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EXECUTIVE SUMMARY

Monitoring construction resources used in road/bridge projects, such as heavy equipment, 
enables not only improvements in productivity but also increased knowledge of emissions 
produced as a result of fuel consumption. Previous studies conducted by the United States 
Environmental Protection Agency (EPA) have demonstrated that heavy-duty construction 
equipment is one of the major contributors of emissions from diesel engines. Diesel 
engine emissions contain large amounts of carbon monoxide (CO), nitrogen oxides (NOx), 
hydrocarbons (HC), and particulate matter (PM), all of which have direct negative impacts 
on human health. A practical way to cut emissions is to reduce the time that construction 
equipment spends doing non-value-adding activities and/or idling. Recent research in 
automated equipment monitoring using sensors and Internet-of-Things (IoT) frameworks 
have leveraged machine learning algorithms to predict the behavior of tracked entities.  
Previous methodologies, however, depended on manual feature engineering, and were 
therefore not completely conducive to fully automated, generalizable applications. The 
advent of deep learning models not only automated the feature extraction step, but also 
resulted in higher accuracies compared to the performance of traditional and shallow 
machine-learning methods.

In this project, end-to-end deep learning models were developed that can learn to 
accurately classify the activities of construction equipment based on vibration patterns 
picked up by accelerometers attached to the equipment. Additionally, relationships were 
studied between the equipment activities and the emissions that they generate.

Data was collected from two types of real-world construction equipment, both used extensively 
in road/bridge construction and maintenance projects: excavators and vibratory rollers. The 
validation accuracies of the developed models were tested of three different deep learning 
models: a baseline convolutional neural network (CNN); a hybrid convolutional and recurrent 
long short-term memory neural network (LSTM); and a temporal convolutional network 
(TCN). Results indicated that the TCN model had the best performance, the LSTM model 
had the second-best performance, and the CNN model had the worst performance. The 
TCN model had over 83% validation accuracy in recognizing activities.
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I.  INTRODUCTION

Road/bridge construction and maintenance projects are major contributors to greenhouse 
gas (GHG) emissions such as carbon dioxide (CO2). This is mainly because of the 
extensive use of heavy-duty diesel (HDD) construction equipment,1 as well as large-
scale earthworks and earthmoving operations involved in such projects.2 A number of 
recent studies have highlighted the need for estimation of construction equipment idling 
time, for purposes such as cost estimation, fuel use and emission estimation, data-driven 
modeling and simulation.3,4 However, there has not been much research on the prospect, 
for sustainability analysis, of automated idling detection and idle time estimation. Diesel 
engine emissions contain large amounts of carbon monoxide (CO), nitrogen oxides (NOx), 
hydrocarbons (HC), and particulate matter (PM), all of which have a direct negative impact 
on human health5. A practical way to cut emissions is to reduce the time that construction 
equipment spends doing non-value-adding activities and/or idling. Research indicates that 
although using newer equipment, using well-maintained equipment, and using clean fuels 
can improve exhaust emissions, reducing engine idling time and enhancing equipment 
operating efficiencies results in even better outcomes.6,7 When infrastructure projects are 
located within densely-populated areas, they can require additional logistics tasks that can 
raise equipment idling rates as high as 70%.8

Traditionally, construction equipment emissions have been measured manually using 
steady-state engine dynamometer tests.9 However, manual measurements are error-prone 
and labor-intensive. Therefore, automated identification of the activities of construction 
resources has been the subject of many recent studies. A common goal of these studies 
has been the development of an Internet-of-Things (IoT) framework that uses machine 
learning techniques to distinguish different activities performed by construction workers 
and/or construction equipment, based on data collected from various sensors. Developing 
and validating an accurate activity-recognition framework is a first step toward building a 
system that reliably monitors productivity and predicts greenhouse gas (GHG) emissions. 
Heavy equipment generates distinct vibration patterns while performing different kinds of 
task, that can be picked up by accelerometers attached to the equipment. Readings from 
these accelerometers can then be analyzed, providing an un-intrusive and highly accurate 
activity-recognition system.10

In this project, end-to-end deep learning models were developed that can learn to accurately 
classify the activities of construction equipment based on vibration patterns picked up 
by accelerometers attached to the equipment. Additionally, relationships between the 
equipment activities and the emissions that they generate were studied.

