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Executive Summary 

Active transportation modes such as walking and cycling provide immense benefits associated 
with health, environmental, and social outcomes, among other benefits. However, active mode 
users are the most vulnerable segment of road users from motorized traffic due to the lack of a 
protective structure and differences in vehicular mass. Numerous extant studies are dedicated to 
enhancing the active transportation modes by considering infrastructure facilities such as 
intersections, sidewalks, and bike lanes, but there is a lack of sufficient research devoted to safety 
analysis regarding traffic accidents surrounding transit stations. The current study bridges the 
gap by developing joint models based on the multivariate conditionally autoregressive (MCAR) 
priors with a distance-oriented neighboring weight matrix. For this purpose, data centered on 
high-quality transit stations were used for statistical analysis. Data included built environment 
characteristics, socioeconomic and demographic information, and crash data aggregated at the 
level of the 0.5-mile-radius zone surrounding the stations.  

To obtain the different covariates to each of the two active transportation modes and to increase 
the model’s flexibility, feature selection was conducted using both random forest and correlation 
analyses. The research adopted INLAMSM, an Integrated Nested Laplace Approximation 
(INLA) package with Multivariate Spatial Models. It is a fast Bayesian inference approach 
within a multivariate spatial framework using the R language. For a comprehensive comparison 
of the predictive accuracy of the models, different evaluation criteria were utilized, including 
DIC (deviance information criterion), WAIC (widely applicable information criterion), Dbar 
(posterior mean deviance), and Pd (effective number of parameters). The results demonstrate 
that models with a correlation of pedestrians and bicyclists perform much better than the models 
without such a correlation. The joint models can aid in highlighting the covariates significant to 
each of the two active transportation modes.  

The research results can furnish transportation professionals with additional insights to create 
safer non-motorized access to transit and promote active transportation across California. The 
model developed in this study can also be used to identify crash hot spots by ranking the 
frequency of the collisions related to pedestrians and bicyclists at each transit station. Using the 
ranking, transit operators and transportation professionals can prioritize improvements near the 
stations where they are most needed. 
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I. Introduction 

1.1 Research Background 
During the year 2014, 32,675 fatalities and more than 2,338,000 injuries occurred on U.S. roads. 
Road accidents were the leading cause of death in 2014 among people aged 16 through 24 in the 
U.S. In the SCAG (Southern California Association of Governments) region, each year, about 
1,500 fatalities and 120,000 injuries occur due to traffic accidents. These fatalities and injuries 
reflect a significant number of lives that could have been saved by the application of appropriate 
safety treatments.  

The FAST Act calls for the establishment of performance measures and standards on traffic safety. 
The Federal Highway Administration (FHWA) is now requiring each state’s Department of 
Transportation (DOT) to work with Metropolitan Planning Organizations (MPOs) to assess 
fatalities and severe injuries on all public roads and to set annual performance measures. The 
SCAG 2016–2040 Regional Transportation Plan/Sustainable Communities Strategies 
(RTP/SCS) was adopted in April 2016. In this regional planning document, the traffic safety issue 
is considered an important subject. The region’s rates of fatal and injury collisions are briefly 
reviewed and presented as heat maps in the RTP/SCS.  

The challenge of meeting the mobility requirements of the 21st century requires a shift in mindset 
from designing an automobile-focused highway system to operating a transportation network that 
accommodates all users and modes safely and conveniently. Therefore, transportation agencies of 
various levels and their partners have been striving to provide more complete streets to all travelers 
by taking advantage of the many opportunities to go beyond traditional approaches. Typical 
elements that make up a complete street include sidewalks, bicycle lanes (or wide, paved shoulders), 
shared-use paths, designated bus lanes, safe and accessible transit stops, and frequent and safe 
crossings for pedestrians. Amongst the different roadway facilities, the transit stop plays a key role 
in the successful implementation of complete streets programs due to its unique position as an 
intermodal interface. It is anticipated that the provision of more, safer, and more easily accessible 
transit stops would significantly increase the number of active transportation mode users who 
might heavily rely on public transportation as an economical alternative for relatively long trips.  

It is worth noting “active transportation” may refer to any human-powered transportation and low-
speed electronic assist devices. In addition to walking and biking, active transportation modes and 
devices may include but are not limited to: electric bicycle (e-bike), tricycle, wheelchair, scooter, 
electric scooter (e-scooter), skates, skateboard, push scooter, trailer, and hand cart (SCAG 2020–
2045 RTP/SCS). However, for simplicity, this study will use the terms “walking” and “biking,” or 
“pedestrians” and “bicyclists,” to represent all modes of active transportation. 

However, in contrast to the extensive research centered on the typical mode of motor vehicles and 
other spatial units, there is considerably less research dedicated to safety analysis along the transit 
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corridors. It still remains unclear which factors constitute the main contributing elements to the 
multimodal safety conditions in the areas adjacent to transit stops, given the complexity of the 
influential factors and their interactions. To respond to the urgent need, this study aims to rank 
the importance and quantify the impact of different variables pertinent to multimodal traffic safety 
near the transit stops; these factors are imperative for the effective design of complete streets and 
the development of integrated land use and transportation planning policies.  

High-quality transit areas (HQTAs) are defined as areas within a half-mile of a fixed guideway 
transit stop or a bus transit corridor where buses pick up passengers at a frequency of every 15 
minutes or less during peak commuting hours (SCAG, 2016). This project aims to enhance the 
multimodal traffic safety conditions in HQTAs, which is imperative for successive 
implementations of complete streets design and integrated land use and transportation planning 
policies. 

While HQTAs account for only 3% of total land area in the SCAG region, they are planned and 
projected to accommodate 46% of the region’s future household growth and 55% of its future 
employment growth (SCAG, 2016). 

According to the National Complete Streets Coalition, complete streets are designed and operated 
to enable safe access and travel for all users, including pedestrians, bicyclists, motorists, transit 
users, and travelers of all ages and abilities (Smith et al., 2010). In comparison with motorists, 
non-motorists are a vulnerable segment of the traveling public due to their lack of a protective 
structure and a difference in mass between them and motor vehicles, which renders them prone to 
heightened injury susceptibility in case of a collision (William, 2013). Active-transportation-
related crashes represent more than 20% of all road crashes in California. On the other hand, active 
transportation provides enormous benefits for addressing issues of congestion, health, and the 
environment (Berrigan et al., 2006). Therefore, encouraging individuals to indulge in active 
transportation involving walking and bicycling brings with it a societal obligation to protect 
commuters as they engage in these modes of travel. Ensuring that roads provide safe mobility for 
all travelers, not just motor vehicles, is at the heart of the complete streets design approach. 
Unfortunately, in contrast to the wide range of studies dedicated to motorists, less research has 
focused on investigating the factors impacting non-motorists’ safety on roadways (e.g., Lee and 
Abdel-Aty, 2005; Beck et al., 2007; Moudon et al., 2011; Cai et al., 2016).  

1.2 Research Problems 

A literature review of the pertinent research reveals the following limitations: 

• Most studies modeled the modal crashes separately. Few attempts have been made to 
combine them into a multimodal approach; combining them allows researchers the 
flexibility to simultaneously determine the injury risk associated with different travel 
modes. Ignorance of such correlations among the multiple modes has been shown to reduce 
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the models’ efficiency due to less precise parameters (Park and Lord, 2007; Cheng et al., 
2017). 

• Even though an array of spatial levels have been investigated in past safety research—
ranging from microscopic locations such as intersections (Wang and Abdel-Aty, 2006) and 
road segments (Cheng et al., 2018a) to macroscopic areas such as census tracts (Noland 
and Quddus, 2004), traffic analysis zones (TAZs) (Abdel-Aty et al., 2011), or counties 
(Cheng et al., 2018b)—there is little research focusing on the level of transit corridors. 
Safety analysis focused on such corridors is essential for enhancing the use of active 
transportation, given that transit provides an economical and viable option that allows 
people of all abilities and socioeconomic levels to conduct relatively long-distance travel 
usually available only to motorists. 

• Spatial correlations were rarely considered in the context of multimodal safety analyses even 
though accommodation of spatial dependency has been found by past studies to enhance 
the model fitness and precision (Gill et al., 2017). It is essential to consider such 
correlations; nearby locations (such as transit stops) would have more characteristics to 
share in common. Additionally, most of the spatial dependency was accounted for through 
the random effects approach, which may be considered as a special restrictive case of a more 
flexible approach of full random parameters, where each site would be assigned its own 
coefficient for explanatory variables (Mannering et al., 2016). To the best knowledge of 
the researchers, there is no literature showing the incorporation of spatial correlations into 
the random parameter approaches, which is much-needed given the benefits of both 
approaches. 

• Finally, a substantial proportion of safety studies have relied on statistical modeling for 
feature selection or detection of the significant influential factors for crash occurrence or 
severities. However, a biased subset of variables is often identified since statistical models 
are usually subject to omitted variable or multicollinearity issues due to the requirement of 
a strong assumption of statistical distribution or lack of consideration for high-order 
variable interactions. Emerging machine learning techniques can provide more accurate 
variable selection because of their consideration of multiple desirable features to avoid 
omitted variables or multicollinearity issues.       

To summarize, safe and accessible transit stops play an instrumental role in enhancing multimodal 
use, as they significantly leverage mobility among active transportation users or economically 
disadvantaged residents who heavily rely on public transportation for long-distance travel or other 
purposes. Unfortunately, little research is dedicated to the safety analysis of transit corridors while 
addressing the limitations mentioned above.  
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1.3 Research Objectives 

In response to the limitations mentioned above, this study is designed to satisfy the following 
main objectives: 

• Collect required data in the HQTAs from multiple resources that cover multimodal crash 
data, socioeconomic data, and built environment data in Los Angeles County.  

