Bridge Monitoring Using a Digital Camera: Photogrammetry-based Bridge Dynamics Monitoring

Yushin Ahn, PhD
Scott Peterson, PhD
Maryam Nazari, PhD
MINETA TRANSPORTATION INSTITUTE
LEAD UNIVERSITY OF California State University Transportation Consortium

Founded in 1991, the Mineta Transportation Institute (MTI), an organized research and training unit in partnership with the Lucas College and Graduate School of Business at San José State University (SJSU), increases mobility for all by improving the safety, efficiency, accessibility, and convenience of our nation’s transportation system. Through research, education, workforce development, and technology transfer, we help create a connected world. MTI leads the four-university MTI leads the four-university California State University Transportation Consortium funded by the State of California through Senate Bill 1.

MTI’s transportation policy work is centered on three primary responsibilities:

Research
MTI works to provide policy-oriented research for all levels of government and the private sector to foster the development of optimum surface transportation systems. Research areas include: bicycle and pedestrian issues; financing public and private sector transportation improvements; intermodal connectivity and integration; safety and security of transportation systems; sustainability of transportation systems; transportation / land use / environment; and transportation planning and policy development. Certified Research Associates conduct the research. Certification requires an advanced degree, generally a Ph.D., a record of academic publications, and professional references. Research projects culminate in a peer-reviewed publication, available on TransWeb, the MTI website (http://transweb.sjsu.edu).

Education
The Institute supports education programs for students seeking a career in the development and operation of surface transportation systems. MTI, through San José State University, offers a AACSB-accredited Master of Science in Transportation Management and graduate certificates in Transportation Management, Transportation Security, and High-Speed Rail Management that serve to prepare the nation’s transportation managers for the 21st century.

With the active assistance of the California Department of Transportation (Caltrans), MTI delivers its classes over a state-of-the-art videoconference network throughout the state of California and via webcasting beyond, allowing working transportation professionals to pursue an advanced degree regardless of their location. To meet the needs of employers seeking a diverse workforce, MTI’s education program promotes enrollment to under-represented groups.

Information and Technology Transfer
MTI utilizes a diverse array of dissemination methods and media to ensure research results reach those responsible for managing change. These methods include publication, seminars, workshops, websites, social media, webinars, and other technology transfer mechanisms. Additionally, MTI promotes the availability of completed research to professional organizations and journals and works to integrate the research findings into the graduate education program. MTI’s extensive collection of transportation-related publications is integrated into San José State University’s world-class Martin Luther King, Jr. Library.

Disclaimer
The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the information presented herein. This document is disseminated in the interest of information exchange. The report is funded, partially or entirely, by a grant from the State of California. This report does not necessarily reflect the official views or policies of the State of California or the Mineta Transportation Institute, who assume no liability for the contents or use thereof. This report does not constitute a standard specification, design standard, or regulation.

MTI FOUNDER
Hon. Norman Y. Mineta

MTI BOARD OF TRUSTEES

Research Associates Policy Oversight Committee

Founders:
- Richard Anderson (Ex-Officio) President and CEO Ameron
- Laurie Berman (Ex-Officio) Director California Department of Transportation
- Donna DeMartino (TE 2018) General Manager and CEO San Joaquin Regional Transit District
- Mortimer Downey* (TE 2018) President Mort Downey Consulting, LLC
- Nuria Fernandez* (TE 2020) General Manager & CEO Santa Clara Valley Transportation Authority
- John Flaherty (TE 2020) Sector Fellow Silicon Valley American Leadership Forum
- Rose Guillault (TE 2020) Board Member Peninsula Corridor Joint Powers Board
- Ed Hamberger (Ex-Officio) President & CEO Association of American Railroads

MTI President:

Karen Philbrick, Ph.D.

MTI Executive Director:

Asha Weinstein Agrawal, Ph.D.

Director of Research, Technology and Transfer:

Brian Michael Jenkins

Directors:

Karen Philbrick, Ph.D. Executive Director

Asha Weinstein Agrawal, Ph.D. Education Director

National Transportation Finance Center Urban and Regional Planning San José State University

Research & Technology Transfer Director

Brady Mims (TE 2020) President & CEO Conference of Minority Transportation Officials (COMTO)

Jeff Morales (TE 2019) Managing Principal Infraserv, LLC

Dan Moshari, Ph.D. (Ex-Officio) Dean Lucas College and Graduate School of Business San José State University

Frances Edwards, Ph.D. Political Science San José State University

Tae Ho Park, Ph.D. Organization and Management San José State University

Christa Bailey Martin Luther King Jr. Library San José State University

Research Associates Policy Oversight Committee

Ben Triposius National High-Speed Rail Connectivity Center Director

Jan Botha, Ph.D. Civil & Environmental Engineering San José State University

Katherine Kao Cushing, Ph.D. Environmental Science San José State University

Dale Czerwinski, Ph.D. Marketing and Decision Science San José State University

Steve Hennings* (TE 2018) Executive Director Metropolitan Transportation Commission (MTC)

Diane Woonend Jones (TE 2019) Principal & Chair of Board Los Angeles County Metropolitan Transportation Authority (LACMTA)

Will Hampton (TE 2019) Retired

Art Leshey (TE 2018) CEO Metropolitan Transportation Commission (MTC)

Dan Smith (TE 2020) President Capstone Financial Group, Inc.

