behavior 

Minimum Mean Maximum Std. Dev. 
Without 
ADAS 

With 
ADAS 

Without 
ADAS 

With 
ADAS 

Without 
ADAS 

With 
ADAS 

Without 
ADAS 

With 
ADAS 

Lane Departure Warning (LDW) 
Hard Braking 0.00 0.00 1.57 1.45 4.00 4.00 1.16 1.36 
Hard 
Cornering 

0.00 0.00 2.09 0.90 5.00 2.00 1.35 0.79 

Lane 
Departures 

0.00 0.00 7.04 3.50 21.00 11.00 6.30 3.09 

Avg. Speed 
(mph) 

30.50 31.50 43.36 40.35 55.30 53.90 6.14 6.27 

Avg. 
Headway (ft) 

282.60 157.70 806.49 904.86 1660.20 1432.2
0 

387.18 345.18 

Maximum 
Speed (mph) 

50.80 49.40 60.98 62.87 78.70 102.20 6.68 12.40 

Brake Force 
(lbs) 

3.90 6.10 23.61 26.82 61.20 49.30 18.17 12.73 

Blind Spot Warning (BSW) 
Hard Braking 0.00 0.00 1.37 1.75 4.00 4.00 1.24 1.24 
Hard 
Cornering 

0.00 0.00 1.30 1.94 4.00 5.00 1.03 1.53 
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Driver 
Behavior 

Minimum Mean Maximum Std. Dev. 
Without 
ADAS 

With 
ADAS 

Without 
ADAS 

With 
ADAS 

Without 
ADAS 

With 
ADAS 

Without 
ADAS 

With 
ADAS 

Lane 
Departures 

0.00 1.00 5.93 4.50 21.00 10.00 6.31 2.99 

Avg. Speed 
(mph) 

30.50 35.50 40.56 44.33 55.30 53.90 6.13 6.06 

Avg. 
Headway (ft) 

157.70 282.60 912.74 750.15 1660.20 1460.8
0 

331.82 411.27 

Maximum 
Speed (mph) 

50.80 49.40 60.81 63.63 102.20 89.70 9.75 9.61 

Brake Force 
(lbs) 

6.90 3.90 28.75 19.63 61.20 49.30 15.52 15.37 

Over Speed Warning (OSW) 
Hard Braking 0.00 0.00 1.77 1.24 4.00 4.00 1.07 1.37 
Hard 
Cornering 

0.00 0.00 1.73 1.33 4.00 5.00 1.24 1.28 

Lane 
Departures 

0.00 0.00 4.00 6.86 20.00 21.00 4.86 5.50 

Avg. Speed 
(mph) 

33.80 30.50 44.45 39.35 55.30 50.30 6.28 5.32 

Avg. 
Headway (ft) 

157.7 356.00 730.99 979.27 1236.9 1660.2
0 

360.55 337.14 

Maximum 
Speed (mph) 

51.90 49.40 65.16 58.40 102.20 61.8 12.31 3.66 

Brake Force 
(lbs) 

6.70 3.90 24.51 25.58 61.20 60.30 14.60 17.75 

Note: Braking, cornering, and lane departures are numbers without units. They are the number of times the 
corresponding action was performed per participant per simulation. 
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Table 9. Driver Behavior Parameters by Age, Gender, Lighting Condition,  
and Weather Condition (Urban) 

Driver Behavior Minimum Mean Maximum Std. Dev. 
Age ≤ 25 

Years 
> 25 
Years 

≤ 25 
Years 

> 25 
Years 

≤ 25 
Years 

> 25 
Years 

≤ 25 
Years 

> 25 
Years 

Hard Braking 0.00 0.00 1.20 1.80 4.00 4.00 1.30 1.10 
Hard Cornering 0.00 0.00 1.40 1.60 4.00 5.00 1.10 1.40 
Lane Departures 0.00 0.00 5.70 5.10 21.00 19.00 6.50 4.20 
Avg. Speed (mph) 31.60 30.50 41.70 42.20 55.30 53.60 6.70 6.10 
Avg. Headway 
(ft) 

157.70 282.60 880.90 827.40 1460.8
0 

1660.2
0 

326.20 405.20 

Maximum Speed 
(mph) 

50.80 49.40 61.00 62.60 89.70 102.20 8.40 10.80 

Brake Force (lbs) 6.20 3.90 28.50 22.00 61.20 50.30 17.60 14.10 
Gender Male Female Male Female Male Female Male Female 
Hard Braking 0.00 0.00 1.80 0.90 4.00 4.00 1.10 1.20 
Hard Cornering 0.00 0.00 1.40 1.70 5.00 4.00 1.20 1.40 
Lane Departures 0.00 0.00 5.50 5.20 20.00 21.00 5.30 5.50 
Avg. Speed (mph) 31.50 30.50 42.00 41.90 55.30 53.60 5.80 7.30 
Avg. Headway 
(ft) 

282.60 157.70 924.70 729.90 1460.8
0 

1660.2
0 

348.80 376.00 

Maximum Speed 
(mph) 

51.90 49.40 63.30 59.40 102.20 78.70 10.70 7.40 

Brake Force (lbs) 3.90 6.10 27.40 20.10 61.20 60.30 15.00 17.10 
Lighting 
Condition 

Day Night Day Night Day Night Day Night 

Hard Braking 0.00 0.00 1.30 1.90 4.00 4.00 1.20 1.40 
Hard Cornering 0.00 1.00 1.40 1.80 5.00 4.00 1.40 0.90 
Lane Departures 0.00 2.00 2.90 10.00 9.00 21.00 2.60 6.10 
Avg. Speed (mph) 31.60 30.50 42.40 41.20 53.90 55.30 6.30 6.50 
Avg. Headway 
(ft) 

157.70 600.80 731.70 1077.3
0 

1432.2
0 

1660.2
0 

347.40 297.60 

Maximum Speed 
(mph) 

49.40 55.40 60.60 64.20 89.70 102.20 8.40 11.70 

Brake Force (lbs) 3.90 6.20 20.00 34.00 48.80 61.20 12.00 18.40 
Weather 
Condition 

Clear Rain Clear Rain Clear Rain Clear Rain 

Hard Braking 0.00 0.00 1.50 1.50 4.00 3.00 1.40 1.20 
Hard Cornering 0.00 0.00 1.50 0.80 4.00 2.00 1.00 0.80 
Lane Departures 0.00 0.00 5.50 4.30 21.00 12.00 5.30 4.30 
Avg. Speed (mph) 30.50 36.30 42.30 40.40 53.90 49.80 6.30 4.20 
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Driver Behavior Minimum Mean Maximum Std. Dev. 
Age ≤ 25 

Years 
> 25 
Years 

≤ 25 
Years 

> 25 
Years 

≤ 25 
Years 

> 25 
Years 

≤ 25 
Years 

> 25 
Years 

Avg. Headway 
(ft) 

157.70 404.50 766.70 1099.4
0 

1660.2
0 

1432.2
0 

368.00 293.00 

Maximum Speed 
(mph) 

49.40 51.90 62.50 58.60 102.20 69.50 11.00 5.10 

Brake Force (lbs) 6.10 14.10 21.20 32.80 60.30 50.30 14.90 13.00 
Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 
corresponding action was performed per participant per simulation. 

The mean values of hard braking, hard cornering, lane departures, average headway, and brake 
force are higher for the participant group that drove in nighttime condition. The mean values of 
other driver behavior parameters are similar. Typically, more aggressive driving behaviors were 
observed in nighttime condition though participants tried to maintain larger headways. The mean 
values of hard cornering, lane departures, average speed, and maximum speed are higher for the 
participant group that drove during clear weather condition. The mean values of average headway 
and brake force are higher in rainy weather condition. Though the participants exhibited more 
aggressive driving during clear weather, higher brake force was applied in rainy weather condition 
which could be due to slippery roads. 

4.6.3 Freeway Driving Scenario 

Table 10 shows descriptive statistics comparing the participant groups where one group was 
provided with one of the warning systems and the other group was not in the freeway scenario. It 
can be observed that lane departures and hard cornering events have distinct mean values among 
the two participant groups, while other driver behavior parameters have similar values. The mean 
values of these driver behaviors are higher for the participant group without warning systems. 
Participants that drove a vehicle without warning systems seem to be more aggressive in lane-
following and turning. Participants that drove a vehicle with LDW seem to demonstrate safer 
driving behavior. 

The mean values for hard braking events and brake pedal force are higher for the participant group 
that drove a vehicle without BSW compared to the participant group that drove a vehicle with 
BSW. The hard cornering events, lane departure events, maximum speed, and average headway 
were lower for the participant group that drove a vehicle without BSW. The participant group that 
drove a vehicle with BSW seemed to exhibit more aggressive lane-following and speeding but 
displayed safer car-following and braking behaviors. The mean brake force is higher for the 
participant group that drove a vehicle with OSW across all driving conditions. This could be 
because of the speed warning that may have triggered participants to brake immediately. Similarly, 
the speeding behavior of the participant group that drove a vehicle without OSW is also similar 
across driving conditions. 

Table 11 shows the comparison of descriptive statistics between young and adult participants, male 
and female participants, daytime and nighttime conditions, and clear and rainy weather conditions 
in the freeway scenario. The mean values of average headway, maximum speed, and brake force 
are higher for adult participants compared to young participants. The adult participants were 
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observed to maintain longer headways and also speed more than young participants in the freeway 
scenario. The mean value of average headway is higher for female participants in the freeway 
scenario. The mean values of lane departures and brake force are higher for male participants 
indicating more aggressive driving behavior. 

