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EXECUTIVE SUMMARY

Studies have indicated that emotions can be significantly influenced by environmental 
factors, contextual settings, and social interactions. These factors can also expressively 
influence a driver’s emotional state, and when it comes to driving, they can significantly 
affect a person’s driving behavior. In addition, studies suggest that different emotions 
result in specific variations in humans’ facial expressions, physiological measures, and 
specific behaviors. This research proposes to develop a novel semi-automated approach 
for understanding the effect of environmental factors on drivers’ emotions and behavioral 
changes: specifically, computer vision and data processing techniques are used to 
classify drivers’ emotions based on data collected in environmental settings through 
a naturalistic driving study. This setup includes a frontal road and facial camera, noise 
sensors, a smart watch for tracking physiological measurements, and a Controller Area 
Network (CAN) serial data logger. A framework is proposed for conducting a long-term 
naturalistic study with participants, where elements such as environmental information 
and drivers’ emotional and behavioral information are automatically monitored and 
collected. To achieve this, a semantic segmentation using GIST feature is implemented 
on frontal road videos to automatically understand different environmental factors, such 
as traffic density, traffic signs, road type, and the amount of vegetation. Moreover, the 
noise level variation inside and outside of the vehicle is measured by noise sensors. In 
addition to environmental changes, the research team analyzes the video of the front-
seat passengers using the state-of-the-art facial emotional analysis software (e.g., 
Affectiva SDK) to identify passengers’ positive and negative emotions. Through the use 
of wearables (i.e., smart watches), participants’ physiological information (i.e., heart rate 
and skin temperature) is collected in order to identify sudden physiological changes while 
driving. This research will provide an effective way for Caltrans to identify how different 
factors may positively and negatively influence certain driving behaviors by analyzing the 
changes in drivers’ emotions based on different environmental and contextual settings. 

If Caltrans wants to implement the methods developed  herein at a larger scale, the 
research team will seek opportunities with Caltrans’ current vendors that provide driver 
behavior analytics, doing so in order to transfer the developed technology. Furthermore, 
as the demand for autonomous vehicles is expected to significantly increase within the 
next decade, a proper understanding of drivers’/passengers’ emotions, behavior, and 
preferences will be needed in order to create an acceptable level of trust with humans.
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I.  INTRODUCTION

According to a recent study by the American Automobile Association (AAA), nearly 80 
percent of drivers in the United States experience significant anger, aggression, or road rage 
annually (Johnson, 2016). Anger, which is referred to here as “road rage,” is not the only 
emotion that affects driving behaviors. Studies suggest that emotions such as happiness can 
degrade driving performance and affect the driver’s risk perception (Jeon, Walker, and Yim, 
2014; Hu, Xie, and Li, 2013).

Research in psychology suggests that emotions can significantly be influenced by 
environmental factors; for instance, human emotions are affected by the type of color and 
picture within the field of view (Nijdam, 2005; AL-Ayash et al., 2016), the noise level in the 
environment, type of music an individual is listening to (Koelsch, 2014), and so on. As a 
result, driving behaviors can also be affected by individuals’ emotion and mood (Hu, Xie, and 
Li, 2013). For instance, the surrounding landscape can have effects on driving behavior. 

In addition, autonomous cars are just entering the market and are expected to grow and 
account for 15 percent of total cars sold by 2030 (“Automotive Revolution & Perspective 
Towards 2030”, 2016). Prior to the large-scale introduction and adoption of autonomous 
vehicles, a number of underlying factors related to safety and trust in these systems must 
be evaluated and applied (Cunningham and Regan, 2015). For instance, with the recent 
reported crashes of semi-autonomous vehicles, serious concerns have been raised about 
how these vehicles can be fully adopted and trusted by the consumer (Higgins, Spector, and 
Colias, 2018). These accidents have flagged a significant concern in terms of safety, trust, 
and how to keep drivers alert in events of failure, where human decision-making and control 
need to overtake the autonomous system. 

In order to achieve healthy human–vehicle collaboration and trust, in addition to environmental 
sensing, autonomous vehicles need to be coded with a proper understanding of driver and 
passengers’ behavioral changes, which is currently non-existent in today’s semi-autonomous 
vehicles. By coupling environmental sensing and human sensing, one can understand how 
specific human behaviors and emotions are affected by spatial and temporal environmental 
factors (e.g., highways vs. country roads, traffic, scenery, and so on). Furthermore, a 
naturalistic driving study can provide detailed insight about how different drivers respond 
in various contextual settings; with access to such information, driving profiles can be 
developed, allowing autonomous vehicles to move towards user-centered autonomy, where 
they can better respond to the users’ needs, habits, or preferences in real time.