This study differs from previous work in the area of construction equipment activity 
recognition using accelerometer sensors because of its use of deep neural network 
architectures. Using deep learning techniques, higher accuracies are achieved compared 
to classical machine learning results with less manual effort spent in system design 
and feature selection. The framework proposed in this research consists of a series of 
steps: data collection; data processing; data segmentation using sliding windows; and 
classification of the activities at each time step in the data, using deep learning that are 
described in detail in this report.
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II.  DATA COLLECTION

In order to ensure its practicality, the developed framework was applied to actual 
construction equipment performing real work. Data collection sessions were not conducted 
in a controlled environment, meaning that the equipment operators were asked to continue 
their projects’ tasks as scheduled. Data were collected in two different session. In session 
1, data was collected from a BOMAG BW 145PDH-3 single drum vibratory roller as well 
as a CAT 328D crawler excavator. In session 2, data was collected from a CAT 305D 
CR excavator. Session 1 focused on inertial (i.e., accelerometer) data collection from the 
construction equipment in order to build the underlying activity recognition framework. In 
session 2, in addition to the accelerometer readings, emissions data for various gases were 
collected using a portable emission measurement system (PEMS) in order to investigate 
the activity-emission relationship. To distinguish between the two excavators throughout 
this paper, the one that was subject to data collection in the first session is referred to as 
Excavator 1 and the one used in the second session is referred to as Excavator 2. 

Activities of the equipment in both sessions were video-recorded for later data annotation 
and model verification. In each data collection session, two Noraxon-manufactured 
MyoMotion 684 accelerometer sensors were attached to each vehicle, on articulated 
parts. A signal receiver antenna connected to a laptop on the jobsite was used to log data 
in real-time. The software module included with the sensor kit was used for data pre-
processing tasks, such as automated synchronization between the sensor data and video 
recordings, and manual labeling of the activities. Figure 1 shows the data collection station 
with the laptop and the receiver, as well as the sensor placements for the vibratory roller 
data collection. One of the two sensors was attached on the cabin dashboard close to the 
steering wheel; the other was attached on the roller’s support arm.

Figure 1.	 (A) Data Collection Station with the (1) Sensors, (2) Receiver Antenna, 
and (3) Webcam for Synchronous Video, and (B) Sensor Installation on 
the Vibratory Roller Body

For the data collected from Excavator 1, one sensor was placed on the cabin dashboard 
and the other was placed on the excavator arm, very closed to the bucket. Figure 2 shows 
the sensors’ placements on the excavator body.
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Figure 2.	 Sensor Installation on Excavator 1 Body
While the roller and Excavator 1 performed their activities, readings were sampled at a 
rate of 100 samples per second from two 3-axis accelerometers mounted at two different 
locations on each machine. These activities generated six channels of 116,536 sensor 
readings over a period of 20 minutes for the roller and six channels of 173,600 sensor 
readings over a period of nearly 30 minutes for the excavator.

For Excavator 2, in total, 377,808 accelerometer readings were collected at a sampling rate 
of 100 samples per second. Because the PEMS, for collecting emissions data, operated at 
a sampling rate of 1 sample per second, its readings were upsampled to 100 samples per 
second, to match those of the accelerometers. Figure 3 shows the sensors’ placements 
on the excavator body.

Figure 3.	 Sensor Installation on Excavator 2 Body
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III.  METHODOLOGY

This project was undertaken in two phases. In Phase 1, the activity-recognition framework 
was developed using the data collected from the vibratory roller and Excavator 1. In Phase 
2, the developed framework was further revised and improved, and emission data was 
also incorporated, using the data collected from Excavator 2.

