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EXECUTIVE SUMMARY

As reported by the U.S. Energy Information Administration, about 29% of U.S. energy 
consumption in 2017 was used for transporting people and goods, with the largest share 
coming from cars and trucks. Therefore, reducing vehicle energy usage and greenhouse 
gas emissions has been recognized as a long-time strategic goal by the transportation 
community. 

To take advantage of the benefits of both trajectory optimization and powertrain optimization 
methods, a group of researchers (Lim et al., 2016) utilized a two-stage hierarchy in 
designing eco-driving systems. The first stage, operating from the planning aspect, aimed 
to optimize vehicles’ trajectories, with the objective of minimizing total fuel consumption. 
Then, grounded on the obtained speed profile, the second stage performed real-time 
adjustment in response to the changes in the driving environment. Despite numerical 
studies having proven the effectiveness of such a control hierarchy, the first stage of the 
model used highway speed limit as the baseline for trajectory optimization; hence, it can 
only be implemented under level of service “A” or “B” when all vehicles can drive at free-
flow speed. To overcome this limitation, later studies incorporated traffic prediction into the 
control loop and utilized the predicted profile of average traffic speed in the near future as 
the first-stage optimization baseline: see Lim et al. (2017) and Huang et al. (2018). Then, 
the extended model can be implemented under various congestion levels. In addition, 
under a CAV environment, Huang et al. (2018) added gear reduction optimization in the 
powertrain control function and developed a lane-changing decision module for better 
performance of the eco-driving system.

Following the same two-stage control framework, this study develops a multi-objective model 
to optimize the trajectory of CAVs on the freeway. The proposed control objectives include 
travel time minimization, fuel consumption minimization, and traffic safety improvement. 
The first stage, designed for CAV trajectory planning, is carried out with two optimization 
submodules. Collecting traffic information via vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) platforms, the first module functions to predict the freeway traffic states 
in the near future and accordingly optimize CAVs’ speed profile to minimize total freeway 
travel time. Then, grounded on the obtained speed profile, the second eco-driving model 
would optimize the aggregated fuel consumption for the whole considered CAV platoon. The 
second stage, for real-time control purposes, is developed to ensure the operational safety 
of CAVs. Particularly, real-time adaptation actions would be placed on CAVs to dynamically 
adjust speeds and make lane-changing decisions in response to local driving conditions. 

The main contributions of this work are summarized as follows: (a) accounting for the impact 
of CAVs’ operations on nearby human-driving vehicles (HVs); (b) constructing an optimization 
framework, at the planning level, that can concurrently reduce freeway travel time and total 
fuel consumption; and (c) developing platooning functions that can coordinate the operations 
of multiple CAVs under the proposed eco-driving control platform. The planning aspect takes 
into account global traffic information for CAV trajectory optimization, while the operational 
aspect mainly deals with real-time local optimization.       
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I.  ECO-DRIVING CONTROL ARCHITECTURE

LITERATURE REVIEW

In the literature, many algorithms have been reported in support of the design of vehicular eco-
driving systems, and most of them have aimed to control vehicles’ speeds and trajectories. 
Early studies in such domains have mainly focused on the operation of single vehicles and 
have treated topographical information as the key control input. For example, “eco-cruise 
control,” which dynamically adjusts cruise speed according to roadway grade information, 
has shown great promise in improving vehicle fuel usage efficiency (Park et al., 2011). This 
function was later extended to ecological, adaptive cruise control, which further accounts for 
the impact of nearby vehicles (Wang et al., 2014). Following the same notion but utilizing 
optimization models, another group of studies devoted efforts to optimizing either vehicles’ 
real-time speeds (Hooker, 1988; Kamal et al., 2011) or their trajectories (Kohut et al., 2009; 
Nunzio et al., 2013). Notably, those optimization models often take advantage of energy 
gains on downhill roadway segments to overcome uphill gravity resistances, and this control 
strategy was further implemented on heavy vehicles. Numerical examples have shown 
significant savings of truck fuel consumption using this approach (Hellström et al., 2010).

