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Executive Summary 
The accurate prediction of travel time has become necessary, and research in that direction has 
made huge leaps and bounds over the years to enable public transit agencies to provide patrons 
with efficient transit services and to help them better plan their commutes. The Washington, DC 
area is ranked second in terms of states in the US with the highest percentage of public transit 
commuters. Over the years, many interventions have been introduced to improve the overall public 
transit system by upgrading to Intelligent Transport Systems, which can enable the provision of 
better transit travel times prediction, fare payment systems, passenger boarding structures, 
monitoring processes, etc. 

This report presents the findings of a study conducted to predict bus transit travel times in 
Washington, DC using Artificial Neural Network (ANN). The ANN models were developed 
based on AVL (Automatic Vehicle Location) and APC (Automatic Passenger Counters) data 
with the aim of helping Washington Metropolitan Area Transit Authority (WMATA) to improve 
bus stop arrival times and consequently improve transit travel times, which would potentially lead 
to rider satisfaction and increased ridership. In this project, six months’ worth (January–June 2019) 
of AVL and APC data for bus routes operating in the DC area were used. Bus routes on arterial 
and collector roadways were selected for this study. Other criteria for route selection considered 
included routes with high patronage bus stops, routes with longer headways, and routes with stops 
in close proximity to metro rail stations. Based on the selection criteria, six bus routes were selected 
for the study: 70, 32, 52, 42, D4, and S1. 

For this research, information extracted from the data for each route included departure and arrival 
times, length of route, passenger loading and unloading, dwell time, travel time, and bus location. 
Field observations were conducted to collect the number of intersections between the origin and 
destination and the speed limit of each bus route. To reduce the effects of the variability in traffic 
characteristics, the extracted data were partitioned according to AM Peak (7:00 AM–9:30 AM), 
Mid-Day Peak (10:00 AM–2:30 PM), and PM Peak (4:00 PM–6:30 PM) periods, and separate 
ANN models were developed for each period. For each route, a minimum sample size of 500 
origin-to-destination trips per peak period was extracted, and a total minimum sample of 1,500 
was used in the ANN model. For the ANN model, travel time was designated as the dependent 
variable while the independent variables included number of served bus stops, route length between 
bus stops, average number of passengers in the bus, average dwell time at a bus stop, and number 
of intersections between served bus stops. Regression and ANN models were developed to predict 
travel times for the selected bus routes. 

The following are the summary of the results from the regression analyses: 

• Travel times generally increased from morning through the evening peak periods for all the
bus routes selected.
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• In the AM Peak period, the independent variable, “number of bus stops served,” appeared
to have the greatest effect on the total bus travel time, followed by the “number of
intersections between two served stops” independent variable. Average dwell time had the
least effect on bus travel time. The independent variable “number of passengers” had an
inverse relationship with travel time.

• For the Mid-Day Peak period, distance between served bus stops variable appeared to have
the greatest effect on bus travel time, followed by the number of intersections between two
served stops. The average dwell time variable had the least effect on bus travel time.

• The number of intersections between two served stops variable appeared to have the
greatest effect on the travel time model for the PM Peak period. This was followed by the
number of served bus stops, with the average dwell time having the least effect on bus travel
time.

A summary of the models with the accompanying coefficient of determination (R²) values are 
presented in Table 1. 

Table 1: Summary of Regression Analysis Results 
# Peak Period Model R2 

1 AM TTA = 40.36 + 62.50SBS + 0.11L - 1.37P + 2.17DT + 7.41T  0.76 

2 Mid-Day TTM = 41.07 + 31.94SBS + 0.08L + 0.12P – 1.51DT – 6.97T 0.85 

3 PM   TTP = -6.063 +55.67SBS + 0.11L + 1.88P + 0.89DT + 15.24T  0.68 

Artificial Neural Network (ANN) models were developed to predict buses’ travel times during 
different peaks using Neural Designer software based on Quasi-Newton and Levenberg-
Marquardt optimization algorithms. Optimization algorithms determine how parameters are 
adjusted in the neural network training process that would yield the lowest error. 

A summary of the results from the ANN analyses follows: 

• The Quasi-Newton optimization algorithm is the default optimization method in Neural
Designer which was used for training the datasets for the three peak periods for all six bus
routes. The algorithm helps determine the local maxima and minima of functions (greatest
and least amount of errors) and is a faster alternative to finding zeros of a function via
Newton’s method. Three sets of perceptron layers (two layers, three layers, and five layers)
were used to determine the optimum number of hidden layers for travel time prediction.
Perceptron layers can be visualized as algorithms that enable a neural network to learn.
Increasing the number of layers can aid to solve complex problems by outperforming single
layer networks.

• The Levenberg-Marquardt optimization algorithm was also used to train the model for all
three peaks of the six bus routes using an analysis with three perceptron layers. The
algorithm can be used to find the local minimum of a function while fitting a set of
observations with a non-linear model.
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• From the results (Table 2), the two-layer perceptron network using the Quasi-Newton 
optimization algorithm produced the lowest Mean Absolute Error (MAE) for the Mid-
Day Peak period. The lowest MAE for the PM Peak period was obtained in the Quasi-
Newton five-layer perceptron network. The Levenberg-Marquardt model had the highest 
MAE values for all the peak periods. 

• After both training and testing errors were analyzed, the Quasi-Newton algorithm two-
layer perceptron model had the lowest Normalized Squared Errors (NSE) consistently for 
most of the peak periods. The three-layer perceptron Quasi-Newton model produced the 
second-lowest testing errors. The Levenberg-Marquardt Optimization model resulted in 
the highest testing NSE for all peak periods, indicating that it was not suitable for the 
datasets. 

Table 2 shows a summary of the analysis for each peak period, highlighting the lowest obtained 
measures of effectiveness. 

Table 2: Summary of ANN Model Analysis Results 
Peak Period Lowest Normalized Squared Error Lowest Mean Percentage Error (%) 

AM Peak Period 0.1451 4.5912 

Mid-Day Peak Period 0.0532 1.5102 

PM Peak Period 0.2543 4.7973 

1 Quasi-Newton Analysis (three perceptron layers) 
2 Quasi-Newton Analysis (two perceptron layers) 
3 Quasi-Newton Analysis (five perceptron layers) 

The results of the analyses indicate that ANN models can effectively predict the travel times of 
buses on selected routes with minimal percentage errors when combined with traditional multiple 
regression analyses. The ANN models could be incorporated into existing predictive models used 
by WMATA to provide patrons with travel time information at bus stops and online. These 
models could be adopted by transit agencies in other jurisdictions with similar characteristics to 
the Washington, DC area. For future work, these models could be calibrated using real-time data 
for arterial and collector bus routes. Also, similar models could be developed for bus routes that 
serve residential or local roads. 
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I. Introduction
Washington, DC has the second-highest percentage of public transit commuters in the United 
States, with New York City listed as number one. Of the working population that commute to 
and from Washington, DC, approximately 9% use Metrobus,1 which is a bus service overseen by 
the Washington Metropolitan Area Transit Authority (WMATA). WMATA has of 
approximately 1,600 buses that operate in all parts of the District of Columbia, some parts of 
Maryland and Virginia with over 269 bus routes. The buses serve 11,129 stops, including 2,554 
stops with bus shelters.2 The accurate prediction of travel time is necessary to enable public transit 
agencies to provide patrons with efficient transit service and for them to effectively plan their 
commute or travel in the region. Transit agencies are continuously evaluating best practices 
available to improve the reliability of their services. The use of technology, particularly in bus 
transit, has been critical for this purpose. This includes the use of Automatic Vehicle Location 
(AVL) technology installed in public transit buses that track of buses in real time. AVL technology 
employs Global Positioning System (GPS) installed onboard transit buses to track vehicle location 
and display it on a geographical map of the area. The anticipated arrival times and the travel times 
of transit buses are estimated by using the AVL data, and this information is collected by transit 
agencies and shared with patrons at 30-second intervals via Long-Term Evolution (LTE), Third 
Generation (3G), or Fourth Generation (4G) telecommunications technology. 

Automatic Passenger Counters (APCs) installed on buses count the number of passengers getting 
on and off at each bus stop, which helps in the computation of the total number of patrons 
onboard. Despite these efforts, there are various factors—including traffic congestion, roadway 
conditions, the frequency of bus stops, and/or unforeseeable circumstances—that affect the public 
transit agencies’ ability to provide accurate arrival and travel times to patrons. 

Arhin et al. (2013) evaluated the reliability of transit buses in Washington, DC. The study found 
that transit bus services had an overall on-time performance of approximately 75%. The mean 
deviation between the scheduled arrival times and the actual arrival times ranged between 1.99 and 
5.03 minutes. These deviations in arrival times cumulatively affected the accuracy of the predicted 
travel times between the origin and destination points.3 This may result in a decrease in patrons’ 
perception of the bus services’ reliability. It is therefore important that travel time prediction 
models are developed to provide more accurate information to patrons based on pertinent factors 
that affect travel time. 

Previous studies have used conventional linear regression methods to develop models that predict 
travel times. Jeong and Rilett (2004) proposed a set of multilinear regression models to estimate 
the travel times of buses from an origin bus stop to a target bus stop. However, in terms of accuracy, 
these models were found to be outperformed by machine learning models such as Artificial Neural 
Networks (ANNs) which provide a much more effective alternative to the conventional models.4 
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ANN are mathematical models that are inspired by the biological neural networks in the human 
brain. The effectiveness of ANN is based on its ability to approximate both linear and nonlinear 
functions to a required degree of accuracy using a learning algorithm, and to build ‘‘piece-wise’’ 
approximations of the functions.  

Hence, this research is aimed at developing ANN models to predict the travel times of transit 
buses in Washington, DC using AVL and APC data. The models will enable public transit 
agencies to provide more accurate information to patrons to improve reliability and consequently 
increase bus ridership. 
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II. Literature Review

2.1  Public Transportation in the United States 

Public transportation became popular in the 1800s and has since gone through many technological 
advancements to become what it is presently.5 In the United States, the public transportation 
system includes bus, rail, ferry, and airline services which are publicly financed and accessible to 
the general populace. They are, however, more established and accessible in central urban areas 
where there is higher public demand compared to suburban and rural areas. Depending on the 
type of service rendered, public transit services are classified as either national, regional, or 
commuter/local.6 

Conventional or commuter buses, bus rapid transit, and intercity buses are the three common bus 
services in the United States. The hours, service frequency, and routes of these bus services are 
determined by the needs of the city or community with the goal of providing maximum 
convenience while catering to the needs of the majority.7 Despite increases in auto vehicle 
ownership, public transportation ridership has steadily increased to an average national rate of 21% 
over the years. This makes the public transportation sector a viable and important aspect of the 
American economy.8 

2.2 The Bus Transit System in Washington, DC 

The metro system in Washington, DC, comprises the regional bus and rail public transit which 
operates within DC, Maryland, and Virginia (DMV). The system is run by the Washington 
Metropolitan Area Transit Authority (WMATA) with contributions from the various cities and 
counties towards its operational costs.9  

The region’s Metrobus service is the fifth-largest bus system in the United States. It has over 1,450 
buses and services approximately 350 routes across the DMV area. Its services are supplemented 
by the bus systems of the various local jurisdictions.10 Figure 1 shows a WMATA bus with 
schematics of APC and AVL systems. The APC counts the number of passengers getting on and 
off the bus while the AVL tracks the location of the bus in real time. The data is shared via internet 
to the WMATA database. 
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Figure 1: WMATA Metrobus with APC and AVL Schematics

 
Public transportation is regarded as one of the safest and most convenient ways of moving around 
the DC area, especially due to traffic congestion, several parking restrictions, and inadequate 
and/or expensive parking facilities. The DC Circulator and the Metrobus are the two main options 
for bus commuters and provide services to varied locations within DC and the larger DMV area. 
The Metrobus, for instance, provides 24-hour daily service seven days a week and connects to the 
rail system and other local bus systems.11 

2.3 Advantages of the Public Transport System 

Despite increased ownership of auto vehicles, studies show that public transport ridership has 
increased by 21% since 1997. This indicates higher patronage, especially when compared to the 
19% increase in population over that same period. Public transportation benefits have been far-
reaching on both individual and community levels. Notable among these benefits is increased 
economic development as areas farther out and hitherto undeveloped become easily accessible. 
According to the American Public Transportation Association (APTA), a return of $4 is generated 
for every $1 invested, and for every $10 million of capital injected into public transportation, there 
was a $30 million increase in business sales. In the United States, public transportation agencies 
directly employ over 400,000 people and create and support another 50,000 jobs for every $1 billion 
invested.12  

Further, studies show that using public transportation can reduce a person’s risk of being in a motor 
vehicle accident by 90%.13 This could be attributed to the level and regularity of public vehicle 
maintenance as well as the training and enforced driving habits of public transit drivers.14  

Public transport also helps individuals to save money on vehicle purchases, maintenance, fuel, and 
parking. According to APTA, in the United States, approximately 16 cents of every dollar earned 
goes into transportation—the second-largest expenditure after housing. Thus, households that 
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patronized public transportation and had one fewer automobile could save about $10,000 
annually.15  

Moreover, public transportation provides increased mobility and ease in going about one’s daily 
business without having to rely on the help of others. It enables riders to save time on commutes 
as well as engaging in other activities such as reading, working, or studying that would not have 
been possible if they were driving. Studies also show that people who use public transportation get 
more physical activity compared to those who don’t, since most of them walk to and from their 
transit stops. This leads to an overall healthier lifestyle.16 

Additionally, using public transportation helps to reduce air pollution from carbon emissions. 
Studies show that communities with increased public transit usage reduce carbon emissions by 37 
million metric tons yearly.17 Comparatively, buses emit 20% less carbon monoxide, 90% less 
hydrocarbons, and 25% less nitrogen oxides per passenger mile when compared to a vehicle with 
a single occupant.18 Also, public transportation leads to fuel savings for the country as a whole. 
According to APTA, public transportation saves the United States approximately 4.2 billion 
gallons of gasoline every year.19 This could be attributed to the significantly decreased amount of 
fuel per passenger mile due to the transportation efficiency of public modes.20 

2.4  Issues Affecting the Bus Transit System 

Although public transportation ridership has increased over the years, there are still some 
challenges faced by the system that make it unpopular among the people. Notable among these 
include inadequate accessibility, overcrowding on buses, delayed bus arrival times, delayed or 
longer commute times, and the overall cost to the rider per commute.21 

Studies show that about 45% of Americans have no access to public transportation despite the 
progress made in public transportation over the years.22 This can be generally attributed to rapid 
development in housing infrastructure farther away from town or city centers without 
corresponding development in the public transit system. Thus, housing communities were built 
farther away from downtowns with no planning for public transport within those areas. This 
creates complex transit systems and leads to automobile dependence.23 

In areas where public transport is accessible, there tends to be increased patronage, especially 
around peak times. This usually leads to overcrowding on buses where riders are subjected to 
standing, sometimes throughout their travel time. A study conducted by Li and Hensher (2013) 
on crowding in public transport in some developed countries indicated that despite the various 
measures put in place by transport authorities to identify and control crowding on public 
transportation, overcrowding still occurs on many public transit systems. Survey results indicated 
that apart from the discomfort associated with standing for a long time, riders mentioned that it 
also leads to stress, physical exhaustion, less privacy, health concerns due to rider proximity, and 
overall dissatisfaction. These experiences were very likely to influence a rider’s choice to use public 
transportation or rely on other alternate modes. The study only took into consideration the density 
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of people and the physical space available without considering riders’ social and emotional 
perceptions of crowding.24 

Over the years, technology has been applied in the public transportation sector to improve its 
effectiveness and efficiency as well as rider satisfaction. One such introduction is the bus arrival 
prediction times provided using the AVL technology mounted on buses to provide up-to-date 
real-time bus location data. A study conducted by Arhin et al. (2013) to evaluate the reliability of 
transit buses in Washington, DC showed an overall performance of 75% with an average deviation 
of two to five minutes from the predicted arrival times. These results were consistent with 
WMATA’s window of two-minutes-early and seven-minutes-late bus arrival times. However, the 
statistics from the study showed that about 82% of the bus arrival times failed to meet the general 
transit industry threshold.25 However, for increased ridership, retention, and overall customer 
satisfaction, bus service reliability is important. 

Delayed commute times, which are directly related to inconsistencies in the buses’ actual arrival 
and predicted arrival times, represent one major reason that makes public transportation 
unattractive for riders. This is due to a combination of factors which include lower speed limits, 
traffic congestion, delay from traffic signals, and delays from a large number of passenger stops 
along the bus route. The average bus speed through downtown DC is less than 12 mph.26 A study 
conducted by Estrada et al. analyzed strategies for bus travel time control along corridors with 
signalized intersections. One significant conclusion from their study is that the reduction in the 
speed of buses below the recommended segment speed resulted in a significantly higher round trip 
travel time.27  

Traffic congestion in the United States caused an average loss of 97 hours a year at an average cost 
of $1,348 per driver, totaling $87 billion dollars for the year 2018. This amount is projected to 
increase to about $186 billion by 2030. Washington, DC was identified as the third most 
congested city with drivers having to spend about 102 hours in traffic per year. Apparently, 
congestion is more prevalent in cities and urban areas with sprawling settlements situated more 
towards the outskirts, whereas the hub of business is typically within the town center.28 The efforts 
of city officials to designate bus-only lanes has not been totally successful, as buses are still affected 
in traffic congestion zones like other auto vehicles, especially during peak periods. The impact of 
signalized intersections, although relatively small, has been found to add up, especially on longer 
routes with more signalized intersections. A study conducted by Albright and Figliozzi (2012) 
determined that an average of 8 to 26 seconds was added to bus travel time for each signalized 
intersection on the bus route.29 In another study conducted to gain insight into time variability in 
public transport travel, Mazloumi et al. (2010) found that travel time variation increased by up to 
22% for each additional signalized intersection per kilometer.30 Figliozzi and Feng (2012) found 
out that for each stop sign, an average of 12 to 16 seconds was added to bus travel time, and turning 
left and right at intersections added an average 5 to 38 seconds to bus travel time.31 Mazloumi et 
al. (2010) found that the number of bus stops along a route had an influence on bus travel time 
variability especially in the AM Peak and that the length of the route along with the number of 
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bus stops affected the bus arrival and departure times and thereby increased the total travel time of 
the bus trip.32 

Generally, public transportation provides cheaper or more competitive pricing when it comes to 
mobility. This is usually the case, especially in urban areas where riders are travelling shorter 
distances. However, in the case where a rider would require two or more transfers, which in most 
cases encompass several public transport options, it becomes costly both in time and money. A 
study by Owen and Levinson (2015) found that bus transit ridership was higher among low-
income households compared to higher income households. In addition, where riders had to wait 
for up to 30 minutes to access the adjoining ride to continue their trip, they preferred to use a 
different mode of transportation, particularly auto vehicles.33 A study on the impact of fare 
integration on travel behavior and transit ridership by Sharaby and Shiftan (2012) showed that the 
introduction of a single fare system and free transfers across buses along routes led to an increase 
of 25% in bus transit ticket sales, 7.7% in passenger trips, and 18.6% in bus boarding.34 This implies 
that the reduction in fares for single ticket purchasing and free transfers for riders who had to use 
more than one bus to reach their destination increased rider patronage of the bus transit system. 

2.5  Strategies to Improve the Bus Transit Service 

There have been several interventions within cities and urban areas, especially where public 
transportation is often used, to improve service to patrons. These have been implemented to 
address some of the dissatisfactions experienced by riders to make the public transportation system 
more efficient to current users and appealing enough to attract more users. Designated bus lanes, 
improved traffic management and AVL technology, improved facilities and amenities, and faster 
boarding at bus stops are a few of the strategies that have been employed to improve the efficiency 
of bus transit systems. 