PHASE 1

Previous research used a novel deep, convolutional, LSTM, recurrent neural network 
architecture called DeepConvLSTM, for the task of human gesture recognition after training 
on multimodal sensor data, and found that this architecture outperformed competing non-
recurrent networks.11 The presented study aimed to test whether the success of combining 
convolutional layers with long short-term memory (LSTM) layers translates to equipment 
activity recognition as well. Figure 4 shows an overview of the approach developed here.

Figure 4.	 An Overview of the Developed Methodology

Data Analysis

Models were trained and validated on disjoint subsets of the data collected from the 
roller and the Excavator 1. Validating models on data not seen during training provides 
a test of the models’ real-world predictive power. Across the collected data, the final 20–
28% of sensor readings were set aside for validation; the rest of the data were used 
for training. For the roller data, the first 92,728 samples were used for training, and the 
remaining samples formed the validation set. This split was chosen so as to maximize the 
similarity between the activity label distributions of the validation set and the activity label 
distributions of the training set, while maintaining the correlations between time-adjacent 
samples that are critical to the problem. Additionally, a small number of samples were 
dropped from the extreme ends of the data sets to exclude the activities Idle and Off, 
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which were rare in the collected data, from further consideration. As a result, the first 1,040 
samples were dropped, as were the last 8,017 samples. In addition to the full problem with 
six activity classes presented below in Figure 5, two subproblems were also studied, by 
merging activity classes and re-choosing training and validation sets: the subproblem of 
distinguishing forward motion from backward motion, and the subproblem of distinguishing 
activities related to the three vibration modes. The validation set is highlighted in blue, and 
regions of the data not considered are highlighted in yellow.

Figure 5.	 Activity data vs. time for the roller data (validation set in blue; dropped 
set in yellow)

For Excavator 1, the first 125,165 samples were used for training, and the remaining 
samples were used for validation. Figure 6 shows the data used for the Excavator 1 tests. 
Transitions between activities in this dataset were much more frequent than in the roller 
dataset. No samples were dropped; however, the samples whose activities were labeled 
“Various” were treated with caution. Two models were trained for Excavator 1: the first 
model’s training included all data points, while the second model’s training excluded the 
frames labeled “Various”. The first model was evaluated using all the validation data points, 
while the second was evaluated using the subset of validation frames excluding those 
labeled “Various”. This second model was also evaluated on a subset of the validation 
data points excluding both those labeled “Various” and the first 14,335 labeled “Idle,” in 
order to better balance the modified class distribution. The model was able to identify 
the Idle activity with nearly perfect accuracy, so the rebalanced scenario posed a more 
realistic challenge. 
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Figure 6.	 Activity data vs. time for the excavator data (validation set in blue)

In order to learn patterns with strong predictive value, it is critical that models are able 
to observe the sensor reading at each time step within a larger context of recent sensor 
readings. To facilitate this, a sliding window length of 200 samples with a step size of 
1 sample was used, segmenting the data into overlapping frames corresponding to 2 
seconds of activity each. The activity label at the last sample in each frame was used 
as the label of the frame. This setup formulates the activity-recognition problem as the 
task of predicting the activity label at each time step in the data series, given the 199 
immediately-preceding accelerometer readings. Smaller window sizes could be useful in 
real-time monitoring applications where a lead-time of 2 seconds is considered too slow; 
larger window sizes could be useful by providing greater context to each data point when 
there is greater allowance for time and computational complexity. For this problem, it was 
only necessary that the window size be large enough to provide adequate context for each 
sample.