• Perform a ranking among the influential factors for multimodal safety in the HQTAs using 
multiple machine learning techniques. 

• Develop multivariate multimodal crash statistical models with random parameters and 
spatiotemporal dependency to provide accurate estimates of the impact of various factors 
on different modal crashes and fill the current safety research gap.  

• Interpret the model results and translate them to the development of good transportation 
planning policies to enhance safety for active transportation users near the high-quality 
transit stations. 
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II. Literature Review 

Ensuring a convenient and safe traffic environment for all transportation modes requires a shift 
from the vehicle-oriented transportation system towards one that accommodates all road users. 
The goal may be achieved by implementing a complete streets design, which has the flexibility to 
enhance both traffic safety and strategic urban mobility planning (Smith et al., 2010). Typical 
elements of complete streets include sidewalks, bicycle lanes (or wide, paved shoulders), shared-
use paths, designated bus lanes, safe and accessible transit stops, and frequent and safe crossings 
for pedestrians and bicyclists. Among the different roadway facilities, the transit stop plays a crucial 
role in successfully implementing complete streets programs due to its unique intermodal interface 
position. Compared with other modes, non-motorized transportation modes provide enormous 
health, environmental, and social benefits, plus many others. However, non-motorists are a 
vulnerable segment of the traveling public due to the lack of a protective structure and the mass 
discrepancy between them and motor vehicles, which renders them prone to heightened injury 
susceptibility in case of a collision (Cai et al., 2017; Mander and Zick, 2014). Therefore, 
incorporating transportation network attributes into traffic safety would facilitate the development 
of safety programs and strategies to engender a safe environment for all roadway users. 

Previous research studies conducted over the years have striven to obtain valuable insights by 
considering various empirical and methodological aspects of safety modeling to address this urgent 
need. Crash frequency models are often used to identify the factors influencing the propensity of 
active-mode-related crashes. As the crash frequency data are non-negative integers, the most 
widely used crash frequency models assume the Poisson distribution of crash counts. The initial 
Poisson regression models are subject to the limitation of equality between the mean and variance 
of crash counts (Kim et al., 2002; Miranda-Moreno, 2006), which means Poisson models are not 
capable of handling over-dispersion or under-dispersion and can be adversely influenced by low-
sample means. Such issues in data analysis could result in biased and incorrectly estimated 
parameters, which may lead to invalid inferences and predictions in crash frequency models (Lord 
and Mannering, 2010; Oh et al., 2006; Cameron and Trivedi, 1998). To overcome possible over-
dispersion in the data and to obtain reliable and unbiased results, some researchers have proposed 
employing a negative binomial or Poisson gamma model as an alternative to the Poisson model 
(Hauer, 2001; Daniels et al., 2010; El-Basyouny, and Sayed, 2006; Lord and Bonneson, 2007). 
The negative binomial/Poisson gamma model follows a gamma probability distribution, which 
allows the researcher to manipulate the relationship between mean and variance by adding a 
gamma-distributed error term. Even though it is likely the most widely used model in crash 
frequency modeling, the negative binomial/Poisson gamma model does have its limitations. For 
example, it cannot handle under-dispersed data and can be adversely affected by a low sample mean 
and small sample size (Lord, 2006; Lord and Mannering, 2010).  

One subsequent enhancement of the negative binomial/Poisson gamma model is the Poisson-
lognormal model for modeling crash data (Park and Lord, 2007; Lord and Miranda-Moreno, 
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2008; Aguero-Valverde and Jovanis, 2008). The Poisson-lognormal model is developed by 
assuming Poisson-lognormal distribution, which can handle a small sample size and over-
dispersion better than the negative binomial/Poisson gamma model due to the heavier tail 
associated with the lognormal distribution. Nonetheless, the heavier tail associated with the 
lognormal distribution increases the model complexity, and the model remains affected by small 
sample sizes and low mean values (Lord and Mannering, 2010; Miaou et al., 2003). Another model 
extensively adopted by safety researchers is the zero-inflated model (Aguero-Valverde, 2013), as it 
can handle data characterized by a substantial number of zeros. As data with excess zero density 
cannot be accommodated by traditional Poisson or negative binomial/Poisson-gamma models, the 
zero-inflated model can be applied to count data that have an excess of zero counts by splitting the 
model based on crash-free versus crash-prone propensity, which means excess zeros are yielded 
independently from a separate process associated with the count values. Besides its wide 
applicability in diverse situations where the observed data are characterized by large zero densities, 
some studies have pointed out its limitations, especially in highway safety. For example, Lord and 
Bonnet and colleagues (2005, 2007) illustrate that the zero-inflated model (both for Poisson and 
negative binomial models) cannot provide reliable results for crash data in a zero or safe state 
because the tendency of a long-term mean equal to zero. 

The most extensively used format within the above models is the univariate model, which contains 
only one dependent variable for data interpretation (Anarkooli et al., 2019; Wang et al., 2013). 
However, the univariate setting cannot address the unobserved heterogeneities which might be 
common to various crash types or severities (Mannering and Bhat, 2014; Ma et al., 2008). In 
response, researchers have employed multivariate models extensively to explicitly account for the 
possible correlations among the distinct responding variables. Some papers have relied on the 
bivariate framework for various applications in which two crash types are involved such as angled 
injury security (Russo et al., 2014) and bicycle conflict location (Conway et al., 2013), while others 
have taken advantage of multivariate models to address a response variable with multiple discrete 
outcomes, that is, different crash types (Serhiyenko et al., 2016) and crashes involving distinct 
modes (Huang et al., 2017). Another benefit of using bivariate/multivariate approaches is the 
explicit consideration of correlation among different outcomes (Song et al., 2006; Bijleveld, 2005; 
Park and Lord, 2007; Aguero-Valverde and Jovanis, 2009). Even with well-documented benefits 
over the univariate alternatives (Motherfer et al., 2016), multivariate models are still the focus of 
studies dedicated to further enhancing them. For example, Wang et al. (2013) developed a 
Poisson-lognormal conditional autoregressive model for their bivariate spatial analysis of 
pedestrian crash counts across census tracts in Austin, Texas. The results indicate that a bivariate 
cross-correlation of serious (fatal and major injury) and non-serious crash rates shows covariates’ 
impacts across severity level are more local in nature (e.g., lighting conditions, or local sight 
obstructions along with spatially lagged cross-correlation). Ma et al. (2008) used a multivariate 
Poisson-lognormal specification to investigate different crash counts at different severity levels. 
Their findings show that the multivariate Poisson-lognormal model aids in showing the 
statistically significant correlations between crash counts at a different level of injury severity. 
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Explicit consideration of spatial autocorrelation in the multivariate settings is one popular strategy 
and includes both random effect (Aguero-Valverde, 2013) and random parameter models (Barua 
et al., 2016; Imprialou et al., 2016). However, bivariate/multivariate models are complex to 
estimate as the correlation matrix formulation is required (Lord and Mannering, 2010). 

In addition to the models mentioned above, consideration of spatial effects is another aspect of 
model classification and has been extensively adopted in recent studies. Incorporating geographic 
information collected by sophisticated computer software such as Geographical Information 
Systems (GIS) allows the researchers to include influential factors relating to the spatial 
perspective. However, the data from same geographic area may share unobserved effects and lead 
to a spatial correlation problem. To analyze the data in a way that addresses the spatial correlation, 
various studies develop Bayesian spatial models such as conditionally autoregressive (CAR) (Song 
et al., 2006; Zeng and Huang, 2004; Abdel-Aty and Wang, 2006), simultaneous autoregressive 
(SAR) (Quddus, 2008; Chiou and Chih-Wei, 2014; Hosseinpour et al., 2018), or multivariate 
conditionally autoregressive models (MCAR) (Aguero-Valverde, 2013; Jonathan et al., 2016; Cai 
et al., 2018). CAR is generally appropriate for situations with first-order dependency or relatively 
local spatial autocorrelation (e.g., city, ZIP code, census ward). In contrast, the spatial regression 
models are appropriate when second-order dependency or a more global spatial autocorrelation 
(e.g., state/province, county) is involved. The CAR model is assumed to be auto-normal CAR 
distributed to account for spatial random effects. The relatively simple model structure leads to its 
extensive usage in the safety field (Wang et al., 2012). On the other hand, the multivariate 
conditionally autoregressive model (MCAR), also known as Gaussian Markov random fields as 
proposed by Jin et al. (2005), allows area-specific heterogeneity by directly analyzing the 
multivariate spatial count data, such as transit-level pedestrian and bicyclist crash count data. 
(Boulieri et al., 2016). 

Employing another method to account for spatial correlation, many studies consider the random 
effects models where the common unobserved effects are assumed to be uncorrelated with 
independent variables and distributed over spatial units. A study conducted by Hausman et al. 
(1984) examined random effects and fixed effects in negative binomial models for panel data in 
their research. The findings suggest that random effects help to account for unobserved factors 
shared by distinct discrete outcomes. In the context of crash frequencies, random effects have been 
used by a large number of previous studies. For instance, Ma et al. (2017) proposed a series of 
multivariate models under the Full Bayesian framework with different random effects to predict 
the crash frequencies of different injury severity levels over one year in Colorado. Cheng et al. 
(2017) developed the multivariate Poisson-lognormal models with random effects to predict the 
motor-cycle injury severity crashes using weather data during the years 2008–2013 in San 
Francisco. Besharati et al. (2020) utilized the bivariate spatial negative binomial model with 
random effects to examine the association between fuel consumption in the transportation sector 
and the annual fatal and non-fatal injury counts during the period from 2005–2015 in Iran. 
However, the main restriction of the random effects approach is that it only influences the 
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intercept of the model. An extension of the random effects model is the random parameter models 
that allow each estimated parameter of the model to vary across each individual observation in the 
dataset. Because each observation has its own parameters, the random parameter models help 
account for unobserved heterogeneity from one observation to another (Anastasopoulos and 
Mannering, 2009; Milton et al., 2008). However, random parameter models do have their 
limitations, as they are very complex to estimate; sometimes, they may not improve models’ 
predictive capability, and since the results obtained are observation-specific, the model results are 
non-transferable to other datasets (Washington et al., 2010; Shugan, 2006; Lord and Mannering, 
2010). 