Paul Skoutelas (Ex-Officio) President & CEO American Public Transportation Authority (APTA)

Beverly Swain-Staley (TE 2019) President Union Station Redevelopment Corporation

Larry Willis (Ex-Officio) President Transportation Trades Dept., AFL-CIO

Bud Wright (Ex-Officio) Executive Director American Association of State Highway and Transportation Officials (AASHTO)

Hon. Norman Y. Mineta MTI Founder

MTI FOUNDER
Hon. Norman Y. Mineta

MTI BOARD OF TRUSTEES

- Karen Philbrick, Ph.D. Executive Director
- Asha Weinstein Agrawal, Ph.D. Education Director
- National Transportation Finance Center Urban and Regional Planning San José State University
- Hilary Nixon, Ph.D. Research & Technology Transfer Director
- National Transportation Safety and Security Center Director

- Steve Hennings* (TE 2018) Executive Director Metropolitan Transportation Commission (MTC)
- Diane Woonend Jones (TE 2019) Principal & Chair of Board Los Angeles County Metropolitan Transportation Authority (LACMTA)
- Will Hampton (TE 2019) Retired
- Art Leshey (TE 2018) CEO Metropolitan Transportation Commission (MTC)
- Karen Philbrick, Ph.D. Executive Director
- Karen Philbrick, Ph.D. Executive Director
BRIDGE MONITORING USING A DIGITAL CAMERA: PHOTOGRAMMETRY-BASED BRIDGE DYNAMIC DEFORMATION MONITORING

Yushin Ahn, PhD
Scott Peterson, PhD
Maryam Nazari, PhD

October 2019
Bridge Monitoring Using a Digital Camera: Photogrammetry-Based Bridge Dynamic Deformation Monitoring

October 2019

Yushin Ahn, PhD, https://orcid.org/0000-0002-5305-6396
Scott Peterson, PhD
Maryam Nazari, PhD

Monitoring the health of bridges uses various sensors and techniques and provides quantitative and reliable data on the condition of bridges. Among measurable quantities, vibration induced by traffic loads has been known as a good indicator of the condition of bridges, serviceability to pedestrians, fatigue analysis, etc. Here we use non-metric, off-the-shelf, Digital Single-Lens Reflex camera (DSLR) as a sensor and apply a photogrammetric approach to measure three bridges live load traffic vibration. We first tested our approach with shake-table equipment and showed the reliability of the methodology we use through measuring magnitude and frequency of the shake-table, which was then applied to two highway and one local bridges. The results show that vibrational magnitudes are well within the design recommendations of the American Association of State highway Transportation (AASHTO) and that frequencies are in the range of similar bridges that previously published. Furthermore, by providing velocity and acceleration computed from camera derived displacement, we showed that the proposed method is cost-effective and feasible as well as having a good potential for bridge health monitoring.

Digital Camera, Bridge, Structure health monitoring, Inspection equipment, Image processing

No restrictions. This document is available to the public through The National Technical Information Service, Springfield, VA 22161

Unclassified

Unclassified

25

22. Price

Form DOT F 1700.7 (8-72)
ACKNOWLEDGMENTS

The authors thank Editing Press, for editorial services, as well as MTI staff, including Executive Director Karen Philbrick, PhD; Deputy Executive Director Hilary Nixon, PhD; Graphic Designer Alverina Eka Weinardy; and Executive Administrative Assistant Jill Carter.
TABLE OF CONTENTS

Executive Summary 4
I. Introduction 5
II. Photogrammetry Based Measurement 7
 Camera 7
 Camera Geometry 8
 Shake Table 9
 Shake Table Test Results 10
 Feature tracking Using 2D Normalized Cross Correlation 10
 Shake Table Results 12
III. Test with Bridges 14
 Test Site: Three Bridges 14
IV. Result and Discussion 15
V. Conclusion 20
Appendix A 21
Endnotes 23
Bibliography 25
About the Authors 27
Peer Review 28
LIST OF FIGURES