Table 10. Driver Behavior Parameters - ADAS (Freeway) 

Driver 
Behavior 

Minimum Mean Maximum Std. Dev. 
Without 
ADAS 

With 
ADAS 

Without 
ADAS 

With 
ADAS 

Without 
ADAS 

With 
ADAS 

Without 
ADAS 

With 
ADAS 

Lane Departure Warning (LDW) 
Hard Braking 0.00 0.00 0.41 0.43 1.00 2.00 0.50 0.68 
Hard 
Cornering 

1.00 0.00 3.91 2.81 10.00 7.00 2.22 1.44 

Lane 
Departures 

4.00 0.00 22.32 11.67 39.00 26.00 7.97 6.58 

Avg. Speed 
(mph) 

49.50 40.40 57.65 57.31 67.80 66.60 4.25 6.10 

Avg. 
Headway (ft) 

114.50 77.30 355.39 374.80 814.90 823.70 191.48 240.06 

Maximum 
Speed (mph) 

72.20 64.50 79.52 78.87 92.70 95.50 5.66 7.24 

Brake Force 
(lbs) 

0.70 1.60 10.57 10.99 31.30 41.00 9.76 9.98 

Blind Spot Warning (BSW) 
Hard Braking 0.00 0.00 0.45 0.38 2.00 2.00 0.60 0.59 
Hard 
Cornering 

0.00 1.00 3.32 3.43 10.00 9.00 2.03 1.89 

Lane 
Departures 

0.00 0.00 16.68 17.57 39.00 36.00 9.63 8.55 

Avg. Speed 
(mph) 

47.40 40.4 57.49 57.49 67.80 65.10 5.08 5.40 

Avg. 
Headway (ft) 

77.30 118.40 303.84 428.80 666.80 823.70 155.70 249.98 

Maximum 
Speed (mph) 

64.5 71.90 77.94 80.52 87.50 95.50 5.44 7.19 

Brake Force 
(lbs) 

1.60 0.70 12.53 8.48 41.00 28.80 10.72 8.01 

Over Speed Warning (OSW) 
Hard Braking 0.00 0.00 0.36 0.50 2.00 2.00 0.57 0.62 
Hard 
Cornering 

1.00 0.00 3.40 3.33 10.00 9.00 2.06 1.81 

Lane 
Departures 

1.00 0.00 17.80 16.17 39.00 27.00 9.36 8.70 
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Driver 
Behavior 

Minimum Mean Maximum Std. Dev. 
Without 
ADAS 

With 
ADAS 

Without 
ADAS 

With 
ADAS 

Without 
ADAS 

With 
ADAS 

Without 
ADAS 

With 
ADAS 

Avg. Speed 
(mph) 

40.40 47.40 58.19 56.51 67.80 62.90 5.95 3.81 

Avg. 
Headway (ft) 

77.30 123.50 344.36 393.35 775.9 823.70 205.32 228.77 

Maximum 
Speed (mph) 

64.50 69.80 80.25 77.75 95.50 84.40 7.56 4.11 

Brake Force 
(lbs) 

0.70 1.60 9.46 12.51 28.80 41.00 8.19 11.49 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 
corresponding action was performed per participant per simulation. 

Table 11. Driver Behavior Parameters - Age, Gender, Lighting Condition,  
and Weather Condition (Freeway) 

Driver Behavior Minimum Mean Maximum Std. Dev. 
Age ≤ 25 

Years 
> 25 
Years 

≤ 25 
Years 

> 25 
Years 

≤ 25 
Years 

> 25 
Years 

≤ 25 
Years 

> 25 
Years 

Hard Braking 0.00 0.00 0.30 0.50 1.00 2.00 0.50 0.70 
Hard Cornering 1.00 0.00 3.40 3.30 9.00 10.00 1.80 2.10 
Lane Departures 0.00 0.00 17.60 16.70 36.00 39.00 9.00 9.30 
Avg. Speed (mph) 53.00 40.40 56.80 58.10 62.90 67.80 2.90 6.60 
Avg. Headway 
(ft) 

123.50 77.30 323.70 400.70 814.90 823.70 168.80 245.10 

Maximum Speed 
(mph) 

64.50 69.80 78.20 80.00 92.70 95.50 6.50 6.30 

Brake Force (lbs) 0.70 1.60 9.30 11.90 41.00 31.30 10.20 9.40 
Gender Male Female Male Female Male Female Male Female 
Hard Braking 0.00 0.00 0.40 0.50 2.00 1.00 0.60 0.50 
Hard Cornering 0.00 1.00 3.30 3.50 10.00 6.00 2.20 1.50 
Lane Departures 0.00 1.00 17.90 15.80 39.00 27.00 9.70 7.90 
Avg. Speed (mph) 47.40 40.40 57.60 57.20 65.3.00 67.80 4.60 6.10 
Avg. Headway 
(ft) 

77.30 114.50 361.30 370.80 775.90 823.70 210.70 226.80 

Maximum Speed 
(mph) 

69.80 64.50 79.20 79.10 95.50 92.70 6.40 6.60 

Brake Force (lbs) 1.50 0.70 12.30 8.30 41.00 24.70 11.00 6.90 
Lighting 
Condition 

Day Night Day Night Day Night Day Night 

Hard Braking 0.00 0.00 0.50 0.40 2.00 1.00 0.60 0.50 
Hard Cornering 0.00 1.00 3.10 3.80 9.00 10.00 1.80 2.10 
Lane Departures 0.00 9.00 13.60 22.50 27.00 39.00 7.70 8.40 
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Driver Behavior Minimum Mean Maximum Std. Dev. 
Age ≤ 25 

Years 
> 25 
Years 

≤ 25 
Years 

> 25 
Years 

≤ 25 
Years 

> 25 
Years 

≤ 25 
Years 

> 25 
Years 

Avg. Speed (mph) 40.40 49.50 57.70 57.20 67.80 65.30 5.70 4.40 
Avg. Headway 
(ft) 

77.30 141.70 280.90 493.30 823.70 814.90 185.70 193.80 

Maximum Speed 
(mph) 

64.50 71.90 78.80 79.80 92.70 95.50 5.80 7.40 

Brake Force (lbs) 0.70 1.60 12.40 7.90 41.00 28.80 10.60 7.40 
Weather 
Condition 

Clear Rain Clear Rain Clear Rain Clear Rain 

Hard Braking 0.00 0.00 0.40 0.30 2.00 2.00 0.60 0.60 
Hard Cornering 2.00 0.00 3.00 3.20 5.00 10.00 0.90 2.80 
Lane Departures 0.00 0.00 17.00 15.30 36.00 39.00 8.70 10.60 
Avg. Speed (mph) 53.00 40.40 58.00 54.10 66.60 64.60 3.90 6.40 
Avg. Headway 
(ft) 

77.30 206.50 305.90 561.30 714.60 823.70 172.00 206.90 

Maximum Speed 
(mph) 

64.50 69.80 78.70 79.20 92.70 95.50 6.30 7.00 

Brake Force (lbs) 0.70 1.50 11.30 8.90 41.00 20.70 11.00 6.70 
Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 
corresponding action was performed per participant per simulation. 

The mean values of hard cornering, lane departures, and average headway are higher for the 
participant group that drove in nighttime driving conditions. The mean values of other driver 
behavior parameters are similar. Riskier driving behavior in lane-following and braking was 
observed at night, while greater headway values indicated safer car-following maneuvers. Except 
average headways, the mean values of all the driver behavior parameters are similar between the 
two participant groups. The mean value of average headway is higher for the participant group 
that drove in the rain which indicates safer car-following maneuvers. 

4.6.4 Automated System 

This section discusses the effects of automated systems (in particular, LKA and ACC) compared 
to warning systems and vehicles without ADAS. When a vehicle engages both LKA and ACC 
while driving, a level-2 vehicle is simulated. Table 12 shows the comparison of descriptive statistics 
between participant groups that drove vehicles with automated systems compared to vehicles with 
warning systems and without any ADAS in the rural scenario. The mean values of lane departures, 
average headway, maximum speed, and brake force for automated systems are lower compared to 
both warning systems and vehicles without ADAS. Further, the standard deviation for all driver 
behavior parameters is low for vehicles equipped with automated systems compared to warning 
systems and vehicles without ADAS. This shows lower variation in participants’ driving behavior. 

Table 13 shows the comparison of descriptive statistics between the participant group that drove 
a vehicle with LKA compared to the participant group that drove a vehicle with LDW in the rural 
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scenario. The mean values of lane departures, average speed, average headway, and brake force are 
lower for LKA compared to LDW. The standard deviation for these driver behaviors is also low, 
which shows lower variation in participants’ driving behavior. 

Table 14 shows the comparison of descriptive statistics between the participant group that drove 
a vehicle with ACC compared to the participant group that drove a vehicle with BSW and the 
participant group that drove a vehicle with OSW in the rural scenario. The mean values of average 
headway and brake force are lower for the participant group that drove a vehicle with ACC 
compared to BSW and OSW. 