To carry out the Bayesian inference, the Markov Chain Monte Carlo (MCMC) simulation 
method is the most popular approach used in the safety field. Park and Lord (2007) adopted the 
MCMC simulation method in multivariate Poisson-lognormal models to evaluate covariates' 
impact on crash counts. Similarly, El-Basyouny and Sayed (2009) used multivariate Poisson-
lognormal models with the MCMC simulation approach through the WinBUGS platform to 
jointly analyze a dataset of crash counts categorized by two injury severity levels. However, the 
Bayesian framework using the MCMC simulation method may be computationally challenging 
under a complex model scenario and also time-consuming, especially for large datasets 
(Narayanamoorthy et al., 2013). To address this issue, the present research adopts an alternative 
Bayesian approach, Integrated Nested Laplace Approximation or INLA (Rue et al., 2009), to carry 
out approximate Bayesian inference. The INLA method aids in reducing the computational time 
and efforts involved in the estimation of complex and large datasets (Serhiyenko et al., 2016; 
Blangiardo et al., 2013) seven-fold compared to the MCMC simulation method (Serhiyenko, 
2015). 

All in all, active transportation has gained ever-increasing popularity due to its multiple benefits 
over the typical motorized modes. However, improving the safety of non-motorists plays a pivotal 
role in promoting such healthy, economically and environmentally friendly modes, especially at 
various transit stations where different transportation modes interact with one another. Compared 
with other infrastructure facilities such as intersections, sidewalks, and bike lanes, there is 
considerably less research dedicated to safety analysis regarding traffic accidents centered on active 
transportation modes surrounding transit stations. It remains unclear which factors constitute the 
main contributors to the walking and biking safety conditions in the areas adjacent to transit stops 
given the complexity of the influential factors and their interactions. The present study aims to 
rank the importance and quantify the impact of pedestrians’ and bicyclists’ traffic-safety-pertinent 
variables near the transit stops to bridge this gap. This research effort is imperative for the effective 
design of complete streets and transportation planning policies. For this purpose, multivariate 
spatial models were chosen owing to the frequent advantages reported in previous research 
associated with multivariate settings and spatial heterogeneity considerations. Specifically, joint 
models based on the multivariate conditionally autoregressive (MCAR) priors with a distance-
oriented neighboring 14-weight matrix were used.  
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To take advantage of a substantial reduction in computational time for estimation under a complex 
model scenario (Serhiyenko et al., 2016; Blangiardo et al., 2013), the current study employs 
Integrated Nested Laplace Approximation Multivariate Spatial Model (INLAMSM) (Palmí-
Perales et al., 2019), an INLA-oriented package, to carry out approximate Bayesian inference 
within a multivariate spatial framework. In addition, feature selection using both random forest 
and correlation analyses is employed, yielding different covariates to each of the two active 
transportation modes and leading to increased model flexibility. Moreover, for the statistical 
analysis, the researchers used data centered on high-quality transit stations, including built 
environments and socioeconomic, demographic, and crash data aggregated at the level of the 0.5-
mile-radius zone surrounding the stations. Finally, for a comprehensive comparison of the 
predictive accuracy of models, different evaluation criteria were utilized, which include deviance 
information criterion (DIC), widely applicable information criterion (WAIC), posterior mean 
deviance (Dbar), and the effective number of parameters (Pd). 
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III. Methodology 

This section is dedicated to presenting methodological details, including the modeling 
specification, variable importance by random forest, and evaluation criteria.  

3.1 Modeling Specification 

In the current study, under the INLA framework (Lindgren and Rue, 2015), the INLAMSM 
package (Palmí-Perales et al., 2020) is used to draw the inferences due to its ability to address 
multivariate latent effects. A Bayesian hierarchical approach is used to estimate the Poisson 
process:  

                                                     𝑦𝑦~𝑃𝑃𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝝀𝝀)                                                           (1) 

where y is the observed crash count, and λ is the Bayesian mean expected crashes, which can be 
modeled as a function of the covariates following a lognormal distribution as shown below: 

                                               log (𝜆𝜆) =  𝛽𝛽0 + 𝜷𝜷𝜷𝜷 +𝜙𝜙 + 𝜺𝜺                                                (2)                                        

where  

𝛽𝛽0 is the global intercept,  

𝜷𝜷 is a fixed coefficient vector,  

𝑿𝑿 is the covariate matrix, and  

𝜙𝜙 is the spatially structured error term.  

It is fit by the multivariate conditionally autoregressive (MCAR) model, and ε represents the 
white noise matrix.  

For the multivariate model, correlated priors in the random effects vector are estimated using 
multivariate normal priors (Ma and Kockelman, 2006; Park and Lord, 2007): 

                                                   𝜺𝜺 ~𝑀𝑀𝑀𝑀(𝜇𝜇,∑)                                                                 (3) 

                         where 𝜺𝜺 = �
𝜺𝜺1
𝜺𝜺2�, 𝜇𝜇 = �

𝜇𝜇1
𝜇𝜇2� ,∑ = �

𝜏𝜏1 √𝜏𝜏1𝜏𝜏2 𝜌𝜌12�

√𝜏𝜏1𝜏𝜏2 𝜌𝜌12� 𝜏𝜏2
�                         (4) 

In the above equations, 𝜺𝜺 is the independent random effect matrix which captures the extra-
Poisson heterogeneity among locations, 𝜇𝜇  is the vector consisting of the mean value for each 
transportation mode, and ∑ is called the precision matrix where the diagonal 𝜏𝜏 elements represent 
the marginal precision of each of the transportation modes, while the off-diagonal elements 
represent the inverse of covariance, calculated as the ratio of √𝜏𝜏1𝜏𝜏2 and 𝜌𝜌12 (or, the correlation 
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coefficient between the two response variables). If no correlation between the transportation modes 
is assumed, the off-diagonal elements can be specified to be zero. In this research, both correlated 
and non-correlated modes are considered for model performance purposes. This inverse of the 
precision matrix is defined by: 

                                                    ∑−1~𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝐼𝐼,𝑛𝑛)                                                      (5)                                         

where the ∑−1 is a symmetric positive definite matrix, 𝐼𝐼 is the scale matrix (Congdon, 2007), and 
n (n=2) is the degree of freedom, resulting in a non-informative specification (Heydari et al., 2017). 
The covariates coefficient was specified with normally distributed vague priors N (0,100). Such a 
diffused normal distribution with mean values of zero and a large variance is commonly employed 
as a vague prior of posterior estimates in the absence of sufficient knowledge of prior distribution 
(Osama and Syed, 2017; Cheng et al., 2018).  

To tackle the spatial dependency, the authors employed the MCAR algorithm which was initially 
derived by Mardia (1988) from the results in Besag (1974). Let 𝜙𝜙𝑇𝑇 = (𝜙𝜙1𝑇𝑇 … . . .𝜙𝜙𝑚𝑚𝑇𝑇 ). Then, Ф is 
nm×1, with each ϕ being an n-dimensional vector. In the present study, n=2 represents the two 
transportation modes, and m=655 represents the 655 transit stations selected from Los Angeles 
County. Considering a multivariate Gaussian distribution for Ф yields: 

                                   (Ф) =  (2π)−
𝒏𝒏𝒏𝒏
𝟐𝟐  |𝑺𝑺|

𝟏𝟏
𝟐𝟐 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝟏𝟏

𝟐𝟐
Ф𝑻𝑻 𝑺𝑺Ф�                                     (6) 

where S is an nm×nm precision matrix. Following Mardia (1988), the zero-entered MCAR, which 
has a conditional normal density, is shown as follows: 

                                            𝜙𝜙𝑖𝑖 |𝜙𝜙𝑗𝑗 ,  ∑ ~ 𝑁𝑁𝑘𝑘�∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝑗𝑗~1 ,𝜙𝜙𝑗𝑗 ,∑𝑖𝑖�𝑖𝑖                                           (7) 

where subscripts i and j respectively refer to a transit station and its neighbors, each ∑𝑖𝑖 is a positive 
definite matrix with dimensions of n×n representing the conditional precision matrix, and 𝐶𝐶𝑖𝑖𝑖𝑖 is a 
distance matrix of the same dimensions as ∑𝑖𝑖 (Jonathan et al., 2016). The precision matrix ∑−1 
follows the Wishart distribution, as shown in Equation 5.  

3.2 Variable Importance by Random Forest (RF) 

Random forest (RF) has become a widely adopted technique for variable importance ranking and 
is based on the ensemble classifier that consists of many decision trees and outputs the class by 
individual trees. It is computationally efficient with large datasets and relatively compatible with 
several software packages (e.g., Python, R Statistics) (Behnamian et al., 2017). The method 
combines bagging and the random selection of features to construct a collection of decision trees 
with controlled variation. Using ensembles of predictors for classification or regression has been 
shown to give more accurate results than a single predictor. A large number of trees ensures that 
the RF is robust against over-fitting. This technique has an advantage over the traditional decision 
trees: it obtains unbiased error estimates without separating the cross-validation test dataset. When 
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a particular tree is grown from a bootstrap sample, usually one-third of the training cases are called 
out-of-bag (OOB) data and are left out and not used in the tree’s growing.  

