SJSU SAN JOSÉ STATE UNIVERSITY

Assessing Complete Street Strategies Using Microscopic Traffic Simulation Models

Bernice Liu Alireza Shams, PhD Jonathan Howard Serena E. Alexander, PhD Alexandre Hughes Anurag Pande, PhD

MINETA TRANSPORTATION INSTITUTE

transweb.sjsu.edu

MINETA TRANSPORTATION INSTITUTE LEAD UNIVERSITY OF

Mineta Consortium for Transportation Mobility

Founded in 1991, the Mineta Transportation Institute (MTI), an organized research and training unit in partnership with the Lucas College and Graduate School of Business at San José State University (SJSU), increases mobility for all by improving the safety, efficiency, accessibility, and convenience of our nation's transportation system. Through research, education, workforce development, and technology transfer, we help create a connected world. MTI leads the four-university Mineta Consortium for Transportation Mobility, a Tier I University Transportation Center funded by the U.S. Department of Transportation's Office of the Assistant Secretary for Research and Technology (OST-R), the California Department of Transportation (Caltrans), and by private grants and donations.

MTI's transportation policy work is centered on three primary responsibilities:

Research

MTI works to provide policy-oriented research for all levels of government and the p rivate sector to foster the development of optimum surface transportation systems. Research areas include: bicycle and pedestrian issues; financing public and private sector transportation improvements; intermodal connectivity and integration; safety and security of transportation systems; sustainability of transportation systems; transportation / land use / environment; and transportation planning and policy development. Certified Research Associates conduct the research. Certification requires an advanced degree, generally a Ph.D., a record of academic publications, and professional references. Research projects culminate in a peer-reviewed publication, available on TransWeb, the MTI website (http://transweb.sjsu.edu).

Education

The Institute supports education programs for students seeking a career in the development and operation of surface transportation systems. MTI, through San José State University, offers an AACSB-accredited Master of Science in Transportation Management and graduate certificates in Transportation Management, Transportation Security, and High-Speed Rail Management that serve to prepare the nation's transportation managers for the 21st century. With the

active assistance of the California Department of Transportation (Caltrans), MTI delivers its classes over a state-of-the-art videoconference network throughout the state of California and via webcasting beyond, allowing working transportation professionals to pursue an advanced degree regardless of their location. To meet the needs of employers seeking a diverse workforce, MTI's education program promotes enrollment to under-represented groups.

Information and Technology Transfer

MTI utilizes a diverse array of dissemination methods and media to ensure research results reach those responsible for managing change. These methods include publication, seminars, workshops, websites, social media, webinars, and other technology transfer mechanisms. Additionally, MTI promotes the availability of completed research to professional organizations and journals and works to integrate the research findings into the graduate education program. MTI's extensive collection of transportation- related publications is integrated into San José State University's world-class Martin Luther King, Jr. Library.

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the information presented herein. This document is disseminated in the interest of information exchange. The report is funded, partially or entirely, by a grant from the U.S. Department of Transportation's University Transportation Centers Program. This report does not necessarily reflect the official views or policies of the U.S. government, State of California, or the Mineta Transportation Institute, who assume no liability for the contents or use thereof. This report does not constitute a standard specification, design standard, or regulation.

REPORT 20-18

ASSESSING COMPLETE STREET STRATEGIES USING MICROSCOPIC TRAFFIC SIMULATION MODELS

Bernice Liu Alireza Shams, PhD Jonathan Howard Serena Alexander, PhD Alexandre Hughes Anurag Pande, PhD

June 2020

A publication of **Mineta Transportation Institute** Created by Congress in 1991

College of Business San José State University San José, CA 95192-0219

TECHNICAL REPORT DOCUMENTATION PAGE

1.	Report No. 20-18	2. Government Accession No.	3. Recipient's Catalog No.				
4.	Title and Subtitle Assessing Complete Street Strategies I	Jsing Microscopic Traffic Simulation Models	5. Report Date June 2020				
		6. Performing Organization Code					
7.	Authors Bernice Liu, https://orcid.org/0000-0002 Alireza Shams, PhD, https://orcid.org/000 Jonathan Howard, https://orcid.org//000 Serena E. Alexander, PhD, https://orcid.org/000 Alexandre Hughes, https://orcid.org/000 Anurag Pande, PhD, https://orcid.org/000	8. Performing Org CA-MTI-1712	anization Report				
9.	Performing Organization Name and A Mineta Transportation Institute	Address	10. Work Unit No.				
	College of Business San José State University San José, CA 95192-0219		11. Contract or Gra 69A3551747127				
12.	Sponsoring Agency Name and Addree U.S. Department of Transportation Office of the Assistant Secretary for	SS	13. Type of Report a Final Report	and Period Covered			
	Research and Technology University Transportation Centers Progr 1200 New Jersey Avenue, SE Washington, DC 20590	ram	14. Sponsoring Agency Code				
15.	Supplemental Notes DOI: 10.31979/mti.2020.1712						
	16. Abstract Authors of this research developed a traffic simulation model for the downtown San Jose network and evaluated five different street redesign and travel demand combinations. This model aids understanding of network-wide effects of changes in street design for local and regional agencies who are interested in implementing complete streets and/or one-way to two-way conversion. The base network may be altered to model and evaluate other complete streets (e.g., road diet) and tactical urbanism (e.g., farmer's market on city streets on certain days of the week) scenarios. The 3-dimensional animated videos for each scenario are also created to be used for public outreach by the city to engage the stakeholders in the planning and implementation process. Quantitative measures used for evaluating the scenarios include travel times on key corridors and network-wide delays during the afternoon peak hour. The evaluation shows the current city street network will be able to sustain a modest (between 5% and 10%) increase in single-occupancy automobile travel demand. The network will be overwhelmed if the single-occupancy automobile travel demand were to increase to the level projected per the city's 2040 general plan. This outcome points to the need for strong Travel Demand Management (TDM) measures.						
17.	Key Words Multimodal transportation, Traffic simulation, Complete streets, Calibration, Validation	18. Distribution Statement No restrictions. This document is availa The National Technical Information Serv					
19.	Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 103	22. Price			