Research has shown that designated bus lanes have the tendency to reduce bus delay times by about 
10%. A study conducted in New York showed that bus delay times was reduced from 34% to 42% 
and ridership increased by 10% after the introduction of designated or dedicated bus lanes. In other 
areas within the United States, two-lane busways were also employed on highways and freeways 
to enable rapid bus transit services.35 

Traffic signal priority for buses has also been considered in some jurisdictions as a strategy to 
reduce bus service delays and make it attractive for ridership and a preferred mode of transport 
over auto vehicles. Over the years, two general types of systems have been employed. One is a pre-
installed electronic communications device that enables the bus driver to advance the traffic signal 
cycle to green to let them pass through the intersection if maintaining the bus schedule is needed. 
The second is the use of Automatic Vehicle Location (AVL) technology coupled with an advanced 
radio communications system that allows a computerized system to determine the bus location in 
relation to its schedule; the system is able to control traffic signals, giving priority to buses as and 
when needed.36 Estrada et al. (2016) proposed a dynamic bus control model that utilized real-time 
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bus tracking data (AVL) at stops to control bus speeds and potentially also induce signalized 
intersections to extend the green phase for significantly delayed buses. The effects of this simulated 
model, which took into consideration passenger travel time, operating costs, and bus travel time 
variability, reduced the total system cost for both user and agency by 15–40% and reduced bus 
travel time variability by 53–78%.37 

Improved facilities and amenities at subways, bus stops, and aboard buses give riders the full 
experience from their origin to their destination. The overall satisfaction with service provided is 
very important for ridership retention and the attraction of more riders. A study of the Curitiba’s 
bus transit system in Brazil showed that improved station platforms provided easier same-level 
boarding access, shielded riders from weather conditions, and provided a means for passengers to 
pay their fare before boarding. This helped to reduce the bus dwell time by 15 to 19 seconds. 
Additional improvements in the transit system included single fare with unlimited transfers, 
exclusive bus lanes, signal priority for buses, bi-articulated buses with large capacity doors and 
express bus transit services.  These interventions led to a reduction of 27 million auto trips per year, 
saving about 27 million liters of fuel annually. On the whole, Curitiba uses about 30% less fuel per 
capita, and public transportation accounts for 55% of all private trips in the city.38 

According to an Organisation Gestion Marketing report, results obtained from eight European 
cities after the implementation of fare integration platforms reported a significant increase in 
public travel behavior after the first one to two years.39 These results were consistent with those 
from a study conducted by Sharaby and Shiftan (2012) that investigated the impact of fare 
integration on transit ridership and travel behaviors in Haifa, Israel. In that case, the change of the 
complex pre-boarding fare system into a single ticket system and the provision of free transfers 
between the five zones reduced fares for many passengers and led to a 25% increase in single ticket 
sales, a 7.7% increase in passenger trips and an 18.6% increase in bus boarding.40 

2.6  Bus Arrival Time Prediction 

Several studies have been conducted over the years on the deviations that exist between the 
predicted arrival times and the actual arrival times of buses at designated stops along a route. 
Different types of prediction models have been used in these analyses that include Date model, 
Time Series Model, Regression model, Kalman filtering model, Artificial Neural Network (ANN) 
and Support Vector Machines (SVM).41 The following paragraphs provide an overview of the 
application of different prediction models in various bus travel time prediction studies. 

One of the earliest models used to predict bus travel time was conducted by D’Angelo et al. (1999). 
In that study, a non-linear time series model was used to predict short-term travel time on a 
freeway network. To predict corridor travel times and recurrent congestion locations along a road 
corridor, a multiple-variable prediction model and a calibrated single-variable model were 
compared. The single variable was based on minimum speed prediction permitted, whereas the 
multivariable model was based on speed, occupancy, and volume data. Despite the low accuracy 
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and unsatisfactory real-time performance, the results from the calibrated single-variable prediction 
model were better than those of the multiple-variable prediction model with reasonable errors for 
short-term travel time  predictions.42 

Patnaik et al. (2004) used data from Automatic Passenger Counting (APC) systems installed on 
buses to predict bus travel time. The buses operated along a 30-mile urban bus route (inbound or 
outbound trips) length over a period of six months. Right and left turn movements at all signalized 
intersections as well as all bus stops along these routes were recorded to be used in the prediction 
model. Multivariable regression models were used to estimate bus arrival times under various 
conditions. These models made use of data obtained from the APC; service direction (inbound or 
outbound), number of passengers boarding and/or alighting, distance between stops, dwell time, 
peak periods and other variables.  Results from the study showed that variations in the predicted 
and actual bus arrival times were less pronounced in the AM Peak than in the PM Peak and that 
the actual and estimated travel times were reasonably close to each other with a deviation of about 
2.45 minutes.43 However, the regression models are based on the assumption that the variables are 
independent of each other, which, in terms of traffic data, would be impractical. 

Shalaby and Farhan (2002) conducted a study to develop a bus travel time prediction model for 
dynamic operations control and passenger information systems. In the research, dynamic data from 
AVL and APC systems were used to develop various prediction models and tested using VISSIM 
microsimulation under different scenarios. The results revealed that the Kalman Filter algorithm 
model outperformed all the other models developed in terms of accuracy and also demonstrated 
the ability to dynamically update itself to reflect new data and changing scenarios along the transit 
route.44 A study by Vanajakshi et al. (2009) was conducted to predict bus travel times under 
heterogeneous traffic conditions using global positioning system data and an algorithm based on 
the Kalman Filtering technique. The results from the study determined that the predicted and 
actual bus arrival times were reasonably close, with an average percentage error varying from 0.22 
to 13.75%.45  

A study by Yin et al. (2017) relied on the use of ANN and Support Vector Machine (SVM) models 
to predict bus arrival times at stops with multiple bus services. Their study had three main input 
variables: the weighted travel time of preceding buses along the chosen route, the travel speed of 
the selected bus, and the weighted travel time of preceding buses on different routes intersecting 
with the chosen route. The results showed that both the ANN and SVM models have high 
accuracy in predicting bus arrival times, but the ANN model performed significantly better with a 
mean absolute percentage error of less than 10%. These models also performed better than earlier 
regression models used.46 The outcome of the study corroborated that of an earlier one by Kumar 
et al. (2014) comparing model-based approaches and machine learning methods for bus arrival 
time predictions. In the latter study, the ANN model and Kalman filter algorithm model methods 
were compared using the same field data. The results showed that the ANN model performed 
better than the Kalman Filter model when used with a large database. The researchers also 
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concluded that in the case without any database, the Kalman Filter model would be a better 
choice.47 

2.7  Significant Variables for Predicting Bus Travel Times 

There have been various studies on predicting bus travel times which have used various models 
and data to develop prediction models with better accuracies. The significant variables that have 
been prevalent across the various studies include time of the day, distance between the origin and 
destination and/or stops along the route, bus dwell time, number of passengers boarding and/or 
alighting, number of signalized and unsignalized intersections between the origin and destination 
points, etc.  

Wei Fan et al. (2015) conducted a study predicting the travel time of buses using only GPS data. 
The study compared Historical Average (HA), Kalman Filtering (KF), and Artificial Neural 
Network (ANN) models developed based on the arrival and departure time data at bus stops 
collected by the GPS. The basis of the study was to predict bus travel time only with the GPS data 
in the absence of traffic stream and geometric data such as flow, speed, weather, distance, etc. 
Their results determined that the ANN model performed better in overall prediction accuracy and 
robustness and that—though these models gave a better a mean absolute percentage error 
compared to other existing bus time travel prediction models—the addition of explanatory 
variables from traffic-stream data in the predictive models played a huge role in the accurate 
prediction of bus travel times. It was concluded that the time of the day significantly predicts travel 
time.48 Since collecting real time traffic-stream data can be expensive, this approach works well in 
situations of limited resources (e.g., budget). 

Within the context of Intelligent Transport Systems (ITS) and Advanced Public Transportation 
Systems (APTS), the ideal situation for transit agencies is to collect, process, and disseminate real-
time information to the managing agency and riders. Some studies have been conducted using data 
from Automatic Vehicle Location (AVL) and Automatic Passenger Counting (APC) systems 
installed on buses to generate real-time data—vehicle arrival/departure, passenger 
boarding/alighting, en-route traffic conditions, speed, distance, etc.—which in most cases results 
in better predictive models. Shalaby and Farhan (2002), Patnaik et al. (2004), Chen et al. (2004) 
and Kumar et al. (2014) are some studies that relied on AVL and/or APC collected data to produce 
bus travel time prediction models. 

Shalaby and Farhan (2002) used data from AVL and APC systems to develop bus travel time 
prediction models based on the Kalman Filter algorithm.49 Patnaik et al. (2004) developed 
regression models to estimate bus arrival times using data collected from APC systems installed 
on buses.50 Based on APC data, Chen et al. (2004) developed a dynamic model to predict bus 
arrival times by combining ANN and Kalman Filter algorithms.51 Kumar et al. (2014) compared 
the performance of an ANN model and the Kalman Filter algorithmic model to predict bus travel 
time using APC data.52 For both studies, the AVL and/or APC data included variables such as 
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direction of bus, speed of the vehicle, distance between stops and cumulative distance of trip, dwell 
time, records for any time the bus stopped or opened its doors, number of passengers alighting 
and/or boarding, date, day and time of service, etc.  

Ranjitkar et al. (2019) conducted a study that introduced ten independent variables (factors) in 
seven different models to compare their accuracies in predicting bus travel time. The developed 
models used included multivariate linear regression, ANN, decision tree, and gene expression 
programming models, among others. The study relied on AVL data and passenger flow data that 
were combined into one dataset. The study identified significant variables for the models that 
included inter-stop distance, route completion/distance, dwell time, number of passengers 
boarding and/or alighting, date and day of the week, time of the day, route number, etc. This is 
consistent with the initial studies that utilized AVL and/or APC data in their predictive models. 
The results of the research showed that the ANN time series was the best-performing model with 
respect to computational effort and accuracy. It was also determined that the inter-stop distance 
(i.e., the distance between two stops) was the most significant variable or factor across all regression 
models, while, on the other hand, the dwell time and number of passengers alighting and/or 
boarding did not appear to have an impact on bus travel time.53 

Inter-stop distance and total travel distance, speed, dwell time, number of passengers and time of 
the day are some of the common variables seen among the discussed bus travel time prediction 
studies which utilized AVL and/or APC data. It is noted that in most cases inter-stop distance, 
cumulative travel distance and the bus travel speed were determined to be significant to bus travel 
time prediction accuracy. 

2.8  Bus Transit Times Prediction Models 

Real-time bus travel time, though ideal and highly sought after (especially by patrons, since it 
would enable them to better plan their commute), cannot be easily assessed, and even when made 
available, it comes with some level of inaccuracy. Over the years, a multiplicity of mathematical 
models have been developed to predict bus travel times with reasonable accuracy, and the most 
widely used can be classified into four main categories. These include historical average, regression 
and Machine Learning models.  

Historical Average Models are based on historical bus travel time data that have been collated from 
previous trips. They assume that the current traffic conditions are the same or do not change, and 
that based on them, current and future travel times can be extrapolated. Due to very few constraints 
and the assumption of static traffic conditions, historical average models have simple algorithms 
and require relatively small computational time. However, unless the traffic conditions remain 
stable over a period of time with no other unforeseen changes, the performance of these type of 
models is weak.54 

Jeong and Rilett (2004) used AVL data to develop models to predict bus arrival time using 
Houston, Texas as a case study. The study developed and compared the performance of three types 
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of models: a historical data-based model, regression models and ANN models using the same 
dataset. The prediction of bus arrival time was based on dwell time at stops and traffic congestion 
in terms of average delay at intersections as well as bus arrival time delays. The historical data-
based model involved using a simple statistical model to calculate the travel time between stops on 
the bus route by finding the difference between the average arrival time and average departure 
time. The average departure time was obtained by adding the arrival time and dwell time at a stop. 
From these deductions, a recursive formula was used to predict the bus arrival times at the 
remaining stops on the route. The limitation of this model was that it did not consider dwell times 
at signalized intersections or traffic congestion zones. Five linear multiple regression models were 
tested using the distance between stops, bus schedule adherence and dwell time as independent 
variables with bus arrival time at each stop as the dependent variable. The results from the study 
indicated that, in terms of prediction accuracy, the ANN models outperformed the historical data 
model and the regression models.55 

Farhan et al. (2002) used AVL and APC data to develop a bus travel time model which could 
potentially provide real-time information to passengers and transit management. The study also 
used historical average, regression analysis, and neural network techniques to develop the models 
and test their accuracies in predicting bus travel time. The historical average model was developed 
using the AVL data; the travel time was calculated by finding the difference between the arrival 
times of two consecutive stops. The average time between stops was computed for both the peak 
and off-peak periods. The researchers concluded that, though the historical average model could 
suffice for informing passengers of bus arrival times, it was not appropriate for evaluating and/or 
implementing control measures, since it did not include independent variables that were likely to 
affect bus travel time.56 

Regression models make use of mathematical functions to explain the relationship between a 
dependent variable and a set of independent variables. Since these models measure the concurrent 
impact on the dependent variable due to different factors that are not related to each other, better 
bus time arrival models were produced.57 A study conducted by Patnaik et al. (2004) developed a 
set of multiple linear regression models to predict bus arrival times using number of stops, dwell 
times, boarding and alighting passengers, and the weather as potential explanatory variables. 
Results from the study indicated that the model accuracy was higher in predicting bus arrival times 
at downstream stops. The advantage of the multiple linear regression model is the ability to 
establish the relationship between the dependent variable and each of the independent variables, 
thereby indicating which ones are more significant to bus arrival prediction times. Thus, from their 
study, Patnaik et al. determined that the weather was not as significant as the dwell time at stops 
or signalized intersection delays.58 Another regression model was developed in a study by 
Ramakrishna et al. (2006) to predict bus arrival times which used GPS data. From the results, the 
researchers determined that intersection delay and bus stop dwell time as input variables did not 
impact predicted bus arrival times.59 
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Finally, machine learning models include Artificial Neural Network (ANN) models and can find 
nonlinear relationships between a dependent variable and its independent variables. These models 
are suitable for complex data and can eliminate noise to produce an effective prediction model 
without indicating the specific traffic processes. ANNs are constructed with multiple layers of 
processing units known as artificial neurons which are interconnected by weights and contain 
activation functions. The input–output relationship is mapped automatically by using the weights 
in a learning process. Due to their ability to solve complex non-linear relationships, they are quite 
popular among bus arrival time prediction studies.60 The following sections presents a detailed 
discussion of ANN and some of its applications in bus travel time prediction. 

2.9 Artificial Neural Networks (ANNs) and Their Applications 

ANNs are mathematical models that are inspired by and work similarly to biological neural 
networks in the human brain. ANNs are used in engineering to perform complex tasks such as 
pattern recognition, forecasting, data compression, and classification. ANN can approximate both 
linear and nonlinear functions to a good degree of accuracy. It does this through a learning 
algorithm where it can be trained to learn from examples and identify underlying functional 
relationships among datasets and build ‘‘piece-wise’’ approximations of the functions.61 

Classification or forecasting using ANN involves training and learning procedures. Large amounts 
of historical data (a set of input data with known outputs) are presented to the network to improve 
the training and gain maximum benefit from the network. The learning process involves the 
construction of a network of inputs and outputs with weights assigned to each mapping; the 
weights are adjusted at each iteration. The learning rule used determines how the weights and bias 
levels of a network are updated. Thus, the learning rule enables a neural network to learn from the 
existing conditions and improve its performance. There are several learning rules used in training 
neural networks. Notable among the rules are the hebbian, perceptron (error-correction), delta, 
correlation, and outstar learning rules.  

Multilayer Perceptron (MLP) is the most commonly known ANN rule. Perceptron layers serve as 
algorithms that enable the supervised learning through which classification can be achieved. MLP 
basically consists of three layers: input layer, hidden layer, and output layer. It operates on a feed 
forward network in which information flows from the input layer through the hidden layer to the 
output layer to produce results. These layers have nodes (neurons) which are interconnected and 
assigned weights based on the input. The weighted sum is computed with the help of the incoming 
connections. The outputs for specific inputs are obtained by adjusting the weights to minimize the 
errors between the produced output and the desired output by error-back propagation.62 In error-
back propagation, the error in the output is put back into the network and passed from one layer 
to the other by adjusting the weights of connections. This is the most frequently used technique 
in ANN transportation and other engineering applications.63 

Figure 2 illustrates the interconnections between the various layers in MLP ANN.  



M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  17 

Figure 2: Illustration of ANN64 

In ANN, Activation functions are used to create nonlinearity into the network. They are also 
known as transfer functions and operate by calculating the weighted sum of their inputs and adding 
a bias, then deciding whether a neuron should be activated or not. According to a study by Amita 
et al. to predict bus travel time using Artificial Neural Network, the back-propagation neural 
network training algorithm requires four processes: Weight initialization, Forward feed, Back 
propagation of errors and updating the weights and biases. In back-propagation neural network, 
the learning transfer function needs to be distinguishable and hence the activation functions are 
used to provide nonlinearity (remove any direct relationships) within the network.65  

The three most common types of activation functions used in an ANN are the sigmoid, hyperbolic 
tangent, and rectified linear unit functions.66 The sigmoid function is a logistic function and is 
expressed as  

𝑦𝑦𝑖𝑖 =
1

(1 + exp�−𝑣𝑣𝑗𝑗�)

where vj is the weighted sum of all synaptic inputs plus the bias of the jth neuron and yj is the output 
of the neuron. Figure 3 is a graphical presentation of the sigmoid function. 
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Figure 3: Sigmoid Activation Function Curve67

 
 

The hyperbolic tangent function is similar to the sigmoid function but ranges from -1 to 1. The 
function is expressed as  

𝑦𝑦𝑖𝑖 =
exp�𝑣𝑣𝑗𝑗� − exp (𝑣𝑣𝑗𝑗)

(exp (𝑣𝑣𝑗𝑗) + exp�−𝑣𝑣𝑗𝑗�)
 

Figure 4 is a graphical presentation of the hyperbolic tangent function. 
 

Figure 4: Hyperbolic Tangent Function Curve68 

 

This research utilized a hyperbolic tangent function, as this type of activation function is effective 
in centering the data by bringing the mean close to 0 and makes learning for consecutive layers 
much easier.69  

Because of ANN’s ability of learning patterns and predicting output from previous data, it has 
been incorporated in many studies to predict bus arrival times. Jeong and Rilett (2004) developed 
an ANN model and two non-ANN models (historical databased model and regression models) 
and compared their performance using AVL data to predict bus arrival times in Houston, Texas. 
The prediction of bus arrival time was based on dwell time at stops and traffic congestion. The 
ANN architecture used in this research was based on the MLP rule, with input, hidden, and output 
layers. The ANN model had the lowest Mean Absolute Percentage Error (MAPE) when 
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compared to the historical data-based and the regression models. On the average, the ANN models 
resulted in a 54.24% and 48.61% improvement of the MAPE in the downtown and northern areas, 
respectively. The results from the study indicated that in terms of prediction accuracy, the ANN 
models outperformed the historical data model and regression models.70 

Chien et al. (2002) conducted a study in which they developed models to accurately predict bus 
arrival times in an urban road network using ANN. In their study, two ANN predictive models 
were developed and trained by link-based and stop-based data, respectively. Afterwards, the ANN 
models were integrated with an adaptive algorithm to enable them to dynamically adjust prediction 
errors. They were then tested via simulations developed in the CORSIM software program and 
then the results were compared. From the results, the enhanced ANN models outperformed the 
ANN models without the adaptive features, yielding consistently lower RMSEs under different 
scenarios. The enhanced stop-based ANN was noted to perform better at multiple intersections 
between stops, while the enhanced link-based ANN performed better for stops with fewer 
intersections between them. Chien et al. suggested the development of a hybrid ANN model 
which would integrate both the link-based and stop-based models to further improve the accuracy 
of bus arrival time predictions.71 

2.10 Summary of Literature Review 

The public transport system has gone through several improvement phases over the years with the 
goal of serving the greater interest of the public while remaining profitable. As part of various 
transit agencies’ efforts to improve transit services, AVL and APC systems have been introduced 
as part of the developments in Intelligent Transport Systems. This allows for the collection of real-
time data at bus stops and on buses that can be relayed to both riders and transit management. 
From the literature, several bus arrival prediction models have been developed using various 
techniques that can be broadly categorized into four main types: historical average models, 
regression models, Kalman Filter models, and ANN models. The significant variables for 
predicting bus travel time include distance, speed of bus, dwell time, number of passengers 
boarding and/or alighting, and number of stops, among others. Despite the studies and models 
developed, none has been developed specifically to predict bus travel time using ANN and 
considering the unique nature of traffic patterns in an urban area like DC. As a result, this research 
aims to develop a model to predict bus travel time in DC using ANN. 
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III. Research Methodology

3.1  Description of the Study Area 

This research is based on data obtained describing WMATA buses that operate in Washington, 
DC. The city is divided into four (unequal) quadrants: Northwest (NW), Northeast (NE),
Southwest (SW), and Southeast (SE); these are further divided into eight wards overlapping the
quadrant boundaries. As of July 2018, the population of Washington, DC was approximately
702,455 with an annual growth rate of approximately 1.4%.72 The city is highly urbanized and is
ranked as the sixth most congested city in the United States, with each driver spending an average
of 63 hours per year in traffic.73

The Washington Metropolitan Area Transit Authority (WMATA) is the agency that oversees 
the operations of Metrobus service in the jurisdiction. WMATA has a bus fleet of approximately 
1,600 buses that operate on 325 routes in Washington, DC, in portions of Maryland, and in 
Northern Virginia, covering a total land area of about 1,500 square miles. Metrobuses operate 24 
hours a day, seven days a week, and they make more than 400,000 trips each weekday. Of the total 
number of bus stops, 2,556 (22.2%) have shelters, while the remainder do not. Figure 5 shows a 
map of Washington, DC divided into wards. 

Figure 5: Map of Washington, DC74 

Created with DC Ward boundary data overlay in Google Maps 

N 
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3.2  Data Collection 

The following steps were followed to collect the data required for the analysis. 

Selection of Bus Routes 

Six months (January–June 2019) of AVL and APC data for six bus routes operating in DC was 
obtained from the WMATA. The bus routes operating along two functional roadway types were 
considered: arterials and collectors. In general, bus routes with certain characteristics were 
considered to avoid erratic bus schedule and patronage patterns. For instance, officials from 
WMATA were consulted for the provision of bus route data that had relatively higher patronage. 
Bus stops on routes with longer headways were also considered for analysis since routes can have 
several bus stops that amass larger groups of patrons boarding or alighting buses.  
Finally, bus stops in a proximity to metro rail stations grant rail patrons access to bus services and 
vice versa were also considered. Such bus stops usually have a high number of bus patrons either 
boarding or alighting the buses.  