Each accelerometer sensor provides output in three channels, each representing the 
acceleration component along one dimension (x, y, z), for a total of six sensor channels 
per piece of equipment. During the sliding-window segmentation process, each sensor 
channel’s output was normalized to the range [0, 1], and stacked horizontally so that each 
frame contained the time steps on its vertical axis the readings from the six sensor channels 
on its horizontal axis. Figure 7 depicts an example data frame below, representing one 
window. The red box—not drawn to scale—represents a filter (0.03 seconds tall, 1 channel 
wide) that slides across the frame while computing convolutional features

Each signal is labeled by its axis of acceleration (x, y, z) and subscripted with the number 
of the sensor to which it belongs. The sliding-window segmentation process was applied 
to the training and validation subsets of the data independently, to prevent validation from 
leaking into the training data when the frames overlap at the boundary. 
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Figure 7.	 A 2-second frame computed by sliding window

PHASE 2

Data Analysis

For Excavator 2, 377,808 accelerometer readings were collected at a sampling 
rate of 100 samples per second. Because the PEMS operated at a sampling rate 
of 1 sample per second, its readings were upsampled to 100 samples per second to 
match those of the accelerometers. The first 324,579 readings (85.9%) were used as 
training data while the remaining 53,229 readings (14.1%) were used for validation of 
the results. This split was chosen so as to ensure similar activity distributions in the 
training and validation sets. The data set for Excavator 2 is shown in Figure 8 below.

Figure 8.	 Labeled activities of the CAT 305D CR excavator (validation set in blue, 
discarded set in yellow)
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The emissions signals collected and studied include carbon monoxide (CO), nitrogen 
oxides (NOx), and carbon dioxide (CO2). The CO2 measurement was performed using 
infrared (IR). Because the carbon dioxide emissions were much larger, they are reported 
on a percentage scale, while the other signals are reported in parts-per-million (ppm). 
Figure 9 plots the emission signals vs. time below.

Figure 9.	 CO, NOx, and CO2 emissions vs. time

The same data processing techniques were applied as in Phase 1 for activity recognition. 
That is, the readings in each accelerometer sensor channel were normalized to fall into 
the range [0, 1] and segmented into data frames of 200 time steps by 6 sensor channels 
each (two sensors in x, y, and z directions each), using an overlapping sliding-window 
process. Each frame was labeled according to the activity at the last time step, formulating 
the activity-recognition problem as the task of predicting the activity label at the 200th time 
step based on the immediately preceding 199 accelerometer readings.

For each emissions signal considered, the readings were separated by activity and plotted 
as density histograms, estimating their true distributions. The training and validation 
subsets of the data were plotted separately. Please refer to Linking Activities to Emission 
in Section IV. Results for detailed description of the histograms.

In Phase 1, the authors studied BaselineCNN (“Baseline Convolutional Neural Net”) and 
DeepConvLSTM (“Deep Convolutional Long Short-Term Memory Neural Net”), two models 
adapted for construction equipment activity recognition based on models of the same names 
originally developed for human activity recognition by Ordóñez and Roggen (2016). Both 
BaselineCNN and DeepConvLSTM begin with four layers of convolutional filters meant to 
automatically extract features from the accelerometer time series. BaselineCNN then uses 
two fully-connected layers to use these extracted features and make a classification, while 
DeepConvLSTM uses two long short-term memory (LSTM) layers to use the extracted 
features and make a classification. LSTMs are a particularly popular and high-performing 
kind of recurrent neural network (RNN), a broad class of neural networks distinguished by 
the presence of loops; unlike feedforward neural networks, a RNNs state is able to act as a 
sort of memory influencing future states, allowing the RNN to recognize not only individual 
inputs but sequences of inputs.
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In Phase 2, Temporal convolutional networks (TCNs) was also investigated in addition 
to the BaselineCNN and DeepConvLSTM. TCNs are another kind of network designed 
to deal with sequence data. Traditional convolutional networks (CNNs) are suited to 
extracting locally correlated features, but not suited to interpreting features that are distant 
from each other in space or time. This is because the receptive field of a convolutional 
network scales linearly with its number of layers. In order to achieve a larger receptive 
field, one that scales exponentially with the number of convolutional layers, van den Oord 
et al. (2019)12 applied the concept of dilated convolutions to CNNs. Equation 1 describes 
how to convolve a 1D filter K, of width W, and dilation factor d, with discrete input signal 
X(τ):

( 				  
		  (1)