Table 12. Driver Behavior Parameters - No ADAS, Warning and  
Automated Systems (Rural) 

Driver Behavior Statistic No ADAS Warning Automated 
Hard Braking Minimum 1.00 0.00 1.00 
Hard Cornering 1.00 0.00 1.00 
Lane Departures 2.00 0.00 1.00 
Avg. Speed (mph) 29.90 14.60 36.90 
Avg. Headway (ft) 89.50 49.50 94.00 
Maximum Speed (mph) 50.00 42.80 52.80 
Brake Force (lbs.) 10.30 0.33 1.11 
Hard Braking Mean 2.14 1.06 2.14 
Hard Cornering 3.00 3.30 2.14 
Lane Departures 8.57 8.31 1.43 
Avg. Speed (mph) 45.20 40.33 39.46 
Avg. Headway (ft) 421.71 433.12 112.00 
Maximum Speed (mph) 69.20 61.33 57.56 
Brake Force (lbs.) 22.64 24.85 1.67 
Hard Braking Maximum 3.00 4.00 3.00 
Hard Cornering 10.00 12.00 4.00 
Lane Departures 23.00 30.00 3.00 
Avg. Speed (mph) 62.10 60.30 41.60 
Avg. Headway (ft) 631.30 853.70 175.40 
Maximum Speed (mph) 89.00 107.50 61.20 
Brake Force (lbs.) 38.00 60.00 2.72 
Hard Braking Std. Dev. 0.69 1.01 0.69 
Hard Cornering 3.11 2.94 1.07 
Lane Departures 7.14 7.05 0.79 
Avg. Speed (mph) 12.46 8.47 1.72 
Avg. Headway (ft) 181.18 223.99 28.68 
Maximum Speed (mph) 15.33 16.61 2.99 
Brake Force (lbs.) 8.80 12.87 0.56 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 
corresponding action was performed per participant per simulation. 
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Table 13. Driver Behavior Parameters - LKA and LDW (Rural) 

Driver Behavior Minimum Mean Maximum Std. Dev.  
LKA LDW LKA LDW LKA LDW LKA LDW 

Hard Braking 0.00 0.00 1.50 1.50 3.00 3.00 1.29 1.05 
Hard Cornering 2.00 1.00 2.75 2.50 4.00 5.00 0.96 1.38 
Lane Departures 2.00 2.00 3.50 5.33 5.00 13.00 1.29 4.03 
Avg. Speed (mph) 39.80 41.30 41.43 49.96 43.40 60.30 1.64 6.93 
Avg. Headway (ft) 383.80 381.10 440.30 566.40 506.50 757.60 50.74 136.41 
Maximum Speed (mph) 61.60 49.10 68.20 72.70 73.40 107.50 5.08 25.7 
Brake Force (lbs.) 14.60 21.40 19.60 26.22 23.40 31.80 3.75 4.08 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 
corresponding action was performed per participant per simulation. 

Table 15 shows the comparison of descriptive statistics between the participant group that drove 
a vehicle with automated systems compared to the participant group that drove a vehicle with 
warning systems or without any ADAS in the urban scenario. The mean values of lane departures, 
average headway, and brake force are lower for automated systems. Lower standard deviation 
values for lane departures, average speed, average headway, maximum speed, and brake force 
indicated less variance in participants’ driving behavior. 

Table 16 shows the comparison of descriptive statistics between the participant group that drove 
a vehicle with LKA compared to the participant group that drove a vehicle with LDW in the urban 
scenario. The mean value of hard cornering events is higher for LKA which also yielded lower 
mean values for lane departures, average headway, and brake force. 

Table 17 compares descriptive statistics between the participant group that drove a vehicle with 
ACC compared to the participant group that drove a vehicle with BSW or OSW in the urban 
scenario. The mean values of hard braking and hard cornering are higher for the participant group 
that drove a vehicle with ACC compared to BSW and OSW, whereas the mean values of average 
headway and brake force are lower. 

Table 18 shows the comparison of descriptive statistics between the participant group that drove 
a vehicle with automated systems compared to the participant group that drove a vehicle with 
warning systems or without any ADAS in the freeway scenario. The mean values of hard braking, 
lane departures, average speed, average headway, maximum speed, and brake force are lower for 
automated systems. Lower standard deviation was also observed for these driver behaviors, 
indicating less variance in participant driving behavior. 
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Table 14. Driver Behavior Parameters - ACC, BSW and OSW (Rural) 

Driver Behavior Statistic ACC BSW OSW 
Hard Braking Minimum 1.00 0.00 0.00 
Hard Cornering 2.00 0.00 0.00 
Lane Departures 8.00 1.00 7.00 
Avg. Speed (mph) 35.30 33.40 31.40 
Avg. Headway (ft) 94.30 65.50 121.60 
Maximum Speed (mph) 55.40 52.80 47.70 
Brake Force (lbs.) 1.19 1.26 1.26 
Hard Braking Mean 2.25 1.00 1.43 
Hard Cornering 2.50 1.57 4.86 
Lane Departures 10.25 3.71 15.29 
Avg. Speed (mph) 36.53 41.81 36.94 
Avg. Headway (ft) 97.15 388.11 489.56 
Maximum Speed (mph) 57.35 78.11 53.96 
Brake Force (lbs.) 1.29 19.52 32.09 
Hard Braking Maximum 3.00 2.00 4.00 
Hard Cornering 3.00 3.00 12.00 
Lane Departures 13.00 7.00 30.00 
Avg. Speed (mph) 38.20 55.60 46.50 
Avg. Headway (ft) 102.80 588.40 600.10 
Maximum Speed (mph) 59.10 95.40 56.40 
Brake Force (lbs.) 1.46 32.70 60.00 
Hard Braking Std. Dev. 0.96 0.58 1.40 
Hard Cornering 0.58 0.98 3.58 
Lane Departures 2.22 2.21 7.70 
Avg. Speed (mph) 1.21 8.72 6.06 
Avg. Headway (ft) 3.88 178.39 166.09 
Maximum Speed (mph) 1.70 17.11 3.33 
Brake Force (lbs.) 0.12 11.29 18.43 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 
corresponding action was performed per participant per simulation. 
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Table 15. Driver Behavior Parameters - No ADAS, Warning and  
Automated Systems (Urban) 

Driver Behavior Statistic No ADAS Warning Automated 
Hard Braking Minimum 0.00 0.00 0.00 
Hard Cornering 0.00 0.00 0.00 
Lane Departures 0.00 0.00 0.00 
Avg. Speed (mph) 37.20 30.50 34.77 
Avg. Headway (ft) 616.70 157.70 94.00 
Maximum Speed (mph) 51.90 49.40 57.90 
Brake Force (lbs.) 18.30 3.90 1.09 
Hard Braking Mean 1.50 1.51 1.71 
Hard Cornering 1.50 1.54 2.14 
Lane Departures 6.83 5.16 1.43 
Avg. Speed (mph) 41.72 42.00 43.66 
Avg. Headway (ft) 937.93 838.35 126.44 
Maximum Speed (mph) 59.22 62.29 61.23 
Brake Force (lbs.) 38.48 23.03 1.65 
Hard Braking Maximum 3.00 4.00 3.00 
Hard Cornering 3.00 5.00 4.00 
Lane Departures 20.00 21.00 4.00 
Avg. Speed (mph) 55.30 53.90 45.80 
Avg. Headway (ft) 1170.30 1660.20 230.90 
Maximum Speed (mph) 75.40 102.20 64.40 
Brake Force (lbs.) 61.20 60.30 2.69 
Hard Braking Std. Dev. 1.05 1.28 0.95 
Hard Cornering 1.22 1.28 1.21 
Lane Departures 7.94 4.88 1.27 
Avg. Speed (mph) 6.88 6.31 3.93 
Avg. Headway (ft) 218.89 386.39 49.34 
Maximum Speed (mph) 8.21 9.94 2.10 
Brake Force (lbs.) 17.10 14.99 0.55 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 
corresponding action was performed per participant per simulation. 
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Table 16. Driver Behavior Parameters - LKA and LDW (Urban) 

Driver Behavior Minimum Mean Maximum Std. Dev.  
LKA LDW LKA LDW LKA LDW LKA LDW 

Hard Braking 1.00 1.00 2.00 2.14 3.00 4.00 0.82 1.21 
Hard Cornering 1.00 0.00 2.25 1.14 3.00 2.00 0.96 0.90 
Lane Departures 1.00 0.00 1.75 2.86 3.00 11.00 0.96 3.80 
Avg. Speed (mph) 36.90 33.80 40.53 42.37 44.70 51.80 3.29 5.81 
Avg. Headway (ft) 311.20 157.70 363.75 876.40 432.60 1236.90 51.42 396.16 
Maximum Speed (mph) 64.20 51.90 68.25 66.37 71.00 102.20 3.13 16.82 
Brake Force (lbs.) 15.60 8.00 19.00 27.86 22.20 41.10 3.03 11.39 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 
corresponding action was performed per participant per simulation. 

Table 17. Driver Behavior Parameters - ACC, BSW and OSW (Urban) 

Driver Behavior Statistic ACC BSW OSW 
Hard Braking Minimum 1.00 0.00 0.00 
Hard Cornering 1.00 1.00 1.00 
Lane Departures 7.00 1.00 2.00 
Avg. Speed (mph) 44.60 37.60 30.50 
Avg. Headway (ft) 97.60 282.60 600.80 
Maximum Speed (mph) 59.30 56.60 50.80 
Brake Force (lbs.) 1.11 6.70 6.90 
Hard Braking Mean 2.00 1.86 0.67 
Hard Cornering 3.00 2.57 2.00 
Lane Departures 10.50 3.14 11.00 
Avg. Speed (mph) 45.77 47.71 40.68 
Avg. Headway (ft) 102.55 422.59 889.15 
Maximum Speed (mph) 61.10 65.50 59.12 
Brake Force (lbs.) 1.44 12.11 23.47 
Hard Braking Maximum 3.00 3.00 2.00 
Hard Cornering 2.00 4.00 4.00 
Lane Departures 14.00 6.00 21.00 
Avg. Speed (mph) 47.10 53.60 50.30 
Avg. Headway (ft) 108.10 900.00 1660.20 
Maximum Speed (mph) 62.10 78.70 61.60 
Brake Force (lbs.) 1.63 20.40 60.30 
Hard Braking Std. Dev. 0.82 1.07 0.82 
Hard Cornering 0.82 1.40 1.09 
Lane Departures 3.11 2.12 7.87 
Avg. Speed (mph) 1.10 4.95 6.68 
Avg. Headway (ft) 4.93 217.38 389.93 
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Driver Behavior Statistic ACC BSW OSW 
Maximum Speed (mph) 1.26 7.31 4.11 
Brake Force (lbs.) 0.23 4.39 19.65 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 
corresponding action was performed per participant per simulation. 