Based on the criteria, the following bus routes were selected for the study: 

1. Route 70 (Georgia Avenue Line)
2. Route 32 (Pennsylvania Avenue Line)
3. Route 52 (14th Street Line)
4. Route 42 (Mount Pleasant Line)
5. Route D4 (Ivy City–Franklin Square Line)
6. Route S1 (16th Street–Potomac Park Line)

Figure 6 shows the operation paths of the selected routes. 

N 



M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  22 

Figure 6: Map of Operation Paths of Selected Routes 

Route Characteristics 

The bus routes selected for this study have the following characteristics. Classifications of the 
primary operational roadway of transit buses are listed according to the District Department of 
Transportation’s (DDOT) 2016 Street Function Classification System. 

Buses on Route 70 operate primarily on Georgia Avenue, NW with the main direction of travel 
being Northbound/Southbound. Georgia Avenue, NW is classified as a Principal. Route 70 buses 
run a round trip from 9th Street and Constitution Avenue, NW to Silver Spring Station in 
Maryland. The length of the route is approximately 7.5 miles, and the buses serve 51 bus stops in 
the northbound (NB) direction of travel and 55 bus stops in the southbound (SB) travel direction. 
There are 108 intersections between the first and the last bus stops on this route. Route 70 operates 

N 
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24 hours a day, seven days a week with buses arriving at a stop every 12 minutes between 6:00 
AM–1:00 PM during weekdays (Monday–Friday) and every 15 minutes between 6:00 AM–11:00 
PM during weekends (Saturday and Sunday).75 

Buses on Route 32 primarily operate on Pennsylvania Avenue, SE, Naylor Road, SE, Alabama 
Avenue, SE, and Southern Avenue, SE with the main of travel being Northeast-bound (NEB) 
and Southwest-bound (SWB) directions (the routes are round trips). Pennsylvania Avenue, NW 
is classified as a Principal Arterial, while Naylor Road, Alabama Avenue, and Southern Avenue, 
SE are classified as Minor Arterials. Route 32 transit buses run from Virginia Avenue and E Street, 
NW to Southern Avenue Bus Station in the Southeast DC round trip. The length of the route is 
approximately 8.75 miles, and the buses serve 47 bus stops along both the NEB and SWB 
directions of travel. There are 106 intersections between the first and the last bus stops. Route 32 
operates from 4:00 AM–1:00 AM during weekdays (Monday–Friday) and from 5:00 AM–1:00 
AM during weekends (Saturday and Sunday).76 

Transit buses on Route 52 operate primarily on 14th Street, NW with the main direction of travel 
being Northbound/Southbound. Fourteenth Street, NW is classified as a Principal Arterial from 
14th Street and Independence Avenue, NW to 14th Street and U Street, NW and as a Minor 
Arterial from 14th Street and U Street, NW to Aspen Street, NW. Route 52 buses run from 
Tacoma Station Bus Stop to D Street and 7th Street, NW and back. The length of the route is 
approximately 7.95 miles, and the buses serve 63 bus stops along the NB direction of travel and 60 
bus stops along the SB travel direction. There are 121 intersections between the first and the last 
bus stops. Route 52 operates from 4:00 AM–1:00 AM during weekdays (Monday–Friday) and 
from 5:00 AM–1:00 AM during weekends (Saturday and Sunday).77 

Route 42 transit buses operate primarily on Connecticut Avenue, NW and Columbia Road, NW 
with the main direction of travel being Northbound/Southbound. Connecticut Avenue, NW is 
classified as a Principal Arterial, while Columbia Road, NW is classified as a Minor Arterial. Route 
42 buses run from 9th Street and F Street, NW to Lamont Street and Mt. Pleasant Street, NW 
(round trip). The length of the route is approximately 3.5 miles, and the buses serve 25 bus stops 
along the Northbound and Southbound directions of travel. There are 50 intersections between 
the first and last bus stops. Route 42 operates 24 hours a day, seven days a week.78 

Transit buses on Route D4 operate primarily on K Street, NW and NE with the main direction 
of travel being Eastbound/Westbound. K Street, NW is classified as a Principal Arterial, while K 
Street, NE is classified as a Minor Arterial according to the District Department of 
Transportation’s (DDOT) 2016 Street Functional Classification System. Route D4 buses run a 
round trip from Okie Street and 16th Street, NE to Massachusetts Avenue and 20th Street, NW 
and back. The length of the route is approximately 4.7 miles; the buses serve 40 bus stops along 
the Eastbound direction of travel and 37 stops along the Westbound travel direction. There are 82 
intersections between the first and the last bus stops. Route 42 operates from 4:00 AM–1:00 AM, 
seven days a week.79 
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Route S1 transit buses operate primarily on 16th Street, NW with the main direction of travel being 
Northbound/Southbound. According to the District Department of Transportation’s (DDOT) 
2016 Street Functional Classification System, 16th Street, NW is classified as a Principal Arterial. 
Route S1 buses run from Virginia Avenue and E Street, NW to Colorado Avenue and 16th Street, 
NW and back. The length of the route is approximately 4.75 miles, and the buses service 37 bus 
stops along the NB direction of travel and 47 stops along the Southbound travel direction. There 
are 91 intersections on the route within the study limits. Buses traveling SB on Route S1 operate 
from 5:00 AM–10:00 AM, seven days a week, while buses traveling NB on Route S1 operate from 
3:00 PM–8:00 PM, also on a daily basis.80 

Data Extraction 

AVL and APC data were obtained from WMATA officials for the selected bus routes: bus data 
describing a six-month duration from January 2019 through June 2019 were obtained for the study 
for each of the six routes. Excel sheets containing the data from the first week of every month were 
filtered to obtain only the necessary information required for the analysis. A sample of the Excel 
data for a bus route obtained from the WMATA database is shown in Figure 7. 

Figure 7: Sample Datasheet Obtained from WMATA (Route 32) 

 
From Figure 7, it can be seen that the APC and AVL systems (for Route 32 buses) recorded 
information including odometer reading, geolocation, and dwell time, amongst others. The 
datasheets were filtered to display only the information required for the neural and regression 
analyses. Based on the significance of their impact on the travel time of transit buses (from the 
previous literature), the following independent variables for a bus trip were extracted for each week 
and for the selected routes from the data: 

1. Departure and Arrival Times (Event Time) 
2. Length of Routes 
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3. Passengers Loading/Unloading 
4. Dwell Time 
5. Travel Time 
6. Location of the Bus 

Field data observations were also conducted to obtain the number of intersections on the selected 
bus routes and the associated roadway speed limits. The information obtained was used in the 
Neural Network training. The descriptions of the variables included in the ANN Model are as 
follows. 

1. Number of Served Bus Stops (X1) Between Origin and Destination 

A bus can “serve” a stop if there are passengers entering or exiting at that particular stop. Hence, 
for the purpose of this research, X1 denotes the number of bus stops between any two “origin” and 
“destination” points along a bus route. Figure 8 represents a sample bus route. The yellow circles 
represent bus stops along the route. From Figure 8, if a bus serves Stop 1 and Stop 2 (situation I), 
X1 = 0. Similarly, X1 for a data point used in the analysis is 3 (Stops 2, 3, and 4) if the bus starts 
serving from Stop 1 and reaches Stop 5 (situation II), serving all bus stops in between.  

Figure 8: Sample Representation of a Bus Service Route

 
2. Length of Route between Bus Stops (X2) 

The data provided by WMATA included the odometer readings of all the buses along a route. 
Hence, X2 was obtained by taking the difference of the odometer readings between any two served 
bus stops. For example, from Figure 8, X2 for situation II can be represented as:  

X2 = Od5 – Od1 
where 

Od5 = Odometer reading of a WMATA bus at stop 5 (in feet) 
Od1 = Odometer reading of a WMATA bus at stop 1 (in feet). 
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3. Average Number of Passengers in the Bus (X3) 

Automatic Passenger Counting (APC) systems installed on all the WMATA buses count the 
number of passengers getting in and out of the bus from the front and rear doors. At any point, 
the number of passengers will be the sum of passengers already on the bus (excluding the origin 
bus stop) and the number of patrons boarding the bus minus the number of patrons alighting the 
bus at any stop. The average number (X3) can be found by taking the mean of the number of 
passengers on the bus between any two particular bus stops served. Average number of onboard 
passengers was computed as: 

𝐴𝐴𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃 =  
𝛴𝛴𝑃𝑃
𝑁𝑁

 
 
where  

N = number of served bus stops between the origin and the destination (inclusive) along a 
route 
P = Number of passengers onboard at the nth bus stop. 

4. Average Dwell Time at Served Bus Stops (X4) 

The dwell time is the period during which the front and the rear doors of a bus at a bus stop 
remained open to serve patrons. Average dwell time (X4) for the analysis is the mean of dwell times 
of the served bus stops between and origin and destination point. Thus, dwell time was computed 
as  

𝐴𝐴𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷𝐷𝐷𝐴𝐴𝐷𝐷𝐷𝐷 𝑇𝑇𝑇𝑇𝑛𝑛𝐴𝐴 =  
𝛴𝛴𝐷𝐷𝑇𝑇

𝑁𝑁
 

where  
N = number of served bus stops between the origin and the destination (inclusive) along a 
route 
DT = dwell time of the bus at the nth bus stop. 

5. Number of Intersections between Bus Stops (X5) 

Field data observations were conducted to determine the number of intersections (unsignalized 
and signalized) between any two served bus stops along a route (X5). 
Due to the variability of traffic characteristics during the day, separate ANN models were 
developed for AM Peak (7:00 AM–9:30 AM), PM Peak (4:00 PM–6:30 PM) and Mid-Day Peak 
(10:00 AM–2:30 PM) periods. Thus, the extracted data were partitioned into these peak periods. 
Since a sample matrix contained data for a bus traveling in both directions of a route, analysis by 
bus direction was excluded. 
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3.3  Data Analysis 

Two software programs were used for the data analysis. IBM’s SPSS Statistics 25 software (SPSS) 
was used for the regression analysis of the peak models, while Neural Designer was used for the 
neural network analysis.  

SPSS is a powerful statistical software that allow users to better understand the data under 
consideration based on the extraction of statistical insights. Figure 9 shows a sample analysis of a 
model in SPSS software. 

Figure 9: Snapshot of SPSS Interface and Sample Output 

 

Neural Designer is a software that incorporates data science and machine learning techniques and 
which helps to build, train, and deploy neural network models. The software provides access to 
advanced techniques for data preparation, machine learning, and model deployment. The high 
operability of Neural Designer allows it to be integrated in numerous projects from different sectors 
for approximation and classification problems. A snapshot of the software interface along with the 
sample output is presented in Figure 10. 

 

 



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  28 

 
Figure 10: Snapshot of Neural Designer Interface and Sample Output 

 

Determination of Sample Size 

ANNs are highly data-dependent, and the amount of data required depends on the complexity of 
the model to be developed in addition to the number of input variables. Even if no specific 
minimum amount of data is required, it should be noted that the model will predict with better 
accuracy on unseen data if it is trained with large amounts of data. For this study, a minimum 
sample size of 500 origin-to-destination trips of multiple transit buses on a route were extracted 
for each peak period from the six-month AVL/APC data obtained from WMATA. Thus, a 
minimum sample of 1,500 origin-to-destination trips was extracted and exported into a Comma 
Separated Values (CSV) file for further analysis for the three peak periods for each bus route. 



M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  29 

Descriptive Statistics 

Descriptive statistics including the mean, median and standard deviation were computed for the 
bus travel times as well as the other predictor or independent variables. The averages of predictors 
such as dwell times and number of passengers per peak periods were also obtained. 

Regression Analysis 

Multiple regression analyses were conducted to examine the relationships between the travel times 
of buses and variables such as number of served bus stops, length of routes, average number of 
passengers, average dwell time, and number of intersections between bus stops. The regression 
models were developed for AM, Mid-Day, and PM Peak periods, indexed as i = 1, 2, and 3, 
respectively. The multiple regression models for travel times can be represented as: 

TT = βoi + β1iSBS + β2iL + β3iP + β4iDT + β5iIT + εi 

where 
TT = Travel Time 

SBS = Number of Served Bus Stops 

L = Average Number of Passengers 

P = Average Dwell Time 

DT = Length of the Route between Served Bus Stops 

IT = Number of Intersections between Served Bus Stops. 

The independent variables SBS, L, P, DT, and IT affect the dependent variable TT. The term βoi 
is the intercept while βki are the regression coefficients for the predictors. Further, εi is the error 
residual (distributed error). 

The variables used for the neural network were tested to ensure that they met the assumptions of 
multiple linear regression including normality of errors, homoscedasticity and with no 
multicollinearity. 

When considering normality of errors, the errors (residual terms) for a multiple regression model 
should be approximately normally distributed. Hence, the relationship between the explanatory 
variables and the response variables should be explained by the residuals. A histogram 
representing the plots of observed cumulative probabilities and expected cumulative probabilities 
can be used to test the normal probability plot. In the case of normally distributed errors, the 
plotted points will form a straight diagonal line (line of best fit) as shown in Figure 11. 
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Figure 11: Example Normal Probability Plot 

Multicollinearity occurs when two or more independent variables in a multiple regression model 
are highly correlated with each other. The presence of multicollinearity affects the prediction, as it 
becomes harder to infer which independent variable affects the outcome the most (variance 
explained in the dependent variable). Multicollinearity can be tested by inspecting the Variance 
Inflation Factor (VIF) and the tolerance level using the multicollinearity diagnosis (VIF is the ratio 
of the variance of the model with multiple variables to the variance of the model with one variable). 
A high VIF (value greater than 10) and a low tolerance level (value less than 0.1) indicate that two 
or more independent variables are multicollinear. Another indication of multicollinearity is the 
correlation between independent variables. Correlation values greater than 0.5 (positive or 
negative) indicate the presence of multicollinearity.  

The multiple regression model also needs to exhibit homoscedasticity, which exists when the 
variances along the line of best fit remain similar at any point along the line. Violations of this 
assumption (heteroscedasticity) contribute to the inaccuracy of the significance tests of the 
regression coefficients and estimations of confidence intervals. Homoscedasticity can be tested by 
plotting the regression standardized predicted value against the regression standardized residual. 
The assumption is met if there is an even distribution about the zero line, as shown in Figure 12. 
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Figure 12: Example Scatter Plot Showing Homoscedasticity 

  
 

Model Evaluation for Regression Analysis 

The multiple regression models were evaluated using the p-values of the F test, R2, and adjusted 
R2 values. These evaluative parameters are typically used to assess the performance of the models. 

The F-test evaluates the null hypothesis that, for the population from which a sample was drawn, 
all regression coefficients are equal to zero, against the alternative hypothesis that at least one 
regression coefficient is not. Thus, the F-test determines whether the proposed relationship 
between the travel time and the set of predictors is statistically significant. The F-test is computed 
by taking the ratio: 

𝐹𝐹 𝑃𝑃𝑠𝑠𝐴𝐴𝑠𝑠𝑇𝑇𝑃𝑃𝑠𝑠𝑇𝑇𝑠𝑠 =  
𝑀𝑀𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀𝑀𝑀

 

where MSM is the mean of squares for model and MSE is the mean of squares for the error. The 
statistical significance of the F-statistic is then determined using the p-value. The significance level 
for this study was set at 5%. 

Another method of evaluation for a regression model is the coefficient of determination, R2, which 
is a measure of the goodness-of-fit of a model. It is defined as the percentage of the variance of 
the dependent variable that can be explained by the model. R2 is expressed mathematically as: 

𝑅𝑅2 =  
𝑀𝑀𝑀𝑀𝑇𝑇 − 𝑀𝑀𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀𝑇𝑇
 

where  
𝑀𝑀𝑀𝑀𝑇𝑇 = Sum of Squares Total (sum of the squares of the difference of the dependent 

variable and its mean) 
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           𝑀𝑀𝑀𝑀𝑀𝑀 = Sum of Squares of Error (sum of the squares of the difference of the predicted 
dependent variable from actual values of the data). 

Generally, R2 increases as predictors are added to the model. However, this increase does not 
always result in the actual improvement of the model, as this could also be an indication of 
overfitting of the model. An adjusted R2 is also used to assess the model to prevent overfitting. 

Like R2, R2
adjusted is a measure of the percentage of total variance in the dependent variable that is 

explained by the model. Unlike R2, R2
adjusted takes into account the model's degrees of freedom, 

paying a penalty when too many predictor variables are added; R2
adjusted will decrease as independent 

variables are added, if the increase in model fit is not enough to make up for the loss of degrees of 
freedom. It is expressed as:  

𝑅𝑅𝑎𝑎𝑎𝑎𝑗𝑗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
2  =  1 −  

𝑀𝑀𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀𝑇𝑇

 

where 𝑀𝑀𝑀𝑀𝑇𝑇 = Mean of Squares Total 
           𝑀𝑀𝑀𝑀𝑀𝑀 = Mean of Squares for Error. 

ANN Model Development 

The purpose of developing an ANN model in this research is to determine the travel time of the 
bus on a route using the Approximation technique in the Neural Designer software. In the 
approximation technique, the neural network learns from the input–target examples provided by 
the user. It can be regarded as the process of finding the best fit from the dataset and representing 
it as a function. It should be noted that the objective of approximation is to produce a neural 
network which performs well in generalization and makes good predictions for unseen data (good 
fit) rather than capturing specific details in the dataset (overfitting). 

For the neural network analysis, the dependent variable for the model is the travel time (Y). The 
independent variables that affect the travel time were filtered from the WMATA data to obtain a 
matrix for each peak period. The general form of the matrix containing the independent variables 
and the dependent variable (travel time) is represented in Table 3. 

Table 3: Sample Peak Period ANN Data Matrix Model for a Bus Route 

Trip ID 
No. of SERVED 

Bus Stops, X1 

Length of 
Route, X2 

Average Number of 
Passengers, X3 

Average Dwell 
Time, X4 

No. of 
Intersections, X5 

Travel Time, Y 

1 A D G J M P 

2 B E H K N Q 

3.. C F I L O R 

… - - - - - - 

500 S T U V W X 
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The data matrix was exported as a CSV file and analyzed in the Neural Designer software, which 
is a data analytic tool that incorporates neural networks to recognize patterns and make predictions 
from the data. The software was used to split the data into a training set (75%) and a testing set 
(25%). The training dataset was used to train and develop the model, while the testing dataset was 
used to validate the model.  

Training was conducted through an iterative process of feed forward and error-back propagations 
until the gradient normalization goal or the stopping criterion of 1,000 epochs (iterations) was 
met. The parameters that were adjusted in the software to analyze the data set are as follows. 

Furthermore, the models were trained using Multilayer Perceptron (MLP). Perceptron layers (also 
known as dense layers) are important layers that enable the neural network to learn. Numerical 
values are inputs (X1,…,Xn) for the perceptron neurons in a network to produce a numerical output 
y. The output is also affected by the combination of bias (b) and the sum of individual weights of 
independent variables (w1,…,wn).  

The MLP used for this research consisted of three layers: input layer, hidden layer, and output 
layer. A typical ANN architecture is presented in Figure 13. 

Figure 13: ANN Architecture 

 

Data Standardization was also required since the inputs in the data sets did not have the same 
ranges.  

For standardization, a scaling layer was applied to make the values of all the independent variable 
comparable. For the purpose of this research, an Automatic Scaling Layer that determined the 
optimal data distribution was applied to obtain the data sets for all bus routes. The scaled outputs 
were unscaled back to the original units using the unscaling layer on the perceptron layers. The 
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minimum and maximum unscaling method was used for variables that had previously been scaled 
to fit within the range of -1 to +1. 

Training Strategy 

The purpose of approximation is to find the target based on the inputs with the least possible error. 
The function in neural network that is used to evaluate the generated solution is known as the loss 
function (and the value calculated by the function is referred to as loss). The training strategy refers 
to the procedure used to carry out the learning process which is applied to neural network to obtain 
the minimum possible loss. Minimizing the error can be done by finding a set of parameters that 
fit the neural network to the data set. The two concepts that compose the training strategy are the 
optimization algorithm and the loss index. 

The goal of the learning process of a neural network is to search for a set of parameters that 
minimizes the loss index. At the lowest value of the loss index, the gradient is zero. The 
optimization algorithm enables the capability of varying the parameters to obtain the ideal value 
for each training iteration or epoch, which gradually decreases the loss. The optimization 
algorithm stops during training after specific conditions or criteria have been met. The common 
stopping criteria that terminate the learning process are loss reaching the minimum desired value, 
the process reaching maximum number of epochs or maximum computing time and increment of 
the selection subset error while training. 

Quasi-Newton algorithm and Levenberg-Marquardt algorithm are the different types of 
optimization algorithms in Neural Designer that were used for the neural network analysis.  

The Quasi-Newton method is an optimization algorithm that is based on Newton’s method that 
finds the stationary point of a function (gradient = 0). While Newton’s method is used for 
approximating quadratic functions by using the first- and second-order derivatives to find the 
stationary point, the successive gradient vectors are analyzed to avoid excessive computational 
cost.81  

The Quasi-Newton algorithm yields a function with low loss and high accuracy. The algorithm is 
the default optimization method in Neural Designer and is also recommended for training 
medium-sized data sets (10–1,000 variables, 1,000–1,000,000 instances). Hence, this optimization 
algorithm was used for training the datasets of all peak periods of the six bus routes. 