The eco-driving control models on single vehicles, as reviewed above, are effective only 
under light traffic conditions. With the increase in roadway congestion level, acquiring real-
time traffic information becomes essential due to the necessity of accounting for interactions 
between nearby vehicles. Fortunately, recent technological advancements in network 
communication and on-line computation enable the implementation of connected automated 
vehicle (CAV) technology, which greatly enriches the collected real-time traffic information. By 
exchanging data between vehicles and infrastructure, connected vehicle (CV) applications 
have demonstrated significant benefits in improving the safety and mobility of transportation 
as well as reducing emissions (Dey et al. 2016). 

Current automated vehicles (AVs) mostly rely on different types of sensors. Ultrasonic, 
radar, and camera technologies allow AVs to observe and analyze their surroundings and 
to automatically select suitable driving behaviors, such as acceleration and lane changing 
(Silva et al., 2017). When connectivity is added into an AV-based system, the vehicle joins 
the class of connected automated vehicles (CAVs)—vehicles which are equipped with both 
sensors for detection and on-board units (OBUs) for communications. Specifically, the added 
V2V technology allows CAVs to exchange critical vehicle status data such as vehicle speed, 
location, and acceleration, and the V2I platform supports vehicles’ communications with 
infrastructure (Ma et al., 2009). 

Since CAV technology brings unparalleled benefits, many researchers have investigated its 
application in supporting eco-driving control algorithms. Hu et al. (2016) classified existing 
studies into two categories: vehicle trajectory control and powertrain control. Under various 
applications such as intelligent merging (Dafflon et al., 2015; Scarinci and Heydecker, 
2014), platooning (Wang et al., 2014a; Wang et al., 2014b; Huang et al., 2014), and eco-
cruise control (Nyitchogna et al., 2014), the first category of research optimized the CAVs’ 
speed profile and acceleration rate, with the objective of minimizing fuel consumption. 
The second category, focused on a real-time operational environment, aimed to optimize 
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key control parameters in CAVs’ powertrain system (Girault, 2004; Zulkefli et al., 2014; 
Wang et al., 2013). Such a control logic has been implemented on regular vehicles, 
electric vehicles, and hybrid vehicles. Notably, to ensure the effectiveness of the proposed 
powertrain optimization models in real-time operations, it is crucial to explore efficient 
solution algorithms or heuristics. Dynamic programming (DP), one of the most commonly 
used tools, was adopted in a group of studies (Mensing et al., 2011; Luu et al., 2010). 
However, later studies pointed out that DP may still fall short of efficiency due to the 
increasing computational complexity. To overcome such limitations, other methodologies, 
grounded on Model Predictive Control (MPC) and quadratic programming (QP), were 
developed by researchers: see Jing (2014) and Xu et al. (2014).

In summary, studies in the first category, which aimed to optimize trajectories, are capable 
of capturing the long-term impacts of CAVs when implementing eco-driving functions. 
However, those optimization models were developed based on strong assumptions or traffic 
predictions, which limits their effectiveness in real-time operations. In contrast, powertrain 
control models can satisfy on-line operation needs by dealing with a relatively short control 
horizon while generally producing less optimized solutions in the long term.

OVERVIEW OF THE PROPOSED FRAMEWORK

This study aims to address the challenges of CAV trajectory optimization and control under 
a mixed CAV and HV environment. As shown in Figure 1, traffic sensors and Roadside 
Units (RSUs) are the two primary infrastructure components that are installed at roadside. 
Traffic sensors will be able to collect real-time aggregated traffic data such as five-minute 
flow and mean speed. RSUs would be responsible for facilitating data exchanges between 
CAVs and local computational units through V2I communication channels. To support 
vehicles’ automation function, CAVs are also equipped with on-board sensors such as 
radars, LiDARs, and cameras. Those sensors would allow CAVs to be aware of their 
driving environment: more specifically, the locations and speeds of nearby vehicles. In 
most existing automation functions of AVs, e.g., Tesla, the control logic sets a desired 
driving speed, and the self-driving module will dynamically adjust the vehicle’s speed while 
maintaining a safe distance from other vehicles. It can be viewed as an extension of 
Adaptive Cruise Control (ACC) done by adding automated wheel maneuvers in response 
to roadway changes in horizontal alignment. Some AVs with higher automation levels may 
also add lane-changing decision-making functions. Hence, with the integration of vehicle 
connectivity and automation technology, CAVs will be able to acquire enriched real-time 
information and can support the determination of CAVs’ optimal desired speed profile. 
Following that principle, this study aims to develop a multi-objective eco-driving system 
that can concurrently minimize CAVs’ fuel consumption, reduce freeway travel time, and 
improve highway safety. Notably, the proposed models would account for the trajectory 
control of both CAV platoons and individual CAVs. 
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Connected 
Automated Vehicle