Table 18. Driver Behavior Parameters - No ADAS, Warning  
and Automated Systems (Freeway) 

Driver Behavior Statistic No ADAS Warning Automated 
Hard Braking Minimum 0.00 0.00 0.00 
Hard Cornering 3.00 0.00 2.00 
Lane Departures 16.00 0.00 1.00 
Avg. Speed (mph) 49.50 40.40 48.20 
Avg. Headway (ft) 114.50 77.30 117.00 
Maximum Speed (mph) 73.60 64.50 63.60 
Brake Force (lbs.) 2.20 0.70 0.03 
Hard Braking Mean 0.50 0.41 0.00 
Hard Cornering 5.33 3.05 3.14 
Lane Departures 25.83 15.70 3.29 
Avg. Speed (mph) 58.73 57.29 50.69 
Avg. Headway (ft) 356.62 366.21 206.57 
Maximum Speed (mph) 79.40 79.17 66.36 
Brake Force (lbs.) 6.65 11.58 0.12 
Hard Braking Maximum 1.00 2.00 0.00 
Hard Cornering 10.00 9.00 6.00 
Lane Departures 39.00 36.00 6.00 
Avg. Speed (mph) 67.80 66.60 54.70 
Avg. Headway (ft) 588.90 823.70 269.30 
Maximum Speed (mph) 87.50 95.50 69.90 
Brake Force (lbs.) 12.60 41.00 0.27 
Hard Braking Std. Dev. 0.55 0.60 0.00 
Hard Cornering 2.66 1.63 1.46 
Lane Departures 8.28 8.41 1.80 
Avg. Speed (mph) 6.79 4.95 2.00 
Avg. Headway (ft) 193.53 219.78 59.32 
Maximum Speed (mph) 5.66 6.59 2.14 
Brake Force (lbs.) 4.22 10.15 0.08 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 
corresponding action was performed per participant per simulation. 

 

 



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  52 

Table 19 shows the comparison of descriptive statistics between the participant group that drove 
a vehicle with LKA compared to the participant group that drove a vehicle with LDW in the 
freeway scenario. The mean value of the number of hard braking events is higher for LKA. The 
mean values of the number of hard braking events, lane departures, and brake force are lower for 
LKA. 

Table 20 shows the comparison of descriptive statistics between the participant group that drove 
a vehicle with ACC compared to the participant group that drove a vehicle with BSW or OSW 
in the freeway scenario. The mean of the number of hard braking events is higher for the 
participant group that drove a vehicle with ACC compared to BSW and OSW, whereas the mean 
values of the number of hard cornering events, average headway, and brake force are lower. 

The mean values of some of the variables vary based on the ADAS provided to the participant. 
The type of driving scenario also impacted driving behavior. LDW and OSW affected the mean 
values of the majority of the driver behaviors for all the scenarios, but BSW affected fewer driving 
behaviors. Additionally, age, gender, lighting and weather conditions also had an effect on 
participants’ driving behaviors. They exhibited safer car-following maneuvers during rainy and 
nighttime driving conditions. The type of driving scenario also affected male and female 
participants’ driving behavior. The differences in the mean values need to be further investigated 
to derive meaningful results. The sample sizes were not equal for different groups (for example, 
the number of participants provided with LDW, BSW or OSW are not the same). A one-way 
ANOVA test can accommodate comparison groups of unequal sample sizes. The next chapter 
presents and discusses the one-way ANOVA test results. 

Table 19. Driver Behavior Parameters - LKA and LDW (Freeway) 

Driver Behavior Minimum Mean Maximum Std. Dev.  
LKA LDW LKA LDW LKA LDW LKA LDW 

Hard Braking 0.00 0.00 0.50 0.29 1.00 1.00 0.58 0.49 
Hard Cornering 1.00 2.00 1.75 2.29 3.00 3.00 0.96 0.49 
Lane Departures 1.00 1.00 2.00 10.86 3.00 15.00 0.82 5.61 
Avg. Speed (mph) 58.30 54.40 62.00 59.20 65.40 66.60 3.03 4.20 
Avg. Headway (ft) 188.20 77.30 209.45 201.39 256.20 367.30 32.03 89.52 
Maximum Speed (mph) 78.40 64.50 80.58 76.81 82.20 86.50 1.65 6.49 
Brake Force (lbs.) 7.40 4.20 8.70 13.49 11.30 24.70 1.76 7.68 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 
corresponding action was performed per participant per simulation. 
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Table 20. Driver Behavior Parameters - ACC, BSW and OSW (Freeway) 

Driver Behavior Statistic ACC BSW OSW 
Hard Braking Minimum 0.00 0.00 0.00 
Hard Cornering 1.00 1.00 2.00 
Lane Departures 19.00 4.00 11.00 
Avg. Speed (mph) 55.10 53.90 54.00 
Avg. Headway (ft) 169.40 198.90 204.80 
Maximum Speed (mph) 71.40 73.80 76.90 
Brake Force (lbs.) 0.11 0.70 4.90 
Hard Braking Mean 0.50 0.29 0.20 
Hard Cornering 2.00 2.71 3.20 
Lane Departures 20.75 20.71 21.20 
Avg. Speed (mph) 57.80 56.53 56.26 
Avg. Headway (ft) 185.38 403.40 294.12 
Maximum Speed (mph) 77.40 80.41 80.10 
Brake Force (lbs.) 0.19 11.28 17.07 
Hard Braking Maximum 1.00 1.00 1.00 
Hard Cornering 3.00 5.00 5.00 
Lane Departures 24.00 36.00 27.00 
Avg. Speed (mph) 60.10 62.60 59.40 
Avg. Headway (ft) 211.20 705.60 430.60 
Maximum Speed (mph) 80.90 92.70 84.40 
Brake Force (lbs.) 0.31 28.80 31.30 
Hard Braking Std. Dev. 0.58 0.49 0.45 
Hard Cornering 0.82 1.38 1.10 
Lane Departures 2.36 10.34 6.34 
Avg. Speed (mph) 2.08 3.21 2.66 
Avg. Headway (ft) 18.84 188.08 90.91 
Maximum Speed (mph) 4.49 8.29 2.82 
Brake Force (lbs.) 0.09 12.05 14.16 

Note: Braking, cornering and lane departures are numbers without units. They are the number of times the 
corresponding action was performed per participant per simulation. 
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5. Results 
This chapter presents the results from the ANOVA test on the significant differences in 
participant group mean values for hard braking, hard cornering, lane departures, average speed, 
average headway, maximum speed, and brake pedal force. While many variables can be extracted 
from miniSimTM, the variables that convey the most information were chosen for the analysis. 
Since the focus of this study is to capture the effect of advanced features on driving behavior, the 
factors that can best explain these differences were selected. The hard braking and hard cornering 
events help differentiate safe and aggressive driving behavior. The lane departure event was 
selected to verify the effectiveness of LDW on driving behavior. Similarly, the maximum speed 
parameter was chosen to evaluate the effectiveness of OSW. OSW was set up to activate when the 
participant crosses the designated speed limit (5 mph higher than the posted speed limit) in the 
simulations. The maximum speed represents the event when a participant would have crossed the 
set speed limit for OSW. This helps to compare the two participant groups. 

The LKA was tested using both the lane departure events and percentage parameter. The ACC 
was tested using the average headway parameter, or distance from the leading vehicle. Also, a level 
2 connected and automated vehicle was tested on some randomly selected participants with LKA 
and ACC engaged simultaneously. The behavior of these participants was compared to the 
participant groups that was provided with warning systems and vehicles without any ADAS. 

5.1 Rural Driving Scenario 

In order to evaluate the effectiveness of LDW, the number of lane departure events from the 
simulations were extracted. The lane departure data was combined with the ADAS provision data. 
A one-way ANOVA test was performed on the dataset as the sample sets were unequal. The 
inequality in the data samples is due to the random assignment of the ADAS to the participants. 
The ANOVA test results are presented by the scenario type. The ANOVA results of only the 
driver behaviors that were significant at a p-value of 0.05 in the rural scenario are presented in 
Table 21. The results from Table 21 include the effects of ADAS, lighting, and weather 
conditions. 

BSW was set up to show a warning light on the mirror when the participants were driving only at 
certain periods of time. This system was simulated by setting up a car-following session and 
activating BSW at the same time to capture the participants reaction. BSW was found to affect 
the brake pedal force variable in the rural scenario. Table 21 summarizes the ANOVA test results 
of brake pedal force for BSW in the rural scenario. 