The efficient implementation of the RF algorithm relies on two essential components: the number 
of trees to grow and the number of predictors selected to split each node to produce stable results 
and a minimum OOB error rate. Generally, the number of predictors (m) at each split is 
approximately equal to the square root of the total number of predictors (p) from the dataset (James 
et al., 2017).  

                                                                𝑚𝑚 ≈ �𝑝𝑝                                                           (8) 

Once the proper values of the tree number and predictor size were determined, the variables’ 
importance ranking was reported based on the mean decrease in accuracy (MDA) in predictions 
on the OOB samples when a given variable is excluded from the model using bootstrap aggregation 
(Liaw and Wiener, 2002).  

A similar practice is seen in some previous research in the traffic safety field (Abdel-Aty and 
Haleem, 2011; Siddiqui et al., 2012; Jiang et al., 2016). Compared with other typical feature 
selection techniques such as forward or backward selection based on statistical model metrics, the 
RF is not specific to a particular data distribution and features an enhanced capability to handle 
data complexity, especially for those sets with a high order of interactions. The RF technique for 
variable selection was constructed in the R software using the ‘randomForest’ package. 

3.3 Evaluation Criteria 

For Bayesian hierarchical model evaluation, Deviance Information Criterion (DIC) is a popular 
criterion used to assess the models' complexity and goodness of fit (Spiegelhalter et al., 2003). As 
a hierarchical modeling generalization of the Akaike Information Criterion (AIC), DIC can be 
expressed as using the following formulation: 

                                             DIC = D(𝜃̅𝜃) + 2𝑃𝑃𝐷𝐷 = 𝐷𝐷� + 𝑃𝑃𝐷𝐷                                                (9) 

where D(𝜃̅𝜃) is the deviance evaluated at the posterior means of estimated unknowns (𝜃̅𝜃), and 
posterior mean deviance 𝐷𝐷� can be taken as a Bayesian measure of data fitting. PD denotes the 
effective number of parameters in a model, the difference between D(𝜃̅𝜃) and 𝐷𝐷�. In general, the 
difference between observed and model-predicted data decreases as the number of parameters in a 
model increases. Therefore, the PD term is mainly used to compensate for this effect by favoring 
models with a smaller effective number of parameters. The larger the DIC value, the worse the 
model tends to perform. As a general rule of thumb suggested by Lunn et al. (2012), the models 
with a DIC value of less than five are considered to have the same performance; the models with 
DIC values greater by 5 and 10 points are slightly worse, and the models with a DIC larger by 
more than 10 points are significantly worse. Overall, DIC may be regarded as the measure of an 
indirect assessment of the out-of-sample errors, as it is based on in-sample errors (𝐷𝐷�) while also 
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accounting for the bias due to overfitting usually resulting from more model parameters (James et 
al., 2013). 

Like DIC, the widely applicable information criterion (WAIC) is another generalized version of 
the Akaike Information Criterion (AIC). For Bayesian models, WAIC (Watanabe, 2010) can be 
viewed as an improvement on the DIC, where the latter is not fully Bayesian since it is based on a 
point estimate (van der Linde, 2005; Plummer, 2008). By contrast, WAIC is fully Bayesian, 
invariant to parametrization, and closely approximates Bayesian cross-validation using leave-one-
out techniques. Like DIC, the model with a smaller WAIC is preferred (Gelman et al., 2013). 
WAIC was also used in the present research as an additional criterion to assess model performance 
from a different perspective.  
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IV. Data Analysis 

This chapter will describe the data source, the definition and descriptive statistics of each data 
variable, and the correlation among these variables, including the spatial relationship. This part of 
the research process aims to explore the most suitable data for model estimation. Before the data 
are fed into the model, it is critical to ensure data quality. For example, the potential 
multicollinearity among the explanatory variables will be examined closely. The correlation analysis 
between the dependent variables will also shed light on whether it is necessary to use the joint 
model. 

4.1 Data 

The data used in this research were obtained from multiple sources: Southern California 
Association of Governments (SCAG), Transportation Injury Mapping System (TIMS), L.A. 
Metro, InfoUSA, and the U.S. Census Bureau. All data were compiled into GIS databases. The 
dependent variables include the total number of pedestrian-involved crashes, the total number of 
bike-involved crashes, and the total number of vehicle-only crashes (i.e., crashes with no pedestrian 
or bike involved). The independent variables are categorized into various groups, including the 
following: socioeconomic characteristics, employment characteristics, diversity/mixed use of land, 
built environment/access to active transportation and transit, land development characteristics 
such as Transit-Oriented Development (TOD), and biking-/walking-related built environment 
variables. 

In the SCAG region, as shown in Figure 1, various modes of transit form an extensive network. 

Figure 1. Transit Network in the SCAG Region for 2012 Base Year  
(Source: SCAG 2016⁠–⁠2040 RTP/SCS) 
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SCAG’s definition of a HQTA is within one half-mile from major transit stops and high-quality 
transit corridors; it was developed based on the language in Senate Bill 375 (Barbour, 2016). 
According to SCAG, the definitions of major transit stops and high-quality transit corridors are 
as follows: 

Major Transit Stop: A site containing an existing rail transit station, a ferry terminal served by 
either a bus or rail transit service, or the intersection of two or more major bus routes with a 
frequency of service interval of 15 minutes or less during the morning and afternoon peak 
commute periods (C.A. Public Resource Code Section 21064.3). It also includes major transit 
stops that are included in the applicable regional transportation.  

High-Quality Transit Corridor (HQTC): A corridor with fixed route bus service with service 
intervals no longer than 15 minutes during peak commute hours. (SCAG, 2016) 

Figure 2 shows the HQTAs in the SCAG Region for the 2012 Base Year and 2040 Plan Year. 

Figure 2. High-Quality Transit Areas in the SCAG Region for 2012 Base Year and 2040 Plan 
(Source: SCAG 2016⁠–2040 RTP/SCS) 

 
This research is focused on major transit stops, as defined by SCAG’s HQTAs (SCAG 2016–
2020 RTP/SCS). The data collected cover the half-mile buffer zones around high-quality transit 
stops in the HQTAs in the SCAG region as defined in the base year 2016. The radius of half a 
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mile for buffer zones was determined by SCAG, and most of the variables in these areas were 
derived from SCAG’s travel demand models and land-use models.  

There are 948 major transit stations in the SCAG region, including 155 rail stations. Figure 3 
shows the location of these stations. Out of 948 stations, 870 stations are in Los Angeles County 
(Figure 3). This research will focus on L.A. County for research purposes. A station-to-station 
distance matrix is developed to reflect the spatial relationships among stations on the network. 
Furthermore, to avoid duplication among stations that are too close to each other because of the 
half-mile buffer, 293 stations that are within one mile of each other are removed in the analysis. 
This choice results in 655 stations in L.A. County.  

Figure 3. Transit Stations (948 Major) and 11,267 TAZs (Tier 2) in the  
SCAG Region (Year 2016) 
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Figure 4. Transit Stations (870 Major) and 5,697 TAZs (Tier 2) in L.A. County (Year 2016) 

 

Figure 5. Bike Network in the SCAG Region (Year 2012)  
(Source: SCAG 2016⁠–2040 RTP/SCS) 
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4.2 Variables 

A variety of variables related to the built environment were derived at SCAG’s Tier 2 TAZ (traffic 
analysis zones) level. There are 11,267 Tier 2 TAZs in the SCAG travel demand model (Figure 
3), and about half (5,697) of these TAZs are in L.A. County (Figure 4). Each TAZ has detailed 
information on population, households, employment, land use, and transit usage.  

Variables related to bike lane density and access are also derived from the bikeway network. As an 
example, Figure 5 shows the extensive bikeway network in the SCAG region. Similarly, variables 
related to intersection density and walk accessibility are also derived and included in this study. 

Table 1 shows the descriptive statistics of all variables used in this research. The bottom row 
indicates the station-to-station distance matrix statistics, which are used for spatial autocorrelation 
analysis in the model development. 

Table 1. Descriptive Statistics of Collected Data 

Variables Description Min Max Mean S.D. 

Density 

Pop_den1  Population density (persons/acre) 0.00 76.86 22.13 12.74 

HH_den1 Household density (households/acre) 0.00 30.59 7.56 5.03 

Emp_den1 Employment density (jobs/acre) 0.05 127.48 11.81 12.17 

Ret_den1  Retail job density (jobs/acre) 0.00 7.11 1.12 1.03 

RetSer_den1  Retail + Service (retail + FIRE + Arts&Food + Other Serv.) job density 
(jobs/acre) 0.02 26.62 3.84 4.13 

Diversity / Mixed Use of Land 

Jobmix131 Employment mix (13 sectors); 1 = highest mix (i.e., jobs are equal for all 
sectors) 0.23 0.86 0.65 0.08 

Jobmix91 Employment mix (9 sectors) ; 1 = highest mix (i.e., jobs are equal for all 
sectors) 0.25 0.79 0.61 0.08 

Emix131 Employment mix (13 sectors); 1 = highest mix (i.e., jobs are equal for all 
sectors) 0.30 0.77 0.66 0.05 

Emix91 Employment mix (9 sectors) ); 1 = highest mix (i.e., jobs are equal for all 
sectors) 0.14 0.55 0.41 0.06 

EH_ratio1 Job/Household ratio 0.00 10495.77 94.07 757.99 

EP_ratio1 Job/Population ratio 0.00 10495.55 85.17 817.95 

Built Environment / Access to Active Transportation & Transit 

Int34_Den1  Intersection density (three and four legs) 0.01 0.58 0.20 0.06 

BKlnAcc1 Bike lane access (1 = if a TAZ has bike lane) 0.00 1.00 0.56 0.30 
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Variables Description Min Max Mean S.D. 