Copyright © 2020 by **Mineta Transportation Institute** All rights reserved

DOI: 10.31979/mti.2020.1712

Mineta Transportation Institute College of Business San José State University San José, CA 95192-0219

Tel: (408) 924-7560 Fax: (408) 924-7565 Email: mineta-institute@sjsu.edu

transweb.sjsu.edu

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the City of San Jose in providing the data used in this research as well as valuable feedback on the research plan. The authors thank Editing Press, for editorial services, as well as MTI staff, including Executive Director Karen Philbrick, PhD; Deputy Executive Director Hilary Nixon, PhD; Graphic Designer Alverina Eka Weinardy; and Executive Administrative Assistant Jill Carter.

TABLE OF CONTENTS

Executive Summary	1
I. Introduction	2
Study Area: Downtown San Jose	2
Study Objectives	3
Report Organization	4
II. Literature Review	5
Traffic Simulation	5
Simulation Model Choices	5
Advantages and Disadvantages of Traffic Simulation	6
Simulation Study Steps	8
Development of Large-Scale Microscopic Traffic Simulation Model	9
Complete Streets	10
Tactical Urbanism	13
Conclusions from Literature Review	16
III. Network Modeling	17
Creating the Network	17
Origin-Destination Matrix and routes	23
Calibrating the Network	23
Validating the Base Network	26
Results from Network Modeling	29
IV. Alternative Scenarios	30
2040 Traffic Volumes	30
Scenario 1: Almaden Boulevard Conversion with 2015 demand level	31
Scenario 2: Almaden Boulevard Conversion and Increase automobile Demand 5%	32
Scenario 3: Almaden Boulevard Conversion and Increase Demand 10%	34
Scenario Visuals and Public Outreach	36
V. Conclusion	38
Summary and Evaluation of Results	38
Reliability of Data	38
Recommendation for Improvement and Further Research	38

Table of Contents	vi
Appendix A: Origin-Destination Matrix	39
Appendix B: GEH Satistics	46
Appendix C: Network Evaluation Performance Measures	79
Appendix D: Travel-Time	82
Appendix E: Speed Data	85
Appendix F: Peak Hour Traffic Counts	89
Appendix G: Vehicle Routes Adjusted for Almaden Conversion	91
Endnotes	93
Bibliography	97
About the Authors	101
Peer Review	103

LIST OF FIGURES

1.	Study Area Map	3
2.	Illustration of Before (Top) and After (Bottom) Complete Street Conversion	11
3.	Typical Road Diet Basic Design	12
4.	Scott Street Pop-up Bikeway Demonstration (Source: City of San Jose)	15
5.	Different Complete Street Treatments in Downtown San Jose	16
6.	Map with Downtown San Jose Core and Frame	17
7.	PTV VISSIM Model for the Downtown Core	18
8.	Speed Distribution for Vehicles with Speed in MPH on X-axis and Percentiles on the Y-axis	20
9.	Ring Barrier Controller Timing Interface for PTV VISSIM	21
10.	Route Decision from Google Maps and its coding in the Network	22
11.	Driving Behavior Parameter for the Model	24
12.	Zones for the O–D Matrices (Year 2015 and 2040)	30

LIST OF TABLES

1.	HCM Simulation Model Analysis	7
2.	Cyclists Corridors	22
3.	Intersections with Significant Pedestrian Traffic	23
4.	Data Collectors, Queue Counters, and Travel Time Corridor Locations	26
5.	Existing Baseline Speed (mph) Summary	28
6.	Existing Baseline Travel Time Summary	28
7.	Existing Baseline Network Measures of Effectiveness	29
8.	Scenario 1 (Almaden Conversion) Speed (mph) Summary	31
9.	Almaden Conversion Travel Time Summary	32
10.	Almaden Conversion Network Measures of Effectiveness	32
11.	Almaden Conversion plus 5% Demand Speed (mph) Summary	33
12.	Almaden Conversion plus 5% Demand Travel Time Summary	33
13.	Almaden Conversion plus 5% Demand Network Measures of Effectiveness	34
14.	Almaden Conversion plus 10% Demand Speed (mph) Summary	35
15.	Almaden Conversion plus 10% Demand Travel Time Summary	35
16.	Almaden Conversion plus 10% Demand Network Measures of Effectiveness	36