OSW was set up using the "expression" trigger which was set to go off when the participant was 
exceeding speeds of more than 5 or 10 mph than the posted speed limit. Similar to LDW, OSW 
system was also tested for effectiveness using the maximum speed variable. The maximum speed 
is a direct measure of the effects of OSW. Table 21 also shows the ANOVA test results for the 
maximum speed in rural scenario. All the null and alternate hypotheses from Table 21 are discussed 
next in the same sequential order. 
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Table 21. ANOVA Results – ADAS, Lighting, and Weather Conditions (Rural) 

Source of Variation Driving 
Behavior & 
ADAS 

SS df MS F P-value F-critical 

Between Groups Lane 
Departures - 
LDW 

205.23 1 205.23 4.57 0.04 4.08 
Within Groups 1,840.54 41 44.89 

   

Total 2,045.77 42 
    

Between Groups Brake Pedal 
Force - BSW 

615.20 1 615.20 4.44 0.04 4.08 
Within Groups 5,678.58 41 138.50    
Total 6,293.78 42     
Between Groups Maximum 

Speed - OSW 
692.88 1 692.88 9.83 <0.01 4.08 

Within Groups 2888.48 41 70.45    
Total 3,581.37 42     
Between Groups Average Speed - 

OSW 
3,423.67 1 3,423.67 17.54 <0.01 4.08 

Within Groups 8,003.22 41 195.20    
Total 11,426.89 42     
Between Groups Brake Pedal 

Force - Two 
ADAS 

7.07 1 7.07 7.27 0.01 4.09 
Within Groups 37.96 39 0.97    
Total 45.02 40     
Between Groups Average 

Headway – 
Light 
Condition 

375828.10 1 375828.10 9.76 <0.01 4.09 
Within Groups 1578003.00 41 38487.90    
Total 1953831.00 42     

Between Groups Lane 
Departures – 
Light 
Condition 

623.70 1 623.70 17.98 <0.01 4.09 
Within Groups 1422.10 41 34.70    
Total 2045.80 42         

Between Groups Average 
Headway – 
Weather 
Condition 

180865.2 1 180865.20 5.31 0.03 4.09 
Within Groups 1226487 36 340691    
Total 1407352 37         

 

The null hypothesis is defined as there is no significant difference between the mean values of lane 
departure events between the participant group provided with LDW and the participant group 
who did not have LDW in the rural scenario. The alternate hypothesis states that there is a 
significance difference in the mean values of lane departure events between the participant group 
provided with LDW and participant group who did not have LDW in the rural scenario. Based 
on the F-statistic and p-value, the null hypothesis can be rejected at a 95% confidence level. The 
effectiveness of LDW on lane departure events is significant at a 95% confidence level. 

The null hypothesis states that there is no significant difference between the mean values of brake 
pedal force between the participant group provided with BSW and the participant group who did 
not have BSW in the rural scenario. The alternate hypothesis states that there is a significant 
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difference between the mean values of brake pedal force between the participant group provided 
with BSW and participant group without BSW in the rural scenario. Based on the F-statistic and 
p-value, the null hypothesis can be rejected confirming the effect of BSW on brake force pedal. 
Similar results were observed when the participant group provided with any two ADAS types was 
compared with the participant group provided with one or without ADAS. Two advanced features 
affected the brake pedal force. 

The null hypothesis states that there is no significant difference between the mean values of 
maximum speed between the participant group provided with OSW and the participant group 
who did not have OSW in the rural scenario. The alternate hypothesis states that there is a 
significant difference between the mean values of maximum speed between the participant group 
provided with OSW and participant group without OSW in the rural scenario. Based on the F-
statistic and p-value, the null hypothesis can be rejected implying a significant difference in the 
maximum speeds reached by participants with and without OSW. Similarly, the effect of OSW 
on the average speed was significant at a 95% confidence level (Table 21). 

The null hypothesis states that there is no significant difference between the mean values of average 
speed between the participant group provided with OSW and the participant group who did not 
have OSW in the rural scenario. The alternate hypothesis states that there is a significant 
difference between the mean values of average speed between the participant group provided with 
OSW and the participant group who did not have OSW in the rural scenario. Based on the F-
statistic and p-value, the null hypothesis can be rejected as the mean values of average speed 
between the two participant groups are not the same. However, the effect of OSW was not found 
to be significant on any of the other variables in the rural scenario. 

The null hypothesis states that there is no significant difference between the mean values of brake 
pedal force between the participant group provided with any two advanced features and the 
participant group who did not have ADAS in the rural scenario. The alternate hypothesis states 
that there is a significant difference between the mean values of brake pedal force between the 
participant group provided with any two advanced features and the participant group who did not 
have any ADAS in the rural scenario. Based on the F-statistic and p-value, the null hypothesis can 
be rejected as the mean values are significantly different. Therefore, providing two ADAS 
significantly affects the braking behavior. However, providing two ADAS did not have a 
significant influence on other driving behaviors. 

The null hypothesis states that there is no significant difference between the mean values of average 
headway between the participant group driving in daytime condition and the participant group 
driving in nighttime condition in the rural scenario. The alternate hypothesis states that there is a 
significant difference between the mean values of average headway between the participant group 
driving in daytime condition and the participant group driving in nighttime condition in the rural 
scenario. Based on the F-statistic and p-value, the null hypothesis can be rejected implying a 
significant difference between the mean values. Therefore, the effect of the time of driving on the 
driving behavior is evident. 

The null hypothesis states that there is no significant difference between the mean values of lane 
departures between the participant group driving in daytime condition and the participant group 
driving in nighttime condition in the rural scenario. The alternate hypothesis states that there is a 
significant difference between the mean values of lane departures between the participant group 
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driving in daytime condition and the participant group driving in nighttime condition in the rural 
scenario. Based on the F-statistic and p-value, the null hypothesis can be rejected implying a 
significant difference between the mean values. The time of driving also impacts lane departures.  

The null hypothesis states that there is no significant difference between the mean values of average 
headway between the participant group driving in clear weather condition and the participant 
group driving in rainy weather condition in the rural scenario. The alternate hypothesis states that 
there is a significant difference between the mean values of average headway between the 
participant group driving in clear weather condition and the participant group driving in rainy 
weather condition in the rural scenario. Based on the F-statistic and p-value, the null hypothesis 
can be rejected, implying a significant difference between the mean values. Thus, the weather 
conditions impact the average headway maintained by the participants. 

5.2 Urban Driving Scenario 

The ANOVA test results of only the driver behaviors that were significant at a p-value of 0.05 in 
the urban scenario are presented in Table 22. The results from Table 22 include the effects of 
ADAS, lighting, and weather conditions. The null and alternate hypotheses of all the results from 
Table 22 are discussed next.  

The null hypothesis states that there is no significant difference between the mean values of lane 
departure events between the participant group provided with LDW and the participant group 
without LDW in the urban scenario. The alternate hypothesis states that there is a significant 
difference between the mean values of lane departure events between the participant group 
provided with LDW and participant group without LDW in the urban scenario. Based on the F-
statistic and p-value, the null hypothesis can be rejected. The effectiveness of LDW on lane 
departure events in an urban scenario is also significant at a 95% confidence level. 

The null hypothesis states that there is no significant difference between the mean values of total 
hard cornering events between the participant group provided with LDW and the participant 
group without LDW in the urban scenario. The alternate hypothesis states that there is a 
significant difference between the mean values of total hard cornering events between the 
participant group provided with LDW and the participant group without LDW in the urban 
scenario. The presence of LDW in a vehicle seems to result in a greater number of hard cornering 
events. 
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Table 22. ANOVA Results – ADAS, Lighting, and Weather Conditions (Urban) 

Source of Variation Driving 
Behavior & 
ADAS 

SS df MS F P-value F-critical 

Between Groups Lane 
Departures - 
LDW 

134.32 1 134.32 5.23 0.03 4.08 
Within Groups 1,053.96 41 25.71 

   

Total 1,188.28 42 
    

Between Groups Hard Cornering 
- LDW 

15.07 1 15.07 11.97 <0.01 4.08 
Within Groups 51.63 41 1.26    
Total 66.70 42     
Between Groups Maximum 

Speed - OSW 
4,876,652 1 4,876,652 74.94 <0.01 4.07 

Within Groups 2,733,042 42 65,072.42    
Total 7,609,694 43     
Between Groups Average 

Headway – 
Light 
Condition 

1166855.00 1 1166855.0 10.63 <0.01 4.09 
Within Groups 4498522.00 41 109720.00    
Total 5665377.00 42         

Between Groups Brake Pedal 
Force – Light 
Condition 

1774.44 1 1774.44 8.36 <0.01 4.09 
Within Groups 7852.38 37 212.22    
Total 9626.82 38         
Between Groups Lane 

Departures – 
Light 
Condition 

488.42 1 488.42 28.61 <0.01 4.09 
Within Groups 699.85 41 17.06    
Total 1188.27 42         

Between Groups Average 
Headway – 
Weather 
Condition 

909143.10 1 909143.10 7.56 <0.01 4.09 
Within Groups 4330524.00 36 120292.30    
Total 5239667.00 37         

Between Groups Brake Pedal 
Force – 
Weather 
Condition 

1016.15 1 1016.15 4.95 0.03 4.09 
Within Groups 6569.83 32 205.31    
Total 7585.97 33         

 

The null hypothesis states that there is no significant difference between the mean values of 
maximum speed between the participant group provided with OSW and the participant group 
without OSW in the urban scenario. The alternate hypothesis states that there is a significant 
difference between the mean values of maximum speed between the participant group provided 
with OSW and the participant group without OSW in the urban scenario. The null hypothesis 
can be rejected based on the F-statistic and p-value, implying a significant difference in the mean 
values of maximum speed between the two participant groups. However, OSW was not found to 
have a significant effect on any of the other driver behaviors. 

No variables were affected by BSW in the urban scenario. 