1. Illustration of Traffic Live Load from Vibration 5

2. AASHTO Bridge Design Recommendation 6

3. SONY Cyber-Shot RX10 IV, the Camera Used in This Study 7

4. Camera Geometry 8

5. A Photograph of a Shake-Table at the Civil and Geomatics Engineering, California State University at Fresno 9

6. Shake Table Camera Setting 10

7. Illustration of 2D Normalized Cross Correlation 11

8. The Algorithm Produces the Pixel Displacement with Reference to the Base Image 11

9. Shake Table Results for Set 1 and 2 13

10. (A) Site Overview, (B) Bridge 1, (C) Bridge 2, and (D) Bridge 3 14

11. Horizontal and Vertical Pixel Displacement for Bridge 1 15

12. Horizontal and Vertical Pixel Displacement for Bridge 2 16

13. Horizontal and Vertical pixel displacement for Bridge 3 16

14. Camera Derived Velocity and Acceleration of Bridge 1 18

15. Camera Derived Velocity and Acceleration of Bridge 1 18

16. Camera Derived Velocity and Acceleration of Bridge 1 19
LIST OF TABLES

1. Camera Specifications

2. Shake-Table Specification at Civil and Geomatics Engineering, California State University at Fresno

3. Shake Table Feed Data and Camera Derived Results

4. Camera Derived Vibration Magnitudes and Frequencies for Testing Bridges

5. Existing Frequency Result Typical Power Output for Heavy and Light Vehicle on Bridges, Averaged Over 2.5 Second
EXECUTIVE SUMMARY

Monitoring the health of bridges uses various sensors and techniques and provides quantitative and reliable data on the condition of bridges. Among measurable quantities, vibration induced by traffic loads has been known as a good indicator of the condition of bridges, serviceability to pedestrians, fatigue analysis, etc. Here we use non-metric, off-the-shelf, Digital Single-Lens Reflex camera (DSLR) as a sensor and apply a photogrammetric approach to measure three bridges live load traffic vibration.

We first tested our approach with shake-table equipment and showed the reliability of the methodology we use through measuring magnitude and frequency of the shake-table, which was then applied to two highway and one local bridges. The results show that vibrational magnitudes are well within the design recommendations of the American Association of State highway Transportation (AASHTO) and that frequencies are in the range of similar bridges that previously published. Furthermore, by providing velocity and acceleration computed from camera derived displacement, we showed that the proposed method is cost-effective and feasible as well as having a good potential for bridge health monitoring.
I. INTRODUCTION

Monitoring the health of bridges uses various sensors and techniques and provides quantitative and reliable data on the condition of bridges. Bridge monitoring was performed with exhaustive tests that involved hands-on/visual investigations to spot material straining, shifting or chipping. Structural evaluation of bridges is important because it prevents accidents from natural occurrences and unstable shifting, while, in many cases, visual inspection is carried out for routine checkup. The visual inspection tends to be labor intensive and subjective in nature, therefore, quantitative analysis from sensors are in need for objectivity.

When it comes to bridge behavior, there are three types of dynamics. 1) Dead load deflection - deflection from the weight of material itself, 2) Live load deflection - deflection caused by the combined bridge and vehicle weight and 3) Live load (traffic) derived vibration. Many bridge constructions use pre-stressed bridge girders which make deflection hard to evaluate the health of bridges unless this amount has been measured right after construction.

Figure 1. Illustration of Traffic Live Load from Vibration. The red arrow indicates deflection from weight of bridge and vehicle. The wave illustrates the traffic induced vibration.

Figure 1 illustrates the traffic derived vibration. The AASHTO recommends the maximum design deflection to be L/800 and L/1000 for non-pedestrian bridges and pedestrian bridge respectively, where L is the length of the bridge span.
Introduction

Figure 2. AASHTO Bridge Design Recommendation

For example, 20 meter long spans of bridge are allowed to have $\frac{20m}{1000} = 20$ mm maximum deflection. In this project the target bridges are 1) short span with a length of 6-30 meters and 2) medium span with a length of 30-100 meters. The maximum changes the bridge deflection vertical vibrations are 20 mm and 50 mm, respectively.

There have been various methods to measure these motions. Those methods include the use of stain gages, accelerometers, Global Navigation System¹ (GPS), Light Detection and Ranging, LiDAR scanner,² optical sensors and total station³ (surveying equipment).

In this research we focus on the vertical vibrations induced by traffic using the photogrammetric approach. The magnitude and frequencies of a bridge will be our main objective. When compared to the other methods, camera system provides a cost-efficient procedure in remote sensing which is non-contact in data collection.