When d=1, this is just the usual convolution operation. The factor d scales the amount 
of space between the adjacent samples of the input signal that get multiplied by the 
corresponding entries in the filter.
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IV.  RESULTS

PHASE 1

The models’ parameters were optimized over five epochs using batched gradient descent 
with a batch size of 100 frames and the Adam optimizer with a learning rate of 0.001. 
Adam is a variation on the standard stochastic gradient descent optimization algorithm 
that adjusts the learning rate based on a running average and the running variance of 
the recent gradients, which often speeds up convergence13 In order to combat exploding 
gradients inside the LSTM layers, gradient clipping was applied with a maximum gradient 
norm of 1.0 and a maximum gradient value of 0.5. This technique leads to smoother training 
curves than does standard stochastic gradient descent. Model parameters were saved 
in checkpoints after each training epoch, so the parameters that resulted in the highest 
validation accuracies were chosen for computing additional performance metrics. In each 
of the roller activity tasks, both BaselineCNN and DeepConvLSTM were able to achieve 
very high training accuracy, but this was deemed to be overfitting, since it occurred at the 
expense of validation accuracy (see Figure 10). LSTMs are sometimes found to have the 
ability to memorize the training data, so it is not surprising that DeepConvLSTM achieved 
nearly perfect training accuracy. Its peak validation accuracy was also superior to that of 
BaselineCNN, however, so the model selected had at least some predictive value beyond 
mere memorization.

Figure 10.	 Accuracy and loss curves for DeepConvLSTM for the six-activity-class 
roller data

Both BaselineCNN and DeepConvLSTM were able to classify the roller’s activities with 
reasonable accuracy, but DeepConvLSTM’s performance was superior. Both models 
showed higher performance on the easier subproblem of predicting combined classes 
than on the problem of predicting all six classes. As DeepConvLSTM was shown to be 
superior in identifying the roller’s activities, it was the only model applied to Excavator 1.

Roller: Six-activity identification problem. For the six-activity-class problem with 
activities: “Forward High”, “Backward High”, “Forward Low”, “Backward Low”, “Forward 
Off”, and “Backward Off”, BaselineCNN had a validation accuracy of 74.2% while 
DeepConvLSTM achieved a validation accuracy of 77.1%. Table 1 summarizes precision, 
recall, and F1 score for both models below. Predictions for both BaselineCNN and 
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DeepConvLSTM are plotted against the true activity labels on the full data set in Figure 
11. As predictions coinciding with the ground truth signal are covered by it, the number 
of visible peaks and troughs in the prediction signals is an indication of the degree to 
which they deviate from the ground truth. Furthermore, the signals are plotted with a 
degree of transparency, so darker lines indicate stronger signals. The predictions are not 
considered for the yellow shaded regions in the graphs, which were excluded from training 
and validation. Overall, the DeepConvLSTM predictions displayed in orange are a better 
match for the ground truth signal in both the training and the validation regions than the 
BaselineCNN predictions displayed in green.

Table 1.	 Roller Activity Metrics for BaselineCNN and DeepConvLSTM
Activity 
Label

Precision Recall F1-Score
BaselineCNN DeepConvLSTM BaselineCNN DeepConvLSTM BaselineCNN DeepConvLSTM

Fwd. High 0.73 0.81 0.77 0.73 0.75 0.77

Bwd. High 0.81 0.75 0.34 0.32 0.47 0.45

Fwd. Low 0.65 0.72 0.67 0.8 0.66 0.76

Bwd. Low 0.76 0.75 0.91 0.93 0.83 0.83

Fwd. Off 0.87 0.80 0.72 0.9 0.79 0.85

Bwd. Off 0.69 0.86 0.99 0.86 0.82 0.86

Average 0.75 0.78 0.73 0.76 0.72 0.75

Figure 11.	 Roller predictions of both models compared to the ground truth data

Roller: Direction-only subproblem. In this problem, the possible activity labels were 
reduced to just “Forward” and “Backward”. BaselineCNN achieved a validation accuracy of 
93.6% and an average F1 score of 0.94. DeepConvLSTM achieved a validation accuracy 
of 96.2% and an average F1 score of 0.96.