This paper proposes a novel automated approach for understanding the effect of environmental 
factors on drivers’ emotions and behavioral changes; specifically, computer vision and data 
processing techniques are used to classify drivers’ emotion and based on environmental 
settings through a naturalistic driving study. First is a review of the background literature on 
the effects of environmental factors on driving behaviors; then, a framework is proposed for 
understanding and identifying the influence of environmental factors on driving behaviors 
and emotions. Furthermore, a discussion is presented based on the preliminary results and 
a roadmap set out for future research in this area.
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II.  BACKGROUND STUDY

Defining behaviors and emotions has a long history in the psychological literature. The 
definition of emotion is still not entirely clear (Reisenzein, 2007; Burton, 2016). One of 
the popular definitions identifies an emotion as a complex mental state phenomenon that 
occurs spontaneously, has neurobiological activity, and is accompanied by psychological 
and physiological signs (e.g., change in blood pressure, voice tone, and so on) (Izard, 2009; 
Solomon, 2003). Researchers mostly agree that there exist a fixed number of emotions, 
called basic emotions, that underlie the other human emotions; however, there exists a 
debate about the number and type of basic emotions. For instance, Ekman (1992) defines 
six basic emotions (i.e., anger, disgust, fear, happiness, sadness, and surprise) and Izard 
(2009) defines ten (i.e., anger, contempt, disgust, distress, fear, guilt, interest, joy, shame, 
and surprise). One of the recently pursued areas of emotion and behavior research is 
automating emotion and behavior recognition.

During the past few years, automated emotion recognition, through facial, audio, and 
physiological cues, has gained more attention, as it has found applications in multiple 
areas such as marketing, medicine, entertainment, law, etc. The most important cues 
for understanding emotions in humans are visual. Humans use visual cues (i.e., facial 
expressions) for understanding each other when expressing emotions such as sadness, 
anger, happiness, etc. (Ratliff and Patterson, 2008). In addition to visual cues, physiological 
signs have been used in different areas of emotion recognition, as these measures are 
highly affected by the type of emotion being experienced; for instance, researchers have 
used electroencephalogram (EEG) results (Wu et al., 2017; Lan et al., 2016), temperature 
(T) (Gouizi, Reguig, and Maaoui, 2011; Lisetti and Nasoz, 2004), heart rate (HR) (Valenza 
et al., 2014; Guo et al., 2016), galvanic skin response (GSR) (Wen et al., 2014), and 
respiration (RSP) (Wong et al., 2010) to classify different emotional states participants were 
feeling. Although both facial emotional analysis and physiological cues have been used to 
understand driver’s emotions, using facial analysis has gained more attention as it is less 
costly and more practical compared to physiological data collection, such as EEGs, which 
are more intrusive (Vural et al., 2007).

The general procedure for understanding emotional cues using automated facial analysis in 
a spatial manner (i.e., with a single image) is as follows. (1) The image of a person showing 
an emotion goes through a pre-processing stage which removes noise from the picture. (2) 
The face is detected, and different facial features (i.e., eyes, eyebrows, lips, etc.) are tracked 
and extracted. There are a number of feature extraction algorithms that are currently widely 
used: e.g., geometric-based versus appearance-based (Kumari, Rajesh, and Pooja, 2015). 
(3) These features are fed into a classifier, such as support vector machine (SVM) or nearest 
neighbor (NN), to classify each expression (Kumari, Rajesh, and Pooja, 2015). Using these 
methods, many studies have attempted to better understand the causes of unsafe behaviors 
such as fatigue (Zhang and Hua, 2015), aggressive driving (Moriyama, Abdelaziz, and 
Shimomura, 2012), frustration (Abdíc et al., 2016), cognitive load (Fridman et al., 2018), and 
so on. Some of the studies, such as the one conducted by Fridman and colleagues (2019), 
have only used gaze and eye tracking, while others have looked at complete facial analysis 
(Fridman et al., 2019). Most of the studies were conducted either in a driving simulator or in 
an experimental setup (Jabon et al., 2011), while very few studies have looked at naturalistic 
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driving behavior (Fridman et al., 2019).