The use photogrammetric methods in bridge health monitoring is not new. A great number of studies have been applied in measuring dead load deflection.⁴ Camera-based vibration studies have been limited by hardware, i.e. the recording more frames per second than normal videos. Recently the advancement of digital camera technology has made vibration analysis more approachable.⁵

Here, a simple method to measure bridge vibrations—magnitude and frequency is introduced.
II. PHOTOGRAMMETRY BASED MEASUREMENT

In this chapter the focus will be on 1) the specifications of the camera that was used in this research, 2) the geometry of the camera used to compute pixel size, distance to object and foal length, 3) verification of the reliability of the camera system using a series of shake-table tests.

CAMERA

The Camera that was used for this research study is a SONY Cyber-shot RX10 IV, DSLR camera as shown in Figure 3. It has 24-600mm zoom lens, 3” sensor size, and 20.1 Mega Pixels (5472x3648) still picture.

Figure 3. SONY Cyber-Shot RX10 IV, the Camera Used in This Study

The main camera feature that is required for this project is high video resolution and the slow-motion capability. This camera captures 1080x1920 dimension video up to 960 frame per second (fps). Table 1 summarizes for detailed specification of the camera.
Table 1. Camera Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixels</td>
<td>21.1 Megapixels (5472 x 3648)</td>
</tr>
<tr>
<td>Sensor</td>
<td>1" (13.2 X 8.8 mm) CMOS</td>
</tr>
<tr>
<td>Resolution</td>
<td>3840 x 2160p: 30fps, 25fps, 24fps</td>
</tr>
<tr>
<td></td>
<td>1920 x 1080p: 60 fps, 50 fps, 30 fps, 25 fps, 24 fps</td>
</tr>
<tr>
<td></td>
<td>1920 x 1080p: 240 fps, 480 fps, 960 fps</td>
</tr>
<tr>
<td></td>
<td>1920 x 1080p: 250 fps, 500 fps, 1000 fps</td>
</tr>
<tr>
<td>Zoom Lens</td>
<td>Effective focal length: 8.8 - 220 mm</td>
</tr>
<tr>
<td></td>
<td>Equivalent focal length: 24 – 600 mm</td>
</tr>
<tr>
<td>Shutter speed</td>
<td>Mechanical: 4 – 1/2000 second</td>
</tr>
<tr>
<td></td>
<td>Electronic: 4 – 1/32000 second</td>
</tr>
</tbody>
</table>

CAMERA GEOMETRY

Simulated pixel size with varying focal lengths ranging from 8.8 to 220 mm is applied in this research. The computation is based on a 30 meter distance to object and a varying focal length.

Figure 4. Camera Geometry. The ground coverages for a pixel of image are displayed.

Figure 4 shows that pixel sizes of frame picture 3647x5472, video 2016x3840 and video 1080x1920 are 2.41 μm, 3.44 μm and 6.86 μm respectively. Then the coverages in object space that represents actual coverage of a pixel is 0.32 mm, 0.46 mm and 0.93 mm. Considering the bridge span length of 20 meters, the AASHTO design manual recommends
a maximum deflection of 20 mm. If half of this deflection should be measured, 8-9 pixel displacement is of interest, which can be resolved by using the normalized cross correlation algorithm.

SHAKE TABLE

A shake-table is an experimental platform that mimics the ground motion excitation. This table is commonly used to evaluate the seismic performance of civil engineering structures such as building, railroad, bridges etc. An example of a shake-table is shown in figure 5.

![Shake Table](image)

Figure 5. A Photograph of a Shake-Table at the Civil and Geomatics Engineering, California State University at Fresno.

This custom-made shake-table at Fresno State has the following specifications, shown in table 2.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Payload</td>
<td>20 KIP</td>
</tr>
<tr>
<td>Dimensions</td>
<td>7 ft X 8 ft</td>
</tr>
<tr>
<td>Frequency</td>
<td>20-50 Hz</td>
</tr>
<tr>
<td>Maximum horizontal displacement</td>
<td>5 inches on each side</td>
</tr>
</tbody>
</table>

For digital cameras as bridge monitoring equipment, a Sony RX10 DSLR camera was tested to ensure it detects motion and retrieves the shake-tables original feedback. That is magnitude and frequency of shake table test.
SHAKE TABLE TEST RESULTS

Shake-table often has been used for feasibility test. Two sets of harmonic motions were applied using the shake-table. The magnitude and frequency of these two sets were 0.25 and 1 inch and 0.78 and 1.17 Hz respectively.

Normal video was recorded with 59.9401 frames per second, since the frequency can be well retrieved by 60 frames per second resolution.

Initially the focal length of 10.0925 mm was calculated using the ratio between the focal length, the object width, the object distance and the sensor size.