Built Environment / Access to Active Transportation & Transit 

Rail1 1 = at least one rail station in a TAZ 0.00 0.72 0.08 0.14 

ExBus_D1 
Stop density for express bus and BRT 0.00 0.71 0.03 0.05 

HFLbus_D1  High-frequency bus stop density (local bus headway ≤ 20 mins) 0.00 0.47 0.05 0.05 

TTbus_D1 Total bus stop density 0.00 2.71 0.42 0.29 

Land Development Characteristics: TOD (HQTA/TPA) 

Mlt_pct1  Percent of households living in multiple units 0.00 0.49 0.28 0.12 

HQTA_pct1  Percent of TAZ area in non-freeway HQTA (high-quality transit area) 0.00 1.00 0.89 0.23 

TPA_pct1  Percent of TAZ area in TPA 0.00 1.00 0.71 0.33 

Additional Biking- or Walking-Related Built Environment Variables 

BLdenIND1 Bike Lane Density Indicator = 
Sum (Bike Lane Density/Distance to Home TAZ within 3 miles)   
Bike Lane Density for Each TAZ = ((Street 15–25mph)*1 + (Street 
35mph)*2 + Bike Lane Class1*3 + Bike Lane Class2*4 + Bike Lane 
Class3*5) / Total TAZ area (excluding streets speed > 60mph) 

0.03 11.82 6.32 2.83 

Blck_len1 Estimated block length = LocalSt/Int34new (Total street length / number 
of intersections) but freeways and state highways are excluded 0.11 1.12 0.24 0.08 

WalkAcc1 Walk Accessibility (RS_den2/block_len) 
 = (weighted retail + service job density) / estimated block length 0.01 53.41 6.94 6.75 

Pct_Art1 Percent of major arterials (45–55mph) of TAZ where higher % means 
more difficult to cross the street (also larger block to across the street); can 
be used with WalkAcc 

0.00 0.27 0.04 0.05 

Natural Log Transformation 

L_Pden1 L_Pden = Ln (Pop_den + 0.001) 0.01 6.91 2.78 0.90 

L_Hden1  L_Hden = Ln (HH_den + 0.001) 0.01 6.91 1.84 0.97 

L_Eden1 L_Eden = Ln (Emp_den + 0.001) 0.06 4.13 1.81 0.94 

L_REden1 L_REden = Ln (Ret_den + 0.001) 0.00 5.62 1.04 0.76 

L_RSEden1  L_RSEden = Ln (RetSer_den + 0.001) 0.00 4.55 0.80 0.66 

Crash Count 

Ped Pedestrian-involved accident counts 0.00 222.00 48.12 38.50 

Bike Bike-involved accident counts 0.00 177.00 35.93 29.65 

Distance 

Distance The distance between each pair of stations (655 stations in total) 0.00 156.97 20.90 17.61 

Notes: 1. S.D. represents standard deviation. 2. Variables fed into the final spatial model development are marked in bold. 
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A total of 250,817 non-freeway collisions in L.A. County from 2012 to 2017 were collected from 
the Transportation Injury Mapping System (TIMS) website, which provides quick, easy, and free 
access to California crash data and is maintained by the Statewide Integrated Traffic Records 
System (SWITRS). The multiple sources of data were integrated into GIS with the following 
procedures. 

1. A GIS layer with the selected major transit stations was used to create the half-mile buffer 
zones. 

2. The above-mentioned GIS layer was overlaid with SCAG’s Tier 2 TAZ layer, where the 
built environment information is available. 

3. The above two layers were overlaid with another GIS layer, which stores collision 
information in L.A. County from 2012 through 2017 from SWITRS (see Figure 2 for the 
screenshot of the collision layer overlaying transit station buffer zones).  

4. The integrated dataset was cleaned and developed to contain transit-oriented crash counts 
and a variety of built-environment-related variables. 

The integrated database connects each accident within the half-mile buffer around major transit 
stops in L.A. County with various built-environment-related variables (Table 1). As shown in 
Figures 6, 7, 8, 9, and 10, these accidents are further aggregated to the station (buffer) level. In 
other words, for each major transit station, a database was created with the number of accidents 
by mode (pedestrian, bike, auto) and variables related to the built environment. 

Figure 6. Traffic Accidents (2012–2017) within Half-Mile Buffers around  
Major Transit Stops in L.A. County 
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Figure 7. Traffic Accidents (2012–2017) within Half-Mile Buffers of Major Transit  
Stops in L.A. County (Central LA) 

 

Figure 8. Traffic Accidents (2012–2017) within Half-Mile Buffers of Major Transit Stops  
in L.A. County (San Fernando Valley) 
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Figure 9. Traffic Accidents (2012–2017) within Half-Mile Buffers of Major Transit Stops in 
L.A. County (East Los Angeles and San Gabriel Valley) 

 

Figure 10. Traffic Accidents (2012–2017) within Half-Mile Buffers of Major Transit Stops in 
L.A. County (South Los Angeles County) 
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4.3 Correlation Analysis 

For each variable included in this study, the authors developed a distribution plot to display a more 
comprehensive illustration from the statistical perspective. 

To prepare the model inputs, 11 correlation matrix plots with significance levels (p-values) have 
been generated between all significant individual variables (and related dependent variables) from 
the results of the joint model. As shown in Figures 11 to 21, each individual variable’s distribution 
is displayed on the diagonal in each plot. The top of the diagonal represents the correlation 
coefficient and the significance level, with stars indicating the p-values. The different symbols 
reveal different ranges of p-values (in particular, *** denotes 0 ⁠–0.001, ** denotes 0.001 ⁠–0.01, * 
denotes 0.01 ⁠–0.05, . denotes 0.05⁠–0.1, and a blank space denotes 0.1 ⁠–1). Generally, a p-value less 
than 0.05 is considered statistically significant, and an absolute value of the correlation coefficient 
larger than 0.6 indicates that they are statistically different. If the p-value is less than 0.05 while 
the absolute value of the correlation coefficient is greater than 0.6, they are statistically correlated. 
The bottom of the diagonal represents the bivariate scatter plots with a fitted line.  

Figures 11 to 21 show the correlation matrix plot between each significant individual variable 
(based on the results from the joint model estimation) and related dependent variables (i.e., 
pedestrian-involved collision count, bike-involved collision count). 
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Figure 11. Numerical Correlation Test between Household Density and  
Pedestrian-Involved Collision Counts 

 
A: The bivariate scatter plot with a fitted line. B: The distribution of household density and pedestrian-involved collision counts. 
C: Correlation coefficient and significance level. 
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Figure 12. Numerical Correlation Test between Employment Mix (13 sectors) and  
Pedestrian-Involved Collision Counts 

 
A: The bivariate scatter plot with a fitted line. B: The distribution of employment mix (13 sectors) and pedestrian-involved 
collision counts. C: Correlation coefficient and significance level. 
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Figure 13. Numerical Correlation Test between Job/Household Ratio and  
Bike-Involved Collision Counts 

 
A: The bivariate scatter plot with a fitted line. B: The distribution of job/household ratio and bike-involved collision counts. C: 
Correlation coefficient and significance level. 
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Figure 14. Numerical Correlation Test between Stop Density for Express Bus and BRT and 
both Pedestrian- and Bike-Involved Collision Counts 

   
A: The bivariate scatter plots with a fitted line. B: The distribution of job/household ratio, pedestrian-involved and bike-involved 
collision counts. C: Correlation coefficients and significance levels. 
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Figure 15. Numerical Correlation Test between Total Bus Stop Density and  
Pedestrian-Involved Collision Counts 

 
A: The bivariate scatter plots with a fitted line. B: The distribution of total bus stop density and pedestrian-involved collision 
counts. C: Correlation coefficient and significance level. 
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Figure 16. Numerical Correlation Test between Bike Lane Density Indicator and  
Bike-Involved Collision Counts 

 
A: The bivariate scatter plots with a fitted line. B: The distribution of bike lane density indicator and bike-involved collision 
counts. C: Correlation coefficient and significance level. 
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Figure 17. Numerical Correlation Test between Estimated Block Length and  
Bike-Involved Collision Counts 

 
Figure 17. A: The bivariate scatter plots with a fitted line. B: The distribution of estimated block length and bike-involved 
collision counts. C: Correlation coefficient and significance level. 
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Figure 18. Numerical Correlation Test between Walk Accessibility and  
Pedestrian-Involved Collision Counts 

 
A: The bivariate scatter plots with a fitted line. B: The distribution of walk accessibility and pedestrian-involved collision counts. 
C: Correlation coefficient and significance level. 
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Figure 19. Numerical Correlation Test between Log Population Density and both  
Pedestrian and Bike Collision Counts 

 
A: The bivariate scatter plots with a fitted line. B: The distribution of log population density, pedestrian-involved, and bike-
involved collision counts. C: Correlation coefficients and significance levels. 



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  34 

Figure 20. Numerical Correlation Test between Log Employment Density and  
Bike-Involved Collision Counts 

 
A: The bivariate scatter plots with a fitted line. B: The distribution of log employment density and bike-involved collision counts. 
C: Correlation coefficient and significance level. 
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Figure 21. Numerical Correlation Test between Log Retail Job Density and both  
Pedestrian and Bike Collision Counts 

 
A: The bivariate scatter plots with a fitted line. B: The distribution of log retail job density, pedestrian-involved, and bike-
involved collision counts. C: Correlation coefficients and significance levels. 