A naturalistic driving study referred as a research on drivers by recording non-intrusive data 
from a participant in driving, with the goal of keeping the situation as close as possible to a 
natural driving or so-called driving “in the wild” (Fridman et al., 2019). There have been a 
multiple naturalistic studies in the past that have aimed at gathering long-term data (Klauer et 
al., 2006; Neale et al., 2005; Dingus et al., 2006; Regan et al., 2013). However, most of these 
studies were conducted with the aim of understanding safety and crash-related events, not 
individual emotion analysis in a human-centered manner.   

One of the important environmental factors that can affect drivers’ emotions and behavior is 
vegetation and the cross-section of the road. Vegetation has a paradoxical two-fold impact on 
the driving process: (1) the effect of vegetation on the severity of crashes involving drivers in 
run-off crashes, and (2) the effect of vegetation on driving behavior and emotions (Fitzpatrick, 
Samuel, and Knodler, 2016).

The effect of trees on crash rate and severity is still not clear. Some studies suggest that 
having trees in the surrounding area may decrease the crash rate but increase the severity; 
as a result, these studies propose to remove roadside trees as a safe solution (Zeigler, 1987; 
Sullivan and Daly, 2005). However, that solution is neither sustainable nor environmentally 
friendly. Crashes involving fixed objects such as trees represent 46 percent of all fatal crashes 
(Dixon and Wolf, 2007). The most important reason behind this high fatality rate is that fixed 
objects are near the roadside; from both an economic and environmental point of view, it is 
costly to remove trees in large amounts (Fitzpatrick, Samuel, and Knodler, 2016). In addition, 
it should be noted that trees can make it difficult for the drivers to observe or predict a hazard 
(Fitzpatrick, Samuel, and Knodler, 2016). On the other hand, some studies (Mok, Landphair, 
and Naderi, 2006; Zeigler, 1987) suggest that in some cases trees do not increase the crash 
severity and actually significantly decrease the crash rate. All this together (Dixon and Wolf, 
2007) suggests that more data collection is required for understanding the true effect of 
vegetation and trees in urban areas on the crashes.

Moreover, as autonomous vehicles enter the transportation system, where they can 
communicate with each other through Internet of Things- (IoT-) enabled infrastructure, 
crashes due to human errors with roadside fixed elements (e.g., trees, poles, etc.) would be 
significantly decreased. In this situation, the vegetation and other environmental factors can 
have a second function: to enhance passengers’ emotions and mood.   

This study uses environmental sensors, facial emotion analysis, and heart rate data collected 
from smart watches to better understand the effect of environmental conditions (e.g., different 
road types) on driving behavior metrics (i.e., the number of hard accelerations, hard brakes, 
and so on). Specifically, the following research questions are investigated:

•	 How do environmental and contextual factors influence drivers’ emotion and behavior?

•	 Do specific behaviors change with respect to road type and condition?

•	 Does the amount of vegetation affect drivers’ emotions?



Mineta Transportat ion Inst i tute

5

III.  METHODOLOGY

A naturalistic driving study platform has been developed for this study and is described 
below. The pilot study presented in this paper aims to test the system and understand 
potential improvements. 

DATA COLLECTION

The in-cabin data collection setup for this study is depicted in Figure 1. Different streams 
of data are being collected, including: (1) video of the driver, (2) video of the outside area, 
(3) Controller Area Network (CAN) data for the driver’s trip details, and (4) heart rate of 
the driver. The videos of the driver and outside road are collected using a Z-Edge S3 Dual 
Dash Cam and stored on a micro SD card. The videos are then manually transferred to a 
local computer for processing. The travel data are collected using a CAN data collector. 
(A CAN bus is a serial broadcast bus which enables communication between all parts of 
the car system, similar to a microcontroller acting instead of a computer in a car.) For this 
study, the Automatic Pro device is used as the CAN data retriever. This device connects to 
the CAN bus serial of the car; collects all data related to travel such as start and end point, 
hard brakes, hard accelerations, mean speed, fuel usage, etc.; and transfers data to the 
online account of the user using 3G cellular coverage. The data then can be retrieved from 
the user’s online account as a CSV file. The heart rate of the participant is gathered using a 
Samsung Gear smart watch and exported as a CSV file. 