Focal length = Distance (2330.45 mm)*object size in image (8.2367mm)/object size (1908.18 mm) = 10.0925 mm. Then the coverage of a pixel in ground space of 1.5875 mm/pixel was calculated.

![Image of camera setting with measurements]

Figure 6. Shake Table Camera Setting. Distance from Camera to shake table and shake table width are measured.

FEATURE TRACKING USING 2D NORMALIZED CROSS CORRELATION

2D normalized cross correlation is one of the most commonly used method in photogrammetry to find conjugate points in two images (Figure 7).
Figure 7. Illustration of 2D Normalized Cross Correlation. Image 0 indicates base image or the first image and Image i indicates the rest of images.

Figure 8. The algorithm produces the pixel displacement (c) with reference (a) to the base image (b). I.e the motion occurred through frames. The result is 2D correlation map and the peak position indicates pixel displacement happens between two image spanned. The displacement is computed from its center location to the peak position.

Here, the reference chip is extracted from the base image (Figure 8b), then the reference chip moves within the search chip (Figure 8a). In each time, 2D cross correlation was computed and finally the correlation map is generated. From the peak which indicates the maximum correlation value (Figure 8c), interchangeable maximum similarity is found. The correlation coefficient is calculated using the below equation.
\[\rho = \frac{\sigma_{R,S}}{\sigma_R \cdot \sigma_S} \]

\[\sigma_R = \sqrt{\frac{\sum \sum (g_R(i,j) - \bar{g}_R)^2}{nm - 1}}, \quad \sigma_S = \sqrt{\frac{\sum \sum (g_S(i,j) - \bar{g}_S)^2}{nm - 1}} \]

\[\sigma_{R,S} = \frac{\sum \sum (g_R(i,j) - \bar{g}_R) \cdot (g_S(i,j) - \bar{g}_S)}{nm - 1} \]

Equation 1. Where, subscripts R and S indicate reference and search chip respectively and \(g(i,j) \) is the pixel value of position \(i,j \) in the image. Once the peak is found, a quadratic surface was fitted using a 3x3 peak around pixels and finding the maximum peak position, yielding sub-pixel accuracy. The quadratic surface is as follow.

\[r = a \cdot i^2 + b \cdot j^2 + c \cdot i \cdot j + d \cdot i + e \cdot j + f - \rho \]

Equation 2. Where, \(a \) to \(f \) are coefficients of quadratic surface and \(i,j \) are pixel location for 3x3 correlation value around the peak.

SHAKE TABLE RESULTS

Two sets of shake table were processed using 2D normalized cross correlation and compared with the original shake-table feedback.
Figure 9. Shake Table Results for Set 1 and 2. Red lines show horizontal displacement and blue lines show vertical displacement. We convert these pixel displacement to mm and inch, metric unit and also count the number of peaks and elapsed time for frequency computation.

Table 3. Shake Table Feed Data and Camera Derived Results

<table>
<thead>
<tr>
<th>Shake Table Feeds</th>
<th>Camera Derived</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Set 1</td>
<td></td>
</tr>
<tr>
<td>Amplitude</td>
<td>Frequency</td>
</tr>
<tr>
<td>0.25 inch</td>
<td>0.78 Hz</td>
</tr>
<tr>
<td>Amplitude</td>
<td>Frequency</td>
</tr>
<tr>
<td>0.25 inch</td>
<td>0.782 Hz</td>
</tr>
<tr>
<td>Set 2</td>
<td></td>
</tr>
<tr>
<td>Amplitude</td>
<td>Frequency</td>
</tr>
<tr>
<td>1.00 inch</td>
<td>1.17 Hz</td>
</tr>
<tr>
<td>Amplitude</td>
<td>Frequency</td>
</tr>
<tr>
<td>1.0216 inch</td>
<td>1.172 Hz</td>
</tr>
</tbody>
</table>

The amplitude and frequency results derived from the camera indicate that the camera can reliably be used for extracting the shake-table motions. When compared with the original table feedback data, the results showed less than 0.3% errors for amplitude and frequency. Note that a pixel covers 1.5875 mm and conservative error for subpixel accuracy is 0.1-0.3 pixels. The difference of 0.55 mm is well acceptable within the 2D correlation error budget.
III. TEST WITH BRIDGES

TEST SITE: THREE BRIDGES

Two highway bridges and one local bridge were chosen, with the distances from camera to each bridge of 45.74, 26.75 and 37.05 meters, respectively.