To visualize the entire correlation matrix, the authors also created a graphical display (also known 
as a correlogram); it is useful to reflect the most correlated variables in one data table since the 
correlogram can distinguish various correlation coefficient values by color. As shown in Figure 22, 
the distributions of relatively highly correlated variables have been highlighted in different colors. 
For example, “HH_den1” (household density) and “BLdenIND1” (bike lane density indicator) are 
highly correlated with “Ped” (pedestrian-involved collision count). 
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Figure 22. Correlogram Plot of Correlation Coefficients among Individual Significant  
Variables from the Joint Model and Dependent Variables 

 
Table 2 shows the summary of correlation coefficients between significant individual variables 
from the joint model and dependent variables. As mentioned above, this study compares the results 
from joint models with the individual correlation test to explore the results of significant variables 
without any association between dependent variables. As revealed in Table 2, the results from the 
individual correlation test show that fewer variables are statistically correlated with pedestrian-
involved or bike-involved crash counts. Only household density, total bus stop density, and bike 
lane density indicators are highly correlated with related dependent variables, namely pedestrian- 
and bike-involved collision counts. A possible explanation is the individual correlation test didn’t 
include an unobserved relationship between pedestrians and cyclists in the model at the same time. 
This is because the individual correlation test also shows that pedestrian-involved collisions and 
bike-involved collisions are statistically correlated with each other (as shown in Figure 14, Figure 
19, and Figure 21). The difference between the results of the individual correlation test and the 
joint model has crucially illustrated the reliability of the joint model since it is very flexible in 



 

M I N E T A  T R A N S P O R T A T I O N  I N S T I T U T E  37 

selecting covariates pertaining to different dependent variables and considering correlations 
between dependent variables in the model as well.  

Table 2. Summary of Correlation Coefficient between Individual  
Significant Variables and Dependent Variables 

Variables Description Correlation 
Coefficient Related 
with Ped  
(Significance Level) 

Correlation 
Coefficient Related 
with Bike 
(Significance Level) 

HH_den1 Household density 
(households/acre) 0.799(***)  NA  

Emix131 Employment mix (13 sectors); 1 = 
highest mix (jobs are equal for all 
sectors) 

0.318(***) NA  

EH_ratio1 Job/Household ratio NA  -0.086 (*) 
ExBus_D1  Stop density for express bus and 

BRT 
0.262(***) 0.381(***)  

TTbus_D1  Total bus stop density 0.614(***)  NA  
BLdenIND1 Bike Lane Density Indicator = 

Sum (Bike Lane Density/Distance 
to Home TAZ within three miles)  
Bike Lane Density for Each TAZ = 
((Street15–25mph)*1 + 
(Street35mphj)*2 + Bike Lane 
Class1*3 + Bike Lane Class2*4 Bike 
Lane Class3*5) / Total TAZ area 
(excluding speed > 60mph) 

NA  0.735(***)  

Blck_len1 Estimated block length = 
LocalSt/Int34new (Total street 
length / number intersection) but 
highways are excluded 

NA  -0.269(***)  

WalkAcc1  Walk Accessibility 
(RS_den2/block_len) 
 = (weighted retail + service density)/ 
estimated block length 

0.503(***)  NA 

L_Pden1   L_Pden = Ln (Pop_den + 0.001) 0.393(***)  0.325(***)  
L_Eden1   L_Eden = Ln (Emp_den + 0.001) NA 0.382(***)  
L_REden1  L_REden = Ln (Ret_den + 0.001) -0.376(***)  -0.390 (***) 
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V. Results and Discussion 

For the bivariate spatial crash prediction models, the different covariates were first selected for 
each of the two transportation modes: pedestrian and bicycle. The R package INLAMSM was 
utilized to develop the models and generate the posterior mean of the model parameters. Distinct 
evaluation criteria were then employed to assess the model performance.  

5.1 Feature Selection 

Based on the parsimony rule, it is often desirable to reduce the model data load to the fewest 
number of inputs with maximal predictive accuracy. The typical feature selection techniques 
integrated with statistical model development, like backward-forward feature selection, are usually 
subject to a strong assumption of a specific distribution function and cannot handle the possibility 
of complex variable interactions. Therefore, the present study performs feature selection using the 
correlation analysis and one of the ensemble techniques (random forest) which has gained greater 
popularity recently due to its benefits over the traditional techniques.    

The random forest (RF) model was developed via the R package “randomForest” (Cutler et al., 
2012). During the tree-growing stage, four predictor variables were randomly sampled as 
candidates at each split. The OOB error rate was found to be at a minimum of 0.264, with 63.24% 
of data variability being explained by the model. Once the RF model had been generated, the 
variable importance ranking was determined based on the contribution of variables to reducing the 
mean squared errors (MSE) in the OOB samples. The larger the contribution, the more important 
is the given variable for model development. The variable importance plots are shown in Figure 
23 in decreasing order (vertically) for both pedestrian and bike counts.  
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Figure 23. Variable Importance Plot for (a) Pedestrian Crash Counts and (b) Bike Crash Counts 

 
(a) 

 
(b) 

 “%IncMSE” represents the percentage of the drop in mean squared errors with certain variables being excluded from the model 
development. 

As described in detail in the previous chapter, this study also performed a correlation analysis to 
avoid feeding redundant information into the models. To determine whether the variables are 
highly correlated or not, the popular cut line of 0.6 for the correlation coefficient with the 
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significance level of 0.05 was used. The correlated variables were removed in multiple steps using 
engineering judgment to avoid the exclusion of any significant variables. This procedure acts as a 
trade-off between omitted variable bias and multicollinearity. At last, out of thirty-two variables, 
fourteen variables were retained to perform modeling. It is noteworthy that different covariates are 
used for different transportation modes, which enhances the model flexibility and accuracy with 
more related salient variables being used for the respective modes.  

5.2 Model Results and Discussions 

Table 3 illustrates posterior estimates of model parameters of fixed effects with and without 
correlation of pedestrian-involved crash counts and bike-involved crash counts, as well as 
goodness-of-fit criteria. It can be clearly observed that the model with a correlation of pedestrian-
involved crash counts and cyclist-involved crash counts highlights more significant covariates than 
the model without correlation. For instance, the variables “ExBus_D” (Stop density for express 
bus and BRT), “WalkAcc1” (Walk accessibility), “L_Pden1” (Population density, for pedestrian-
involved crash counts), and “EH_ratio1” (Job/Household ratio, for cyclist-involved crash counts) 
were only found to be significant in the model with correlation. This finding allows the research 
team to address the correlation effects to obtain more insightful results explicitly. Only one 
variable, “L_REden1” (Retail job density), was found to be significant across both models (i.e., the 
presence and absence of a correlation effect). At the individual model level, for pedestrian-involved 
crash counts, four covariates appeared to be statistically significant across both models (i.e., the 
presence and absence of a correlation effect): “HH_den1” (Household density), “Emix131” 
(Employment mix), “TTbus_D1” (Total bus stop density), and L_REden1 (Retail job density). 
For bike-involved crash counts, six covariates appeared to be statistically significant across both 
models (i.e., the presence and absence of a correlation effect): “ExBus_D1” (Express bus stop 
density), “BLdenIND1” (Bike lane density indicator), “Blck_len1” (Estimated block length), 
“L_Pden1” (Population density), “L_Eden1” (Employment density), and “L_REden1” (Retail job 
density). It is worth noting that the “L_REden1” (Retail job density) variable was found to have a 
negative impact on both pedestrian-involved and bike-involved crashes. Further, “Blck_len1” 
(Estimated block length) was found to have a negative impact on the bike collision counts for both 
models (with and without correlation).  
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Table 3. Description of Model Parameter Estimates 

Variables With Correlation of Pedestrian 
and Bike Collisions 

Without Correlation of Pedestrian 
and Bike Collisions 

Pedestrian Bike Pedestrian Bike 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Model Parameters 
(Intercept) 1.572 0.153 3.788 0.735 1.604 0.153 3.792 0.734 

HH_den1 0.188 0.028 NA NA 0.453 0.052 NA NA 

Jobmix91 0.015 0.044 NA NA 0.002 0.044 NA NA 

Emix131 0.135 0.024 NA NA 0.286 0.044 NA NA 

Emix91 NA NA 0.021 0.040 NA NA 0.048 0.036 

EH_ratio1 NA NA -0.072 0.019 NA NA 0.029 0.032 

BKlnAcc1 -0.031 0.044 0.034 0.040 -0.030 0.036 0.018 0.031 

ExBus_D1 0.234 0.045 0.270 0.040 -0.007 0.042 0.130 0.031 

TTbus_D1 0.095 0.025 NA NA 0.524 0.050 NA NA 

BLdenIND
1 

NA NA 0.251 0.022 NA NA -0.684 0.038 

Blck_len1 NA NA -0.086 0.026 NA NA -0.322 0.041 

WalkAcc1 0.108 0.027 NA NA -0.034 0.046 NA NA 

L_Pden1 0.295 0.049 0.289 0.044 0.073 0.045 0.085 0.037 

L_Eden1 NA NA 0.100 0.033 NA NA 0.089 0.043 

L_REden1 -0.216 0.050 -0.286 0.050 -0.098 0.046 -0.139 0.047 

Performance Evaluation Criteria 
DIC 8752.37 9285.00 

WAIC 8706.51 9186.79 
𝐷𝐷� 7801.69 8502.66 
𝑃𝑃𝐷𝐷 950.68 782.34 

Notes:  
1. S.D. represents standard deviation; DIC represents the deviance information criterion; WAIC represents widely 
applicable information criterion; 𝐷𝐷� represents posterior mean deviance; 𝑃𝑃𝐷𝐷 represents the effective number of 
parameters; NA means not applicable.  
2. Refer to Table 1 for detailed variable descriptions.  
3. For model parameters, the bold figures represent the statistically significant variables at the significance level of 0.05.  
4. For performance evaluation criteria, the bold figures indicate the best performance under specific criteria.  

In the following section, each statistically significant variable is examined closely to better 
understand its impact on pedestrian-involved and/or bike-involved accidents. 