The Levenberg-Marquardt training method does not compute the Hessian matrix but achieves 
second-order training speed. It is applicable when dealing with loss index represented by sum of 
squares (Mean Squared Error, sum of squared error, etc.). The method can result in a faster and 
more stable convergence of the model and is used more often to train small to medium-sized data 
sets.  
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As mentioned earlier, the learning goal for neural networks involves searching for a set of 
parameters for which the loss index is at a minimum. The gradient of the learning curve is zero 
when the condition of minimum loss index is achieved.  

The loss index evaluates the performance of a neural network by assessing its parameters. It is a 
sum of a regularization term and an error term(s) which can be represented mathematically as: 

𝐿𝐿𝐿𝐿 = 𝑅𝑅𝑇𝑇 + 𝑀𝑀𝑇𝑇 

where 
LI = Loss Index 
RT = Regularization Term 
ET = Error Term. 

A regularization term is introduced to the neural network to control the complexity of the neural 
network model, thereby preventing overfitting. The error term is an important part of the loss 
expression that measures how well the neural network fits the dataset. There are three types of 
error in approximation problems based on the different subsets of data: training, selection, and 
testing errors are measured for the training, selection, and testing instances, respectively. 

Model Selection, Testing and Evaluation 

Model selection in the Neural Designer software program refers to finding the optimal network 
architecture with the best generalization properties. Thus, the purpose of model selection is to 
minimize the error of the selection data set (improving final selection error) for the neural network. 
Order selection was performed to achieve the best selection model that generated an adequate fit 
to the data provided. The incremental order selection process was used to obtain the optimal order, 
training and selection errors to evaluate how well the models were trained. Following the order 
selection, a second training was done for each peak period of all six bus routes to improve the 
accuracy of the training model. 
The final step in the neural network design was to calculate and document the errors in Neural 
Designer by testing and evaluating the models. The software was also used to obtain mathematical 
expressions for the approximation of travel times for different peak periods.  

After training the network for the required number of epochs, the models are tested using the set-
aside test dataset. For the purpose of this research, Normalized Squared Error (NSE) was used to 
evaluate the models. NSE is the default error term used when solving approximation problems. 
The NSE predicts the data and yields a value between 0 (perfect prediction) to 1 (predicting on 
the basis of the mean). It can be represented by using the following: 

𝑁𝑁𝑀𝑀𝑀𝑀 =
∑(𝑂𝑂 − 𝑇𝑇)2

𝑁𝑁𝑁𝑁  
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where 
NSE = Normalized Squared Error 
O = Outputs 
T = Targets 
NC = Normalized Coefficient. 

The Mean Percentage Error (MPE) was also calculated for all the models for each peak period to 
determine the accuracy. MPE represents the error made in the predicted values as compared to 
the observed values. It can be represented as: 

𝑀𝑀𝑃𝑃𝑀𝑀 =  
1
𝑛𝑛

∑|𝐴𝐴 − 𝑃𝑃|
𝐴𝐴

∗ 100 

where 
A = Observed values 
P = Predicted values 
n = Number of observations. 
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IV. Results 

4.1  Summary Statistics 

This section presents an overview of the data obtained for all the bus routes during the AM, PM, 
and Mid-Day Peak hours. The distribution of data points that were used to develop the models is 
presented in Figure 14. 
 

Figure 14: Total Number of Data Points per Peak Period used for the Analysis 

 

From Figure 14, a total of 7,190, 5,185, and 6,800 data points were used to develop the neural 
network models respectively for the AM, Mid-Day, and PM Peak periods. Table 4 presents a 
summary of the average travel time of the buses based on the number of bus stops served during 
each peak period. 
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Table 4: Average Travel Time by Number of Served Bus Stops 
Average Travel Time (in seconds) 

Number of Served Bus 
Stops 

AM Peak Period Mid-Day Peak Period PM Peak Period 

0  87.74 104.64 101.54 

1 189.21 221.32 218.95 

2 287.27 334.10 333.84 

3 389.17 447.58 451.05 

4 489.92 562.17 571.99 

5 590.48 676.73 686.69 

6 690.10 791.78 802.48 

7 791.66 907.42 919.30 

8 885.84   1023.47  1037.80 

9 988.84   1140.49  1160.04 

It can be observed from Table 4 that the travel times generally increased over time of the day for 
all the number of bus stops served (0–9) along the route. The number of data points used for each 
number (0–9) of bus stops served in the neural network is presented in Figure 15. 

Figure 15: Distribution of Data Points per Peak Period for the Different Numbers of 
Served Bus Stops 

From Figure 15, buses serving 0–5 stops had the highest number of data points. Buses serving 9 
bus stops along the route contributed to the lowest number of data points used for the matrices 
analyzed in Neural Designer. Overall, AM Peak period had the most data, followed by the PM 
and the Mid-Day Peak periods. Hence, the matrices for the AM, PM and Mid-Day Peak periods 
respectively contained 7,190, 6,800 and 5,185 data points. The descriptive statistics of data sets 
are presented in Table 5. 
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Table 5: Descriptive Statistics  
  Mean Standard Deviation 

AM Peak Mid-Day Peak PM Peak AM Peak Mid-Day Peak PM Peak 

SBS (X1)       3.92      3.94       3.94       2.70       2.71       2.71 

L (X2) 6718.90 6734.20 6016.89 5817.77 5663.62 5186.32 

P (X3)     15.58     12.96     16.92       9.38       6.57       9.71 

DT (X4)     13.81     16.08     17.54       9.92      12.10     17.71 

IT (X5)     15.72     16.71     15.67     10.26      10.88     10.39 

TT (Y)   481.64   556.68   562.78   324.42    486.29   401.39 

Table 5 presents the mean and standard deviation of all the variables (dependent and independent) 
that were used in all three peak periods. Figures 16 and 17 represent the average dwell time at bus 
stops and the average number of passengers in a bus at different peak periods throughout the day, 
respectively.  

Figure 16: Average Dwell Time During Different Peak Periods 
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Figure 17: Average Number of Passengers Onboard During Different Peak Periods 

 

It can be observed from Figure 16 that the dwell times at bus stops gradually increase over time. 
From Figure 17, buses operating during Mid-Day Peak period had the lowest average number of 
passengers (approximately 13) while PM Peak period had the highest average number of 
passengers (approximately 17). Figures 18 through 20 present the graphs of the travel times of the 
buses with respect to the number of intersections the buses pass through along a route for the AM, 
Mid-Day, and PM models, respectively. 

Figure 18: Graph Representing Travel Time of Buses vs. Number of Intersections in between 
Served Bus Stops During the AM Peak Period 
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Figure 19: Graph Representing Travel Time of Buses vs. Number of Intersections in between 
Served Bus Stops During the Mid-Day Peak Period 

 
 

Figure 20: Graph Representing Travel Time of Buses vs. Number of Intersections in between 
Served Bus Stops During the PM Peak Period 
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From Figure 18, it can be observed that during the AM Peak period, the longest travel time was 
approximately 33 minutes (1,978 seconds) for the bus that passed through 55 intersections while 
serving a route. The longest travel time during the Mid-Day Peak period was approximately 86 
minutes (5,180 seconds), as can be seen in Figure 19. The bus traveling 86 minutes passed through 
38 intersections on the route. The PM Peak period had the longest bus travel time of 46 minutes 
(2,760 seconds) as shown in Figure 20 for the bus passing through 40 intersections along the 
service route. 

4.2  Regression Analysis 

This section presents results of the regression analyses developed to predict the travel time of buses 
during different peak periods. Three models were developed: one for the AM Peak (7:00 AM–
9:30 AM), one for the Mid-Day Peak (10:00 AM–2:30 PM), and one for the PM Peak (4:00 
PM–6:30 PM). The models were multiple linear regressions taking the form: 

𝑇𝑇𝑇𝑇𝑖𝑖 = 𝛽𝛽𝑜𝑜𝑖𝑖 + 𝛽𝛽1𝑖𝑖𝑀𝑀𝑆𝑆𝑀𝑀 + 𝛽𝛽2𝑖𝑖𝐿𝐿 + 𝛽𝛽3𝑖𝑖𝑃𝑃 + 𝛽𝛽4𝑖𝑖𝐷𝐷𝑇𝑇 + 𝛽𝛽5𝑖𝑖𝐿𝐿𝑇𝑇 + εi 

The level of significance for testing the models in SPSS was set to 5%. The following evaluative 
criteria were used to measure the performance of the models: 

1. Statistical significance (using the p-values of the F-statistics with 5% significance level) 
2. Goodness-of-fit (using the R2 and the adjusted R2 values) 
3. Statistical significance for the models’ predictors (p-values of t-statistics).  

While the t-test for each of the predictor variable tests the model against the null hypothesis (true 
regression coefficient = 0), the F-test compares the fit of the regression model with the fit of a null 
model with an intercept (𝛽𝛽𝑜𝑜𝑖𝑖) but no predictor variables (where all regression coefficients are set to 
0). 

The regression analysis used for the study presented outputs that generated five different models 
per peak period. The model number (1–5) represented the numbers of predictors each model used 
to generate the outputs. Hence, Model 1 had only the first predictor as a constant value (X1) while 
Model 5 had all five predictors (X1, X2, X3, X4, X5). Since the prediction of travel time is dependent 
on all the input variables, the model with all the predictors incorporated is used for each peak 
period. 

Correlation between Travel Time and Independent Variables 

The dependencies between a single input independent variable and the target variable are 
represented by correlations. The range of correlation ranges from -1 to 1 where a value close to -1 
signifies a strong negative correlation and a value close to 1 signifies a strong positive relation. A 
value close to 0 signifies a weak correlation or no correlation. Table 6 presents the correlations 
between the independent and dependent (target) variables for the AM, Mid-Day, and PM Peak 
periods.  
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Table 6: Inputs-Target Correlations 

It can be observed from Table 6 that during the AM Peak period, X1 (number of bus stops served) 
had the highest correlation with travel time followed by X5 (number of intersections between two 
served bus stops). The lowest correlation was observed for average dwell time, while number of 
people in the bus had a negative correlation with buses’ travel time. During the Mid-Day Peak 
period, X2 (length of the route between served bus stops) had the highest correlation with travel 
time followed by X5 (number of intersections between two served bus stops). The lowest 
correlation was observed for average dwell time. The average dwell time and the average number 
of passengers on the bus are negatively correlated with the travel time during the Mid-Day Peak 
period. During the PM Peak period, X5 (number of intersections between two served bus stops) 
had the highest correlation with travel time followed by X1 (number of served bus stops). The 
lowest correlation was observed for average dwell time, while the average number of passengers in 
the bus had a negative correlation with travel time of the buses. 

Travel Time Prediction Models for AM Peak Period 

The results of the regression analyses conducted using SPSS for the AM Peak period are presented 
in Table 7.  

Table 7: Results of the Regression Analyses for AM Peak Period 
MODEL SUMMARY 

R R-Squared Adjusted R-Squared Standard Error 
0.873 0.762 0.762 158.240 

 
ANOVA SUMMARY 

Model df F Sig 
Regression 5 4606.017 0.000 

 
COEFFICIENTS 

Variable Unstandardized B t Sig. 
Constant              40.364 7.691 0.000 
SBS (X1)              62.504 47.880 0.000 
L (X2) 0.0110 21.112 0.000 
P (X3)              -1.366 -6.469 0.000 
DT (X4)               2.177 11.208 0.000 
IT (X5)               7.406 17.859 0.000 

Inputs Correlation for AM Peak Correlation for Mid-Day Peak Correlation for PM Peak 

SBS (X1) 0.834 0.639 0.792 

L (X2) 0.693 0.920 0.641 

P (X3) -0.076 -0.041 -0.022 

DT (X4) 0.027 -0.011 0.014 

IT (X5) 0.819 0.646 0.796 
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The results showed that the multiple regression model for the AM Peak period is statistically 
significant, at a 5% level of significance. The F-value was 4,606.02 (degrees of freedom = 5), which 
was also significant (p-value < 0.05). The effects of all the independent predictor variables were 
determined to be statistically significant, at the 5% significance level (p-values of less than 0.05). 
The best-fitting model for the AM Peak period, with an R2 value of 0.76, was determined to be 
TTA = 40.36 + 62.50SBS + 0.11L – 1.37P + 2.17DT + 7.41T , where TTA is the travel time of 
the bus during AM Peak period. 

Travel Time Prediction Models for Mid-Day Peak Period 

The results of the regression analyses for the Mid-Day Peak period are presented in Table 8.  

Table 8: Results of the Regression Analyses for Mid-Day Peak Period 
MODEL SUMMARY 

R R-Squared Adjusted R-Squared Standard Error 
0.924 0.854 0.854 186.120 

 
ANOVA SUMMARY 

Model df F Sig 
Regression 5 6041.668 0.000 

 
COEFFICIENTS 

Variable Unstandardized B t Sig. 
Constant 41.069  5.439 0.000 
SBS (X1) 31.942               17.739 0.000 
L (X2) 0.079             119.604 0.000 
P (X3)  0.115                 0.288 0.000 
DT (X4) -1.508                -6.966 0.000 
IT (X5) -6.973              -14.346 0.000 

The results showed that the multiple regression model for the Mid-Day Peak period is statistically 
significant, at a 95% confidence interval. The F-value was 6,041.67 (degrees of freedom = 5), which 
was also significant (p-value < 0.05). The effects of all the independent predictor variables were 
determined to be statistically significant at a 5% level of significance (p-values of < 0.05). The best-
fitting model for the Mid-Day Peak period, with an R2 value of 0.85, was determined to be TTM 
= 41.07 + 31.94SBS + 0.08L + 0.115P – 1.51DT – 6.97T , where TTM is the travel time of the 
bus during Mid-Day Peak period. 

Travel Time Prediction Models for PM Peak Period 

Table 9 presents the results of the regression analyses for the PM Peak period. 
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Table 9: Results of the Regression Analyses for PM Peak Period 
MODEL SUMMARY 

R R-Squared Adjusted R-Squared Standard Error 
0.836 0.699 0.688 220.458 

 
ANOVA SUMMARY 

Model df F Sig 
Regression 5 3148.810 0.000 

 
COEFFICIENTS 

Variable Unstandardized B t Sig. 
Constant -6.063                -0.808 0.419 
SBS (X1) 55.669               30.141 0.000 
L (X2)   0.011               14.231 0.000 
P (X3)   1.883                 6.585 0.000 
DT (X4)   0.888  5.810 0.000 
IT (X5) 15.242               29.538 0.000 

The results showed that the multiple regression model for the PM Peak period is statistically 
significant at a 95% confidence interval. The F-value was 3,148.81 (degrees of freedom = 5), which 
was also statistically significant (p-value < 0.05). The effects of all the independent predictor 
variables were determined to be statistically significant at a significance level of 5% (p-values of less 
than 0.05). However, the constant term was not statistically significant (p-value = 0.419). The 
best-fitting model for the PM Peak period, with an R2 value of 0.68, was determined to be TTP = 
-6.063 +55.67SBS + 0.11L + 1.88P + 0.89DT + 15.24T , where TTP is the travel time of the bus 
during PM Peak period. 

4.3  Model Testing 

To test the models, normality of errors, multicollinearity and homoscedasticity of all peak periods 
were evaluated. 

The normal probability plot was used to test the assumption of normality of errors. The observed 
cumulative probabilities of the standardized residuals were plotted against the expected cumulative 
probabilities of the standardized residuals. By visually inspecting the plots for all three models 
(presented in Appendix A), it can be observed that the curves closely follow the diagonals of the 
plots. This is an indication that the errors are normally distributed. Figure 21 shows the normal 
plot for the AM peak period, while those for the Mid-Day and PM Peak periods are presented in 
Appendix A. 
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Figure 21: Normality Probability Curve Obtained for AM Peak Period

 

Following normality of errors, the test for multicollinearity showed that the VIF for all the 
variables in all three models was less than the maximum value of 10. Thus, there was no 
multicollinearity between the independent variables. Table 10 shows the summary of the VIF 
values for the AM Peak models.  

Table 10: SPSS Coefficient Output for AM Peak Period 
Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients t Sig. 

95.0% Confidence Interval for B Collinearity Statistics 

B Std. Error Beta Lower Bound Upper Bound Tolerance VIF 

(Constant) 40.364 5.248    7.691 .000       30.076 50.652   

SBS (X1) 62.504    1.305          .521 47.880 .000 59.945 65.063 .280 3.576 

L (X2)     .011 .000          .189 21.112 .000           .010            .012 .412 2.424 

P (X3)   -1.366 .211         -.040  -6.469 .000        -1.780           -.952 .888 1.126 

DT (X4)    2.177 .194          .067 11.208 .000         1.796          2.557 .938 1.066 

IT (X5)    7.406 .415          .234 17.859 .000         6.593          8.219 .192 5.199 

The values used to determine multicollinearity based on tolerance and VIF for the Mid-Day and 
PM Peak models are presented in Appendix A. 

Finally, visual inspection of the residual plots of the three models (presented in Appendix A) shows 
a relatively even distribution about the zero line, confirming that the variances of the residuals of 
the dependent variables are the same for all values of the independent variables. Figure 22 shows 
the residual plot for the AM Peak period, while those for the Mid-Day and PM Peak periods are 
presented in Appendix A. 
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Figure 22: Homoscedasticity Regression Plot for AM Peak Period

 
Table 11 presents a summary of the models developed for different peak periods using the Multiple 
Linear Regression approach. 

Table 11: Summary of Results 
# Peak Period Model R2 

1 AM TTA = 40.36 + 62.50SBS + 0.11L – 1.37P + 2.17DT + 7.41T 0.76 

2 Mid-Day TTM = 41.07 + 31.94SBS + 0.08L + 0.12P – 1.51DT – 6.97T 0.85 

3 PM TTP = -6.063 +55.67SBS + 0.11L + 1.88P + 0.89DT + 15.24T 0.68 

4.4 Neural Network 

This section presents results from the neural networks which were developed to predict the travel 
time of buses during different peak periods using the Neural Designer software. Matrices for all 
three peaks were analyzed individually using the Quasi-Newton and the Levenberg-Marquardt 
algorithms separately.  

Quasi-Newton Optimization Algorithm 

The Quasi-Newton optimization algorithm was used for the first set of neural network analyses 
for all three peak period matrices. The algorithm is the default optimization method in Neural 
Designer and is also recommended for training medium-sized data sets (10–1,000 variables, 1,000–

1,000,000 instances). Hence, this optimization algorithm was used to train the data sets of all the 
peak periods for the six bus routes. Each matrix was subjected to a different number of perceptron 
layers for the analysis. Three sets of perceptron layers (two layers, three layers, and five layers) were 
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used to determine the ideal model with the optimum number of hidden layers for travel time 
prediction.  

The inputs used for all Quasi-Newton analyses were scaled using the automatic scaling method. 
The size of the scaling layer was 5 (number of inputs). The scaled outputs were unscaled back to 
the original units using the unscaling layers on the perceptron layers for all peak periods. The 
unscaling method for the output layer was the minimum and maximum method. The size of the 
unscaling layer is 1 (number of outputs). The unscaling minimum, maximum, mean, and standard 
deviation for the models were the same across the different number of perceptron layers (two, 
three, and five layers). 

The values used for scaling and unscaling for all three peak periods are presented in Appendix B.  

Neural networks were developed for all three peak periods using two, three and five perceptron 
layers (separately) and analyzed using the Quasi-Newton optimization algorithm.  

For the models that had two perceptron layers, the first perceptron layer of all peak periods used 
all independent input variables for this analysis, while the second layer only used one of the five 
inputs. The sizes of all layers and the corresponding activation functions for all three peak periods 
incorporating data from six routes are presented in Appendix B. The activation functions of the 
first layer were set to a hyperbolic tangent, while those of second layer were set as linear.  

Figure 23 presents the typical neural architecture for networks with two perceptron layers (all peak 
periods).  

Figure 23: Typical Neural Network Architecture for a Network with Two Perceptron Layers

 
The yellow, blue, and red circles represent the scaling neurons, the perceptron neurons, and the 
unscaling neurons, respectively. Additional perceptron layers are represented by the increment of 
the hidden layers, which apply different weights to the input variables of the neural network to 
minimize the errors of the output. The number of perceptron neurons in a layer can change after 
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order selection. The neural network architecture for all the analytical methods used in the research 
(before and after the order selection) is presented in Appendix C. 

The results of the Quasi-Newton optimization algorithm (two perceptron layers) are presented in 
Table 12. Plots showing the training and selection errors in each iteration for the AM Peak period 
is shown in Figure 24. The training plots for the Mid-Day and PM Peak periods can be found in 
Appendix D. 

