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Executive Summary 
Among elements of an intelligent transportation system for autonomous vehicles are embedded 
sensors for vehicle-to-structure and vehicle-to-road communications. Continuous operation of 
these sensors requires local electric power, especially in remote areas. Electric power sources are 
also needed for the structural health monitoring system, that is, for detecting any structural dam-
age, whether natural (i.e. earthquake) or manmade (i.e. accident). Here we are providing results of 
part I of our unsteady numerical investigations for a generic vehicle (Ahmed body) passing under 
a freeway overpass at different distances from the side bridge columns. The study aimed at under-
standing the wind load on the bridge columns and wind energy potential generated from the pass-
ing vehicles at different distances from the bridge columns under a typical freeway overpass that 
could be used for generating electric power. Results have shown that when the vehicle is at 0.75W 
distance from the bridge columns, an unsteady wind speed of up to 24 m/s is observed at the 
columns with a pressure coefficient difference of 0.9. Here W is the width of the vehicle. These 
results indicate with an appropriate system for harnessing these wind energy potentials, significant 
renewable electric power could be generated with zero carbon footprint. 
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I. Background

According to the US Department of Transportation,1 in 2017, the total highway vehicle-miles 
travelled was estimated at 3,212,347 with the light duty vehicles, short-wheel-base accounted for 
2,220,801 and trucks at 181,490. These data indicate the potential of energy generated on a 
daily basis by vehicles’ travel which has not been captured for electric power generation. With the 
advancement in autonomous vehicles, a high precision global navigation satellite system (GNSS) 
in conjunction with local sensors for position attitude and navigation will provide accurate vehicle 
positioning as it moves through the freeways and highways. An autonomous vehicle must be able 
to sense its position, navigate itself toward a destination, and avoid obstructions (vehicles, freeway 
infrastructures, etc.). Road sensors could be critical elements in maintaining navigation. Local 
power generated from passing vehicles will provide the prospect for independent power generation 
for road sensors.  

Slipstream is the transient airflow around a moving vehicle. It is highly turbulent and is divided 
into four regions as depicted in Figure 1. The nose region characterized by a peak in 
pressure along the stagnation streamline, the boundary region where boundary layer growth is 
observed along the length of the vehicle, the tail or near wake region where there are shear 
layer separations with periodic streamwise vortices, and finally the far wake region where 
gradual decay of air velocity is observed.  

Figure 1. Flow around a Moving Vehicle2 

Previous investigations of the slipstream of moving trains,3–7 either on a scaled model or on a full 
scale, have shown that ahead of the nose, there are peak velocities that are shape-dependent, the 
higher the blockage the nose imposes, the larger the peak velocity. Along the body of the train, 
there are regions of zero, positive, and negative pressures that are related to the gap spacing 
between the loaded containers for the freight trains and inter-carriage for the passenger trains. The 
spacing creates large turbulent scales which for the freight trains estimated to be between 3m–7m, 
and smaller turbulent scales within the boundary layer. 

The tail region initially experiences a negative peak pressure, followed by a positive peak pressure, 
which is much smaller in magnitude than the peak pressure observed upstream of the nose region. 
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Here, the tail shape has a great impact on the magnitude of the pressure peaks. Finally, in the far 
wake region, the pressure differential approaches zero and the air velocity is the same as the 
ambient air condition.  

Other investigations8–11 on the flow around vehicles and bluff objects have shown their 
aerodynamic details with and without crosswind.  

Studies on loads induced on road signs (roadside-mounted or over hanged) by vehicle-induced 
gusts12,16 have provided important results as related to the effects of vehicles’ shape and length, 
distance from the sign, and the size of the sign, on the magnitude of the load imposed. Force 
induced on road signs is proportional to the dynamic pressure, vehicle’s frontal area, passing 
distance, and a friction coefficient which is defined in terms of a universal load curve. The forces 
generated from passing vehicles are due to static pressure variations near the moving vehicles, the 
larger the variations, the larger the forces. Also, the pedestrian barriers and signs mounted at higher 
than 2m elevation experience a relatively constant force. While sign shape does not affect the 
imposed force, sign edging with frames increases it. These results indicate that as a vehicle passes; 
initially there is a large peak in induced force from the generated wind shear, which subsides to a 
smaller value with the passing of the vehicle. When the area is large, the forces are less, leading to 
reduced variations in flow-induced shock and vibration. 