Household density (HH_den1, i.e., the number of households per acre) was observed to 
significantly impact the pedestrian crash counts for both cases (with and without correlation). This 
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finding suggests that pedestrian-involved collisions are more likely to happen with increased 
household density. It could be attributed to the rise in pedestrian exposure elevating the risk of 
pedestrian crash frequency.  

Employment mix across 13 sectors (Emix131) was found to be statistically significant to the 
increase in the pedestrian crash counts for both cases (with and without correlation). This indicates 
that an increase in the mix of job sectors or commercial areas increases the likelihood of pedestrian 
crashes. A possible reason may be that the increased amount of walking activities among job sectors 
elevates the pedestrian crash propensity.   

Interestingly, the variable Employment/Household ratio (EH_ratio1) appeared to have a 
statistically negative impact on the bicyclist crash counts in models with correlation, indicating 
that the propensity of bicyclist crash frequency reduces with increasing employment/household 
ratio. A possible explanation may be due to the proximity of travel distance between the job sector 
and households; the commuter tends to make less use of motor vehicles, which leads to reduced 
vehicular-bicycle interactions. This indicates the planning and design of the built environment 
should be pursued in accordance with creating residential areas near the commercial or job sectors 
to reduce travel distance.  

Stop density for express bus and BRT (ExBus_D1) was observed to be statistically significant 
across pedestrian and bike crash counts for both cases (with and without correlation). This suggests 
that the close distance between express bus or BRT stops increases the likelihood of pedestrian 
and bicyclist crashes. Since walking and biking activity volumes are higher at or near these transit 
stops, the risk of a collision between motor vehicles and pedestrians or cyclists increases.      

Total bus stop density (TTbus_D1) appeared to have a statistically positive impact on pedestrian-
involved crash frequency in models with and without correlation. This indicates that the high 
pedestrian volume or exposure at or near the bus stops tends to increase the pedestrian crashes. 

As expected, the Bike lane density indicator (BLdenIND1) was found to have a statistically 
negative impact on bicyclists crash counts across both models with and without correlation, 
indicating that bike-related crashes' propensity decreases with the provision of separate 
infrastructure (bike lanes) to bicyclists. The bike lanes create a safer roadway environment for 
bicyclists and motor vehicles and encourage the use of active modes. This finding is consistent 
with many previous studies (McNeil et al., 2015; Park and Abdel-Aty, 2016; Basch et al., 2019) 

Estimated block length (Blck_len1) seems to influence the bike crashes negatively. The 
phenomenon may be due to the longer reaction time and environmental adaptability given to the 
bicyclists by the greater street block lengths. 

Walk accessibility (WalkAcc1) was found to be statistically significant for pedestrians with the 
consideration of correlation. This indicates that providing better walking accessibility increases 
pedestrian exposure and hence pedestrian crashes.   
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Population density (L_Pden1) was statistically significant for pedestrians and bicyclists with 
correlation and bicyclists without correlation. Since the population density can be easily and 
directly obtained from the census dataset, it is generally used to represent pedestrian exposure 
(Siddiqui et al., 2012; Wang et al., 2017), which increases pedestrian crash counts.  

Employment density (L_Eden1) appeared to have a statistically positive impact on the bicyclist 
crash counts for both cases, i.e., with and without correlation. This suggests that commercial areas 
tend to increase bike exposure, leading to an elevation of the bike-involved crashes.  

Retail job density (L_REden1) was found to have a statistically significant adverse impact across 
both modes and with or without correlation. The possible explanation may be that frequent 
walking and biking activities at retail areas reduce vehicle operating speeds and thereby decrease 
the likelihood of pedestrian and bicyclist collisions. This finding is consistent with the previous 
study (Dumbaugh and Li, 2010). 

To summarize what has been discussed above, here are the major findings from the model results. 

For pedestrian-involved crash counts, three covariates (Household density, Employment mix, and 
Total bus stop density) appear to have a statistically positive impact in both cases (with and without 
correlation), indicating the propensity of pedestrians to be involved in collisions with the increase 
of household density, employment mix, and total bus stop density, which then increases the 
pedestrian exposure. On the other hand, Retail job density has a negative impact on both cases. 

Likewise, for bicyclist-involved crash counts, there are five statistically significant variables with 
consistent signs in both situations (with and without correlation): Stop density for express bus and 
BRT, Estimated block length, Population density, Employment density, and Retail job density. 
As expected, Stop density for express bus and BRT, Population density, and Employment density 
demonstrate positive coefficient values, suggesting that an increase in the number of express bus 
stops, population, or employment leads to more bicyclist-involved collisions. On the other hand, 
Estimated block length seems to have a statistically negative influence on the bike crash frequency. 
The phenomenon may be due to the longer reaction time and more environmental adaptability 
provided to the bicyclists by the greater street block lengths. As with pedestrian-involved accidents, 
Retail job density also has a negative impact on bike-involved accidents in both cases. 

5.3 Model Evaluation 

As previously mentioned, this study employed DIC and WAIC to assess the goodness-of-fit of 
different models from different perspectives. DIC, a penalized criterion, acts as a trade-off between 
model fit and model complexity, which are represented by its two components, posterior deviance 
(𝐷𝐷�) and effectiveness number of parameters (𝑃𝑃𝐷𝐷). WAIC, a fully Bayesian approach, was 
adopted as a cross-validation measure to assess the model performance from a different perspective. 
The models with comparatively small values of DIC and WAIC indicate better performance 
(Gelman et al., 2013). The results for DIC and WAIC are illustrated in Table 3. For comparison 
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across models, the model with a correlation of pedestrian and bike counts demonstrates superior 
performance for DIC, WAIC, and 𝐷𝐷�. This superiority may be attributed to its incorporating a 
correlation structure that explicitly allows the flexibility to capture the spatial heterogeneity. 
However, the value of 𝑃𝑃𝐷𝐷 (950.68) in the model with correlation structure is sufficiently high (with 
a difference of 168.34 points) compared to the model without correlation. This suggests that the 
inclusion of the effective number of parameters provides the flexibility to fit the data—but this 
advantage is accompanied by the increase in the model complexity, which translates to increased 
computational effort. 

Table 4 shows the marginal precision and correlation coefficients between walking and biking 
crash counts with and without correlation. The positive marginal precision across active modes in 
both models indicates a positive association between pedestrian and bike crashes. The strong 
correlation between the transportation modes (ρ = 0.953) was observed within the correlated effect 
model, which shows that the close spatial proximity (0.5-mile-radius zone) may be attributed to 
shared unobserved factors such as road surface type, lighting condition, day/night, and weather 
condition between pedestrian and bicyclist crashes (Obaidat, 2012). It also shows that using the 
multivariate spatial framework in this study is reasonable and sensible.  

Table 4. Marginal Precision and Correlation Coefficient 

 
With Correlation of Pedestrian-Involved 
Crash Counts and Cyclist-Involved Crash 

Counts 

Without Correlation of Pedestrian-
Involved Crash Counts and Cyclist-

Involved Crash Counts 

 Pedestrian 
(S.D.) 

Cyclist 
(S.D.) 

Pedestrian 
(S.D.) 

Cyclist 
 (S.D.) 

τ(Tau) 
0.001 

(4.2E-05) 
0.002 

(4.9E-05) 
0.002 

（4.2E-05） 
0.003 

（1.6-E04) 

ρ(Rho) 
0.953 

（0.002） 
- 

Notes:  

1. τ represents the marginal precision of the values of pedestrian- and bicyclist-involved crash counts.  
2. ρ illustrates the correlation coefficient between pedestrian- and cyclist-involved crash counts.  
3. S.D. is the standard deviation. 
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VI. Conclusions 

6.1 Summary 

Active transportation has gained more and more attention in the past few years due to its economic, 
environmental, and health benefits over the typical motorized modes. However, improving the 
safety of non-motorists is imperative in promoting active transportation modes, especially around 
transit stations where different transportation modes have much higher rates of interaction. 
Compared with other infrastructure facilities such as intersections, sidewalks, and bike lanes, there 
is a lack of studies dedicated to safety analysis around transit stations. It has remained unclear 
which factors are the main contributors to the walking and biking safety conditions adjacent to 
transit stops given the complexity of the influential factors and their interactions.  

To bridge this gap, the objective of the present study was to rank the importance and quantify the 
impact of variables pertinent to pedestrian and bicycle traffic safety near the transit stops. It is the 
authors’ hope that the findings from this research can provide some insights for the effective design 
of complete streets, planning policies, and countermeasures to reduce the crashes. To address the 
spatial heterogeneity in the dataset surrounding high-quality transit stations, spatial models 
associated with multivariate settings were employed. Specifically, the researchers used joint models 
based on the multivariate conditionally autoregressive (MCAR) priors with a distance-oriented 
neighboring weight matrix. In order to take advantage of a substantial reduction in computational 
time and effort for estimation under a multivariate spatial framework, a package oriented to 
Integrated Nested Laplace Approximation (INLAMSM) was employed to carry out approximate 
Bayesian inference. Feature selection was also conducted using both random forest and correlation 
analyses, yielding different covariates to each of the two active transportation modes and increasing 
the model flexibility. Moreover, the statistical analysis used data centered on high-quality transit 
stations, including built environment characteristics, socioeconomic and demographic 
information, and crash data aggregated at the 0.5-mile-radius zone surrounding the stations. 
Finally, to assess the models’ predictive accuracy, four distinct evaluation criteria were used: 
deviance information criterion (DIC), widely applicable information criterion (WAIC), posterior 
mean deviance (𝐷𝐷�), and the effective number of parameters (𝑃𝑃𝐷𝐷).  

6.2 Conclusions 

The key findings from this study are as follows. 