Table 12: Quasi-Newton Method Results for Two Perceptron Layers 
 AM Peak Value Mid-Day Peak Value PM Peak Value 

Initial Training Error                   36.100 150.010 33.860 

Final Training Error                     0.172 0.0537 0.248 

Initial Selection Error 35.600 118.750 35.550 

Final Selection Error 0.177 0.042 0.265 

Epochs Number 392 403 164 

Elapsed Time (min:sec) 00:00 00:01 00:00 

Stopping Criterion Gradient norm goal Gradient norm goal Gradient norm goal 

Figure 24: Quasi-Newton Method Error History Plot for AM Peak Period  
(Two Perceptron Layers) 

 
 

The blue line in Figure 24 represents the training errors, and the orange line (overlapping the blue 
line) represent the selection errors. It can be observed from Table 12 and Figure 24 that during 
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the AM Peak period, for the initial training error value of 36.098, the final value after 392 epochs 
decreased to 0.172. The initial value of the selection error in the AM Peak period was 35.599, and 
the final value after 392 epochs decreased to 0.176. The error histories for the Mid-Day and PM 
Peak periods are presented in Appendix D. For the Mid-Day Peak period, the initial training error 
of 150.005 decreased to 0.0537 after 403 epochs. Similarly, after 403 epochs, the initial value of 
selection error for the Mid-Day Peak period decreased from 118.745 to 0.0418. For the PM Peak 
period, the initial training error decreased from 33.859 to 0.248 after 164 epochs, and the initial 
selection error decreased from 35.551 to 0.246. From the table, it appears that the Mid-Day Peak 
period had the highest initial training and selection errors. The Mid-Day Peak errors had the 
highest percentage reduction after training when compared to other peak periods. 
Order selection was performed to achieve the best selection model that generated an adequate fit 
for all the peak periods. The incremental order selection process was used to obtain the optimal 
order, training, and selection errors. Table 13 shows the order selection results by the incremental 
order algorithm for the Quasi-Newton method with two perceptron layers for all three peak 
periods. 

Table 13: Quasi-Newton Method Results for Two Perceptron Layers  
 AM Peak Value Mid-Day Peak Value PM Peak Value 

Optimal Order  10 4 6 

Optimal Training Error 0.139 0.517 0.218 

Optimal Selection Error 0.149 0.041 0.229 

Iterations Number 10 10 10 

Elapsed Time (min:sec) 01:38 00:48 00:47 

Following the order selection process, another training was conducted to achieve better neural 
network performance. The optimal order represents the complexity of the hidden layers in the 
neural network. Table 14 shows the results of the second training for the model for all peak periods. 
Plots showing the training and selection errors in each iteration after order selection for the AM, 
Mid-Day, and PM Peak periods are presented in Appendix D. 

Table 14: Quasi-Newton Method Results of All Peak Periods for Two Perceptron Layers  
(after Order Selection) 

 AM Peak Value Mid-Day Peak Value PM Peak Value 

Initial Training Error 7.670 60.580 48.390 

Final Training Error 0.138 0.052 0.218 

Initial Selection Error 8.250 46.510 51.460 

Final Selection Error 0.145 0.041 0.230 

Epochs Number 615 336 308 

Elapsed Time (min:sec) 00:03 00:01 00:01 

Stopping Criterion Gradient norm goal Gradient norm goal Gradient norm goal 

It can be observed from Table 14 that for the AM Peak period, the initial training error value of 
7.67 decreased to 0.138 after 615 epochs. The initial value of the selection error for the AM Peak 
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period was 8.25, and the final value after 615 epochs decreased to 0.145. For the Mid-Day Peak 
period, the initial training error of 60.58 decreased to 0.052 after 336 epochs. Similarly, after 336 
epochs, the initial value of selection error for the Mid-Day Peak period decreased from 46.51 to 
0.041. For the PM Peak period, the initial training error decreased from 48.39 to 0.218 after 308 
epochs, and the initial selection error decreased from 51.46 to 0.229. It can be observed that the 
initial selection and training errors for all the peak periods, except the PM Peak period, were higher 
before the order selection process was carried out. Order selection reduced the final values of 
training and selection errors across all peak periods. 
The normalized squared errors were measured for all the instances and were also used to evaluate 
all models. Table 15 presents the normalized squared errors for the training, selection, and testing 
instances that were obtained from the model containing two perceptron layers in Neural Designer. 
Other errors, like mean squared errors and sum of squared errors, are provided in Appendix E. 

Table 15: Normalized Squared Errors for Training, Selection and Testing Instances  
(Two-Layer Quasi-Newton Method) 

  AM Peak  Mid-Day Peak PM Peak 

Training Error 0.138 0.052 0.218 

Selection Error 0.145 0.041 0.229 

Testing Error 0.147 0.053 0.257 

It can be observed from Table 15 that the lowest testing error was obtained for the Mid-Day Peak 
model. The error statistics highlighting errors between the neural network and the testing 
instances in the data set for all peak periods are presented in Table 16. The minimum, maximum, 
and standard deviation errors are provided in Appendix E.  

Table 16: Error Statistics for Quasi-Newton Method for All Peak periods  
(Two Perceptron Layers) 

  AM Peak Error Mid-Day Peak Error PM Peak Error 

Absolute Error 90.727 78.129 134.590 

Percentage Error 4.591 1.510 4.914 

The expressions take the inputs X1 through X5 to produce the output Y where the information is 
propagated in a feed forward fashion through the scaling layer, the perceptron layers, and the 
unscaling layer.  

Table 17 presents the mathematical expressions that were obtained from the neural network 
analysis for all peak models undergoing Quasi-Newton and Levenberg-Marquardt analyses. 

Table 17: Neural Network Analysis Output Equations 
Travel Time Equation 

AM 0.5*(scaled_YAM+1.0)*(1976)+2 

Mid-Day 0.5*(scaled_YMid-Day+1.0)*(5174)+6 

PM 0.5*(scaled_YPM+1.0)*(2739)+21 
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Table 17 represents general equations for all three peak periods for the different analyses (with 
multiple perceptron layers). It should be noted that the scaled values of YAM, YMid-Day, and YPM 

change with different peak periods and different analyses. The mathematical expressions for the 
scaled Y outputs that were obtained from the neural network analysis for all peak models 
undergoing Quasi-Newton analysis (two perceptron layers) can be represented as: 

scaled_YAM = (-0.403933+ (y_1_1*-0.827554)+ (y_1_2*0.475845)+ 
(y_1_3*1.51826)+ (y_1_4*0.184144)+ (y_1_5*-0.241722)+ (y_1_6*-1.17179)+ 
(y_1_7*0.385873)+ (y_1_8*-0.688366)+ (y_1_9*0.695668)+ (y_1_10*2.37657)) 

scaled_YMid-Day = (-0.208024+ (y_1_1*-0.159253)+ (y_1_2*-1.66349)+ 
(y_1_3*0.801582) + (y_1_4*1.1423)) 

scaled_YPM = (-0.109188+ (y_1_1*1.08879)+ (y_1_2*-2.69854)+ (y_1_3*-
0.551765)+ (y_1_4*-2.13805)+ (y_1_5*-0.937324)+ (y_1_6*1.2105)) 

The values of y_x_x for the AM, Mid-Day, and PM Peak periods are presented in Appendix E. 

Neural networks for all three peak periods having three perceptron layers were also modeled and 
analyzed using the Quasi-Newton optimization algorithm.  

The first and second perceptron layers of all peak periods used all independent input variables, 
while the third layer only used one of the five inputs. The activation functions of the first two 
layers were set to hyperbolic tangent, while those of third layer of each peak period were set to 
linear. The sizes of all layers and the corresponding activation functions for all three peak periods 
incorporating data from six routes are presented in Appendix B. 

The results of the Quasi-Newton optimization algorithm obtained by applying three perceptron 
layers are shown in Table 18. Plots showing the training and selection errors in each iteration for 
the AM, Mid-Day, and PM Peak periods are presented in Appendix D. 

Table 18: Quasi-Newton Method Results for Three Perceptron Layers 
 AM Peak Value Mid-Day Peak Value PM Peak Value 

Initial Training Error 12.460 99.100 29.950 

Final Training Error 0.161 0.053 0.233 

Initial Selection Error 11.680 81.540 31.800 

Final Selection Error 0.161 0.043 0.259 

Epochs Number 1,000 578 1,000 

Elapsed Time (min:sec) 00:03 00:02 00:03 

Stopping Criterion 
Maximum number 

 of iterations 
Gradient norm goal Maximum number of 

iterations 

It can be observed from Table 18 that during the AM Peak period, for the initial training error 
value of 12.46, the final value after 1,000 epochs decreased to 0.161. The initial value of the 
selection error in the AM Peak period was 11.68, which decreased to 0.161 after 1,000 epochs. 
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For the Mid-Day Peak period, the initial training error of 99.1 decreased to 0.05 after 578 epochs. 
Similarly, after 578 epochs, the initial value of selection error for the Mid-Day Peak period 
decreased from 81.54 to 0.043. For the PM Peak period, the initial training error decreased from 
29.95 to 0.233 after 1,000 epochs, and the initial selection error decreased from 31.799 to 0.259. 
From Table 18, it appears that the Mid-Day Peak period had both the highest and the lowest 
initial/ final training and selection errors Additionally, the Mid-Day Peak period converged earlier 
(578 epochs) compared to the AM and PM Peak periods (1,000 epochs), as the gradient normal 
goal was met in the training process. 

Order selection was performed to achieve the best selection model that generated the adequate fit 
for all the peak periods. The incremental order selection process was used to obtain the optimal 
order, training, and selection errors. Table 19 shows the order selection results obtained by the 
incremental order algorithm for the Quasi-Newton method with three perceptron layers for all 
three peak periods. 

Table 19: Quasi-Newton Method Results for Three Perceptron Layers (All Peak Periods) 
 AM Peak Value Mid-Day Peak Value PM Peak Value 

Optimal Order 9 1 10 

Optimal Training Error 0.145 0.053 0.208 

Optimal Selection Error 0.153 0.042 0.229 

Iterations Number 10 10 10 

Elapsed Time (min:sec) 01:23 00:53 04:08 

Following the order selection process, another training was conducted to achieve better neural 
network performance for the three-layered model. Table 20 shows the results of the second 
training for the model for all the peak periods. A plot showing the training and selection errors in 
each iteration after the order selection process for the AM, Mid-Day, and PM Peak periods is 
presented in Appendix D.  

Table 20: Quasi-Newton Method Results of All Peak Periods for Three Perceptron Layers 
(After Order Selection) 

 AM Peak Value Mid-Day Peak Value PM Peak Value 

Initial Training Error                   16.170            93.280 18.000 

Final Training Error 0.145 0.053 0.205 

Initial Selection Error 16.080 72.120 18.320 

Final Selection Error 0.154 0.042 0.229 

Epochs Number 812 404 1,000 

Elapsed Time (min:sec) 00:04 00:01 00:06 

Stopping Criterion Gradient norm goal Gradient norm goal 
Maximum number of 

iterations 

It can be observed from Table 20 that for the AM Peak period, the initial training error value of 
16.17 decreased to 0.145 after 821 epochs. The initial value of the selection error for the AM Peak 
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period was 16.08, and the final value after 821 epochs decreased to 0.154. From Table 20, it can 
also be observed that for the Mid-Day Peak period, the initial training error of 93.28 decreased to 
0.053 after 404 epochs. Similarly, after 404 epochs, the initial value of selection error for the Mid-
Day Peak period decreased from 72.12 to 0.042. For the PM Peak period, initial training error 
decreased from 18.00 to 0.205 after 1,000 epochs, and the initial selection error decreased from 
18.32 to 0.229. It can be observed that the initial selection and training errors for all the peak 
periods, except the PM Peak period, were higher before the order selection process was carried 
out. Order selection reduced the final values of training and selection errors for all the three peak 
periods.  

The normalized squared errors were obtained for all the instances in order to evaluate the model 
for each use. Table 21 presents the normalized squared errors for the training, selection, and testing 
instances that were obtained from the model containing three perceptron layers in Neural 
Designer. Other errors including mean squared errors, sum of squared errors, and others, are 
provided in Appendix E. 

Table 21: Errors for Training, Selection and Testing Instances  
(Three-Layer Quasi-Newton Method) 

 AM Peak Error Mid-Day Peak Error PM Peak Error 

Training Error 0.145 0.053 0.205 

Selection Error 0.154 0.042 0.229 

Testing Error 0.163 0.055 0.254 

It can be observed from Table 21 that the lowest testing error was obtained for the Mid-Day Peak 
model. The error statistics highlighting errors between the neural network and the testing 
instances in the dataset for all peak periods are presented in Table 22. The minimum, maximum, 
and standard deviation errors are provided in Appendix E. 

Table 22: Error Statistics for Quasi-Newton Method for All Peak Periods  
(Three Perceptron Layers) 

 AM Peak Error Mid-Day Peak Error PM Peak Error 

Absolute Error            94.572            79.485          132.040 

Percentage Error              4.786              1.536 4.821 

The mathematical expressions for the scaled Y outputs that were obtained from the neural network 
analysis for all peak period models undergoing Quasi-Newton analysis (three perceptron layers) 
can be represented as follows: 

scaled_YAM = (0.215174+ (y_2_1*-0.975811)+ (y_2_2*1.23331)+ (y_2_3*1.12438)+ 
(y_2_4*-1.60024)+ (y_2_5*-1.04541)+ (y_2_6*1.33817)+ (y_2_7*0.271241)+ 
(y_2_8*-0.351073)+ (y_2_9*1.20335)) 
scaled_YMid-Day = (0.103787+ (y_2_1*1.6249)) 
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scaled_YPM = (0.684445+ (y_2_1*1.35074)+ (y_2_2*-1.28872)+ (y_2_3*2.40162)+ 
(y_2_4*1.26585)+ (y_2_5*-1.08219)+ (y_2_6*1.46912)+ (y_2_7*-0.888777)+ 
(y_2_8*-1.32063)+ (y_2_9*-0.494677)+(y_2_10*1.01097)) 

The values of y_x_x for the AM, Mid-Day, and PM Peak periods are presented in Appendix F. 

Finally, neural networks for all three peak periods having five perceptron layers were also modeled 
and analyzed using the Quasi-Newton optimization algorithm. The activation functions of the 
first four layers were set to hyperbolic tangent, while those of last layer of each peak period were 
set to linear. The sizes of all layers and the corresponding activation functions for all three peak 
periods incorporating data from six routes are presented in Appendix B. 

The results of the Quasi-Newton optimization algorithm obtained by applying five perceptron 
layers are shown in Table 23. Plots showing the training and selection errors in each iteration for 
the AM, Mid-Day, and PM Peak periods are presented in Appendix D. 

Table 23: Quasi-Newton Method Results for Five Perceptron Layers 
AM Peak Value Mid-Day Peak Value PM Peak Value 

Initial Training Error   83.040  15.130  35.540 

Final Training Error 0.150 0.097 0.235 

Initial Selection Error 80.730 14.450 36.970 

Final Selection Error 0.166 0.103 0.257 

Epochs Number 1,000 634 927 

Elapsed Time (min:sec) 00:12 00:03 00:05 

Stopping Criterion Maximum number of iterations Gradient norm goal Gradient norm goal 

It can be observed from Table 23 that during the AM Peak period, for the initial training error 
value of 83.04, the final value after 1,000 epochs decreased to 0.150. The initial value of the 
selection error in the AM Peak period was 80.73 and decreased to 0.166 after 1,000 epochs. From 
Table 23, it can also be observed that for the Mid-Day Peak period, the initial training error of 
15.13 decreased to 0.097 after 578 epochs. Similarly, after 634 epochs, the initial value of selection 
error for the Mid-Day Peak period decreased from 14.45 to 0.103. For the PM Peak period, the 
initial training error decreased from 61.08 to 0.218 after 1,000 epochs, and the initial selection 
error decreased from 65.75 to 0.238. From the table, it appears that the Mid-Day Peak period had 
the highest initial training and selection errors, which decreased to the lowest values for both 
training in comparison to other peak periods. Additionally, Mid-Day and PM Peak periods 
converged earlier (634 and 927 epochs) compared to the AM Peak period (1,000 epochs) as the 
gradient normal goals were met during the training process. 

Order selection was performed to achieve the best selection model that generated the adequate fit 
for all the peak periods. The incremental order selection process was used to obtain the optimal 
order, training, and selection errors. Table 24 shows the order selection results obtained by using 
the incremental order algorithm for the Quasi-Newton method with five perceptron layers for all 
three peak periods. 
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Table 24: Quasi-Newton Method Results for Five Perceptron Layers (All Peak Periods) 
AM Peak Value Mid-Day Peak Value PM Peak Value 

Optimal Order   1   1   2 

Optimal Training Error 0.151 0.095 0.212 

Optimal Selection Error 0.159 0.099 0.225 

Iterations Number 10 10 10 

Elapsed Time (min:sec) 06:28 02:01 02:44 

Following the order selection process, another training was conducted to achieve better neural 
network performance for the five-layered model. Table 25 shows the results of the second training 
for the model for all peak periods. A plot showing the training and selection errors in each iteration 
after the order selection process for the AM, Mid-Day, and PM Peak periods is presented in 
Appendix D.  

Table 25: Quasi-Newton Method Results of All Peak Periods for Five Perceptron Layers 
(After Order Selection) 

AM Peak Value Mid-Day Peak Value PM Peak Value 

Initial Training Error  96.800 59.490 61.080 

Final Training Error 0.150 0.094 0.235 

Initial Selection Error 96.640 56.440 65.750 

Final Selection Error 0.159 0.106 0.257 

Epochs Number 1,000 1,000 927 

Elapsed Time (min:sec) 00:05 00:03 00:05 

Stopping Criterion 
Maximum number 

of iterations 
Maximum number of 

iterations 
Gradient norm goal 

It can be observed from Table 25 that for the AM peak period, the initial training error value of 
96.80 decreased to 0.150 after 1,000 epochs. The initial value of the selection error for the AM 
Peak period was 96.64, and the final value (after 1,000 epochs) decreased to 0.159. From Table 
25, it can also be observed that for the Mid-Day Peak period, the initial training error of 59.49 
decreased to 0.094 after 1,000 epochs. Similarly, after 1,000 epochs, the initial value of selection 
error for the Mid-Day Peak period decreased from 56.44 to 0.106. For the PM Peak period, initial 
training error decreased from 61.08 to 0.235 after 1,000 epochs and the initial selection error 
decreased from 65.75 to 0.257. It can be observed that the initial selection and training errors for 
the AM and PM Peak periods were higher after the order selection process was conducted. Order 
selection reduced the final values of training and selection errors for the AM Peak period after 
introducing five perceptron layers. Moreover, the final training error for the PM Peak period was 
also reduced after order selection. 

The normalized squared errors were measured for all the instances to evaluate the model for each 
use. Table 26 presents the normalized squared errors for the training, selection, and testing 
instances that were obtained from the model containing five perceptron layers in Neural Designer. 
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Other errors, including mean squared errors, sum of squared errors, and others, are provided in 
Appendix E. 

Table 26: Errors for Training, Selection and Testing Instances 
(Five-Layer Quasi-Newton Method) 

AM Peak Error Mid-Day Peak Error PM Peak Error 

Training Error 0.150 0.094 0.212 

Selection Error 0.159 0.106 0.225 

Testing Error 0.169 0.119 0.258 

It can be observed from Table 26 that the lowest testing error was obtained for the Mid-Day Peak 
period model. The error statistics highlighting errors between the neural network and the testing 
instances in the data set for all peak periods are presented in Table 27. The minimum, maximum, 
and standard deviation errors are presented in Appendix E. 

Table 27: Error Statistics for Quasi-Newton Method for All Peak Periods 
(Five Perceptron Layers) 

AM Peak Error Mid-Day Peak Error PM Peak Error 

Absolute Error   97.242   79.237  131.381 

Percentage Error   4.921   4.251    4.797 

The mathematical expressions for the scaled Y outputs that were obtained from the neural network 
analysis for all peak models undergoing Quasi-Newton analysis (five perceptron layers) can be 
represented as: 

scaled_YAM = (-0.154104+ (y_4_1*-1.67074)) 
scaled_YMid-Day = (0.217368+ (y_4_1*2.53726)) 
scaled_YPM = (0.870799+ (y_4_1*-0.468192)+ (y_4_2*2.5343)) 

The values of y_x_x for the AM, Mid-Day, and PM Peak periods are presented in Appendix F. 

Levenberg-Marquardt Algorithm 

The Levenberg-Marquardt (LM) algorithm was also used to train all three peak period matrices 
in Neural Designer. The algorithm utilizes the damped least-squares method where the loss 
functions take the form of sum of squared errors. The LM algorithm can be useful to train data 
sets that consist of a few thousand instances and a few hundred parameters. Although the data 
used for the project have five parameters, the data set is considerably large and can be suitable for 
LM algorithm training. The optimization algorithm was used for training the data sets of all peak 
periods of the six bus routes. Each matrix was subjected to three perceptron layers for the analysis. 
The errors obtained during training using the LM method have been discussed. 

The first and second perceptron layers of all peak periods used all independent input variables, 
while the third layer only used one of the five inputs. The activation functions of the first two 
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layers were set to hyperbolic tangent, while those of third layer of each peak period were set to 
linear. The sizes of all layers and the corresponding activation functions for all three peak periods 
incorporating data from six routes analyzed using the LM algorithm are presented in Appendix B. 

The inputs used in the LM algorithm were also scaled using the automatic scaling method. The 
size of the scaling layer is 5 (number of inputs). Unscaling for the output layer was done using the 
minimum and maximum method. The unscaling values of minimum, maximum, mean, and 
standard deviation for the LM algorithm model were the same as the unscaling values used for 
Quasi-Newton method. The values used for scaling and unscaling have been provided in Appendix 
B. 