Roller: Vibration-setting only subproblem. In this problem, the possible activity labels 
were reduced to just the vibration settings “High,” “Low,” and “Off.” BaselineCNN achieved 
a validation accuracy of 74.4% and an average F1 score of 0.75. DeepConvLSTM achieved 
a validation accuracy of 75.2% and an average F1 score of 0.75.
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Excavator 1: Seven-activity identification problem. In this problem, the possible activities 
were “Idling,” “Traveling,” “Scooping,” “Dropping,” “Rotating (left),” “Rotating (right),” and 
“Various.” DeepConvLSTM achieved a validation accuracy of 77.6% and an average 
F1 score of 0.78. Although the dataset was imbalanced in favor of the “Various” activity 
class (over 40% of the data), counteracting the imbalance with a weighted loss function 
decreased the F1 score. The unweighted results were judged to be most representative 
and are summarized in Table 2. This preponderance of is not surprising since the “Various” 
label covered multiple unnamed activities, rather than being one distinct activity itself. The 
model struggled a little in identifying the “Traveling” activity, but this activity only comprised 
2% of the data. As the confusion matrix in Figure 12(a) shows, most of the model’s errors 
were related to the “Various” activity. To illustrate the model’s predictive power beyond 
confusion related to the “Various” category, two additional sets of performance metrics 
are reported (see Table 2 and Figure 11 below). The “No-Various” and “Adjusted-Idle” 
results derive from an instance of DeepConvLSTM trained and evaluated separately on a 
subset of the full data set, for which every frame with the label “Various” was omitted from 
both training and validation (No-Various). This setup is somewhat artificial since it renders 
the model incapable of reasonably processing the full data set as it is. In other words, it 
would not know what to do with all of the “Various” labels since that category is no longer 
in its vocabulary. However, it provides a reasonable estimation of how the model might 
perform in scenarios where there is no ambiguous label like “Various”. DeepConvLSTM 
managed a very high validation accuracy of 90.7%, and an average F1 score of 0.91. As 
the confusion matrix in Figure 12(b) suggests, the model benefitted somewhat from the 
fact that the removal of the “Various” activities left a disproportionately high number of 
“Idle” frames. Our results therefore suggests that the “Idle” activity is fairly easy to classify 
with extremely high accuracy. To give an estimate of the model’s performance under 
conditions that are less favorable but still unambiguous, the same model (trained without 
the “Various” frames) was evaluated on a modified version of its validation set with the first 
14,335 instances of “Idle” removed as well (Adjusted-Idle). Under these conditions, the 
class distribution in the validation data set was fairly even. DeepConvLSTM managed a 
respectable validation accuracy of 82.5% and an average F1 score of 0.83.

Table 2.	 Excavator 1 Activity Metrics for DeepConvLSTM

Activity 
Label

Precision Recall F1-Score

Full 
data

No 
Various

Adjusted 
Idle

Full 
data

No 
Various

Adjusted 
Idle

Full 
data

No 
Various

Adjusted 
Idle

Idling 0.90 1.00 1.00 0.97 0.96 0.81 0.93 0.98 0.89
Traveling 0.42 0.99 0.99 0.22 0.57 0.57 0.29 0.72 0.72
Scooping 0.32 0.70 0.73 0.75 0.96 0.96 0.45 0.81 0.83
Dropping 0.66 0.83 0.83 0.65 0.65 0.65 0.66 0.73 0.73
Rotating 

(left)
0.68 0.69 0.69 0.74 0.93 0.93 0.71 0.79 0.79

Rotating 
(right)

0.82 0.94 0.94 0.80 0.80 0.80 0.81 0.86 0.86

Various 0.84 N/A N/A 0.65 N/A N/A 0.73 N/A N/A
Average 0.81 0.92 0.85 0.78 0.91 0.83 0.78 0.91 0.83
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Figure 12.	The confusion matrices for DeepConvLSTM’s performance in the Exca-
vator 1 data. Predicted labels on the vertical axis; actual labels on the 
horizontal axis

PHASE 2

Activity Classification. In order to compare the TCN developed with the authors’ previously 
developed models, its performance was compared to theirs, using the same datasets. 
Table 3 summarizes the validation accuracies achieved on the various problems, including 
the dataset for Excavator 2. Wherever previous results are shown in black, new results are 
shown in blue. In parentheses is the number of activities in each classification task.