Figure 1.	 The Proposed Framework for Fusing Data Collected through Human 
Sensing and Environmental Sensing 

 
DATA ANALYSIS 

First, by inspecting the frontal road videos, different types of road are classified. In this 
paper, four different types of roads are classified, which include: (1) city streets, (2) one-
lane roads, (3) two-lane roads, and (4) highways of three or more lanes. The video of 
the frontal camera is then fed into SegNet (Badrinarayanan, Kendall, and Cipolla, 2017; 
Badrinarayanan, Handa, and Cipolla, 2015), a semantic segmentation algorithm that 
recognizes pixels representing a specific object such as a tree or car. Using a preliminary 
SegNet implementation in MATLAB, the average fraction of the tree in each video is 
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calculated. One frame per second of each frontal video is analyzed to calculate the average. 
Figure 1, A shows the tree fraction calculated for each road type sample. In addition, Figure 
1, C3 shows an example of how the semantic segmentation works, in this instance for 
defining the tree percentage. In this example, the green color shows the detected trees in a 
given frame. This implementation of semantic segmentation runs with 85 percent accuracy 
on defining trees on the training dataset, which is in an acceptable level for this study.  

Second, each epoch of road video is categorized based on the weather conditions. The 
classification categories are 1 (clear weather), 2 (cloudy weather), 3 (very cloudy weather), 
and 4 (rainy weather). For instance, Figure 1, A3 represents cloudy weather, and A4 
represents clear weather.   

Videos of the driver and passengers are fed to Affdex SDK (McDuff et al., 2016), a software 
program for analyzing emotions in videos. As a summary, it first uses the Viola–Jones 
method for detecting the user’s face (Viola and Jones, 2001). Through detecting 34 facial 
landmarks, the software defines the regions of interest in the picture. Then, a histogram of 
gradients (HOG) is extracted from the image’s regions of interest and is fed to a SVM for 
classifying the emotions expressed by the driver. For each frame, the percentage of each 
one of the specific emotions (i.e., contempt, surprise, anger, sadness, disgust, fear, and 
joy), valence (i.e., a number between -100 and 100 which shows how much the person 
displays a positive or negative emotion, respectively), and engagement (i.e., a number 
between 0 to 100 which shows how much the person is expressive of his/her emotion) is 
reported. For this pilot study, 105 video epochs of one driver have been analyzed using 
Affdex SDK. Each video has been analyzed using 10 frames per second. An example of the 
output for one specific frame is depicted in Figure 2, B1 and B2. In this study, the values of 
engagement and valence were chosen to be the metric for analyzing the emotions. Hence, 
for each video epoch, the average engagement and valence of the driver are calculated.

Figure 2.	 (A): Different Road Types; (B): Participants’ Emotion and Heart Rate; (C): 
Car CAN Data and Semantic Segmentation
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IV.  RESULTS AND DISCUSSION

In order to understand the correlation between heart rate data correlation and driving 
behavior, heart rate data for each trip should be compared with facial analysis results and 
CAN data. In this study, heart rate data were collected using Samsung Gear devices, with 
data retrieved once every two hours. This frequency of data retrieval is not sufficient for a 
proper understanding of the correlation between heart rate data and other sources of data 
because, generally, the duration of a trip is not sufficiently long to produce enough heart rate 
data with this frequency; however, the variations in heart rate give some insight with respect 
to the proposed method. 

As an example, the heart rate data for two specific trips of the participant are discussed. 
As shown, the two trips happened on July 13 and July 14 (Figure 2, C2) between Northern 
and Central Virginia (Figure 2, C1). In addition, the heart rate data variation for these two 
different trips are depicted in Figure 2, C3. Heart rate data from the hours before and after 
the trips were included as well, as the frequency of heart rate data retrieval was not enough 
at this point. Comparing the heart rate data and the number of hard accelerations for these 
two trips reveals that the participant had less hard acceleration events on the day when he 
experienced significantly lower heart rate. The number of hard accelerations increases from 
5 to 13 as the heart rate on average changes from 60 to 80 beats per minute.   

For each different road type and weather condition, the average valence and engagement of 
the video epoch is calculated. Using semantic segmentation, the roads are classified based 
on the amount of trees they include. Figure 3 shows that there is a significant difference 
between the tree pixel fraction for different road types, which is aligned with the author’s 
manual classification of the road types. As shown, a mean of tree fraction in the field of view 
increases from 0.33 (ranging from 0.21 to 0.39) in city streets to 0.37 (ranging from 0.30 to 
0.45) in one-lane roads, and it decreases to 0.32 (ranging from 0.24 to 0.43) in two-lane 
roads and 0.27 (ranging from 0.20 to 0.35) in three-lane highways.
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Figure 3.	 Tree Pixel Fraction vs. Different Road Types