Human-Driven 
Vehicle

RSUTraffic Sensor

V2I

V2V

CAV Platooning

Figure 1.	 Mixed CAV and HV Driving Environment

Figure 2 shows the system architecture, which includes three key modules: data collection 
and processing, planning-level optimization, and operational-level real-time control. Using 
collected traffic flow data and CAV trajectory data, the speed optimization model, embedded 
into roadside computational units, would determine the desired speed of approaching CAV 
platoons and individual CAVs with the objective of minimizing total freeway travel time. Notably, 
the speed optimization would be based on a prediction model that can project freeway traffic 
state in the next control horizon under the impact of CAV speed changes. Then, according 
to the obtained speed profile, the eco-driving model would function to produce the optimal 
trajectories of all detected CAVs with the objective of minimizing CAV fuel consumption. 
After the completion of optimizations at the planning level, the resulting desired speed profile 
will be sent to the CAVs, i.e., leaders of platoons and non-platoon CAVs. At the operation 
level, CAVs would make speed adaptions in response to the real-time driving environment 
to ensure the minimal safe distance requirement is satisfied. Particularly, real-time operation 
of CAV platoons would include longitudinal control, e.g., consensus control, sting stability, 
merging control, and platoon splitting.
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Figure 2.	 Overview of the Two-Stage Control Framework
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II.  OPTIMIZATION OF CAV TRAJECTORIES AT THE 
PLANNING LEVEL

As discussed above, the optimization of CAV trajectories at the planning level include two 
primary steps: the first step aims to minimize total travel time, and the second step addresses 
the fuel consumption optimization issue.

TRAVEL TIME MINIMIZATION

Since an optimized trajectory profile needs to be sent to the CAVs before they leave the 
V2I communication range, the optimization model at the planning level shall focus on 
computational efficiency. Hence, this study implements a macroscopic traffic flow model as 
the baseline for travel time minimization. As shown in Figure 3, the target freeway segment 
is conceptually divided into N subsections with a unit length of ΔL. Notably, each subsection 
can have at most one on-ramp and one off-ramp. 

Denoting the density of subsection j during time interval k as di(k), the control objective 
of minimizing total freeway travel time over the next control horizon, e.g., 5 min, can be 
formulated as follows:

                                                                                    	             (1)

where  represents the number of lanes at subsection i and  the length of each time 
interval.

 

1 i. . .2 . . . . . .N+1N

0 ( )q k
0 ( )u k

( )iq k

( )iu k
( )id k

Initial

On-ramp Off-ramp

Figure 3.	 Freeway Segmentations

Also, for safety reasons, the speed variation between consecutive intervals shall be set 
within the following boundaries:

                                                                       	   (2)

where uf is the free-flow speed, vi(k) is the desired speed of CAVs, and  is the maximal al-
lowed speed variation (e.g., 5 mph). According to the control logic of AVs’ compliance with 
desired speed, the following constraints shall be satisfied as well:

                                                                          	             (3)
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where  is the average speed of CAVs at subsection j during time interval k and ujam 
is the jammed speed.