The results of the LM optimization algorithm are shown in Table 28. Plots showing the training 
and selection errors in each iteration for the AM, Mid-Day, and PM Peak periods are presented 
in Appendix D. 

Table 28: Levenberg-Marquardt Method Results for Three Perceptron Layers  
(All Peak Periods) 

 AM Peak Value Mid-Day Peak Value PM Peak Value 

Initial Training Error 0.564 0.284 1.725 

Final Training Error 0.248 0.133 0.317 

Initial Selection Error 0.568 0.268 1.735 

Final Selection Error 0.253 0.136 0.342 

Epochs Number 4 6 9 

Elapsed Time (min:sec) 00:00 00:00 00:00 

Stopping Criterion Maximum parameters  
increment norm 

Maximum parameters 
increment norm 

Maximum parameters 
increment norm 

It can be observed from Table 28 that during the AM Peak period, for the initial training error 
value of 0.564, the final value after four epochs decreased to 0.248. The initial value of the selection 
error in the AM Peak period was 0.568 which decreased to 0.253 after four epochs. From Table 
28 it can also be observed that for the Mid-Day Peak period, the initial training error of 0.284 
decreased to 0.133 after six epochs. Similarly, after six epochs, the initial value of selection error 
for the Mid-Day Peak period decreased from 0.268 to 0.136. For the PM Peak period, initial 
training error decreased from 1.725 to 0.317 after nine epochs, and the initial selection error 
decreased from 1.735 to 0. From the tables, it appears that the PM Peak period had the highest 
initial and final training and selection errors. 

Order selection was performed to achieve the best selection model that generated an adequate fit 
for all the peak periods. The incremental order selection process was used to obtain the optimal 
order, training, and selection errors. Table 29 shows the order selection results from the 
incremental order algorithm for Levenberg-Marquardt Method for all three peak periods. 
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Table 29: Levenberg-Marquardt Method Results (All Peak Periods) 
 AM Peak Value Mid-Day Peak Value PM Peak Value 

Optimal Order                        4 1 5 

Optimal Training Error 0.207 0.122 0.253 

Optimal Selection Error 0.211 0.123 0.275 

Iterations Number 8 10 10 

Elapsed Time (min:sec) 00:01 00:01 00:02 

Following the order selection process, another training was conducted to achieve better neural 
network performance of the LM model. Table 30 shows the results of the second training for the 
model for all peak periods. Plots showing the training and selection errors in each iteration after 
order selection for the AM, Mid-Day, and PM Peak periods are presented in Appendix D. 

Table 30: Levenberg-Marquardt Method Results of All Peak Periods (After Order Selection) 
 AM Peak Value Mid-Day Peak Value PM Peak Value 

Initial Training Error 0.359 0.175 0.291 

Final Training Error 0.190 0.121 0.252 

Initial Selection Error 0.345 0.165 0.315 

Final Selection Error 0.201 0.122 0.279 

Epochs Number 5 3 3 

Elapsed Time (min:sec) 00:00 00:00 00:00 

Stopping Criterion 
Minimum parameters increment 

norm 
Minimum parameters 

increment norm 
Minimum parameters 

increment norm 

It can be observed from Table 30 that for the AM Peak period, the initial training error value of 
0.359 decreased to 0.190 after five epochs. The initial value of the selection error for the AM Peak 
period was 0.345, and the final value after five epochs decreased to 0.201. From Table 30 it can 
also be observed that for the Mid-Day Peak period, the initial training error of 0.175 decreased to 
0.121 after three epochs. Similarly, after three epochs, the initial value of selection error for the 
Mid-Day Peak period decreased from 0.165 to 0.122. For the PM Peak period, initial training 
error decreased from 0.291 to 0.252 after three epochs, and the initial selection error decreased 
from 0.315 to 0.279. It can be observed that the order selection reduced the initial and final values 
of training and selection errors for all three peak periods.  

The normalized squared errors were measured for all the instances to evaluate the model for each 
instance. Table 31 presents the normalized squared errors for the training, selection, and testing 
instances that were obtained from the model analyzed using the Levenberg-Marquardt algorithm 
in Neural Designer. Other errors, including mean squared errors, sum of squared errors, and 
others, are provided in Appendix E. 
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Table 31: Errors for Training, Selection and Testing Instances 
(Three-Layer Levenberg-Marquardt) 

AM Peak Error Mid-Day Peak Error PM Peak Error 

Training Error 0.190 0.121 0.252 

Selection Error 0.201 0.122 0.279 

Testing Error 0.207 0.137 0.275 

It can be observed from Table 31 that the lowest testing error was obtained for the Mid-Day Peak 
model. The error statistics highlighting errors between the neural network and the testing 
instances in the data set for all peak periods are presented in Table 32. The minimum, maximum, 
and standard deviation errors are provided in Appendix E. 

Table 32: Error Statistics for Levenberg-Marquardt Method for All Peak Periods 
(Three Perceptron Layers) 

AM Peak Error Mid-Day Peak Error PM Peak Error 

Absolute Error  109.063   83.776   143.402 

Percentage Error    5.519   4.494  5.235 

The mathematical expressions for the scaled Y outputs that were obtained from the neural network 
analysis for all peak models undergoing Levenberg-Marquardt analysis (five perceptron layers) can 
be represented as: 

scaled_YAM = (-0.746019+ (y_2_1*1.0558)+ (y_2_2*0.491962)+ (y_2_3*0.691286)+ 
(y_2_4*-0.0592317)) 
scaled_YMid-Day = (-0.28863+ (y_1_1*1.33105)) 
scaled_YPM = (-0.541352+ (y_1_1*0.101253)+ (y_1_2*0.209238)+ 
(y_1_3*0.741562)+ (y_1_4*0.183389)+ (y_1_5*-0.0125264)) 

The values of y_x_x for the AM, Mid-Day, and PM Peak periods are presented in Appendix F. 

4.5  Comparison of Errors and Error Statistics 

In training a model to predict data from the given inputs, the performance can be assessed by 
comparing the predicted values of the model with the true values of the output. Training error can 
be found when the model is applied to the data used for training, and selection error can be 
obtained by providing the model with unseen data (data not used in the training phase). Training 
and selection errors were calculated for all peak periods undergoing the Quasi-Newton and 
Levenberg-Marquardt optimization algorithms. Figures 25 through 28 present the comparison of 
the initial and final training and selection errors (before and after undergoing order selection) for 
the different optimization techniques used. 
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Figure 25: Training and Selection Errors Obtained Before and After Order 
Selection (Quasi-Newton Method with Two Perceptron Layers) 

It can be observed from Figure 25 that order selection reduced the initial training and selection 
errors for the AM and Mid-Day Peak periods. However, after order selection and training, the 
final training and selection errors across all peak periods were reduced for the models with two 
perceptron layers undergoing the Quasi-Newton method. The highest final training and selection 
errors were observed for the PM Peak model while the Mid-Day Peak model had the lowest final 
training and selection errors. The selection error for the Mid-Day Peak period before order 
selection had the greatest change in error (99.97%), while the lowest change in error (98.2%) was 
obtained for the selection error of the AM Peak model after order selection. 
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Figure 26: Training and Selection Errors Obtained Before and After Order Selection 
(Quasi-Newton Method with Three Perceptron Layers) 

It can be observed from Figure 26 that order selection reduced the initial training and selection 
errors for the Mid-Day and PM Peak periods. However, after order selection and training, the 
final training and selection errors across all peak periods decreased for the models with three 
perceptron layers undergoing the Quasi-Newton method. The highest final training and selection 
errors were observed for the PM Peak period, while the Mid-Day Peak period had the lowest final 
training and selection errors. The selection error for the Mid-Day Peak period before order 
selection had the greatest change in error (99.95%), while the lowest change in error (98.62%) was 
obtained for the selection error of the AM Peak period before order selection. 
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Figure 27: Training and Selection Errors Obtained Before and After Order Selection 
(Quasi-Newton Method with Five Perceptron Layers) 

It can be observed from Figure 27 that order selection reduced the initial training and selection 
errors for the AM and Mid-Day Peak periods. The final training and selection errors across all 
peak periods were greater than errors obtained before order selection for all the models with five 
perceptron layers undergoing the Quasi-Newton method. The highest final training and selection 
errors were observed in the AM Peak model, while the Mid-Day Peak period had the lowest final 
training and selection errors. The training error for the AM Peak period after order selection had 
the highest change in error (99.85%), while the lowest change in error (99.29%) was obtained for 
the selection error of the Mid-Day Peak period before order selection. 
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Figure 28: Training and Selection Errors Obtained Before and After Order 
Selection (Levenberg-Marquardt Method) 

It can be observed from Figure 28 that order selection reduced the initial training and selection 
errors for all the peak periods. The final training and selection errors across all peak periods were 
reduced after order selection for all the models undergoing the Levenberg-Marquardt method. 
The highest final training and selection errors were observed for the PM Peak model, while the 
Mid-Day Peak model had the lowest final training and selection errors. The training error for the 
PM Peak model before order selection had the highest change in error (81.62%), whereas the 
lowest change in error (11.43%) was obtained for the selection error of the PM Peak model after 
order selection. 

Normalized Squared Errors (NSEs) were obtained for all models to compare and assess the error 
metric associated with the neural network predictions. The NSE values obtained for the training, 
selection, and testing errors for all peak periods are presented in Figures 29 through 31. 
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Figure 29: Normalized Squared Errors Obtained for AM Peak Period Neural Network Analyses 

From Figure 29, it can be observed that the highest NSE for the training, selection, and testing 
errors of the AM Peak model were obtained using the Levenberg-Marquardt method. The models 
with two perceptron layers undergoing the Quasi-Newton method for the AM Peak period 
produced the lowest NSE for training, selection, and testing sets. Moreover, the lowest testing 
error (0.145) for the AM Peak period was obtained for the model with two perceptron layers 
undergoing the Quasi-Newton method. 
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The highest NSE values for the training, selection, and testing errors for the Mid-Day Peak period 
were obtained for the Levenberg-Marquardt method, as shown in Figure 30. The models with 
two perceptron layers undergoing the Quasi-Newton method for the Mid-Day Peak model 
produced the lowest NSE for training, selection, and testing sets. Moreover, the lowest testing 
error (0.053) for the Mid-Day Peak period was obtained for the model with two perceptron layers 
undergoing the Quasi-Newton method. 

Figure 31: Normalized Squared Errors Obtained for PM Peak Period Neural Network Analyses 

From Figure 31, it can be seen that the highest NSE for the training, selection, and testing errors 
of PM Peak period were obtained for the Levenberg-Marquardt method. The models with three 
perceptron layers undergoing the Quasi-Newton method for the PM Peak period produced the 
lowest NSE for training and testing sets. The lowest selection error was obtained for the model 
with five perceptron layers (Quasi-Newton method). The lowest testing error (0.254) for the PM 
Peak period was obtained for the model with three perceptron layers undergoing the Quasi-
Newton method. 
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Figure 32: Mean Absolute and Mean Percentage Errors Obtained 
after Neural Network Analyses 

It can be observed from Figure 32 that the lowest Mean Absolute Errors for the AM and Mid-
Day Peak periods were obtained in the Quasi-Newton model with two layers, whereas the lowest 
MAE for the PM Peak period was obtained in the Quasi-Newton model with five layers. The 
Levenberg-Marquardt model had the highest MAE values for all the three peak periods. 

Root Mean Squared Error or Root Mean Squared Deviation is a common way of measuring the 
quality of the fit of a model. That is, if the predicted values are close to the observed/actual values, 
the RMSE will be small; if there are significant differences between the observed and the predicted 
values, the RMSE will be large. Thus, an RMSE value of zero (0) would indicate a perfect fit with 
about 68% of the observed values within one RMSE if the data are normally distributed. However, 
Normalized Squared Error is preferable when comparing different models based on the same 
actual values. To compare model fits of different variables, a standardization is required to ensure 
some level of accuracy. Calculating the Normalized Mean Squared Errors of the variables provides 
a way of standardizing them to allow effective comparison.82 

The Mean Absolute Error parameter measures the difference between two continuous variables. 
The prediction error, that is, the difference between the observed and predicted value, is converted 
to positive to give the absolute error.83 The mean (average sum) of all recorded absolute errors 
(MAE) gives an idea of the average error one can expect from the prediction model. However, the 
MAE does not provide the relative size of the error, especially when comparing several models. 
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The Mean Percentage Error (MPE) allows for the computation of the mean error in percentage 
form. This determines how large or small an error is and provides a better means of comparing the 
various models.84 
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V. Discussion

This research aimed at developing neural network models for predicting the travel times of buses 
in Washington, DC using AVL and APC data. Previous literature showed that the travel times of 
the buses can be affected by time of the day (AM, Mid-Day and PM Peak periods), vehicle arrival 
and departure, passenger boarding and/or alighting, speed, distance, and en-route traffic 
conditions, among other factors. 

Six months of data were obtained for six selected bus routes (70, 32, 52, 42, D4, and S1) from 
WMATA. The data obtained from WMATA were filtered, which enabled the extraction of 
variables including number of served bus stops within the study limits, length of routes between 
bus stops, average number of passengers in the bus, average dwell time, and number of intersections 
between served bus stops for three peak periods (AM, Mid-Day, and PM). The travel times 
associated with individual data points or factors following the extraction were compiled into 
matrices (per peak period) which were analyzed using multiple linear regression and neural 
network analyses. 

The regression analysis conducted on the bus data generated an equation for each peak period. 
The independent variables “numbers of bus stops served,” “length of the route between served bus 
stops,” and “number of intersections between two served bus stops” had the highest correlation 
values for the AM, Mid-Day, and PM Peak periods, respectively. The F-statistics showed that 
the models were statistically significant at a 95% confidence interval (p-values < 0.05). To verify 
the validity of the models, normality of errors, multicollinearity, and homoscedasticity tests were 
conducted. The observed cumulative probabilities of the standardized residuals were plotted 
against the expected cumulative probabilities of the standardized residuals, which generated curves 
that followed the diagonals of the different peak plots. Hence, the errors were normally distributed. 
Normal distribution of errors ensures that there is no bias in the data. In other words, there are 
not many outliers that can are affecting the model’s estimation process. Multicollinearity was 
checked for all models by assessing the values of Variance Inflation Factors (VIFs) and tolerances 
to ensure that no two independent predictor variables used in this study had high correlations 
between themselves. Multicollinearity indicates the presence of redundant information which 
skews the results in a predictive model. All three models had VIFs lower than the maximum value 
of 10, which indicated that the independent variables were not multicollinear. A VIF value closer 
to 1 indicates that the predictors are not correlated with each other. The even distribution of the 
residual plots along the zero line for all three models also indicated homoscedasticity. Hence, the 
variance between the residuals of the dependent variable were similar across the models. 

Neural Network Analyses were also conducted for different peak periods to develop predictive 
models for the travel time using Neural Designer software. The method used was approximation, 
which refers to prediction of a dependent value based on the combination of different independent 
variables. The Quasi-Newton and Levenberg-Marquardt algorithms were used separately for all 



M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  70 

peak periods (AM, Mid-Day and PM Peak periods) to obtain separate bus travel time equations. 
The Quasi-Newton algorithm is the default optimization method in Neural Designer which is 
also recommended for training medium-sized data sets (10–1,000 variables). Using the Quasi-
Newton algorithm, the study also aimed at exploring the complexity of the training network that 
would affect the predictive models. Hence, three Quasi-Newton algorithms were used for three 
peak periods where the number of perceptron layers varied (two, three, and five layers separately). 
In addition to the Quasi-Newton algorithm, the Levenberg-Marquardt algorithm was also used 
for all three models to compare the differences between two different approximation algorithms. 
All peak period models were subjected to three perceptron layers for the Levenberg-Marquardt 
analyses. 

The neural network analyses required scaling of the inputs for training, after which the outputs 
were unscaled back to the original units. Equations to determine the travel time based on the values 
of the independent variables were provided for all the three peak periods using all the algorithms. 
A major part of the training process was the documentation of initial and final training, selection, 
and testing errors before and after order selection. In approximation training processes, the training 
errors gradually decrease over time, while the testing errors increase. It could be seen that generally, 
the initial selection and training errors for all the peak periods decreased after conducting the order 
selection process. Hence, it could be seen that order selection increased the accuracy of the training 
models whereby final values of training and selection errors across most of the peak periods were 
reduced.  

The training error may not be a good validation of the predictive model, as lower training error 
results in overfitting. Overfitting leads to inaccuracy in predicting the correct output from unseen 
data while testing. Hence, testing error was analyzed for all the models to evaluate the accuracy of 
approximation. The minimums, maximums, means, and standard deviations of the error statistics 
were also obtained. The mean absolute error and the mean percentage error were compared to test 
the quality of the predictive models. Both measures of errors were obtained to observe the 
difference between the predicted output and the actual output values. The low MAE and MPE 
errors obtained for the different models in this study indicate better accuracy of the continuous 
variables.  

Even though lower errors are desirable, low training error indicates to overfitting, which leads to 
inaccuracy in predicting the correct output from unseen data while testing. Hence, testing errors 
were for all the models were compared to evaluate the accuracy of approximation of the neural 
networks. In this study, the models that were trained using Quasi-Newton Algorithm with 2 
perceptron layers generally yielded the lowest normalized squared errors (testing) for all peak 
periods which were followed by models that had 3 perceptron layers applied. In other words, 
Quasi-Newton optimization using 2 perceptron layers (hidden Multilayer Perceptron) 
demonstrated the best travel time prediction performance in this study. It could be observed that 
the two-layer models trained using Quasi-Newton algorithm had the lowest normalized squared 
errors (testing) followed by training models having three perceptron layers. Mid-Day Peak models 
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had the lowest overall errors for both training algorithms. The Levenberg-Marquardt algorithm 
resulted in the highest testing errors, which was an indication that it was not suitable for the data 
sets. 
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VI. Conclusions and Recommendations

This research developed neural network models which can be helpful for transit agencies to 
improve travel time prediction for their patrons. General improvement in the credibility of 
WMATA’s online NextBus Arrival service can increase ridership. Moreover, the prediction 
models can serve as an excellent tool to build schedules for new bus routes in or around 
Washington, DC. It is recommended that neural network training including more factors 
(independent variables) be conducted to study the impact of these variables on bus travel time. 
Models can also be developed to analyze travel times by bus direction for a route. The research 
focused on specific peak periods of the day to ensure that traffic patterns differ by different times 
of the day. However, a single model with low errors can be developed in future research that can 
predict travel time on any given time of the day.  

The results of the analyses indicate that ANN models can effectively predict the travel times of 
buses on selected routes with minimal percentage errors and can be used in combination with 
traditional regression analyses. The ANN models could be incorporated into several other 
predictive models used by WMATA to provide patrons with travel time information at bus stops 
and online. These models could be adopted by transit agencies in other jurisdictions with similar 
characteristics to those of the Washington, DC area. For future work, these models could be 
calibrated using real-time data for arterial and collector bus routes. Also, similar models could be 
developed for bus routes on residential/local roads. 
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APPENDIX A: 
SPSS OUTPUT 

Normality Curves (SPSS Output): 

Figure 33: Normality Probability Curve Obtained for Mid-Day Peak Period (top) and 
PM Peak Period (bottom) 
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Multicollinearity Check (SPSS Output): 

Table 33: SPSS Coefficient Output for Mid-Day Peak Period 

Coefficientsa 

Model 
Unstandardized 

Coefficients 
Standardized 
Coefficients t Sig. 

95.0% Confidence Interval for 
B 

Collinearity 
Statistics 

B Std. Error Beta Lower Bound Upper Bound Tolerance VIF 
(Constant) 41.069 7.551 5.439 .000 26.267 55.872 
SBS (X1) 31.942 1.801 .178 17.739 .000 28.412 35.472 .280 3.567 
L (X2) .079 .001 .915 119.604 .000 .077 .080 .483 2.071 
P (X3) .115 .399 .002 .288 .000 -.668 .898 .971 1.030 
DT (X4) -1.508 .217 -.038 -6.966 .000 -1.933 -1.084 .974 1.027 
IT (X5) -6.973 .486 -.156 -14.346 .000 -7.926 -6.020 .239 4.186 

Table 34: SPSS Coefficient Output for PM Peak Period 

Coefficientsa 

Model 
Unstandardized 

Coefficients 
Standardized 
Coefficients t Sig. 