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  59 

The null hypothesis states that there is no significant difference between the mean values of average 
headway between the participant group driving in daytime condition and the participant group 
driving in nighttime condition in the urban scenario. The alternate hypothesis states that there is 
a significant difference between the mean values of average headway between the participant group 
driving in daytime condition and the participant group driving in nighttime condition in the urban 
scenario. The null hypothesis can be rejected based on the F-statistic and p-value, implying a 
significant difference in the mean values of average headway between the two participant groups. 
The headways maintained by the participants based on the lighting conditions are different. 

The null hypothesis states that there is no significant difference between the mean values of brake 
force between the participant group driving in daytime condition and the participant group driving 
in nighttime condition in the urban scenario. The alternate hypothesis states that there is a 
significant difference between the mean values of brake force between the participant group driving 
in daytime condition and the participant group driving in nighttime condition in the urban 
scenario. Based on the F-statistic and p-value, the null hypothesis can be rejected, demonstrating 
a significant difference between the mean values. The lighting conditions impact the brake force 
applied by the participants. 

The null hypothesis states that there is no significant difference between the mean values of lane 
departures between the participant group driving in daytime condition and the participant group 
driving in nighttime condition in the urban scenario. The alternate hypothesis states that there is 
a significant difference between the mean values of lane departures between the participant group 
driving in daytime condition and the participant group driving in nighttime condition in the urban 
scenario. Based on the F-statistic and p-value, the null hypothesis can be rejected, as there is a 
significant difference between the mean values. The lighting conditions impact the brake force 
applied by the participants. 

The null hypothesis states that there is no significant difference between the mean values of average 
headway between the participant group driving in clear weather condition and the participant 
group driving in rainy weather condition in the urban scenario. The alternate hypothesis states 
that there is a significant difference between the mean values of average headway between the 
participant group driving in clear weather condition and the participant group driving in rainy 
weather condition in the urban scenario. The null hypothesis can be rejected based on the F-
statistic and p-value, implying a significant difference in the mean values of average headway 
between the two participant groups. The headways maintained by participants based on the 
weather conditions are different. 

The null hypothesis states that there is no significant difference between the mean values of brake 
force between the participant group driving in clear weather condition and the participant group 
driving in rainy weather condition in the urban scenario. The alternate hypothesis states that there 
is a significant difference between the mean values of brake force between the participant group 
driving in clear weather condition and the participant group driving in rainy weather condition in 
the urban scenario. Based on the F-statistic and p-value, the null hypothesis can be rejected as 
there is a significant difference between the mean values. The weather conditions also impact the 
brake force applied by participants. 
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5.3 Freeway Driving Scenario 

The ANOVA test results of the driver behaviors that were significant at a p-value of 0.05 in the 
freeway scenario are presented in Table 23. The results from Table 23 include the effects of ADAS, 
lighting, and weather conditions. The null and alternate hypotheses of all the results from the 
Table 23 are discussed next. 

Table 23. ANOVA Results – ADAS, Lighting, and Weather Conditions (Freeway) 

Source of Variation Driving 
Behavior & 
ADAS 

SS df MS F P-value F-critical 

Between Groups Lane 
Departures - 
LDW 

1,218.98 1 1,218.98 22.72 <0.01 4.08 
Within Groups 2,199.44 41 53.65 

   

Total 3,418.42 42 
    

Between Groups Average 
Headway – 
Light 
Condition 

463506.20 1 463506.20 12.98 <0.01 4.09 
Within Groups 1463141.00 41 35686.37    
Total 1926647.00 42         
Between Groups 806.03 1 806.03 12.65 <0.01 4.09 
Within Groups  2612.39 41 63.72    
Total  3418.42 42         
Between Groups Average Speed 

– Weather 
Condition 

121.54 1 121.54 5.39 0.02 4.09 
Within Groups 835.09 37 22.57    
Total 956.63 38         
Between Groups Average 

Headway – 
Weather 
Condition 

515154.90 1 515154.90 15.54 <0.01 4.09 
Within Groups 1226503.00 37 33148.72    
Total 1741658.00 38         

 

The null hypothesis states that there is no significant difference between the mean values of lane 
departure events between the participant group provided with LDW and the participant group 
without LDW in the freeway scenario. The alternate hypothesis states that there is a significant 
difference between the mean values of lane departure events between the participant group 
provided with LDW and the participant group without LDW in the freeway scenario. Based on 
the F-statistic and p-value, the null hypothesis can be rejected. The effectiveness of LDW on lane 
departure events in the freeway scenario is significant at a 99% confidence level. 

No driving behavior variables were affected by BSW in the freeway scenario. Also, the effect of 
OSW was not found to be significant on the maximum or the average speed in the freeway 
scenario. Further, OSW was not found to affect any of the other driver behaviors in the freeway 
scenario. 

Based on the results, it can be inferred that the LDW system has a significant effect on the lane 
departure behavior in all three driving scenarios. While the null hypothesis was rejected at a 99% 
confidence level in the freeway scenario, the null hypothesis in the rural and urban scenarios were 
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rejected at a 95% confidence level. Hence, the effect of LDW for the targeted purpose is quite 
evident. 

The null hypothesis states that there is no significant difference between the mean values of average 
headway between the participant group driving in daytime condition and the participant group 
driving in nighttime condition in the freeway scenario. The alternate hypothesis states that there 
is a significant difference between the mean values of average headway between the participant 
group driving in daytime condition and the participant group driving in nighttime condition in 
the freeway scenario. Based on the F-statistic and p-value, the null hypothesis can be rejected with 
a significant difference between the mean values. The lighting conditions impact the average 
headway maintained by the participants. 

The null hypothesis states that there is no significant difference between the mean values of lane 
departures between the participant group driving in daytime condition and the participant group 
driving in nighttime condition in the freeway scenario. The alternate hypothesis states that there 
is a significant difference between the mean values of lane departures between the participant group 
driving in daytime condition and the participant group driving in nighttime condition in the 
freeway scenario. Based on the F-statistic and p-value, the null hypothesis can be rejected as there 
is a significant difference between the mean values. The lighting conditions impact the lane 
departure events while driving on a freeway. 

The null hypothesis states that there is no significant difference between the mean values of average 
speed between the participant group driving in clear weather condition and the participant group 
driving in rainy weather condition in the freeway scenario. The alternate hypothesis states that 
there is a significant difference between the mean values of average speed between the participant 
group driving in clear weather condition and the participant group driving in rainy weather 
condition in the freeway scenario. Based on the F-statistic and p-value, the null hypothesis can be 
rejected showing a significant difference between the mean values. The weather conditions impact 
the average speed maintained by the participants while driving on a freeway. 

The null hypothesis states that there is no significant difference between the mean values of average 
headway between the participant group driving in clear weather condition and the participant 
group driving in rainy weather condition in the freeway scenario. The alternate hypothesis states 
that there is a significant difference between the mean values of average headway between the 
participant group driving in clear weather condition and the participant group driving in rainy 
weather condition in the freeway scenario. Based on the F-statistic and p-value, the null hypothesis 
can be rejected as there is a significant difference between the mean values. The weather conditions 
impact the average headway maintained by participants while driving on a freeway. 

5.4 Automated Systems 

This section presents the ANOVA test results of the effects of automated systems on driver 
behavior compared to warning systems and vehicles without ADAS. The automated systems were 
simulated where both LKA and ACC were engaged. The vehicle maintained a constant headway 
and the lane in this condition simulating a level 2 connected and automated vehicle. The warning 
systems include the simulation of any one of LDW, BSW, or OSW or in combination. 



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  62 

5.4.1 Rural Scenario 

The ANOVA test results of only the driver behaviors that were significant at a p-value of 0.05 in 
the rural scenario are presented in Table 24. The null and alternate hypotheses of the results from 
the Table 24 are discussed. 

Table 24. ANOVA Results – Automated, Warning, and No ADAS (Rural) 

Source of Variation Driving Behavior & 
ADAS 

SS df MS F P-value F-critical 

Between Groups Hard Braking –  
Automated vs 
Warning 

6.93 1 6.93 7.33 <0.01 4.08 
Within Groups 38.75 41 0.95 

   

Total 45.67 42 
    

Between Groups Lane Departure – 
Automated vs No 
ADAS 

178.57 1 178.57 6.93 <0.05 4.75 
Within Groups 309.43 12 25.79    
Total 488 13     
Between Groups Lane Departure – 

Automated vs 
Warning 

277.16 1 277.16 6.52 <0.05 4.08 
Within Groups 1743.35 12 42.52    
Total 2020.51 13     
Between Groups Average Headway – 

Automated vs 
Warning 

604328.1 1 604328.1 14.07 <0.01 4.08 
Within Groups 1761054 41 42952.54    
Total 2365382 42     
Between Groups Average Headway – 

Automated vs No 
ADAS 

335730.3 1 335730.3 19.96 <0.01 4.75 
Within Groups 201886.5 12 16823.88    
Total 537616.8 13     
Between Groups Brake Force –  

Automated vs 
Warning 

3149.26 1 3149.26 22.25 <0.01 4.08 
Within Groups 5802.19 41 141.52    
Total 8951.45 42     
Between Groups 1539.09 1 1539.09 39.57 <0.01 4.75 
Within Groups  466.74 12 38.89    
Total  2005.84 13     

 

The null hypothesis states that there is no significant difference between the mean values of the 
number of hard braking events between the participant group provided with automated systems 
and the participant group provided with warning systems in the rural scenario. The alternate 
hypothesis states that there is a significant difference between the mean values of the number of 
hard braking events between the participant group provided with automated systems and the 
participant group provided with warning systems in the freeway scenario. Based on the F-statistic 
and p-value, the null hypothesis can be rejected implying a significant difference between the mean 
values. Automated systems influence the braking behavior of participants when driving in the rural 
scenario. 
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The null hypothesis states that there is no significant difference between the mean values of the 
number of lane departure events between the participant group provided with automated systems 
and the participant group without any ADAS in the rural scenario. The alternate hypothesis states 
that there is a significant difference between the mean values of the number of lane departure 
events between the participant group provided with automated systems and the participant group 
without ADAS in the rural scenario. Based on the F-statistic and p-value, the null hypothesis can 
be rejected implying a significant difference between the mean values. Automated systems 
influence the lane-following behavior of participants while driving in the rural scenario. 