To support the proposed optimization model, this study implements a macroscopic traffic 
flow model that can function to predict future traffic state such as speeds, flows, and 
density, given various desired speed profiles for CAVs. Notably, the conventional traffic 
flow model, which treats all vehicles as a group in each freeway subsection, may fall short 
of effectiveness, as trajectory control is placed only to CAVs but not HVs. Meanwhile, the 
operation of CAVs would affect HVs’ speeds since they are sharing the road. To overcome 
such issues, this study extended the macroscopic model by dividing vehicles into different 
classes (i.e., CAVs and HVs). The inter-correlations among flow, density, and speed are 
as follows:

                               (4)

                                                     (5)

                                                                 (6)

                                                             (7)

                                      

                                                                                                                         (8)

                             

                                                                                                                             (9)

                                                                                        (10)

Vehicle class 1 and class 2 represent HVs and CAVs, respectively. To reflect the 
impact of CAV trajectory control on HVs’ speeds, a term capturing CAV speed impact, 

, is introduced into Equation (8). When HVs are behind CAVs 
in the traffic stream, a HV may choose either to follow the leading CAV or to change lanes. 
If a “follow” decision was made, the HV would have a similar speed as CAVs. Hence, 
the value of the CAV speed impact factor, βi(k), shall be subject to traffic demand level 
and CAV penetration rate. In this study, the initial values of βi(k) calibrated by extensive 
simulation experiments were adopted, see Lu, 2016, and they were updated once the 
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real-time information becomes available from traffic sensor data and CAV trajectory data.

Then, the objective function in Equation (1) can be rewritten as:

.                                                        	                       (11)

It shall be noted that the proposed optimization model can be solved very efficiently due 
to: (a) the implementation of a macroscopic traffic flow model for prediction, and (b) limited 
feasible region for searching for an optimal solution due to the constraints in Equation (2). 
Hence, this model can satisfy planning needs in the real-time environment.

FUEL CONSUMPTION MINIMIZATION

Table 1.	 List of Mathematical Symbols Used for Fuel Consumption Minimization
Symbol Definition

Vehicle speed state equation parameters

Frontal area of the vehicle

Fuel rate model parameters

Vehicle parameters

Drag coefficient

Rolling resistance coefficient

Safety distance

Brake force

Final drive ratio

Gravity

Gear ratio
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Symbol Definition
Safety distance model parameters

Fuel consumption

Vehicle mass

Instantaneous mass fuel rate

Efficiency of the final drive

Efficiency of gear box/torque converter

Gear number

Air density

Wheel radius

Distance of each segment

Total traveling distance

Engine torque

Road grade

Traveling time

Instantaneous powertrain control parameter vector

Global powertrain control parameter vector

Once the total travel time is optimized as shown in Section 3.1, it is possible to readily use 
the resulting traffic speed profile to promote fuel consumption minimization. Table I shows 
a list of mathematical symbols used for fuel consumption minimization. The processing of 
non-platoon CAVs can be found in Huang et al. (2018), where trajectory optimization was 
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performed in each CAV individually For each platooning CAV with a given travel distance 
of length , the distance  is partitioned into  segments. The optimized traffic speed 
profile is expressed as , where  denotes the optimized 
speed profile in the th segment at time . Then, this optimized, baseline speed profile 
will serve as a guide when minimizing the aggregated fuel consumption in a cohort of  
vehicles traveling though the distance of length :

                                                                                 
(12)

where  denotes the total aggregated fuel consumption of a cohort of  vehicles on 
the considered path for a given time period denoted by [ , ], and  indicates the total 
fuel consumption of the th vehicle in the cohort, which can be expressed as: 

(13)

where  denotes instantaneous mass fuel rate (kg/s) of the th vehicle. To express 
, the Willans line approximation is adopted:

                         (14)

where  and  are linear functions of the engine rotational speed of the th 
vehicle , and  denotes the engine torque of the th vehicle. Thus, the fuel rate  
can further be expressed as:

     (15)

Engine rotation speed  can be further expressed as a function of vehicle velocity and 
wheel radius:

(16)

where  denotes vehicle instantaneous velocity (m/s),  denotes wheel radius,  is 
the final drive ratio, and  is the gear ratio given a gear number . Constant gear box 
efficiency is assumed for fixed gear number. Thus, the gear number  is assumed to be 
controlled solely by the vehicle velocity  and the direction of the acceleration. The gear 
ratio can be further expressed as a function of velocity
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(17)

where  is the function that determines gear number from current velocity: . 
Since a distance-based approach is used to express total fuel consumption in this work, 

 can be rewritten as:

(18)

where  is the total number of equally divided distance steps for a total traveling distance 
of , and  is the time needed to travel the th distance step, which can be further 
expressed as a function of step distance  and average velocity at th distance 
step : . By combining Eqs. (12)–(18), total fuel consumption for the 

th vehicle traveling through the distance  can be expressed as:
.

(19)
By neglecting the effect of some of the non-critical terms such as  and , Equation 
(8) can be simplified to:

.
(20)

Then the state equation for the speed at k-th distance step can be expressed as:

(21)

where  denotes the mass of the vehicle (kg),  denotes the brake force applied 
at one distance step, and , , and  are vehicle parameters defined as:

(22)

where  denotes the efficiency of the final drive,  denotes the efficiency of a 
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bear box and a torque converter,  denotes the air density (kg/m3),  denotes the drag 
coefficient,  denotes the frontal area of the vehicle (m2),  is the gravity (m/s2),  is the 
rolling resistance coefficient, and  is the road gradient (rad). For a given vehicle and a 
fixed road, and assuming that the initial velocity at time  is , then according to 
the Equation (21), the velocity at the th distance step can be expressed as a function of 
the initial velocity , the engine torque , and the brake force :

 .

(23)

Fuel consumption for the entire driving distance S is performed in the space of the 
powertrain control vector given the initial vehicle velocity. As mentioned before, also taken 
into account is the estimated average traffic speed profile during optimization. In order to 
consider velocity profile as an optimization constraint, it is necessary to express velocity as 
a function of the optimization parameter vector U. Rewriting Equation (21) yields:

(24)

where the terms are defined as follows:

,

, 

, 

, and 

. 

Then, the vehicle’s longitudinal states for all distance steps can be expressed in matrix 
form:
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  (25)

Equation (25) can be rewritten using matrices , , , , and :

.
(26)

Equation (26) can be further manipulated:

.
(27)

As can be seen from Equation (27), the powertrain control parameter vector  is 
expressed as a linear function of . Thus, it is possible to impose linear equalities to 
the global fuel consumption optimization process. In order to impose a realistic speed 
profile, the optimization constraints are therefore applied such that the resulting speed 
profile is between the interval , where   denotes the minimum 
allowed speed deducted from estimated average traffic speed , and  
is determined by the maximum speed deducted from estimated average traffic speed 

 and safety driving distance:

(28)

where  is the maximum speed deducted from estimated average traffic , 
and  is the maximum allowed speed to ensure a safe distance from the preceding 
vehicle:

(29)
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where  is the distance between the actual vehicle and the preceding vehicle, and  and 
 are constant values which are set to 2. Note that in the case where , the 

safety distance constraint will override , which results in updated speed constraint 
. Based on the above discussion, the global fuel consumption optimization can 

be formulated as follows:

           subject to  

                                 

                            
(30)

where  denotes the upper boundary of the powertrain control parameter  
( , ) and  are 
traffic speed boundaries:  , . The global optimization 
formulated in Equation (18) provides optimal powertrain control that minimizes the 
aggregated fuel consumption for a cohort of  vehicles for a given driving distance  by 
taking into account road condition and global traffic speed profile. Note that global traffic 
speed profile is estimated dynamically and can be updated periodically to reflect global 
traffic flow change. In such cases, global optimization formulated in Equation (30) is also 
performed periodically using rolling horizon control logic to ensure updated global optimal 
powertrain control. 