The study aimed at understanding details of wind shear from passing vehicles under the freeway 
overpasses, before conducting performance optimization for an innovative wind harnessing 
geometry and system, constitute of an optimized guide-vane enclosure and a high-efficiency 
vertical axis wind turbine for a fully functional model to capture wind energy from passing vehicles 
for local electric power generation. Our previous investigations17–19 have resulted in the 
development of a wind turbine system that has been tested in urban areas for capturing local wind 
energy for generating electricity. Based on the results of the proposed investigation, provided the 
wind shear generated from the passage of vehicles is strong and sufficient for electric power 
generation, a system utilizing the existing high-efficiency vertical axis wind turbine will be 
developed for installation under the freeway overpasses for generating electricity from passing 
vehicles. 

II. Numerical Investigations

2.1 Numerical Model 

An Ahmed body was used as a vehicle for our simulations. The Ahmed body has been used 
extensively for research into applications of new concepts in vehicle aerodynamics.20 Figures 2 and 
3 show the Ahmed body and the bridge columns models along with the computational grid. The 
Ahmed body had dimensions of 1.62 m height (H), 5 m length (L), and 1.86 m width (W) with 
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a hatchback rear at 35 degrees slope angle from the top, starting at 4.14 m from the vehicle’s front. 
These dimensions are comparable to a small passenger van/SUV. The vehicle was spaced at 0.28 
m above the road.  

The control volume for the computational domain that encompasses the bridge has dimensions of 
X = 30 m, Y = 11.25m, and Z = 14.5m with a grid size of 0.0375m. Here X is the direction of the 
vehicle, Y is the perpendicular distance and Z is the spanwise direction (across the road). The 
overpass bridge had a height of about 6.2 m. The blockage ratio, the ratio of the projected area of 
the Ahmed body to the projected area of the bridge underpass was less than 3%. 

An overset grid known as Chimera or overlapping techniques was used to generate the grids for the 
simulations. It provides better control of the mesh generation and it has been used for unsteady 
simulations of moving objects as in the case of a moving vehicle. Figure 4 shows the two grids. For 
the entire computational domain, a hybrid mesh with an unstructured polyhedral grid was used, 
and for the moving vehicle away from the wall and a structured 15-layer hexahedral grid near the 
wall was used. The first grid point near the Ahmad body surface was at 0.025 mm and in the far-
field, the maximum grid size was 0.1 m. The growth rate between the near and far-fields was 1.3. 
The grid dependency test was performed using the vehicle’s drag coefficient. Less than 5% 
variation in drag coefficient was found when the number of cells exceeded 3 million and thus the 
number of cells was set at 3.5 million. For the unsteady simulations where the overset grid was 
used the cell number was at 14 million. 

Simulations were performed for the moving vehicle having distances of 0.75W, 1W, and 2W 
away from the column rows. Here W is the width of the vehicle. 

Figure 2. Top, Back, and Side Views of the Bridge Columns along with the Ahmed Body 

Top 
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Figure 2. (continued from previous page) 

Back 

Side 

Figure 3. Computational Grids, Stationary, and Overset Grids 
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2.2 Numerical Simulations 

Three-dimensional incompressible unsteady Reynolds-Averaged Navier-Stokes (U-RANS) 
equations were solved, using the shear stress transport (SST) k-ω turbulence model. The density 
was constant. The freestream mean velocity in the axial direction was 23 m/sec. which corresponds 
to a Reynolds number based on an equivalent diameter based on the project vehicle area of 
2.9x106. The computational fluid dynamics software Star CCM+ from Siemens on a Linux-based 
high-performance computing platform with 84 cores were used for all the simulations. Between 
150–220 hours of computational time were used for each simulation and the results presented here 
are starting 11 sec. after the start of each simulation with a time step Δt = 0.0007 sec.   