![Site Overview, Bridge 1, Bridge 2, Bridge 3](image)

Figure 10. (A) Site Overview, (B) Bridge 1, Short Spanned Highway Bridge, (C) Bridge 2, Medium Spanned Highway Bridge, and (D) Bridge 3, Medium Spanned Local Bridge

Bridge 1: Undercrossing Bridge on Route 41. Each are two-span 4'-0" deep, cast-in-place/post tensioned box girder structures with multi-column bends within the median of Friant Ave. The span lengths of each vary, but they are roughly 90'-11" (span 1) and 90'-4" (span 2) for the left structure (front structure in Figure 10B) and 89'-3" (span 1) and 81'-5" (span 2) for the right structure. The width of these structures vary due to the existing on-ramps on the outside of each. These bridges were originally constructed in 1989. The right structure was widened to the inside in 2008.

Bridge 2: Overcrossing Bridge on Route 180. This is a 4-span (135’, 134’, 143'-9", 113’), 146’ wide, 5’-9" deep, cast-in-place/post-tensioned box girder structure with a multi-column bent within the median of Route 180. This bridge was constructed in 1999.

Camera frame was set at 480 fps and recorded when vehicles were passing by. Leica GNSS and Total station were used to estimate the dimension and ground control data (See appendix for Field work).

The span lengths of 30.06 meters, 44.23 meters and 34.64 meters were measured. AASHTO deflection criterion for those bridges are 30.06 mm, 44.23 mm and 34.64 mm.
IV. RESULT AND DISCUSSION

First, horizontal and vertical pixel displacement were computed using the 2D cross correlation. Horizontal pixel displacement of ±0.27, ±0.58 and ±0.27 pixels were observed due to off-level of camera and non-perpendicularity to bridge façade. Also, vertical pixel displacement and its vibration patterns were observed, as shown in the following figure 10-12.

![Figure 11. Horizontal and Vertical Pixel Displacement for Bridge 1](image-url)
Result and Discussion

Figure 12. Horizontal and Vertical Pixel Displacement for Bridge 2

Figure 13. Horizontal and Vertical pixel displacement for Bridge 3
Table 4. Camera Derived Vibration Magnitudes and Frequencies for Testing Bridges

<table>
<thead>
<tr>
<th></th>
<th>Bridge 1</th>
<th>Bridge 2</th>
<th>Bridge 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object distance, meter</td>
<td>45.74</td>
<td>26.75</td>
<td>37.05</td>
</tr>
<tr>
<td>Span length, meter</td>
<td>30.06</td>
<td>44.23</td>
<td>34.64</td>
</tr>
<tr>
<td>Pixel size (mm)</td>
<td>1.42</td>
<td>0.84</td>
<td>1.16</td>
</tr>
<tr>
<td>Pixel magnitude (pixel)</td>
<td>3.64</td>
<td>9.43</td>
<td>4.78</td>
</tr>
<tr>
<td>Displacement magnitude (mm)</td>
<td>5.20</td>
<td>7.87</td>
<td>5.53</td>
</tr>
<tr>
<td>Frequency</td>
<td>12</td>
<td>9.6</td>
<td>13.82</td>
</tr>
</tbody>
</table>

Figure 10, 11, 12 and Table 3 summarize the camera derived vibration results. For each bridge, magnitudes and frequencies are (5.2 mm, 12 Hz), (7.87 mm, 9.6 Hz) and (5.53 mm, 13.82 Hz) respectively. Note that the spans for the bridges are 30.06 m, 44.23 m and 34.64 m. AASHTO design vibration when L/1000 are applied, are 30.06 mm, 44.23 mm and 34.64 mm.

Bridge vibrations reached 17%, 18% and 16% of recommending magnitudes following the AASHTO criterion.

For frequency component, the existing results from a previous study conducted by Williams et al. were used and compared with the camera-derived frequency range.7

Table 5. Existing Frequency Result* Typical Power Output for Heavy and Light Vehicle on Bridges, Averaged Over 2.5 Second

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Resonant Frequency of Generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge A (New)</td>
<td></td>
</tr>
<tr>
<td>Double decker bus</td>
<td>6 Hz</td>
</tr>
<tr>
<td>Car</td>
<td>12 Hz</td>
</tr>
<tr>
<td>Bridge B (Old)</td>
<td></td>
</tr>
<tr>
<td>Articulated heavy goods vehicle</td>
<td>4.5 Hz</td>
</tr>
<tr>
<td>Car</td>
<td>14.5 Hz</td>
</tr>
</tbody>
</table>

C.B. Williams of the University of Sheffield in the United Kingdom did a bridge feasibility and vibration sensor study. This project focuses on an electric generator that moves the bridge to signal the wireless, cheap, and disposable sensors. They concluded with some data as shown in the table below, and that the output power can be used to power an acceleration sensor.