In this work, genetic algorithm (GA) is used for long-term global optimization. Developed 
based on the notion of biological evolution, GA aims at solving both constrained and 
unconstrained optimization problems by iteratively modifying a population of individual 
solutions. Individuals are selected randomly at each generation from the current 
population to be parents, who will then generate children for the next generation. The 
population gradually evolves towards an optimal solution. Lower and upper bounds 
and linear constraints shown in Equation (30) are taken into account at each iteration 
in the optimization process. Mutation and crossover functions are used to produce new 
individuals at every generation, and only feasible new points are generated with respect to 
the linear and bound constraints. Due to the small scale of the problem, experimental tests 
showed that all computational work can be completed within a few seconds.

Once the optimal powertrain control parameters  are obtained, one can easily 
reconstruct the corresponding speed profile for each vehicle:

.
(31)
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III.  REAL-TIME CAV TRAJECTORY CONTROL AT OPERATION 
LEVEL

SPEED ADAPTION OF CAVS

Even though optimal trajectories (speed profiles) are produced at the planning level, the 
operation of CAVs in real-time still needs a speed adaption function that can account for the 
impacts of unpredictable traffic perturbations. For example, the leader of a CAV platoon or a 
non-platoon CAV may experience a slowdown of the preceding vehicle. Hence, to guarantee 
a safe driving environment, the speed adaption function will effectively make adjustment of 
CAVs’ speeds and ensure safe distance between vehicles. 

Notably, the speed adaption activity is repeatedly performed at a relatively small time step 
Δt (e.g., 1 second). At each time step i, on-board sensors and in-vehicle data processing 
systems can be used to obtain the distance between the CAV and its preceding vehicle, 
denoted by di(t), as well as the speed of the CAV and its preceding vehicle, denoted by ui(t) 
and ui-1(t). Examples of on-board sensors are Radar, LiDAR, Camera, and so on. When di(t) 
is less than a safe distance ΔD, the speed adaption function will be activated. Particularly, 
ΔD can be computed as follows, according to Lim et al. (2016):

(32)

where h and l are model parameters and both can be set to be 2. For non-platoon CAVs, 
vehicles’ speed will be smoothly reduced: 

(33)

(34)

where ai(t) denotes to the deceleration rate at time t, t0 denotes the time when the speed 
adaption is activated, and dmin denotes the minimal safe distance between a CAV and a 
HV in the traffic stream.

For a CAV platoon, speed adaption on the platoon leader will inevitably affect all other 
following CAVs. Hence, to concurrently account for the safety constraint and fuel 
consumption saving needs, this study performs an operation-level optimization by 
neglecting constant terms and terms with small variations in the planning level model. 
Also, to satisfy the real-time operational need, the objective function can be expressed in 
the following quadratic programming form:
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                             subject to      

                                                  

(35)

where u(i) is the speed vector of CAV platoon with leader i, ui,max is the upper boundary 
for u(i), and vmax denotes the maximum speed allowed at time i+1 to ensure a safe driving 
distance. This optimization model has the form standard to quadratic programming, which 
can be efficiently solved by existing algorithms such as the interior point method. However, 
the optimization may fail in applications under several circumstances. For example, an HV 
from the neighboring lanes suddenly changes lanes to move to the front of CAV platoon, 
or the preceding HV reduces its speed harshly. In such cases, safety would be the only 
concern, and all CAVs would be forced to brake.

CAV PLATOON OPERATIONS

Similar to Cooperative Adaptive Cruise Control (CACC), the operation of CAV platoons 
may include the following: (a) merge a non-platoon CAV into the platoon; (b) platoon CAV 
leaves the platoon; (c) combine two or more platoons into one; (d) split a platoon into two 
or more platoons; and (e) maintain the stability of platoons. Since extensive research 
efforts have been devoted to such domains, the proposed system can directly implement 
existing control algorithms.
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IV.  NUMERICAL EXAMPLES

A VISSIM simulation was used for performance evaluations of the proposed models, per 
Yang et al. (2020). Recognizing that a simulation model cannot accurately reflect reality 
until it is well-calibrated, the team collected field data for calibration. Then, the VISSIM-
COM interface was used to develop a program to execute the local adaption function using 
VB.NET; the MYSQL database was used to simulate the on-line operational procedure. 
The real-time traffic information is detected and the target vehicle’s trajectory is adjusted 
during the simulation. The road condition and vehicle parameters used in the study are 
the following:

  

The simulated freeway segment is 6 km in length and is divided into 12 subsections. Inflow 
pattern from the most upstream subsection is shown in Figure 4.  
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Figure 4.	 Upstream Inflow to the Study Site

CAV TRAJECTORY OPTIMIZATION RESULTS (PLANNING LEVEL)

For system performance evaluation, without loss of generality, the network was simulated 
for a period of 5 hours and CAV penetration rate set as 15%. As the first control objective 
is to minimize total freeway travel time, Figure 5 shows the time-dependent average speed 
distribution on the most congested subsection (i.e., subsection 8). By comparison with the 
case without CAV trajectory control, one can observe that the proposed control framework 
can greatly increase the average traffic speed on the freeway. Further investigation into 
total travel time shows a reduction of 18% over the 5-hour control period.
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Figure 5.	 Time-Dependent Average Speed Distribution on the Most Congested 
Subsection

Given the speed profile produced by the travel time minimization model, the next step is to 
generate optimal CAV trajectories with fuel consumption minimization. For convenience 
of discussion on CAV platoon operations, this numerical experimental test particularly 
investigate 10-CAV platoons that entered the study site at one, two, three, and four 
hours, respectively. 

Figure 6 also shows the optimized speed profile of the selected ten vehicles at one, two, 
three, and four hours. The speed profile is plotted with respect to distance steps for a 
total number of n=260 steps at each optimization time considered. The speed boundary 
constraints are plotted in green curves, and speed profiles of different vehicles are plotted 
in different colors in Figure 6. It can be observed that the pattern of average traffic speed 
profile for the entire 6500-meter trajectory of 260 distance steps remains very similar for 
the four different considered times, despite the time spread of four hours. The average 
traffic started with a rather high speed of approximately 30 m/s, then it went down to 
approximately 20 m/s in the middle of the trajectory, and it slowly increased at the end of 
the trajectory. As can be observed in Figure 6, the platoon of vehicles considered generally 
follows a similar speed profile for the entire trajectory, which shows the consistency in the 
global optimization process. 

To further illustrate the fuel consumption savings provided by the proposed approach, 
the second column of Table 2 shows the average fuel consumption, travel time, and 
average speed of the considered cohort of ten vehicles during the trajectory using the 
proposed Willans line vehicle model. The values shown in Table 2 are averaged from the 
four travel times considered. The third column in Table 2 shows the optimized long-term 
fuel consumption and travel time obtained using a more accurate vehicle model based on 
a fuel map generated from Autonomie. Figure 7 shows a combined fuel map generated 
using the Willans line model (dashed curve) and Autonomie (solid curve), as shown in 
Lim et al. (2016). It can be observed that the Willans line model curve closely follows the 
curve generated from Autonomie. The accuracy of the Willans line model can be further 
confirmed by observing the second and third column in Table 2: the fuel consumption 
and travel time values obtained using the Willans line model are aligned with the values 
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obtained from the fuel map generated from Autonomie. The fourth column of Table 2 shows 
the average fuel consumption of other vehicles on the same trajectory without the long-
term optimization. It can be observed that the cohort of ten vehicles with the proposed 
long-term optimization approach had significantly less fuel consumption, with an average 
of 0.34 kg as compared to 0.37 kg from other vehicles on the same trajectory without 
optimization. Also, the proposed approach resulted in a slightly higher average speed of 
24.5 m/s. 

Figure 6.	 Optimized Global Speed Profile as a Function of Distance Steps for the 
Starting Time (a) 1h, (b) 2h, (c) 3h, (d) 4h

Figure 7.	 Comparison of Fuel Maps Using Willans Line Model (ashed curve) and 
Autonomie (solid curve) 



Mineta Transportat ion Inst i tute

20
Numerical Examples

Table 2.	 Global Fuel Consumption and Traveling Time Comparison
Proposed (Willans 

line model)
Proposed (Fuel map 

from Autonomie)
Average  Traffic

Fuel Consumption (kg) 0.34 0.34 0.37
Traveling Time (s) 266 266 271.5
Average Speed (m/s) 24.5 24.5 23.9