Using facial analysis and the results of semantic segmentation, the engagement and valence 
values are plotted for each road type (Figure 4). As depicted, there is a significant difference 
in the value of engagement and valence on different road types. On average, the value of 
engagement is 8.9 (ranging from 2 to 30) for city streets, 6.5 (ranging from 1.5 to 12) for 
one-lane roads, 4.5 (ranging from 0 to 12) for two-lane highways, and 9.86 (ranging from 2 
to 23) for three-or-more-lane highways. On average, the value of valence is -5.089 (ranging 
from 0 to -15) for city streets, -3.90 (ranging from 0 to 12) for one-lane roads, -2.06 (ranging 
from 2 to -7) for two-lane highways, and -3.20 (ranging from 6 to -12) for three-or-more-
lane highways. It should be noted that the values of engagement and valence are generally 
very close to zero for a five-minute-long video (more than 3000 frames on a 10 frame per 
second rate), meaning that a person generally has a neutral face for a long duration of time, 
which makes both valence and engagement to be close to zero. Thus, a small change in the 
average valence or engagement can be counted as significant in a few-minute-long video. 
Thus, this difference indicates there exist enough frames (a few seconds) with very high 
values of engagement/valence that could change the average to be above zero. 

The variation in emotions (engagement and valence) across different road types (Figure 4) 
suggests that engagement is a function of road type and scenery within the driver’s field of 
view. The average value of engagement is highest for both city streets and highways. City 
streets are surrounded by events that can distract the driver and increase his engagement: 
the driver might move her head to look at buildings, people, etc. Meanwhile, highways have 
a higher traffic density, which keeps the driver more focused on cars, further increasing the 
driver’s engagement expressed through his face. Further inspection of the range of values 
for engagement depicts that the range is greater in city and highway contexts, which again 
confirms the above argument. In additions, analyzing the range of valence values reveals that 
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on highways, the valence values can reach positive values as high as 6 for a specific video. 
Valence values greater than zero are positive emotions, which can give insight into driver’s 
more positive situations while driving in highways. Additionally, the higher traffic density on 
the highways confirms that the drivers’ emotion is also a function of traffic density. As the 
driver’s emotions may affect the driving behavior, it may indicate that certain behaviors are 
more likely to happen in higher-density traffic; however, more data are required to examine 
such an effect.

Figure 4.	 Variations in Engagement and Valence With Respect to Different Road 
Types

Variations in engagement and valence values for each weather type are plotted in Figure 
5. The engagement value is higher in the clear sky and rainy situations; on average, the 
values for weather conditions 1, 2, 3, and 4 are 8.4 (ranging from 3 to 12), 5.64 (ranging 
from 0 to 30) , 6.33 (ranging from 0 to 18), and 10.95 (ranging from 3 to 22), respectively. 
The valence level is more negative in clear sky and rainy conditions; on average, the values 
for weather conditions 1, 2, 3, and 4 are -4.3 (ranging from -5 to -12), -2.9 (ranging from 1 to 
-15), -3.03 (ranging from 0 to -7), and -3.31 (ranging from 6 to -12), respectively. As Figure 
5 reveals, the clear and rainy cases have the highest engagement by the driver. The clear 
weather increases the sunshine on the driver, which by itself might affect the driver’s vision 
and naturally increase his engagement. In addition, rainy weather increases the driver’s 
attention, which may affect his/her engagement.

Figure 5.	 Variations in Engagement and Valence Level in Different Weather 
Conditions
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V.  CONCLUSION, LIMITATIONS, AND FUTURE WORK

Environmental factors significantly affect driving behaviors. In order to better understand 
these effects, this paper has proposed a novel approach for considering different modalities 
of human sensing data, together with environmental sensing. The study includes a naturalistic 
driving setup consisting of videos recording both the driver and the road, heart rate data, 
and data from the car’s CAN serial bus. One hundred and five (105) epochs of frontal and 
facial videos have been analyzed using Affdex SDK, semantic segmentation, and manually 
annotated videos. Results suggest that weather conditions and road type may significantly 
change driver emotions and driving behavior. However, more naturalistic driving data from 
different drivers are needed to better identity the influence of emotions on driving behavior. 

Through a pilot study and preliminary data analysis, it was possible to classify the road types 
by quantifying the number of tree pixels in each frame. It should be noted that only the tree 
pixel percentage was considered, whereas if the research had included pixel percentage 
of other environmental factors affecting drivers’ behavior, such as traffic density, it would 
be possible to more accurately classify the road type condition for the behavior model. As 
part of future work, researchers should increase the accuracy of semantic segmentation 
by improving/increasing the training data as well as using semantic segmentation to 
automatically examine more properties of the road, weather, and traffic.   