Compared to Table 4, the camera derived frequencies seem to be within similar ranges (i.e. 6 - 14.5 Hz.)
Result and Discussion

Figure 14. Camera Derived Velocity and Acceleration of Bridge 1

Figure 15. Camera Derived Velocity and Acceleration of Bridge 1
Once vertical displacements are computed, velocity can be computed by differencing displacement and dividing it by the time interval. Further, acceleration can be computed from the velocity. Figure 13, 14 and 15 show camera derived acceleration for the bridges and they, ±0.02 mm/sec², are within the range shown by Williams.⁹

Figure 16. Camera Derived Velocity and Acceleration of Bridge 1

Once vertical displacements are computed, velocity can be computed by differencing displacement and dividing it by the time interval. Further, acceleration can be computed from the velocity. Figure 13, 14 and 15 show camera derived acceleration for the bridges and they, ±0.02 mm/sec², are within the range shown by Williams.⁹
V. CONCLUSION

This study presented photogrammetric technique for bridge dynamic monitoring study. First a shake table study was conducted to indicate the applicability of using digital camera for measuring the shake table’s magnitude and frequency. Then, a field study was campaigned for two highway bridges and one local bridge. Using the fullest use of current DSLR camera—zoom lens and slow motion, bridge vibrations from traffics (i.e. vertical vibration in terms of magnitude and frequency) were measured. Further, the camera derived velocity and acceleration from displacements were presented.

This research was aimed to verify the feasibility of camera to monitor vibration/estimate bridge vibrations by presenting general indicators such as magnitudes (following AASHTO recommendations), frequency, velocity and acceleration. However, for a complete vibration study, 1) type and speed of vehicles, 2) vehicle weight and 3) multiple vehicles induced vibration patterns should be followed.
FIELD CAMPAIGN

In bridge field campaign, we not only take pictures (record video) but also brought surveying equipment for checking layout and getting ground control points (GCP). The field work provides span length, distance from camera to bridge.

Field equipment: Leica GS15 GPS receiver (Battery), GPS Pole, Data Collector, Leica Robotic Total station TS15 R1000 (Battery), Prism, measuring tape, Tripod, prism, Bipod, prism pole, two Nails (Stakes), hammer, Cameras, camera tripod, metal foldable tripod stabilizer.

GPS and Robotic Total Station

We start by creating a new job using the static GPS, create a coordinate system in UTM zone 4. Use the static GPS to save coordinates over the nails marking Station 1, then over Station 2. This process provides precise ground control points, and later these stations will be occupied by robotic total station.

Level total station over Station 1, set the total station to lock to prism, back-sight to the prism (set on Station 2). Total station height and prism pole height are measured. Next, take a panoramic pictures of the bridge. We measured between 6 to 10 distinct points which can be easily identified in the camera on the bridge, the rails, under the bridge, on the pillars, etc.

Level the total station over Station 2, set the total station to lock to prism, Backsight to the prism (set on control point one). Next, take another panoramic picture of the bridge.

We set apart two station approximately 1/10th of the distance being measured between total station and the bridge so that Leica panorama photogrammetry can retrieve any missing points accurately.
Digital Data Collector and Leica Infinity

We use a digital data collector for all field work. GPS points, Total station points and panorama images are stored and later imported Leica infinity program. Since, we use UTM zone 4 coordinate system for GPS, all total station measurements are in the same coordinate system.

Point measured by total station are used to compute camera position later using single photoresection. When missed points in the field, we use panarama images to retrace some points.
ENDNOTES

BIBLIOGRAPHY

Bell, Erin Santini, Philip Brogan, Paul Lefebvre, Jason Peddle, Brian Brenner, and Masoud Sanayei. Digital imaging for bridge deflection measurement of a steel girder composite bridge. No. 11-1633. 2011.

ABOUT THE AUTHORS

YUSHIN AHN

Yushin Ahn received the B. Eng. Degree in civil engineering and the M.Sc. degree in surveying and digital photogrammetry from Inha University, Korea in 1998 and 2000, and the M.Sc. and Ph.D. degree in geodetic science from the Ohio State University, Columbus, in 2005 and 2008 respectively. After 3 years of post-doctoral research at Byrd Polar Research Center, Columbus, OH, he taught at Michigan Technological University 2011-2017. He is currently an assistant professor of Civil and Geomatics Engineering, California State University at Fresno, CA. His research interests include digital photogrammetry, feature tracking, and sensor calibration and integration.

Dr. Ahn received the Robert E. Altenhofen Memorial Scholarship from the American Society of Photogrammetry and Remote Sensing and he is a certified Photogrammetrist.