The null hypothesis states that there is no significant difference between the mean values of the 
number of lane departure events between the participant group provided with automated systems 
and the participant group provided with warning systems in the rural scenario. The alternate 
hypothesis states that there is a significant difference between the mean values of the number of 
lane departure events between the participant group provided with automated systems and the 
participant group provided with warning systems in the rural scenario. Based on the F-statistic and 
p-value, the null hypothesis can be rejected implying a significant difference between the mean 
values. Automated systems influence the lane-following behavior of participants while driving in 
the rural scenario. 

The null hypothesis states that there is no significant difference between the mean values of the 
average headway between the participant group provided with automated systems and the 
participant group provided with warning systems in the rural scenario. The alternate hypothesis 
states that there is a significant difference between the mean values of the average headway between 
the participant group provided with automated systems and the participant group provided with 
warning systems in the rural scenario. Based on the F-statistic and p-value, the null hypothesis can 
be rejected implying a significant difference between the mean values. Automated systems 
influence the car-following behavior of participants compared to warning systems while driving in 
the rural scenario. 

The null hypothesis states that there is no significant difference between the mean values of the 
average headway between the participant group provided with automated systems and the 
participant group without ADAS in the rural scenario. The alternate hypothesis states that there 
is a significant difference between the mean values of the average headway between the participant 
group provided with automated systems and the participant group without ADAS in the rural 
scenario. Based on the F-statistic and p-value, the null hypothesis can be rejected implying a 
significant difference between the mean values. Automated systems influence the car-following 
behavior of participants compared to vehicles without ADAS while driving in rural scenario. 

The null hypothesis states that there is no significant difference between the mean values of the 
brake force between the participant group provided with automated systems and the participant 
group provided with warning systems in the rural scenario. The alternate hypothesis states that 
there is a significant difference between the mean values of the brake force between the participant 
group provided with automated systems and the participant group provided with warning systems 
in the rural scenario. Based on the F-statistic and p-value, the null hypothesis can be rejected 
implying a significant difference between the mean values. Automated systems influence the 
braking behavior of participants compared to vehicles with warning systems while driving in the 
rural scenario. 



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  64 

The null hypothesis states that there is no significant difference between the mean values of the 
brake force between the participant group provided with automated systems and the participant 
group without ADAS in the rural scenario. The alternate hypothesis states that there is a 
significant difference between the mean values of the brake force between the participant group 
provided with automated systems and the participant group without ADAS in the rural scenario. 
Based on the F-statistic and p-value, the null hypothesis can be rejected implying a significant 
difference between the mean values. Automated systems influence the braking behavior of 
participants compared to vehicles without ADAS when driving in the rural scenario. 

5.4.2 Urban Scenario 

The ANOVA test results of the driver behaviors that were significant at a p-value of 0.05 in the 
urban scenario are presented in Table 25. The null and alternate hypotheses of all the results from 
the Table 25 are discussed next. 

Table 25. ANOVA Results – Automated, Warning, and No ADAS (Urban) 

Source of Variation Driving Behavior 
Parameter & 
ADAS 

SS df MS F P-value F-critical 

Between Groups Average Headway – 
Automated vs 
Warning 

2983244 1 2983244 23.25 <0.01 4.07 
Within Groups 5389220 42 128314.8    
Total 8372465 43     
Between Groups Average Headway – 

Automated vs No 
ADAS 

2127516 1 2127516 92.08 <0.01 4.84 
Within Groups 254168.9 11 23106.26    
Total 2381685 12     
Between Groups Brake Force –  

Automated vs 
Warning 

2652.91 1 2652.91 13.94 <0.01 4.09 
Within Groups 7421.13 39 190.29    
Total 10074.04 40     
Between Groups Brake Force –  

Automated vs No 
ADAS 

3956.62 1 3956.62 33.86 <0.01 4.96 
Within Groups 1168.41 10 116.84    
Total 5125.03 11     

 

The null hypothesis states that there is no significant difference between the mean values of the 
average headway between the participant group provided with automated systems and the 
participant group provided with warning systems in the urban scenario. The alternate hypothesis 
states that there is a significant difference between the mean values of the average headway between 
the participant group provided with automated systems and the participant group provided with 
warning systems in the urban scenario. Based on the F-statistic and p-value, the null hypothesis 
can be rejected, implying a significant difference between the mean values. Automated systems 
influence the car-following behavior of participants compared to vehicles with warning systems 
while driving in the urban scenario. 

The null hypothesis states that there is no significant difference between the mean values of the 
average headway between the participant group provided with automated systems and the 
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participant group without ADAS in the urban scenario. The alternate hypothesis states that there 
is a significant difference between the mean values of the average headway between the participant 
group provided with automated systems and the participant group without ADAS in the urban 
scenario. Based on the F-statistic and p-value, the null hypothesis can be rejected implying a 
significant difference between the mean values. Automated systems influence the car-following 
behavior of participants compared to vehicles without any ADAS when driving in the urban 
scenario. 

The null hypothesis states that there is no significant difference between the mean values of the 
brake force between the participant group provided with automated systems and the participant 
group provided with warning systems in the urban scenario. The alternate hypothesis states that 
there is a significant difference between the mean values of the brake force between the participant 
group provided with automated systems and the participant group provided with warning systems 
in the urban scenario. Based on the F-statistic and p-value, the null hypothesis can be rejected 
implying a significant difference between the mean values. Automated systems influence the 
braking behavior of participants compared to vehicles with warning systems while driving in the 
urban scenario. 

The null hypothesis states that there is no significant difference between the mean values of the 
brake force between the participant group provided with automated systems and the participant 
group without ADAS in the urban scenario. The alternate hypothesis states that there is a 
significant difference between the mean values of the brake force between the participant group 
provided with automated systems and the participant group without ADAS in the urban scenario. 
Based on the F-statistic and p-value, the null hypothesis can be rejected, implying a significant 
difference between the mean values. Automated systems influence the braking behavior of 
participants compared to vehicles without any ADAS when driving in the urban scenario. 

5.4.3 Freeway Scenario 

The ANOVA test results of only the driver behaviors that were significant at a p-value of 0.05 in 
the freeway scenario are presented in Table 26. The null and alternate hypotheses of all the results 
from the Table 26 are discussed next. 
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Table 26. ANOVA Results – Automated, Warning, and No ADAS (Freeway) 

Source of Variation Driving Behavior 
Parameter & ADAS 

SS df MS F P-value F-critical 

Between Groups Hard Braking –  
Automated vs No 
ADAS 

0.81 1 0.81 5.92 <0.05 4.84 
Within Groups 1.5 11 0.14 

   

Total 2.31 12 
    

Between Groups Lane Departure –  
Automated vs 
Warning 

907.57 1 907.57 14.86 <0.01 4.07 
Within Groups 2565.16 42 61.08    
Total 3472.73 43     
Between Groups Lane Departure –  

Automated vs No 
ADAS 

1642.51 1 1642.51 49.87 <0.01 4.84 
Within Groups 362.26 11 32.93    
Total 2004.77 12     
Between Groups Average Speed –  

Automated vs 
Warning 

256.47 1 256.47 11.87 <0.01 4.07 
Within Groups 907.79 42 21.61    
Total 1164.26 43     
Between Groups Average Speed –  

Automated vs No 
ADAS 

209.24 1 209.24 9.04 <0.05 4.84 
Within Groups 254.48 11 23.13    
Total 463.72 12     
Between Groups Maximum Speed – 

Automated vs 
Warning 

966.40 1 966.40 25.49 <0.01 4.07 
Within Groups 1592.27 42 37.91    
Total 2558.68 43     
Between Groups Maximum Speed – 

Automated vs No 
ADAS 

549.61 1 549.61 32.22 <0.01 4.84 
Within Groups 187.66 11 17.06    
Total 737.26 12     
Between Groups Brake Force –  

Automated vs 
Warning 

754.51 1 754.51 8.73 <0.01 4.11 
Within Groups 3196.56 37 86.39    
Total 3951.07 38     
Between Groups Brake Force –  

Automated vs No 
ADAS 

137.64 1 137.64 17.03 <0.01 4.84 
Within Groups 88.89 11 8.08    
Total 226.53 12     

 

The null hypothesis states that there is no significant difference between the mean values of the 
number of hard braking events between the participant group provided with automated systems 
and the participant group without ADAS in the freeway scenario. The alternate hypothesis states 
that there is a significant difference between the mean values of the number of hard braking events 
between the participant group provided with automated systems and the participant group without 
ADAS in the freeway scenario. Based on the F-statistic and p-value, the null hypothesis can be 
rejected implying a significant difference between the mean values. Automated systems influence 
the braking behavior of participants compared to vehicles without ADAS while driving in freeway 
scenario. 
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The null hypothesis states that there is no significant difference between the mean values of the 
number of lane departure events between the participant group provided with automated systems 
and the participant group provided with warning systems in the freeway scenario. The alternate 
hypothesis states that there is a significant difference between the mean values of the number of 
lane departure events between the participant group provided with automated systems and the 
participant group provided with warning systems in the freeway scenario. Based on the F-statistic 
and p-value, the null hypothesis can be rejected implying a significant difference between the mean 
values. Automated systems influence the lane-following behavior of participants compared to 
vehicles with warning systems while driving in the freeway scenario. 