REAL-TIME CAV TRAJECTORY CONTROL RESULTS (OPERATION LEVEL)

Once the optimized long-term optimization was performed for the cohort of vehicles with 
safety distance considerations included in the optimization, the local adaption for real-time 
CAV trajectory control was then performed to adapt to local random perturbations. To mimic 
other vehicles’ random lane changes on the same trajectory, at every time step, a lane 
change probability of 0.01 was inserted for vehicles from other lanes changing to the current 
lane. This random change from other vehicles resulted in abrupt speed reductions due to 
local safety distance maintaining operations, as can be observed in Figure 8. For illustration 
purposes, the speed profile is shown for one vehicle from the cohort in local adaptation for 
each of the traffic observation times. The blue curves in Figure 8 show the local adapted 
speed profile, and the red curves show the optimized global speed profile obtained from the 
long-term optimization process. As can be observed in Figure 8, the abrupt speed reductions 
occurred in order to force the implementation of a safe distance, and then local adaptation 
quickly modified the speed to match the global optimal speed profile, which ensures minimum 
fuel consumption while maintaining a safe driving distance.

Figure 8.	 Local Adaption Speed Profile for a Random Chosen Vehicle from the 
Cohort for the Traveling Time (a) 1h, (b) 2h, (c) 3h, (d) 4h 
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Table 3.	 Fuel Consumption and Traveling Time Comparison in Local Adaption
Proposed (Willans line 

model)
Proposed (Fuel map 

from Autonomie)
Average  Traffic

Fuel Consumption (kg) 0.38 0.38 0.42
Traveling Time (s) 271 271 278.3
Average Speed (m/s) 23.9 23.9 23.4

Table 3 shows the updated fuel consumption and traveling time in the local adaptation 
stage. It can be observed that the fuel consumption obtained from local adaptation is slightly 
higher than that obtained from the optimized global speed profile, due to the abrupt speed 
reductions discussed before. The fourth column in Table 3 shows the average results from 
other vehicles on the same trajectory without local optimization. It can be observed that this 
approach still provides lesser fuel consumption at the local adaptation stage as compared to 
other vehicles on the same trajectory. 

This project has presented a multi-objective control framework to design eco-driving 
algorithms for platooning CAVs, which leverages the advances of both connectivity and 
vehicle automation technologies. Following a two-stage control logic, the first stage, at the 
planning level, aimed at producing optimal trajectories of CAVs that can concurrently reduce 
freeway total travel time and CAV fuel consumption. Particularly, those models adopt real-
time data, including traffic sensor data and CAV trajectory information, as input. Grounded 
on a macroscopic traffic flow model, the first optimization model yielded the profile of CAVs’ 
desired speed, with the objective of minimizing total freeway travel time. Then, the second 
optimization functioned to generate optimal CAV trajectories in compliance with the obtained 
speed profile, with the goal of reducing fuel consumption. Notably, the algorithm can address 
the needs of both CAV platoons and non-platoon CAVs. The second stage, for real-time 
control purposes, was developed to ensure the operational safety of CAVs. Particularly, 
real-time adaptation actions were placed on CAVs to dynamically adjust speeds in response 
to local driving conditions. Based on extensive numerical simulations, the results have 
confirmed the effectiveness of the proposed framework in both mitigating freeway congestion 
and reducing vehicles’ fuel consumption.
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ABBREVIATIONS AND ACRONYMS

ACC Adaptive Cruise Control
AVs Automated Vehicles 
CACC Cooperative Adaptive Cruise Control 
CV Connected Vehicle 
CAV Connected Automated Vehicle 
DSRC Dedicated Short Range Communications  
DP Dynamic Programming 
GA Genetic Algorithm 
HVs Human-Driving Vehicles 
MPC Model Predictive Control 
OBUs On-Board Units 
QP Quadratic Programming 
RSU Roadside Unit 
V2I Vehicle-to-Infrastructure
V2V Vehicle-to-Vehicle
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