Table 3.	 Validation Accuracies of Each (Model, Experiment) Pair for the Compac-
tor (roller) and the Excavators

  Model
Experiment BaselineCNN DeepConvLSTM TCN

Compactor activities (6) 74.2% 77.1% 78.1%
Excavator 1 activities (7) N/A 77.6% 8.l.4%
Excavator 1 no Various (6) N/A 90.70% 91.4%
Excavator 1 Idle adjusted (6) N/A 82.5% 8.l.4%
Excavator 2 activities (7) N/A 6.l.41% 78.80%
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Table 4 summarizes the precision, recall, and F1-Score of each model on the vibratory 
roller dataset. 

Table 4.	 Performance Metrics for Vibratory Roller Experiment

Ac-
tivity 
Label

Precision Recall Fl -Score

Base-
lineCNN

DeepConv-
LSTM TCN Base-

lineCNN
DeepConv-

LSTM TCN Base-
lineCNN

DeepConv-
LSTM TCN

Fwd.  
High

0.73 0.81 0.78 0.77 0.73 1.79 0.75 0.77 0.79

Bwd. 
High

0.81 0.75 0.89 0.34 0.32 0.30 0.47 0.45 0.44

Fwd. 
Low

0.65 0.72 0.73 0.67 0.8 1.74 0.66 0.76 0.73

Bwd. 
Low

0.76 0.75 0.75 0.91 0.93 1.95 0.83 0.83 0.84

Fwd. 
Off

0.87 0.8 0.88 0.72 0.9 1.87 0.79 0.85 0.88

Bwd. 
Off

0.69 0.86 0.8 0.99 0.86 1.97 0.82 0.86 0.88

Aver-
age

0.75 0.78 0.79 0.73 0.76 1.78 0.72 0.75 0.76

Tables 5–7 summarize the precision and recall of each model in the experiments involving 
Excavator 1. The confusion matrices for DeepConvLSTM and TCN in the Excavator 2 
experiments are shown in Figure 13 and 14, respectively. 

Table 5.	 Performance Metrics for “Full” Excavator 1 Experiment

Activity 
Label

Full data

Precision Recall Fl-Score

DeepConvLSTM TCN DeepConvLSTM TCN DeepConvLSTM TCN

Idling 0.90 0.95 0.97 0.98 0.93 0.97

Traveling 0.42 0.51 0.22 0.53 0.29 0.52
Scooping 0.32 0.61 0.75 0.15 0.45 0.24
Dropping 0.66 0.85 0.65 0.43 0.66 0.57

Rotating 
(left) 0.68 0.65 0.74 0.74 0.71 0.69

Rotating 
(right) 0.82 0.72 0.80 0.82 0.81 0.77

Various 0.84 0.80 0.65 0.87 0.73 0.83
Average 0.81 0.83 0.78 0.83 0.78 0.82
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Table 6.	 Performance Metrics for “No-Various” Excavator 1 Experiment

Activity 
Label

No Various
Precision Recall Fl-Score

DeepConvLSTM TCN DeepConvLSTM TCN DeepConvLSTM TCN
Idling 1.00 0.98 0.96 0.99 0.98 0.99

Traveling 0.99 0.91 0.57 0.54 0.72 0.68
Scooping 0.70 0.8l 0.96 0.79 0.81 0.81
Dropping 0.83 0.78 0.65 0.62 0.73 0.69
Rotating 