The heart rate data show that, in certain driving situations, there can be significant 
differences in the heart rate of the driver. Although this difference does not have statistical 
significance due to the fact that this result only reflects one participant, it reveals that using 
heart rate can be very helpful for understanding driving-related emotions and behaviors; 
specifically, in certain driving situations, heart rate can be a significant indicator of certain 
emotions or behaviors. This claim is aligned with previous studies showing that emotions 
have significant effects on humans’ physiological signs such as heart rate (Nardelli et al., 
2015; AL-Ayash et al., 2016). In addition, considering the heart rate data from the hours 
before and after the driving shows that the driving behavior may be a function of the driver’s 
state before starting the driving process. This illustrates that a proper model of driving 
behavior might need to also consider the history of the driver’s time spent beginning some 
point before the start of a journey.   

The results of emotion detection in the analyzed videos reveal valuable insight with 
respect to overall emotion recognition; however, inspecting the videos frame-by-frame 
reveals situations for which facial recognition is not sufficient for understanding the drivers’/
passengers’ emotions. It should be noted that while this incorrect detection might not be of 
a high value for today’s manually driven cars, the data gain more value when looking at the 
driver in a semi-autonomous or fully autonomous vehicle, where the driver herself will be a 
passenger. For instance, in the case of a driver talking to a passenger or eating food, as the 
cars move towards being autonomous systems, these situations will take place more often 
and in longer duration compared to a manually driven car where the driver is mostly focused 
on driving. Some of the identified false positive emotions are listed below:

•	 There are specific human facial expressions that are similar to specific emotions but 
actually represent a neutral status of that specific face (Figure 6, A1). For instance, a 
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person might generally seem to show the emotion disgust, the software recognizes 
it as disgust, but that is his/her general facial style. In addition, there are situations 
wherein the participant does not show his actual emotions on their face. For instance, 
the person might seem neutral, but she is actually sad or angry. In this case, using 
other sources of data such as physiological measures is necessary to more accurately 
predict the correct emotion.

•	 There are specific situations wherein the drivers’ or passengers’ faces cannot be 
detected or will be detected with a false emotion due to the angle of the face. The 
Affdex software, like many other facial analysis software programs, works at its best 
accuracy while the head is not angled more than 25 degrees relative to the camera 
(Affectiva, n.d.). These situations of facial tilt include talking with the passenger, looking 
at one’s cell phone, looking in the side mirror, eating food, etc. For instance, Figure 6, 
A2 shows certain situations wherein the software was not able to detect the face or 
detected a wrong emotion.

•	 There are certain situations when software can classify the engagement but is not 
able to classify the emotion. Figure 6, B1 shows an example of this situation.

•	 There are certain situations when the driver is clearly showing an emotion but the 
software does not detect any emotion (Figure 6, B2)

Figure 6.	 Variations in False Positive Detections

In addition, it should be noted that this study considered engagement and valence as 
emotional traits. Future work should look more into (1) the measurement of specific 
emotions (e.g., happiness, sadness, etc.), and (2) the interaction between emotion and 
cognition in the framework of a driving situation, where the participant’s real-time emotions 
might interact with the cognitive load, perhaps a result of the workload of the driver.
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Aforementioned situations affirm the value of multimodal analysis. As seen in the scenarios 
discussed above where the software fails to correctly classify the emotion, there needs to 
be a source of data other than facial analysis for verification, to confirm or deny the result 
of the facial analysis. For instance, in the cases for which facial analysis is not capable 
of detecting the face, other sources of data could include (1) human sensing data such 
as physiological signs and the driver’s audio; (2) environmental sensing data such as 
the type of road and weather condition. These should be fused with facial analysis to 
correctly classify drivers’ emotions. Thus, there needs to be a systematic approach to 
detecting from all sources of non-intrusive data collection; understanding the weaknesses 
and accuracy of each source of data based on the contextual setting (e.g. situations when 
facial analysis failure can be covered by heart rate analysis); and proposing a generalized 
human sensing model for in-cabin experience.
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ABBREVIATIONS AND ACRONYMS

AAA American Automobile Association
CalTrans California Department of Transportation
CAN Controller Area Network
GSR Galvanic Skin Response
HOG Histogram of Oriented Gradients
HR Heart Rate
IoT Internet of Things
NN Nearest Neighbor
RDD Random Digit Dialing
SVM Support Vector Machine
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