95.0% Confidence Interval for 
B 

Collinearity 
Statistics 

B Std. Error Beta Lower Bound Upper Bound Tolerance VIF 
(Constant) -6.063 7.504 -.808 .419 -20.774 8.648 
SBS (X1) 55.669 1.847 .376 30.141 .000 52.048 59.289 .285 3.508 
L (X2) .011 .001 .136 14.231 .000 .009 .012 .488 2.051 
P (X3) 1.883 .286 .046 6.585 .000 1.322 2.444 .927 1.079 
DT (X4) .888 .153 .039 5.810 .000 .588 1.187 .976 1.024 
IT (X5) 15.242 .516 .394 29.538 .000 14.230 16.253 .249 4.020 

Homoscedasticity (SPSS Output): 

Figure 34: Homoscedasticity Regression Plot for Mid-Day Peak Period 
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Figure 35: Homoscedasticity Regression Plot for PM Peak Period
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APPENDIX B: 
MULTILAYER PERCEPTRON/SCALING AND 

UNSCALING LAYERS 
Perceptron Layers (Neural Designer Output): 

Table 35: Perceptron Layers for Quasi-Newton Analysis (Two Layers) 

Peak Periods Layer  Number of Inputs Perceptron Number Activation Function 
All Peaks (AM, 
Mid-Day and 
PM) 

1 5 3 Hyperbolic Tangent 

2 3 1 Linear 

Table 36: Perceptron Layers for Quasi-Newton Analysis (Three Layers) 

Peak Periods Layer Number of Inputs Perceptron Number Activation Function 
All Peaks (AM, 
Mid-Day and 
PM) 

1 5 3 Hyperbolic Tangent 
2 3 3 Hyperbolic Tangent 
3 3 1 Linear 

Table 37: Perceptron Layers for Quasi-Newton Analysis (Five Layers) 

Peak Periods Layer Number of Inputs Perceptron Number Activation Function 

All Peaks (AM, 
Mid-Day and 
PM) 

1 5 3 Hyperbolic Tangent 
2 3 3 Hyperbolic Tangent 
3 3 3 Hyperbolic Tangent 
4 3 3 Hyperbolic Tangent 
5 3 1 Linear 

Table 38: Perceptron Layers for Levenberg-Marquardt Analysis (Three Layers) 

Peak Periods Layer Number of Inputs Perceptron Number Activation Function 
All Peaks (AM, 
Mid-Day and 

PM) 

1 5 3 Hyperbolic Tangent 
2 3 3 Hyperbolic Tangent 
3 3 1 Linear 

Table 39: Scaling and Unscaling Values for Quasi-Newton Analysis (Two Perceptron Layers) 

Scaling Layers 
Peak Periods Minimum Maximum Mean Deviation 

AM Peak 

X1 (SBS) 0 9 0 1 
X2 (L) 0 5.46e+04* 0 1 
X3 (P) 0 58 0 1 
X4 (DT) 1 76 0 1 
X5 (IT) 0 55 0 1 

Mid-Day Peak 

X1 (SBS) 0 9 0 1 
X2 (L) 0 5.46e+04 0 1 
X3 (P) 0.5 47.5 0 1 
X4 (DT) 1 90 0 1 
X5 (IT) 0 58 0 1 

PM Peak 
X1 (SBS) 0 9 0 1 
X2 (L) 0 4.14e+04 0 1 
X3 (P) 0.5 61.5 0 1 
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Scaling Layers 
Peak Periods Minimum Maximum Mean Deviation 

X4 (DT) 1 331 0 1 
X5 (IT) 0 58 0 1 

Unscaling Layers 
Minimum Maximum Mean Standard Deviation 

Y for AM Peak 2 1.98e+03 0 1 
Y for Mid-Day Peak 6 5.18e+03 0 1 
Y for PM Peak 21 2.76e+03 0 1 

*5.46e+04 = 54,600

Table 40: Scaling and Unscaling Values for Quasi-Newton Analysis (Three Perceptron Layers) 

Scaling Layers 
Peak Periods Minimum Maximum Mean Deviation 

AM Peak 

X1 (SBS) 0 9 3.92 2.7 
X2 (L) 0 5.46e+04 6.72e+03 5.82e+03 
X3 (P) 0 58 15.6 9.38 
X4 (DT) 1 76 13.8 9.92 
X5 (IT) 0 55 15.7 10.3 

Mid-Day Peak 

X1 (SBS) 0 9 0 1 
X2 (L) 0 5.47e+04 0 1 
X3 (P) 0.5 47.5 0 1 
X4 (DT) 1 90 0 1 
X5 (IT) 0 58 0 1 

PM Peak 

X1 (SBS) 0 9 0 1 
X2 (L) 0 4.14e+04 0 1 
X3 (P) 0.5 61.5 0 1 
X4 (DT) 1 331 0 1 
X5 (IT) 0 58 0 1 

Unscaling Layers 
Minimum Maximum Mean Standard Deviation 

Y for AM Peak 2 1.98e+03 0 1 
Y for Mid-Day Peak 6 5.18e+03 0 1 
Y for PM Peak 21 2.76e+03 0 1 
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Table 41: Scaling and Unscaling Layers for Quasi-Newton Analysis (Five Perceptron Layers) 

Scaling Layers 
Peak Periods Minimum Maximum Mean Deviation 

AM Peak 

X1 (SBS) 0 9 0 1 
X2 (L) 0 5.46e+04 0 1 
X3 (P) 0 58 0 1 
X4 (DT) 1 76 0 1 
X5 (IT) 0 55 0 1 

Mid-Day Peak 

X1 (SBS) 0 9 3.91 2.7 
X2 (L) 0 2.69e+04 6.34e+03 4.26e+03 
X3 (P) 0.5 38.5 12.8 6.12 
X4 (DT) 1 58 15.5 11 
X5 (IT) 0 58 16.6 10.8 

PM Peak 

X1 (SBS) 0 9 0 1 
X2 (L) 0 4.14e+04 0 1 
X3 (P) 0.5 61.5 0 1 
X4 (DT) 1 331 0 1 
X5 (IT) 0 58 0 1 

Unscaling Layers 
Minimum Maximum Mean Standard Deviation 

Y for AM Peak 2 1.98e+03 0 1 
Y for Mid-Day Peak 6 5.18e+03 0 1 
Y for PM Peak 21 2.76e+03 0 1 

Table 42: Scaling and Unscaling Layers for Levenberg-Marquardt Analysis 
(Three Perceptron Layers) 

Scaling Layers 
Peak Periods Minimum Maximum Mean Deviation 

AM Peak 

X1 (SBS) 0 9 0 1 
X2 (L) 0 5.46e+04 0 1 
X3 (P) 0 58 0 1 
X4 (DT) 1 76 0 1 
X5 (IT) 0 55 0 1 

Mid-Day Peak 

X1 (SBS) 0 9 3.91 2.7 
X2 (L) 0 2.69e+04 6.34e+03 4.26e+03 
X3 (P) 0.5 38.5 12.8 6.12 
X4 (DT) 1 58 15.5 11 
X5 (IT) 0 58 16.6 10.8 

PM Peak 

X1 (SBS) 0 9 0 1 
X2 (L) 0 4.14e+04 0 1 
X3 (P) 0.5 61.5 0 1 
X4 (DT) 1 331 0 1 
X5 (IT) 0 58 0 1 

Unscaling Layers 
Minimum Maximum Mean Standard Deviation 

Y for AM Peak 2 1.98e+03 0 1 
Y for Mid-Day Peak 6 5.18e+03 0 1 
Y for PM Peak 21 2.76e+03 0 1 
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APPENDIX C:  
NEURAL NETWORK MODEL ARCHITECTURE 
Figure 36: Neural Network Architecture for AM Peak Model with Two Perceptron 

Layers (Quasi-Newton Analysis) 

Complexity: Number of hidden neurons is ten. 

Figure 37: Neural Network Architecture for AM Peak Model with Three Perceptron 
Layers (Quasi-Newton Analysis) 

Complexity: Number of hidden neurons is 3:9. 
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Figure 38: Neural Network Architecture for AM Peak Model with Five Perceptron 
Layers (Quasi-Newton Analysis) 

Complexity: Number of hidden neurons is 3:3:3:1. 

Figure 39: Neural Network Architecture for AM Peak Model with Three Perceptron 
Layers (Levenberg-Marquardt Analysis) 

Complexity: Number of hidden neurons is 3:4. 

Figure 40: Neural Network Architecture for Mid-Day Peak Model with Two Perceptron Layers 
(Quasi-Newton Analysis) 

Complexity: Number of hidden neurons is four. 
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Figure 41: Neural Network Architecture for Mid-Day Peak Model with Three 
Perceptron Layers (Quasi-Newton Analysis) 

Complexity: Number of hidden neurons is 3:1. 

Figure 42: Neural Network Architecture for Mid-Day Peak Model with Five Perceptron Layers 
(Quasi-Newton Analysis) 

Complexity: Number of hidden neurons is 3:3:3:1. 

Figure 43: Neural Network Architecture for Mid-Day Peak Model with Three Perceptron 
Layers (Levenberg-Marquardt Analysis) 

Complexity: Number of hidden neurons is one. 
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Figure 44: Neural Network Architecture for PM Peak Model with Two Perceptron 
Layers (Quasi-Newton Analysis) 

Complexity: Number of hidden neurons is six. 

Figure 45: Neural Network Architecture for PM Peak Model with Three Perceptron 
Layers (Quasi-Newton Analysis) 

Complexity: Number of hidden neurons is 3:10. 
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Figure 46: Neural Network Architecture for PM Peak Model with Five Perceptron 
Layers (Levenberg-Marquardt Analysis) 

Complexity: Number of hidden neurons is 3:3:3:2. 

Figure 47: Neural Network Architecture for PM Peak Model with Three Perceptron 
Layers (Quasi-Newton Analysis) 

Complexity: Number of hidden neurons is five. 
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APPENDIX D: 
NEURAL DESIGNER MODEL TRAINING PLOTS 

Error Plots (Neural Designer Output): 

Figure 48: Quasi-Newton Method Error History Plot for Mid-Day Peak Period 
(Two Perceptron Layers) 

Figure 49: Quasi-Newton Method Error History Plot for PM Peak Period 
(Two Perceptron Layers) 
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Figure 50: Quasi-Newton Method Error History Plot after Order Selection for AM Peak Period 
(Two Perceptron Layers) 

Figure 51: Quasi-Newton Method Error History Plot after Order Selection for Mid-Day Peak 
Period (Two Perceptron Layers) 

Figure 52: Quasi-Newton Method Error History Plot after Order Selection for PM Peak Period 
(Two Perceptron Layers) 
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Figure 53: Quasi-Newton Method Error History Plot for AM Peak Period (Three 
Perceptron Layers) 

Figure 54: Quasi-Newton Method Error History Plot for Mid-Day Peak Period (Three 
Perceptron Layers) 

Figure 55: Quasi-Newton Method Error History Plot for PM Peak P
 
eriod (Three 

Perceptron Layers) 
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Figure 56: Quasi-Newton Method Error History Plot after Order Selection for AM Peak 
Period (Three Perceptron Layers) 

Figure 57: Quasi-Newton Method Error History Plot after Order Selection for Mid-Day 
Peak Period (Three Perceptron Layers) 

Figure 58: Quasi-Newton Method Error History Plot after Order Selection for PM Peak 
Period (Three Perceptron Layers) 
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Figure 59: Quasi-Newton Method Error History Plot for AM Peak Period (Five 
Perceptron Layers) 

Figure 60: Quasi-Newton Method Error History Plot for Mid-Day Peak Period (Five 
Perceptron Layers) 

Figure 61: Quasi-Newton Method Error History Plot for PM Peak Period (Five 
Perceptron Layers) 
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Figure 62: Quasi-Newton Method Error History Plot after Order Selection for AM Peak 
Period (Five Perceptron Layers) 

Figure 63: Quasi-Newton Method Error History Plot after Order Selection for Mid-Day 
Peak Period (Five Perceptron Layers) 

Figure 64: Quasi-Newton Method Error History Plot after Order Selection
 
 for PM Peak 

Period (Five Perceptron Layers) 
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Figure 65: Levenberg-Marquardt Method Error History Plot for AM Peak Period (Three 
Perceptron Layers) 

Figure 66: Levenberg-Marquardt Method Error History Plot for Mid-Day Peak 
Period (Three Perceptron Layers) 

Figure 67: Levenberg-Marquardt Method Error History Plot for PM Pea
 
k Period 

(Three Perceptron Layers) 
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Figure 68: Levenberg-Marquardt Method Error History Plot after Order Selection for 
AM Peak Period (Three Perceptron Layers) 

Figure 69: Levenberg-Marquardt Method Error History Plot after Order Selection for 
Mid-Day Peak Period (Three Perceptron Layers) 

Figure 70: Levenberg-Marquardt Method Error History Plot after Order Selection for 
PM Peak Period (Three Perceptron Layers) 
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APPENDIX E: 
NEURAL NETWORK ERROR TABLES 

Neural Network Training, Selection, and Testing Errors (Neural Designer Output): 

Table 43: Errors for Training, Selection, and Testing Instances 
(Two Layers, Quasi-Newton Method) 

AM Peak Error Mid-Day Peak Error PM Peak Error 
Error Type Training Selection Testing Training Selection Testing Training Selection Testing 
Sum of 
Squared 
Error 

6.38e+0
7 2.16e+07 2.13e+0

7 
3.57e+0

7 1.21e+07 1.25e+0
7 1.45e+08 4.86e+07 5.63e+07 

Mean 
Squared 
Error 

14788.8 15088.7 14825.1 11491.2 11669.3 12057.4 35541.5 35808.7 41439.5 

Root Mean 
Squared 
Error 

121.609 122.836 121.758 107.197 108.025 109.806 188.525 189.232 203.567 

Normalized 
Squared 
Error 

0.138 0.145 0.147 0.052 0.041 0.053 0.218 0.229 0.257 

Minkowski 
Error 

4.69e+0
6 1.62e+06 1.58e+0

6 
2.76e+0

6 921756 939850 8.10e+06 2.73e+06 2.93e+06 

Table 44: Error Statistics for Quasi-Newton Method for All Peak Periods 
(Two Perceptron Layers) 

Peak Periods Error Type Minimum Maximum Mean Standard Deviation 

AM Peak 
Absolute Error 0.068 718.353 90.727 81.230 

Percentage Error 0.003 36.354 4.591 4.111 

Mid-Day Peak 
Absolute Error 0.030 604.830 78.129 77.194 

Percentage Error 0.0006 11.689 1.510 1.492 

PM Peak 
Absolute Error 0.009 1549.100 134.589 152.782 

Percentage Error 0.0003 56.557 4.914 5.578 

Table 45: Errors for Training, Selection, and Testing Instances 
(Three Layers, Quasi-Newton Method) 

AM Peak Error Mid-Day Peak Error PM Peak Error 
Error Type Training Selection Testing Training Selection Testing Training Selection Testing 
Sum of 
Squared 
Error 

6.61e+0
7 

2.39e+07 2.78e+0
7 

3.68e+0
7 

1.24e+07 1.29e+0
7 

1.36e+08 4.86e+07 5.56e+07 

Mean 
Squared 
Error 

15330.5 16651.2 16550.9 11826.7 11942.6 12498.1 33309.9 35710.4 40933.2 

Root Mean 
Squared 
Error 

123.816 129.039 128.650 108.751 109.282 111.795 182.510 188.972 202.320 

Normalized 
Squared 
Error 

0.145 0.154 0.163 0.053 0.041 0.055 0.205 0.229 0.254 

Minkowski 
Error 

4.85e+0
6 

1.70e+06 1.70e+0
6 

2.83e+0
6 

933523 965816 7.68e+06 2.71e+06 2.88e+06 
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Table 46: Error Statistics for Quasi-Newton Method for All Peak Periods 
(Three Perceptron Layers) 

Peak Periods Error Type Minimum Maximum Mean Standard Deviation 
AM Peak Absolute Error 0.109 575.922 94.572 87.249 

Percentage Error 0.005 29.146 4.786 4.415 
Mid-Day Peak Absolute Error 0.069 609.131 79.485 78.651 

Percentage Error 0.001 11.773 1.536 1.520 
PM Peak Absolute Error 0.121 1463.190 132.041 153.348 

Percentage Error 0.004 53.421 4.821 5.598 

Table 47: Errors for Training, Selection and Testing Instances 
(Five Layers, Quasi-Newton Method) 

AM Peak Error Mid-Day Peak Error PM Peak Error 
Error Type Training Selection Testing Training Selection Testing Training Selection Testing 
Sum of 
Squared 
Error 

6.84e+0
7 2.46e+07 2.46e+0

7 
3.22e+0

7 1.23e+07 1.26e+0
7 1.40e+08 4.77e+07 5.64e+07 

Mean 
Squared 
Error 

15867.8 17132.2 17184.4 10628.5 12314.6 12570.1 34437.9 35120.2 41491.9 

Root Mean 
Squared 
Error 

125.967 130.890 131.088 103.094 110.971 112.116 185.575 187.404 203.696 

Normalized 
Squared 
Error 

0.150 0.158 0.168 0.094 0.106 0.119 0.211 0.225 0.257 

Minkowski 
Error 

4.99e+0
6 1.74e+06 1.76e+0

6 
2.54e+0

6 909141 934319 7.80e+06 2.68e+06 2.88e+06 

Table 48: Error Statistics for Quasi-Newton Method for All Peak Periods 
(Five Perceptron Layers) 

Peak Periods Error Type Minimum Maximum Mean Standard Deviation 
AM Peak Absolute Error 0.042 621.841 97.242 87.939 

Percentage Error 0.002 31.469 4.921 4.450 
Mid-Day Peak Absolute Error 0.192 615.793 79.237 79.358 

Percentage Error 0.010 33.036 4.250 4.257 
PM Peak Absolute Error 0.013 1522.14 131.381 155.720 

Percentage Error 0.0004 55.572 4.796 5.685 
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Table 49: Errors for Training, Selection, and Testing Instances (Three Layers, Levenberg-
Marquardt) 

AM Peak Error Mid-Day Peak Error PM Peak Error 
Error Type Training Selection Testing Training Selection Testing Training Selection Testing 
Sum of 
Squared 
Error 

8.59e+0
7 3.22e+07 2.97e+0

7 
4.12e+0

7 1.41e+07 1.44e+0
7 1.67e+08 5.92e+07 6.01e+07 

Mean 
Squared 
Error 

19919.9 22427 20705.2 13594.2 14119.6 14317.9 40982.3 43581.1 44201.7 

Root Mean 
Squared 
Error 

141.138 149.757 143.893 116.594 118.826 119.657 202.441 208.761 210.242 

Normalized 
Squared 
Error 

0.190 0.201 0.206 0.120 0.121 0.136 0.251 0.279 0.274 

Minkowski 
Error 

5.97e+0
6 2.17e+06 2.05e+0

6 
3.01e+0

6 1.01e+06 1.02e+6 9.14e+06 3.20e+06 3.14e+06 

Table 50: Error Statistics for Levenberg-Marquardt Method for All Peak Periods (Three 
Perceptron Layers) 

Peak Periods Error Type Minimum Maximum Mean Standard Deviation 
AM Peak Absolute Error 0.119 641.214 109.063 93.896 

Percentage Error 0.006 32.450 5.519 4.751 
Mid-Day Peak Absolute Error 0.091 613.172 83.776 85.478 

Percentage Error 0.004 32.8955 4.494 4.585 
PM Peak Absolute Error 0.040 1497.860 143.402 153.802 

Percentage Error 0.001 54.686 5.235 5.615 
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APPENDIX F: 
NEURAL NETWORK TRAVEL TIME EQUATIONS 

Travel Time Equations Obtained from Neural Network Analyses (Neural Designer Output): 

Equations for Quasi-Newton (Two Perceptron Layers) AM Model 

𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 =
𝑋𝑋1 − 3.92

2.7

𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 =
𝑋𝑋2 − 6718.9

5817.77

𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 =
𝑋𝑋1 − 15.58

9.37

𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 =
𝑋𝑋4 − 13.81

9.92

𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 =
𝑋𝑋5 − 15.72

10.26

𝑦𝑦_1_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.27 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 0.16) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ 1.38)  +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ 0.77)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.1) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ −1.59))

𝑦𝑦_1_2 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.76 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 0.28) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠𝑋𝑋2 ∗ −0.32) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ −0.43)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.08) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ −0.56))

𝑦𝑦_1_3 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.77 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠𝑋𝑋1 ∗ −0.1) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠𝑋𝑋2 ∗ −0.52) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3
∗ 0.33) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ 0.06) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 0.78)) 

𝑦𝑦_1_4 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.73 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠𝑋𝑋1 ∗ −1.33) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ 0.17)  + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ −0.60)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.13) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 1.49))

𝑦𝑦_1_5 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.70 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ −0.80) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ 1.77) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3
∗ −0.15) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ 0.25) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ −0.59)) 

𝑦𝑦_1_6 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.62 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 0.15) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ −0.73) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ 0.38)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ 0.04) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 0.59))

𝑦𝑦_1_7 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.26 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 0.05) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ 1.26)  + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠𝑋𝑋3 ∗ −1.06)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ 0.02) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠𝑋𝑋5 ∗ −0.64))

𝑦𝑦_1_8 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.51 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠𝑋𝑋1 ∗ −0.23) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ −1.86)  + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ 0.81)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ 0.08) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 1.92))

𝑦𝑦_1_9 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.01 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠𝑋𝑋1 ∗ −0.06) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ −0.70) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3
∗ 0.69) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠𝑋𝑋4 ∗ −0.02) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 0.22)) 
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𝑦𝑦_1_10 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.03 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 0.13) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ 0.19)  + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ 0.04)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ 0.02) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠𝑋𝑋5 ∗ −0.13))

𝑀𝑀𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑌𝑌𝐴𝐴𝐴𝐴 = (−0.4 + (𝑦𝑦_1_1 ∗ −0.83) + (𝑦𝑦_1_2 ∗ 0.48) + (𝑦𝑦_1_3 ∗ 1.52) + (𝑦𝑦_1_4 ∗ 0.18)
+ (𝑦𝑦_1_5 ∗ −0.24) + (𝑦𝑦_1_6 ∗ −1.17) + (𝑦𝑦_1_7 ∗ 0.39) + (𝑦𝑦_1_8 ∗ 0.69)
+ (𝑦𝑦_1_9 ∗ 0.69) + (𝑦𝑦_1_10 ∗ 2.38))