SCOTT PETERSON

Dr. Scott Peterson is an Assistant Professor of Geomatics Engineering in the department of Civil and Geomatics Engineering at Fresno State. He received his Masters (2013) and Doctoral (2018) Degrees from Purdue University in Civil Engineering with a focus in Geomatics Engineering. He is a Professional Land Surveyor in the states of California and Utah, and is a Certified Federal Surveyor. He had 10 years of Industry experience in Land Surveying before returning to school and beginning his teaching career. His research interests are Boundary and Legal principles, Land Surveying, and Remote Sensing Applications such as Terrestrial and Mobile LiDAR and Unmanned Aerial vehicles.

MARYAM NAZARI

Dr. Maryam Nazari is an Assistant Professor of Structural Engineering in the Department of Civil and Geomatics Engineering at CSU, Fresno. Her research interest is the application of seismic-resilient precast concrete solutions for design of structures. During her graduate studies, she worked on a research study funded by the National Science Foundation (NSF). She accomplished large-scale shake table experiments on self-centering precast concrete wall systems at the Network for Earthquake Engineering Simulation (NEES) facility of the University of Nevada at Reno (UNR), with the purpose of investigating the impact of different energy dissipating components of these innovative structural systems on their seismic responses. She also participated in several rehabilitation and strengthening projects during her five-year professional experience as a structural design engineer, seismic specialist, and project manager. She has about 10 peer-reviewed conference proceedings and journal papers and has done more than 10 presentations in national and international conferences as well as technical meetings. Her recent research awards include the ASCE SF Section Outstanding Research Project of the Year, ASCE Fresno Best Research Project (in collaborations with Dr. Tehrani), SEI/ASCE Young Professional Scholarship, and the Iowa State University’s Research Excellence award.
PEER REVIEW

San José State University, of the California State University system, and the MTI Board of Trustees have agreed upon a peer review process required for all research published by MTI. The purpose of the review process is to ensure that the results presented are based upon a professionally acceptable research protocol.
MINETA TRANSPORTATION INSTITUTE
LEAD UNIVERSITY OF
Mineta Consortium for Transportation Mobility

Founded in 1991, the Mineta Transportation Institute (MTI), an organized research and training unit in partnership with the Lucas College and Graduate School of Business at San José State University (SJSU), increases mobility for all by improving the safety, efficiency, accessibility, and convenience of our nation’s transportation system. Through research, education, workforce development, and technology transfer, we help create a connected world. MTI leads the four-university Mineta Consortium for Transportation Mobility, a Tier 1 University Transportation Center funded by the U.S. Department of Transportation’s Office of the Assistant Secretary for Research and Technology (OST-R), the California Department of Transportation (Caltrans), and by private grants and donations.

MTI’s transportation policy work is centered on three primary responsibilities:

Research

MTI works to provide policy-oriented research for all levels of government and the private sector to foster the development of optimum surface transportation systems. Research areas include: bicycle and pedestrian issues; financing public and private sector transportation improvements; intermodal connectivity and integration; safety and security of transportation systems; sustainability of transportation systems; transportation/land use/environment; and transportation planning and policy development. Certified Research Associates conduct the research. Certification requires an advanced degree, generally a Ph.D., a record of academic publications, and professional references. Research projects culminate in a peer-reviewed publication, available on TransWeb, the MTI website (http://transweb.sjsu.edu).

Education

The Institute supports education programs for students seeking a career in the development and operation of surface transportation systems. MTI, through San José State University, offers an AACSB-accredited Master of Science in Transportation Management and graduate certificates in Transportation Management, Transportation Security; and High-Speed Rail Management that serve to prepare the nation’s transportation managers for the 21st century. With the active assistance of the California Department of Transportation (Caltrans), MTI delivers its classes over a state-of-the-art videoconference network throughout the state of California and via webcasting beyond, allowing working transportation professionals to pursue an advanced degree regardless of their location. To meet the needs of employers seeking a diverse workforce, MTI’s education program promotes enrollment to under-represented groups.

Information and Technology Transfer

MTI utilizes a diverse array of dissemination methods and media to ensure research results reach those responsible for managing change. These methods include publication, seminars, workshops, websites, social media, webinars, and other technology transfer mechanisms. Additionally, MTI promotes the availability of completed research to professional organizations and journals and works to integrate the research findings into the graduate education program. MTI’s extensive collection of transportation-related publications is integrated into San José State University’s world-class Martin Luther King, Jr. Library.

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the information presented herein. This document is disseminated in the interest of information exchange. The report is funded, partially or entirely, by a grant from the U.S. Department of Transportation’s University Transportation Centers Program. This report does not necessarily reflect the official views or policies of the U.S. government, State of California, or the Mineta Transportation Institute, who assume no liability for the contents or use thereof. This report does not constitute a standard specification, design standard, or regulation.