(left) 0.69 0.79 0.93 0.83 0.79 0.81

Rotating 
(right) 0.94 0.80 0.80 0.92 0.86 0.88

Various N/A N/A N/A N/A N/A N/A

Average 0.92 0.91 0.91 0.91 0.91 0.91

Table 7.	 Performance Metrics for “Adjusted-Idle” Excavator 1 Experiment

Activity 
Label

Adjusted Idle
Precision Recall Fl-Score

DeepConvLSTM TCN DeepConvLSTM TCN DeepConvLSTM TCN

Idling 1.00 0.90 0.81 1.00 0.89 0.94
Traveling 0.99 0.91 0.57 0.54 0.72 0.68
Scooping 0.73 0.86 0.96 0.79 0.83 0.82
Dropping 0.83 0.78 0.65 0.62 0.73 0.69

Rotating 
(left)

0.69 0.79 0.93 0.8l 0.79 0.81

Rotating 
(right)

0.94 0.89 0.80 0.92 0.86 0.88

Various N/A N/A N/A N/A N/A N/A

Average 0.85 0.84 0.83 0.8l 0.83 0.83
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Figure 13.	 Confusion matrix for DeepConvLSTM in the Excavator 2 experiment

Figure 14.	 Confusion matrix for TCN in the Excavator 2 experiment
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Linking Activities to Emissions. The Freedman-Diaconis rule was used to select 
appropriate bin sizes for the histograms as it makes no assumptions about the distribution 
it is modeling while attempting to minimize the difference between the empirically-derived 
histogram and the theoretical probability distribution. The resulting histograms are plotted 
in Figures 15–17, superimposed on “kernel density estimations” of the true distributions.

Figure 15.	 Density histograms for CO emissions across training and validation 
sets
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Figure 16.	Density histograms for NOx emissions across training and validation 
sets
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Figure 17.	 Density histograms for CO2 emissions across training and validation 
sets
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V.  DISCUSSION AND CONCLUSION

It was observed across all of the measurements taken that the new TCN model is at 
least competitive with the previous reigning champion, DeepConvLSTM. In fact, it beats 
DeepConvLSTM in terms of validation accuracy every time, despite training much faster 
and being simpler to explain. The most notable differences in performance occurred in 
the two excavator experiments, which are challenging datasets because they include 
many activities that sometimes occur together to such a degree that the authors could 
only label the activity during such instances as Various. In the first excavator experiment, 
DeepConvLSTM managed a validation accuracy of 77.6%, with its mistakes largely coming 
from confusion related to the Various label. Eliminating the Various label from consideration 
and rebalancing the data set by adjusting the remaining number of Idle labels allowed its 
accuracy to rise to 82.5%, but the TCN managed to achieve 83.4% validation accuracy 
regardless of whether the Various label was present. In the second excavator experiment, 
we see a similar trend (see the confusion matrices in Figures 13 and 14 above); again 
it seems that DeepConvLSTM tended to get confused by the Various label, but the TCN 
faired much better. The TCN achieved a validation accuracy of 78.8%—this time much 
higher than the 63.4% managed by DeepConvLSTM (see Table 3). 

Both DeepConvLSTM and TCN displayed distinct noteworthy trends during training. In 
general, DeepConvLSTM manages to train to nearly perfect training accuracy (95%+) 
on every data set studied, but it fails to generalize well from this fitting (as judged from 
its validation accuracy), despite numerous attempts at different forms of regularization. 
In contrast, the TCN model tends to have a training accuracy very similar to its validation 
accuracy, suggesting that it tends to overfit less often than DeepConvLSTM, but also that 
it might have lower capacity to express very complicated patterns in the training data. It 
might be possible to rule out this tendency to overfit and take better advantage of this 
expressiveness with a larger data set—larger not just in terms of samples, but expanded 
in real-world terms like the number of machines, the number of activities, the time 
spent performing them, performing work on different days, etc—and in such a scenario, 
DeepConvLSTM still seems promising.
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