Equations for Quasi-Newton (Two Perceptron Layers) Mid-Day Model 

𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 =
𝑋𝑋1 − 3.94

2.7

𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 =
𝑋𝑋2 − 6734.2

5663.62

𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 =
𝑋𝑋1 − 12.96

6.57

𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 =
𝑋𝑋4 − 16.08

12.09

𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 =
𝑋𝑋5 − 16.71

10.88
𝑦𝑦_1_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.09 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ −0.90) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ 0.77) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠𝑋𝑋3 ∗ −0.21)

+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.01) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 0.31))

𝑦𝑦_1_2 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (1.09 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 0.34) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ −0.35)  + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ 0.05)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.02) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ −0.01))

𝑦𝑦_1_3 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (1.68 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 0.65) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ −0.78)  +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ −0.01)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.02) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 0.04))

𝑦𝑦_1_4 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.012 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 0.05) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ 0.07)  + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ 0.01)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.13) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 0.03))

𝑀𝑀𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑌𝑌𝐴𝐴𝑖𝑖𝑎𝑎−𝐷𝐷𝑎𝑎𝐷𝐷 
= (−0.21 + (𝑦𝑦_1_1 ∗ −0.16) + (𝑦𝑦_1_1 ∗ −1.66) + (𝑦𝑦_1_3 ∗ 0.80)
+ (𝑦𝑦_1_4 ∗ 1.14)

Equations for Quasi-Newton (Two Perceptron Layers) PM Model 

𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 =
𝑋𝑋1 − 3.94

2.71

𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 =
𝑋𝑋2 − 6016.89

5186.32

𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 =
𝑋𝑋1 − 16.92

9.71

𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 =
𝑋𝑋4 − 17.54

17.71

𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 =
𝑋𝑋5 − 15.66

10.39

The scaled values of X1 through X5 for the PM Peak periods are same for all analysis (with all 
layers). 
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𝑦𝑦_1_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.13 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠𝑋𝑋1 ∗ −0.33) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ 1.98)  + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ −0.21)
+  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ 0.13) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ −1.18))

𝑦𝑦_1_2 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.43 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠𝑋𝑋1 ∗ −0.11) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ 1.63) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ −0.06)
+  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ 0.08) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ −1.27))

𝑦𝑦_1_3 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.89 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠𝑋𝑋1 ∗ −0.14) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ 0.11)  +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠𝑋𝑋3 ∗ −0.11)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.02) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ −0.47))

𝑦𝑦_1_4 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.34 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠𝑋𝑋1 ∗ −0.05) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠𝑋𝑋2 ∗ −0.78)  + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ −0.09)
+  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.03) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 0.84))

𝑦𝑦_1_5 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−1.14 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 0.16) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ −2.72) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ 0.24)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.11) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 1.99))

𝑦𝑦_1_6 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (1.35 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 0.07) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ −1.51)  +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ −0.03)
+  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.09) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 1.63))

𝑀𝑀𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑌𝑌𝑃𝑃𝐴𝐴 = (−0.11 + (𝑦𝑦_1_1 ∗ 1.09) + (𝑦𝑦_1_2 ∗ −2.69) − +(𝑦𝑦_1_3 ∗ −0.55)
+ (𝑦𝑦_1_4 ∗ −2.14) + (𝑦𝑦_1_5 ∗ −0.94) + (𝑦𝑦_1_6 ∗ −1.21)

Equations for Quasi-Newton (Three Perceptron Layers) AM Model 

The scaled values of X1 to X5 used in the AM Peak period calculations for the Quasi-Newton 
method with three perceptron layers were the same as the scaled values used for AM Peak period 
calculations with two perceptron layers. 

𝑦𝑦_1_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.53 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 0.33) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ 0.27)  +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ −0.16)
+  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.02) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ −0.33))

𝑦𝑦_1_2 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.31 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠𝑋𝑋1 ∗ −0.09) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ −0.49)  + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ −0.01)
+  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.02) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 0.07))

𝑦𝑦_1_3 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.29 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠𝑋𝑋1 ∗ 0.23) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ −1.69) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠𝑋𝑋3 ∗ 0.01)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ 0.03) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 1.52))

𝑦𝑦_2_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.54 +  (𝑦𝑦_1_1 ∗ 1.51) + (𝑦𝑦_1_2 ∗ 0.76) +  (𝑦𝑦_1_3 ∗ −1.32)) 

𝑦𝑦_2_2 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−1.94 + (𝑦𝑦_1_1 ∗ −0.39) + (𝑦𝑦_1_2 ∗ −1.71) + (𝑦𝑦_1_3 ∗ 0.29)) 

𝑦𝑦_2_3 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (1.43 +  (𝑦𝑦_1_1 ∗ 0.70) + (𝑦𝑦_1_2 ∗ 0.25) +  (𝑦𝑦_1_3 ∗ 1.04)) 

𝑦𝑦_2_4 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.05 +  (𝑦𝑦_1_1 ∗ −0.77) + (𝑦𝑦_1_2 ∗ −0.51) + (𝑦𝑦_1_3 ∗ −0.25)) 

𝑦𝑦_2_5 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.76 + (𝑦𝑦_1_1 ∗ −0.15) + (𝑦𝑦_1_2 ∗ 0.82) + (𝑦𝑦_1_3 ∗ 1.99)) 

𝑦𝑦_2_6 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (1.55 + (𝑦𝑦_1_1 ∗ 0.12) + (𝑦𝑦_1_2 ∗ −0.33) +  (𝑦𝑦_1_3 ∗ −1.35)) 

𝑦𝑦_2_7 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.02 +  (𝑦𝑦_1_1 ∗ 0.37) + (𝑦𝑦_1_2 ∗ 0.33) +  (𝑦𝑦_1_3 ∗ 0.18)) 

𝑦𝑦_2_8 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.13 + (𝑦𝑦_1_1 ∗ −0.33) + (𝑦𝑦_1_2 ∗ −0.26) + (𝑦𝑦_1_3 ∗ 0.59)) 

𝑦𝑦_2_9 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−1.89 +  (𝑦𝑦_1_1 ∗ −1.69) + (𝑦𝑦_1_2 ∗ 0.33) +  (𝑦𝑦_1_3 ∗ 1.17)) 
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𝑀𝑀𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑌𝑌𝐴𝐴𝐴𝐴 = (0.22 + (𝑦𝑦_2_1 ∗ −0.98) + (𝑦𝑦_2_2 ∗ 1.23) + (𝑦𝑦_2_3 ∗ 1.12) + (𝑦𝑦_2_4 ∗ −1.6)
+ (𝑦𝑦_2_5 ∗ −1.05) + (𝑦𝑦_2_6 ∗ 1.34) + (𝑦𝑦_2_7 ∗ 0.27) + (𝑦𝑦_2_8 ∗ −0.35)
+ (𝑦𝑦_2_9 ∗ 1.2) 

 
Equations for Quasi-Newton (Three Perceptron Layers) Mid-Day Model 

The scaled values of X1 to X5 used in the Mid-Day Peak period calculations for the Quasi-Newton 
method with three perceptron layers were the same as those of Quasi-Newton method with two 
perceptron layers.  

𝑦𝑦_1_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (1.26 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 0.34) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ −0.39)  + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ 0.03)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.02) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 0.07)) 

𝑦𝑦_1_2 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.32 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 0.14) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ 0.03)  +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ 0.02)
+  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.01) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 0.02)) 

𝑦𝑦_1_3 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−1.69 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_ 1 ∗ −0.57) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ 0.8)  +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ 0.07)
+  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ 0.04) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ −0.18)) 

𝑦𝑦_2_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.44 +  (𝑦𝑦_1_1 ∗ −1.12) + (𝑦𝑦_1_2 ∗ 0.87) + (𝑦𝑦_1_3 ∗ −0.54)) 

𝑀𝑀𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑌𝑌𝐴𝐴𝑖𝑖𝑎𝑎−𝐷𝐷𝑎𝑎𝐷𝐷 = (0.1 + (𝑦𝑦_2_1 ∗ 1.62) 

 

Equations for Quasi-Newton (Three Perceptron Layers) PM Model 

𝑦𝑦_1_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.25 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 0.26) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ −1.1)  + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ 0.12)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.09) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 0.8)) 

𝑦𝑦_1_2 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.15 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ −1.19) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ −0.08)  + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3
∗ −0.89) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ 0.08) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 0.68)) 

𝑦𝑦_1_3 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.03 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 0.28) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ −0.19)  + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ 0.14)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.02) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 041)) 

𝑦𝑦_2_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.45 +  (𝑦𝑦_1_1 ∗ 2.69) + (𝑦𝑦_1_2 ∗ 0.03) +  (𝑦𝑦_1_3 ∗ −0.82)) 

𝑦𝑦_2_2 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−.11 + (𝑦𝑦_1_1 ∗ −0.71) + (𝑦𝑦_1_2 ∗ 0.41) + (𝑦𝑦_1_3 ∗ 1.17)) 

𝑦𝑦_2_3 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.32 +  (𝑦𝑦_1_1 ∗ −1.98) + (𝑦𝑦_1_2 ∗ 0.31) +  (𝑦𝑦_1_3 ∗ 1.17)) 

𝑦𝑦_2_4 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.59 + (𝑦𝑦_1_1 ∗ −1.84) + (𝑦𝑦_1_2 ∗ −0.59) +  (𝑦𝑦_1_3 ∗ −1.14)) 

𝑦𝑦_2_5 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (2.47 +  (𝑦𝑦_1_1 ∗ −0.1) + (𝑦𝑦_1_2 ∗ 0.04) + (𝑦𝑦_1_3 ∗ −2.22)) 

𝑦𝑦_2_6 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.55 +  (𝑦𝑦_1_1 ∗ 1.09) + (𝑦𝑦_1_2 ∗ 0.69) +  (𝑦𝑦_1_3 ∗ 1.52)) 

𝑦𝑦_2_7 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (1.44 +  (𝑦𝑦_1_1 ∗ −0.14) + (𝑦𝑦_1_2 ∗ −1.19) + (𝑦𝑦_1_3 ∗ −1.27)) 

𝑦𝑦_2_8 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−2.5 + (𝑦𝑦_1_1 ∗ −2.04) + (𝑦𝑦_1_2 ∗ 1.92) + (𝑦𝑦_1_3 ∗ 2.29)) 

𝑦𝑦_2_9 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.28 +  (𝑦𝑦_1_1 ∗ −1.63) + (𝑦𝑦_1_2 ∗ 1.43) +  (𝑦𝑦_1_3 ∗ 1.34)) 
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𝑦𝑦_2_10 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−2.36 +  (𝑦𝑦_1_1 ∗ −2.65) + (𝑦𝑦_1_2 ∗ 1.57) + (𝑦𝑦_1_3 ∗ 2.56)) 

 

𝑀𝑀𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑌𝑌𝑃𝑃𝐴𝐴 = (0.68 + (𝑦𝑦_2_1 ∗ 1.35) + (𝑦𝑦_2_2 ∗ −1.29) + (𝑦𝑦_2_3 ∗ 2.40) + (𝑦𝑦_2_4 ∗ 1.27)
+ (𝑦𝑦_2_5 ∗ −1.08) + (𝑦𝑦_2_6 ∗ 1.47) + (𝑦𝑦_2_7 ∗ −0.89) + (𝑦𝑦_2_8 ∗ −1.32)
+ (𝑦𝑦_2_9 ∗ −0.49) + (𝑦𝑦_2_10 ∗ 1.01) 

 

Equations for Quasi-Newton (Five Perceptron Layers) AM Model 

The scaled values of X1 to X5 used in the AM Peak period calculations for the Quasi-Newton 
methods with five perceptron layers were same as the scaled values used for AM Peak period 
calculations with two and three perceptron layers. 

𝑦𝑦_1_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.99 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 0.17) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ −0.05)  + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3
∗ −0.29) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.05) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ −0.52)) 

𝑦𝑦_1_2 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.05 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ −0.01) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ −0.09)  + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3
∗ −0.04) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.01) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ −0.07)) 

𝑦𝑦_1_3 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−1.9 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ −0.84) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ −2.99) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ 0.31)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ 0.01 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ −2.37)) 

𝑦𝑦_2_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.28 + (𝑦𝑦_1_1 ∗ 1.31) + (𝑦𝑦_1_2 ∗ −0.69) +  (𝑦𝑦_1_3 ∗ −0.35)) 

𝑦𝑦_2_2 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−.55 +  (𝑦𝑦_1_1 ∗ 1.04) + (𝑦𝑦_1_2 ∗ 0.41) +  (𝑦𝑦_1_3 ∗ 1.17)) 

𝑦𝑦_2_3 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.29 +  (𝑦𝑦_1_1 ∗ 0.02) + (𝑦𝑦_1_2 ∗ 0.65) +  (𝑦𝑦_1_3 ∗ 0.01)) 

𝑦𝑦_3_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.01 + (𝑦𝑦_2_1 ∗ −0.09) + (𝑦𝑦_2_2 ∗ −0.48) +  (𝑦𝑦_2_3 ∗ 0.45)) 

𝑦𝑦_3_2 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.16 +  (𝑦𝑦_2_1 ∗ −1.15) + (𝑦𝑦_2_2 ∗ 0.63) + (𝑦𝑦_2_3 ∗ 0.59)) 

𝑦𝑦_3_3 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.13 +  (𝑦𝑦_2_1 ∗ −0.01) + (𝑦𝑦_2_2 ∗ 0.14) + (𝑦𝑦_2_3 ∗ 0.32)) 

𝑦𝑦_4_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.05 +  (𝑦𝑦_3_1 ∗ 0.9) + (𝑦𝑦_3_2 ∗ 1.32) +  (𝑦𝑦_3_3 ∗ 0.29)) 

 

Equations for Quasi-Newton (Five Perceptron Layers) Mid-Day Model 

𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 =
𝑋𝑋1 − 3.91

2.70  

𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 =
𝑋𝑋2 − 6344.63

4255.46  

𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 =
𝑋𝑋3 − 12.78

6.12  

𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 =
𝑋𝑋4 − 15.49

10.96  

𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 =
𝑋𝑋5 − 16.62

10.82  
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𝑦𝑦_1_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.84 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ −0.27) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2)  + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ 0.09)
+  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.06) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ −0.79))

𝑦𝑦_1_2 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (1.65 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 0.38) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ −1.54) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ −0.4)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ 0.16) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 1.66))

𝑦𝑦_1_3 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.38 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 0.02) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ 0.19)  +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ 0.01)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.01 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ −0.08))

𝑦𝑦_2_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.6 +  (𝑦𝑦_1_1 ∗ 1.61) + (𝑦𝑦_1_2 ∗ 1.76) +  (𝑦𝑦_1_3 ∗ −0.87)) 

𝑦𝑦_2_2 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.2 +  (𝑦𝑦_1_1 ∗ 1.03) + (𝑦𝑦_1_2 ∗ 0.04) +  (𝑦𝑦_1_3 ∗ −0.19)) 

𝑦𝑦_2_3 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.42 + (𝑦𝑦_1_1 ∗ 0.29) + (𝑦𝑦_1_2 ∗ −0.53) +  (𝑦𝑦_1_3 ∗ −0.62)) 

𝑦𝑦_3_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.41 +  (𝑦𝑦_2_1 ∗ −1.37) + (𝑦𝑦_2_2 ∗ 0.22) + (𝑦𝑦_2_3 ∗ 0.42)) 

𝑦𝑦_3_2 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.21 + (𝑦𝑦_2_1 ∗ −1.42) + (𝑦𝑦_2_2 ∗ −0.14) +  (𝑦𝑦_2_3 ∗ 0.36)) 

𝑦𝑦_3_3 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.12 +  (𝑦𝑦_2_1 ∗ 0.88) + (𝑦𝑦_2_2 ∗ −0.69) + (𝑦𝑦_2_3 ∗ 1.36)) 

𝑦𝑦_4_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.12 + (𝑦𝑦_3_1 ∗ 1.27) + (𝑦𝑦_3_2 ∗ −1.67) +  (𝑦𝑦_3_3 ∗ −1.68)) 

Equations for Quasi-Newton (Five Perceptron Layers) PM Model 

𝑦𝑦_1_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.13 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 0.05) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ 0.05)  +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ 0.02)
+  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ 0.01) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 0.11))

𝑦𝑦_1_2 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (3.06 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 2.38) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ −0.75)  + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ 1.67)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.15) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ −2.21))

𝑦𝑦_1_3 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.39 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ −0.05) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ 0.79)  + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ 0.07)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ 0.09 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ −0.59))

𝑦𝑦_2_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.38 +  (𝑦𝑦_1_1 ∗ −0.99) + (𝑦𝑦_1_2 ∗ −0.92) + (𝑦𝑦_1_3 ∗ 2.04)) 

𝑦𝑦_2_2 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.09 +  (𝑦𝑦_1_1 ∗ −0.39) + (𝑦𝑦_1_2 ∗ −0.99) + (𝑦𝑦_1_3 ∗ 3.53)) 

𝑦𝑦_2_3 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.09 + (𝑦𝑦_1_1 ∗ −0.53) + (𝑦𝑦_1_2 ∗ −0.04) +  (𝑦𝑦_1_3 ∗ 0.13)) 

𝑦𝑦_3_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−1.19 + (𝑦𝑦_2_1 ∗ −3.39) + (𝑦𝑦_2_2 ∗ 2) +  (𝑦𝑦_2_3 ∗ −0.6)) 

𝑦𝑦_3_2 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−1.02 +  (𝑦𝑦_2_1 ∗ −1.22) + (𝑦𝑦_2_2 ∗ 0.85) +  (𝑦𝑦_2_3 ∗ 0.97)) 

𝑦𝑦_3_3 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−1.03 +  (𝑦𝑦_2_1 ∗ −0.07) + (𝑦𝑦_2_2 ∗ 0.38) + (𝑦𝑦_2_3 ∗ −1.04)) 

𝑦𝑦_4_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.03 +  (𝑦𝑦_3_1 ∗ 0.64) + (𝑦𝑦_3_2 ∗ 0.48) +  (𝑦𝑦_3_3 ∗ −0.02)) 

𝑦𝑦_4_2 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.35 +  (𝑦𝑦_3_1 ∗ 0.59) + (𝑦𝑦_3_2 ∗ −0.85) + (𝑦𝑦_3_3 ∗ 2.01)) 
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Equations for Levenberg-Marquardt (Three Perceptron Layers) AM Model 

The scaled values of X1 to X5 used in the AM Peak period calculations for the Levenberg-
Marquardt method were same as the scaled values used for AM Peak period calculations using the 
Quasi-Newton methods. 

𝑦𝑦_1_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (1.03 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ −0.66) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ 3.64)  + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ 0.75)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.15) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ −1.13))

𝑦𝑦_1_2 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.35 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ −0.28) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ 0.21)  + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ 1.98)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.44) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 0.1))

𝑦𝑦_1_3 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.15 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 0.1) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ 0.01) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ 0.01)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ 0.01 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 0.04))

𝑦𝑦_2_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.53 + (𝑦𝑦_1_1 ∗ −0.04) + (𝑦𝑦_1_2 ∗ −0.01) +  (𝑦𝑦_1_3 ∗ 1.48)) 

𝑦𝑦_2_2 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (3.39 +  (𝑦𝑦_1_1 ∗ −0.25) + (𝑦𝑦_1_2 ∗ 0.06) + (𝑦𝑦_1_3 ∗ 0.98)) 

𝑦𝑦_2_3 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.96 +  (𝑦𝑦_1_1 ∗ 0.39) + (𝑦𝑦_1_2 ∗ −0.09) +  (𝑦𝑦_1_3 ∗ 1.48)) 

𝑦𝑦_2_4 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (1.71 +  (𝑦𝑦_1_1 ∗ −2.98) + (𝑦𝑦_1_2 ∗ 3.37) + (𝑦𝑦_1_3 ∗ 0.57)) 

Equations for Levenberg-Marquardt (Three Perceptron Layers) Mid-Day Model 

The scaled values of the inputs X1 through X5 were the same as the scaled inputs used for the 
Mid-Day Peak period Quasi-Newton analysis with five perceptron layers. 

𝑦𝑦_1_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.12 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 0.11) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ 0.12)  + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ 0.01)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.01) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 0.05))

Equations for Levenberg-Marquardt (Three Perceptron Layers) PM Model 

𝑦𝑦_1_1 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.09 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 0.49) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ −1.78)  + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3
∗ −0.81) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.08) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 0.18)) 

𝑦𝑦_1_2 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.15 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ −1.27) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ 2.79) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ 0.02)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.06) + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ −0.39))

𝑦𝑦_1_3 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (−0.09 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 0.06) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ 0.05)  + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ 0.14)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ 0.07 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ 0.29))

𝑦𝑦_1_4 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (0.61 +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 1.59) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ −0.53) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ −0.3)
+ (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋4 ∗ −0.17) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋5 ∗ −0.97))

𝑦𝑦_1_5 =  𝑠𝑠𝐴𝐴𝑛𝑛ℎ (2.58 + (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋1 ∗ 2.04) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋2 ∗ 1.04) +  (𝑃𝑃𝑠𝑠𝐴𝐴𝐷𝐷𝐴𝐴𝑠𝑠_𝑋𝑋3 ∗ −0.78)
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