The null hypothesis states that there is no significant difference between the mean values of the 
number of lane departure events between the participant group provided with automated systems 
and the participant group without ADAS in the freeway scenario. The alternate hypothesis states 
that there is a significant difference between the mean values of the number of lane departure 
events between the participant group provided with automated systems and the participant group 
without ADAS in the freeway scenario. Based on the F-statistic and p-value, the null hypothesis 
can be rejected implying a significant difference between the mean values. Automated systems 
influence the lane-following behavior of participants compared to vehicles without ADAS when 
driving in the freeway scenario. 

The null hypothesis states that there is no significant difference between the mean values of the 
average speed between the participant group provided with automated systems and the participant 
group provided with warning systems in the freeway scenario. The alternate hypothesis states that 
there is a significant difference between the mean values of the average speed between the 
participant group provided with automated systems and the participant group provided with 
warning systems in the freeway scenario. Based on the F-statistic and p-value, the null hypothesis 
can be rejected, implying a significant difference between the mean values. Automated systems 
influence the speeding behavior of participants compared to vehicles with warning systems while 
driving in the freeway scenario. 

The null hypothesis states that there is no significant difference between the mean values of the 
average speed between the participant group provided with automated systems and the participant 
group without ADAS in the freeway scenario. The alternate hypothesis states that there is a 
significant difference between the mean values of the average speed between the participant group 
provided with automated systems and the participant group without ADAS in the freeway 
scenario. Based on the F-statistic and p-value, the null hypothesis can be rejected implying a 
significant difference between the mean values. Automated systems influence the speeding 
behavior of participants compared to vehicles without ADAS while driving in the freeway scenario. 

The null hypothesis states that there is no significant difference between the mean values of the 
maximum speed between the participant group provided with automated systems and the 
participant group provided with warning systems in the freeway scenario. The alternate hypothesis 
states that there is a significant difference between the mean values of the maximum speed between 
the participant group provided with automated systems and the participant group provided with 
warning systems in the freeway scenario. Based on the F-statistic and p-value, the null hypothesis 
can be rejected implying a significant difference between the mean values. Automated systems 
influence the speeding behavior of participants compared to vehicles with warning systems while 
driving in freeway scenario. 
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The null hypothesis states that there is no significant difference between the mean values of the 
maximum speed between the participant group provided with automated systems and the 
participant group without ADAS in the freeway scenario. The alternate hypothesis states that 
there is a significant difference between the mean values of the maximum speed between the 
participant group provided with automated systems and the participant group without ADAS in 
the freeway scenario. Based on the F-statistic and p-value, the null hypothesis can be rejected, 
implying a significant difference between the mean values. Automated systems influence the 
speeding behavior of participants compared to vehicles without ADAS while driving in the freeway 
scenario. 

The null hypothesis states that there is no significant difference between the mean values of the 
brake force between the participant group provided with automated systems and the participant 
group provided with warning systems in the freeway scenario. The alternate hypothesis states that 
there is a significant difference between the mean values of the brake force between the participant 
group provided with automated systems and the participant group provided with warning systems 
in the freeway scenario. Based on the F-statistic and p-value, the null hypothesis can be rejected 
implying a significant difference between the mean values. Automated systems influence the 
braking behavior of participants compared to vehicles with warning systems while driving in the 
freeway scenario. 

The null hypothesis states that there is no significant difference between the mean values of the 
brake force between the participant group provided with automated systems and the participant 
group without any ADAS in the freeway scenario. The alternate hypothesis states that there is a 
significant difference between the mean values of the brake force between the participant group 
provided with automated systems and the participant group without ADAS in the freeway 
scenario. Based on the F-statistic and p-value, the null hypothesis can be rejected, implying a 
significant difference between the mean values. Automated systems influence the braking behavior 
of participants compared to vehicles without any ADAS while driving in the freeway scenario. 
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6. Conclusions 
This study tested the effects of three different warning systems and two automated systems on 
driver behavior. The warning systems were shown to influence the participants’ behaviors as per 
their intended purpose. For example, LDW was effective in influencing the lane departure 
behavior of the participants. Also, OSW was effective in influencing the maximum speed and 
average speed in some cases. BSW did not have a significant effect on any of the driver behavior 
variables. 

The hard cornering, lane departures, and average headway had distinct mean values for the 
participant group with LDW compared to the participant group without LDW. The mean values 
of LDW and non-LDW group for different variables varied based on the driving scenario. For 
example, while the mean values of lane departure varied in the urban scenario, the mean values of 
brake pedal force varied in the freeway scenario. Similarly, the mean values of some of the driver 
behaviors were different for the OSW and non-OSW group, as well as the BSW and non-BSW 
group. 

The effect of different warning systems on participants varied with the driving scenario. LDW had 
a significant effect on lane departure events, which indicates the number of times a participant 
went out of their lane. LDW was effective in all the three driving scenarios. However, OSW was 
only able to influence the speeding behavior of participants in rural and urban settings. As 
participants tend to drive at higher speeds on freeways, there is a lower chance to draw significantly 
different results when the two participant groups are compared. 

BSW did not significantly affect the driver behavior in any of the three driving scenarios. However, 
the brake pedal force was significantly affected in the rural scenario. The activation of BSW when 
a vehicle is in the adjoining lane could trigger a participant to adopt safe maneuvering, possibly 
accounting for the observed change in the brake pedal force. Similarly, providing two ADAS 
increased the interaction when both the features are engaged, invoking a natural response to drive 
cautiously or slow-down, which might have segregated the brake pedal force application. Overall, 
the effect of warning systems on driving behaviors such as lane departures, speeding, and braking 
by driving scenario are evident. 

Lighting and weather conditions also had a significant effect on some driving behaviors. Nighttime 
driving condition was observed to affect car-following and lane-changing behavior in all three 
driving scenarios. Additionally, lighting condition also affected the brake force applied by the 
participants in the urban scenarios. The participants maintained larger headway distance and had 
more lane departures at night compared to during the day. 

The age of the participant also influenced the driving behavior. The braking behavior and average 
speed was higher for participants over twenty-five years in age. The young or teen participants 
below the age of twenty-five could be better accustomed to such driving simulators as they are 
more used to technology and video games, resulting in safer driving profiles. Smaller headways 
were observed for participants under the age of twenty-five in urban settings but had larger 
headways in rural and freeway scenarios. Additionally, the driving behavior differed with the 
gender of the participant. Male participants displayed more aggressive driving maneuvers, while 
female participants demonstrated higher brake force. Further, the type of driving scenario also 
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affected the driving behaviors. Female participants had smaller headways in the urban scenario but 
had larger headways in rural and freeway scenarios. 

Similarly, rainy weather condition also affected the participants’ car-following behavior. They were 
observed to maintain longer headways in rainy weather condition in all three scenarios. However, 
the lane-changing, braking, and turning behaviors of the participants were observed to be less 
aggressive in rainy weather condition. Also, participants applied higher brake force in rainy 
weather condition, especially in urban driving settings which could be due to slippery roads. The 
change in average speed was also significantly different in the freeway scenario, with higher speeds 
in clear weather condition. 

Automated systems like LKA and ACC were also explored in this study. The results from the 
participant group that drove a vehicle with LKA and ACC were compared to the participant group 
provided with the warning systems (LDW, BSW and OSW) as well as with the participant group 
without advanced features. Participants who drove a vehicle with LKA and ACC displayed less 
aggressive lane-following and braking behavior but maintained smaller headways. These results 
were observed in all three driving scenarios. Better braking behavior was additionally observed in 
the freeway scenario. Further, LKA and ACC reduced the variation in lane-following, handling, 
speeding, and car-following behaviors among the participants compared to both warning systems 
and no ADAS in all three driving scenarios. 

Participants with LKA displayed less aggressive lane-following and braking behavior compared to 
participants with LDW. The driving scenario was also observed to affect the type of effects LKA 
had on a participant compared to LDW. Participants that a drove a vehicle with only LKA 
demonstrated more aggressive car-following behavior in rural and urban scenarios. The effects of 
ACC on improved braking behavior compared to both BSW and OSW is very evident. 
Additionally, both LKA and ACC drastically reduced the variation in vehicle handling, lane-
following, car-following, and braking behavior in all three driving scenarios. 

The effects of automated systems on braking, lane-following, and car-following behaviors in the 
rural scenario were found to be significant. Likewise, the effects of ACC on car-following and 
lane-following in the urban scenario were also found to be significant. In addition to braking, lane-
following, and car-following behaviors, speed behavior was also significantly affected by automated 
systems in the freeway scenario. Though the considered automated systems led to aggressive car-
following behavior, other driver behaviors were found to be less aggressive, leading to safer driving 
overall. Vehicles equipped with automated systems either in combination or individually led to 
safer driving compared to warning systems alone and vehicles without any ADAS. The change in 
driver behavior of the participants provided with automated systems was more harmonized as well. 

These findings can be used to define vehicle parameters within microscopic simulation software 
and mimic the effect of vehicles with and without advanced features on transportation system 
performance. Additional samples can be collected and other advanced features may also be tested 
and compared using the driver simulator. 
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