III. Results and Discussion

Figures 4 and 5 show contours of mean pressure and axial mean velocity around the vehicle as it 
moves past the columns at three spanwise distances Z of 0.75W, 1W, and 2W. For all cases 
studied, the pressure is high at the front of the vehicle (the front stagnation point), reduces to a 
negative pressure due to the flow acceleration, increases slightly along the body of the vehicle, but 
still at negative pressure, due to a slight flow deceleration, remains negative at the back of the 
vehicle with pressure recovery downstream. The vehicle experiences significant pressure drag with 
an approximate pressure drag coefficient of 0.28. Here the drag coefficient was calculated as: 

𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
∇𝑝𝑝

1
2𝜌𝜌𝑈𝑈∞

2 𝐴𝐴𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝𝐷𝐷𝑝𝑝𝑝𝑝𝐷𝐷𝑝𝑝

Here ∇𝑝𝑝,𝜌𝜌,𝑎𝑎𝑎𝑎𝑎𝑎 𝑈𝑈∞  are respectively pressure differential across the vehicle, air density, and free 
stream mean velocity, and 𝐴𝐴𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝𝐷𝐷𝑝𝑝𝑝𝑝𝐷𝐷𝑝𝑝 of the vehicle. The calculated drag coefficient is comparable 
to the published drag coefficient of approximately 0.3 for the Ahmed body which includes both 
pressure and viscous drag.  

As the vehicle gets closer to the columns, a region of high pressure is formed upstream of the 
vehicle and the columns. The shorter the distance, the higher the pressure force. The maximum 
force experienced is approximately 200 pascals (pa). 

The variation in the mean velocity is inversely proportional to the variation in static pressure, 
beginning with zero velocity at the stagnation point and accelerating to an approximate value of 
30 m/sec. as the flow moves toward the body, then reduces slightly along the body, before 
separating and shedding vortices into the wake. In all cases, velocity is zero on the vehicle’s body 
due to the no-slip boundary condition.  
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Flow separation in the wake creates oscillatory flow, ejecting high momentum fluids downstream. 
Significant oscillatory flow is seen at 1W–2W downstream, beyond which the wake expands and 
dissipates. At 6W downstream, the wake width has expanded to approximately 6W. 

As the vehicle gets closer to the columns, high momentum oscillatory flow impinges on the 
columns. It is interesting to note that significant expansion of the wake is seen downstream, beyond 
the first column for Z = 0.75W and 1W which indicates a potential source for capturing wind 
energy at these locations. 

Figure 4. Contours of Mean Pressure at Four Different Time Steps at Z = 0.75W, 1W, and 2W 

2W 1W 0.75W 
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Figure 5. Contours of Mean Velocity at Four Different Time Steps at Z= 0.75W, 1W, and 2W 

2W 1W 0.75W 

Figures 6 and 7 show contours of vorticity and turbulent kinetic energy (TKE) at four different 
time steps for Z = 0.75W, 1W, and 2W. The vehicle’s near wake experiences a significant increase 
in vorticity and TKE which are enhanced as the vehicle passes the columns. At Z = 0.75, with the 
passing of the vehicle, the vortices impinging on the columns and increased TKE is observed 
adjacent and downstream of the columns. These results again confirm that just before column 1 
and most likely upstream of the columns 4 are two potential areas with increased mean velocity 
and vorticity that could be used for harnessing wind energy from the passing vehicles. They also 
point to the fact that any kind of detecting sensors placed on the columns should be designed to 
sustain these oscillatory loads, without compromising their performances.  
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Figure 6. Contours of Mean Vorticity at Four Different Time Steps at Z= 0.75W, W, and 2W 

2W 1W 0.75W 
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Figure 7. Contours of Turbulent Kinetic Energy (TKE) at Four Different 
Time Steps at Z = 0.75W, W, and 2W 

2W 1W 0.75W 

To assess the spanwise variations of the wind shear from the passing vehicle, contours of mean 
velocity, mean pressure coefficient, vorticity, and turbulent kinetic energy, along with velocity 
vector have been presented at perpendicular planes to the vehicle directions. The contours were 
obtained with the vehicle being at 0.75W, 1W, and 2W distances from the bridge columns. Figure 
8 show the vehicle and the columns and measurement locations. 

The pressure coefficient was calculated as follows where the reference static pressure was zero: 

𝐶𝐶𝐷𝐷 =
∇𝑝𝑝

1
2 𝜌𝜌𝑈𝑈∞

2
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Figure 8. Measurement Locations 

Figures 9–12 show frozen contours of mean velocity, pressure coefficient, vorticity, and turbulent 
kinetic energy (TKE), along with mean velocity vectors at different spanwise locations when the 
vehicle is at 2W, 1W, and 0.75W away from the columns. Here L1 is the near-wake of the vehicle, 
L2 is right at the back of the vehicle, L3 corresponds to the vehicle mid-section, and L4 is right 
in front of the vehicle aligned with the front stagnation location. For all spanwise distances, mean 
velocity is non-uniform with areas of low and high-velocity corresponding to the shear flows 
separating from the vehicle and penetrating the low-pressure region of the wake. The 
variations are more pronounced at the back of the vehicle where the cavity region acts as a 
sink attracting unsteady flow penetration into this region. 