1. Pedestrian-involved accident counts and bike-involved accident counts are highly correlated. 
It is better to use joint models instead of estimating the models separately. 

2. The models that consider correlations of pedestrian and bike crash counts demonstrate superior 
performance, which may be attributed to this study’s incorporation of a correlation structure 
that explicitly allows the flexibility to capture the spatial heterogeneity. 
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3. The advantage associated with models that consider correlation is accompanied by the 
dramatic increase in the model complexity due to the inclusion of correlation coefficients. 

4. The significantly better performance accompanying models with correlation clearly justifies 
the benefits of addressing the transportation modes' correlation. 

5. Household density, employment mix, and bus stop density positively impact pedestrian-
involved crashes, indicating the propensity of pedestrians to be involved in collisions is higher 
with the increase of household density, employment mix, and bus stops, which then increase 
the pedestrian exposure. However, retail job density has a negative impact on pedestrian-
involved crashes. 

6. Similarly, population density, employment density, and bus stop density demonstrate a positive 
influence on bicyclist-involved crashes, suggesting that an increase of population, employment, 
or the number of bus stops leads to more bicyclist-involved collisions. On the other hand, block 
length has a negative influence, which may be due to the longer reaction time and more 
environmental adaptability given to bicyclists by the greater street block lengths. Also, retail 
job density has a negative impact on bike-involved crashes. 

These research results can furnish transportation professionals with additional insights to create 
safer access to transit and thus promote active transportation modes in the State of California. 

6.3 Policy Implications 

The Sustainable Communities and Climate Protection Act of 2008, Senate Bill (SB) 375 of 
California, requires that MPOs develop a Sustainable Communities Strategy to “reduce per capita 
greenhouse gas emissions through integrated transportation, land use, housing and environmental 
planning” (SCAG 2020–2045 RTP/SCS, 2020). SB 375 creates incentives for residential or 
mixed-use residential projects that may be exempt from the California Environmental Quality Act 
(CEQA) if they are consistent with the MPO’s adopted Sustainable Communities Strategy (SCS). 
These “transit priority projects” must be located within half a mile of High-Quality Transit Areas 
(HQTAs), meaning either major transit stops or high-quality transit corridors (HQTCs). (SCAG 
2020–2045 RTP/SCS, 2020). Additionally, SB 743 of California (2013) provides further 
opportunities for CEQA exemption and streamlining to facilitate transit-oriented development 
(TOD):  

Specifically, certain types of projects within ‘transit priority areas’ (TPAs) can benefit from a 
CEQA exemption if they are consistent with the MPO’s adopted SCS. A TPA is an area within 
a half-mile of a major transit stop that is existing or planned if the planned stop is scheduled to be 
completed within the planning horizon included in a Federal Transportation Improvement 
Program (FTIP) (SCAG 2020–2045 RTP/SCS, 2020).  

For example, while HQTAs account for only 3% of total land area in the SCAG region, they are 
projected to accommodate 46% of the region’s future household growth and 55% of its future 
employment growth (SCAG, 2016). In other words, throughout the State of California, 
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surrounding major transit stations, we should expect higher population density, employment 
density, and employment mix. However, as shown in this study, by increasing population density, 
employment density, or the employment mix, the risk of pedestrian- and bicyclist-involved 
accidents will increase. On the other hand, various government agencies throughout the State of 
California have been working hard to promote the use of various non-motorized modes, from 
traditional walking and biking to the trending e-bike and e-scooter. People are encouraged to use 
non-motorized modes to access and exit transit stations to reduce auto trips while gaining health 
benefits—but with more non-motorized activities, exposure to accidents is also higher.  

It is clear that directing more growth around HQTAs and promoting more non-motorized travel 
are the right direction to go. Reducing the accidents related to these non-motorized modes while 
achieving the benefits associated with these adopted elements of an SCS will be a very challenging 
task facing various agencies.  

The findings from this study reflect an improved understanding of transit-stop-related factors and 
their impacts on active transportation safety. It is anticipated that the present study’s results will 
shed some light for the researchers pursuing better model development and for safety practitioners 
designing policies and programs regarding the safety of active transportation. Determining the 
significant factors affecting the safety of active modes will help the planners reduce the project 
costs by centralizing the resources towards potential improvements. This efficient allocation of 
resources will help execute effective project planning and increase the safety of active commuters 
for an extended period. Generally, the main focus of transportation-related agencies is directed 
towards automobiles and this has often limited attention paid to the safety of pedestrians and 
bicyclists (NACTO, 2015). This study's findings could help Department of Transportation 
(DOTs) and other transportation-related agencies prioritize safety-related improvements near 
transit stations. Such enhancements will promote public transport and make car travel less 
attractive in high transit areas, which will reduce pedestrian- and bicyclist-involved crashes, gas 
emissions, and traffic congestion—and can also help achieve substantial shifts towards active 
modes.   

More specifically, the findings from this research show that it is essential for transportation 
professionals to consider walking and biking modes altogether in the planning. Despite their 
unique travel behavior, pedestrians and bicyclists are highly correlated, and they share the same 
space and time parameters when accessing transit stations.  

If planned and designed well, a TOD with mixed land use can reduce auto mode share and travel 
distance. If people can easily access the destinations by walking/biking and transit, they don’t have 
to drive. For example, a regular car lane can be converted to a dedicated bus-only lane to improve 
transit service while reducing the auto traffic around transit stations. When the demand for auto 
traffic is lower, more resources can be reallocated to non-motorized users, such as by widening the 
sidewalks and adding bike lanes, reducing the potential conflicts with vehicles further, and 
enhancing safety for pedestrians and bicyclists.  
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This research also shows when adding more jobs, particularly retail jobs, in the TODs, it is possible 
to reduce accidents related to non-motorized users.  

It is also shown the propensity of bike-related crashes decreases by providing bike lanes to bicyclists 
or designing a longer street block length. The bike lanes create a safer roadway environment for 
bicyclists and motor vehicles and encourage active modes. While it is hard to change the street 
block length, physical barriers can be added to separate motor vehicle traffic from bicycle traffic if 
necessary. 

This study also shows that the close distance between transit stations increases pedestrian and 
bicyclist crashes. Since walking and biking activities are higher at or near the transit stops, the 
crash risk between motor vehicles and active mode users increases. For transit stations with high 
volumes and in close proximity, transit operators need to look into the demand and capacity to 
provide sufficient space for pedestrians and bicyclists to wait at the transit stations safely. Transit 
operators may also need to coordinate the adjacent stations along busy transit corridors or stations 
that are very close to each other at busy intersections to ensure pedestrians and bicyclists can 
smoothly and safely access transit stations. 

The model created in this study can be used to identify crash hot spots by ranking the frequency 
of the predominant crash type at each transit station. With the ranking, transit operators or city 
officials/planners can prioritize improvements near the stations with the greatest need. 
BIKESAFE has listed a total of 46 engineering, education, and enforcement countermeasures. 
Typical countermeasures include lighting improvements, turning restrictions for autos, pavement 
marking, comprehensive wayfinding system, optimizing signal timing for pedestrians and bicyclists, 
and so on. It is worth mentioning that in most urban intersections, signal timing is designed for 
vehicles only. For intersections with a high demand for pedestrian crossing, signal timing may be 
adjusted for pedestrians. But very rarely has the signal timing taken into consideration all users, 
including bicyclists. For example, pedestrian signal heads are very common, but bicycle signal 
heads are very rare. Bicycles (as well as e-bikes, e-scooters, scooters, skateboards) have unique 
operating characteristics worth paying attention to. After all, signal timings aim to provide safe 
crossings and minimize delays for all users. 

6.4 Research Limitations 

The findings from this study reflect an improved understanding of transit-stop-related factors and 
their impacts on active transportation safety. However, it is important to be aware of some caveats. 
The current findings are based on empirical results obtained from the bicycle and pedestrian crash 
data from Los Angeles County alone. The superiority of specific models may not hold when 
employed at a different spatial level. Second, investigating the effects of both spatial and temporal 
correlation on the count models of active modes may highlight more valuable insights. Third, other 
feature selection techniques may lead to different covariates and hence different coefficient values. 
Fourth, the zone with a fixed radius of 0.5 miles was utilized for model development and evaluation 
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purposes. The zones with different radii or varying radii corresponding to zones’ characteristics 
might generate different findings. Finally, only the active transportation modes were considered 
for the proposed research. The inclusion of other transportation modes or their associated 
interactions is also worthy of investigation in future research.  
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Abbreviations and Acronyms 
AIC Akaike Information Criterion 

BRT Bus Rapid Transit 

CAR Conditionally Autoregressive 

CSUTC California State University Transportation Consortium 

Dbar (𝐷𝐷�) Posterior Mean Deviance 

DIC Deviance Information Criterion 

DOT Department of Transportation 

FHWA Federal Highway Administration 

GIS Geographical Information System 

HQTA High-Quality Transit Area 

HQTC High-Quality Transit Corridor 

INLA Integrated Nested Laplace Approximation 

INLAMSM Multivariate Spatial Model with “INLA” 

MCAR Multivariate Conditionally Autoregressive 

MCMC Markov Chain Monte Carlo 

MPO Metropolitan Planning Organization 

MSE Mean Squared Error 

OOB Out-of-Bag 

RF Random Forest 

RTP Regional Transportation Plan 

𝑃𝑃𝐷𝐷 Effective Number of Parameters 

SAR Simultaneous Autoregressive 

SCAG Southern California Association of Governments 

SCS Sustainable Communities Strategies 

SWITRS Statewide Integrated Traffic Records System 
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TAZ Traffic Analysis Zone 

TIMS Transportation Injury Mapping System 

TOD Transit-Oriented Development 

WAIC Widely Applicable Information Criterion 
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