Significant velocity gradients are seen on the top of the vehicle where the flow is separating from 
the body due to the slanted surfaces where the velocity goes from around 10 m/s to as high as 30 
m/s. 

Variations of the pressure coefficient are in opposite direction to the corresponding variations of 
the mean velocity; it increases when velocity decreases and vice versa. 

At L2&L3, for 0.75W distance, the wind generated from the vehicle reaches the columns with 
wind speed reaching approximately 24 m/s which is significant wind energy in generating 
electricity. The corresponding difference in the pressure coefficient is nearly 0.9. Depending on 
what kind of mechanism is used to generate electricity, whether it is a diaphragm that oscillated 
from passing vehicles or a low friction vertical axis wind turbine, the wind energy potential could 
provide sustained electricity for measurement and monitoring devices, lightening which increases 
safety and security, and energy security with a reduced carbon footprint. 
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Figure 9. Frozen Contours of Mean Velocity for Planes Perpendicular to the Vehicle Direction 
at Different Locations for Three Spanwise Distances of 2W, 1W, and 0.75W from the Columns 

2W 1W 0.75W 

L1 

L2 

L3 
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Figure 10. Frozen Contours of Pressure Coefficient for Planes Perpendicular to the Vehicle 
Direction at Different Locations for Three Spanwise Distances of 2W, 1W, and 0.75W from 

the Columns 

2W 1W 0.75W 

L1 

L2 

L3 
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Figure 11. Vector Plots of Mean Velocity for Planes Perpendicular to the Vehicle Direction at 
Different Locations for Three Direct Distances of 2W, 1W, and 0.75W from the Columns 

2W 1W 0.75W 

L1 

L2 

L3 

With increasing distance from the columns, significant changes in vorticity are observed. Vorticity 
is calculated from: 

𝜔𝜔𝑧𝑧 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 −

𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕

Here 𝜔𝜔𝑧𝑧 is vorticity in the plane perpendicular to the vehicle direction, U and V are axial and 
vertical mean velocity, and x and y are axial and vertical directions. Results show with reduced 
distance between the vehicle and the columns, vorticity is reduced. Circulation is an integration of 
the vorticity in a plane and is a measure of fluid rotation. Reducing vorticity reduces fluid rotation 
which means the rotational flow is not prominent when the vehicle is close to the columns. 

Vorticity generated at the back of the vehicle results in an increase in TKE which is high on the 
top and at the center wake. However, near the columns, TKE is nearly zero and thus at these 
locations normal turbulent stress is not significant. 
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Figure 12. Frozen Contours of Vorticity for Planes Perpendicular to the Vehicle Direction at 
Different Locations for Three Direct Distances of 2W, 1W, and 0.75W from the Columns 

2W 1W 0.75W 

L1 

L2 

L3 
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Figure 13. Frozen Contours of Turbulent Kinetic Energy for Planes Perpendicular to the 
Vehicle Direction at Different Locations for Three Direct Distances of 2W, 1W, and 0.75W 

from the Columns 

2W 1W 0.75W 

L1 

L2 

L3 

IV. Conclusion 

Unsteady numerical simulations of an Ahmed body passing under a freeway overpass at different 
distances from the side columns have been performed. The investigations have been performed for 
three vehicle distances to the bridge columns of 2W, 1W, and 0.75W. Here W is the width of the 
vehicle. The goal of the investigation was to identify any wind energy potential from the passing 
of the vehicle that could be harnessed for generating electricity. Results indicate with the passing 
of the vehicle, oscillatory flow is generated which is significant when the vehicle is at 0.75W from 
the columns. At this distance, the vorticity and TKE are reduced and thus turbulent normal stress 
and fluid rotation are minimized. The study shows with increased traffic, with an appropriate high-
efficiency wind capturing system, significant electrical power could be generated which could be 
used to power local monitoring sensors and lighting for safety and security. 
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