Mineta Transportation Institute

EXECUTIVE SUMMARY

The goal of this project is to improve multimodal mobility and public life in downtown San Jose through "complete-street" strategies, assessed using microscopic traffic simulation models. "Complete streets" are streets designed to accommodate multiple modes of transportation, activities, and users, including pedestrians, cyclists, transit riders, drivers, and local business owners and residents. By promoting alternative modes of travel (walking, bicycling, and public transit), complete streets also help reduce greenhouse gas emissions for the transportation sector. The City of San Jose provided data for the surface street network for the core of the downtown San Jose. This network was modeled in a microscopic simulation environment (PTV VISSIM). Significant effort went into making sure that the existing street network, road user behavior, and its Origin-Destination (O–D) patterns were captured so that reliable information about future scenarios could be obtained from the models.

Examining the literature on evaluation of complete street conversions we found that before/ after real-world data, as well as simulation models, have been used for evaluating complete street scenarios. However, most studies (including all simulation-based work) focused only on the evaluation of the streets being converted and did not examine the network-wide impacts of the conversion. Detailed microscopic modeling of the downtown core, along with its O–D patterns, provides a way to assess network-wide impacts of changes to individual corridors.

The team examined the travel demand forecasting model which was developed for the 2040 Envision San Jose General Plan and found that the automobile demand is projected to increase significantly, especially for certain parts of the downtown. The mobility of these residents, visitors, and businesses cannot be accommodated by streets that focus on the single-occupancy automobile mode of transportation. To increase the potential for individuals to use non-single-occupancy-automobile modes of travel, the city will need a significant Travel Demand Management (TDM) plan. The output metrics from the simulation models for the base case (2015 demand) and for various projected scenarios indicated that as long as the automobile travel demand is managed to be at current or modestly higher levels (~5–10%), the conversion of individual one-way streets and/or couplets to two-way streets won't have significantly adverse impacts on overall peak-hour delays compared to the base case. The investigators have provided the city with the simulation models so that they can be used for future evaluations of other scenarios. The modeling software also provided three-dimensional (3-D) animations of the multimodal traffic flow that can be used in public forums for community outreach. consistent with the need for visualization tools that have been identified in the academic literature as well as in federal legislation (e.g., SAFETEA-LU).

I. INTRODUCTION

As major cities grow, it would be easier to meet demand if other modes, requiring less road space per traveler, were better accommodated. It is desirable for streets to be designed for everyone, whether young or old, on foot or on the bicycle, in a car or on a bus; streets embodying this ideal are called "complete streets."¹ Complete streets are streets designed to accommodate multiple modes of transportation, activities, and users, including pedestrians, cyclists, transit riders, drivers, and local business owners and residents. According to a recent Future of Transportation National Survey, 66% of Americans want more transportation options so they have the freedom to choose how to get where they need to go, 73% currently feel they have no choice but to drive as much as they do, and 57% would like to spend less time in the car.² These figures indicate the need for a cohesive plan to integrate multimodal use and public life.

For effective multimodal transportation networks to be implemented, public involvement is a key factor in the planning and decision-making process. This process is should involve two-way communication between citizens and government, allowing public transportation agencies to notice, inform, and include the public while using the feedback to develop relationships within the community and build better transportation projects. Lack of public participation can lead to minimal community support, resistance from stakeholders and elected officials, and outcries from the public that could end up in costly project delays or even lawsuits.³ Visualizations can be effectively used for describing plans to the public within transportation planning process, as was recognized and mandated by the Safe, Accountable, Flexible, Efficient, Transportation Equity Act: A Legacy for Users (SAFETEA-LU).^{4, 5} While SAFETEA-LU has now expired, using visual three dimensional (3-D) animations displaying potential project scenarios, in conjunction with quantitative analysis and results, is a great way to engage and inform the community during public outreach.

This research created a simulation-based framework to evaluate network-wide implications of converting streets into complete streets. In addition to quantitative metrics such as traveltime and vehicular throughput, animated 3-D visualizations were also produced for the modeled scenarios. Best practices for using these visualizations in project implementation are also described.

STUDY AREA: DOWNTOWN SAN JOSE

Located in the heart of Silicon Valley, San Jose is the 3rd largest city in the State of California and the 10th largest city in the USA.⁶ Downtown San Jose continuously attracts new residents, visitors, and businesses while experiencing tremendous growth and providing opportunities to technology professionals and others ⁷. As a result, downtown San Jose becomes more crowded by the day. Downtown San Jose also houses several key destinations such as Diridon station, a crucial central transit hub for Silicon Valley, and the SAP Center, a major event venue. For a city the size of San Jose to be efficient and livable, urban transport systems should be able to more effectively accommodate resource-efficient modes of travel such as walking, cycling, and transit.⁸ Similarly, tactical urbanism—the use of low-cost, low-commitment modifications to the built environment (such as seating, automobile barriers, and food carts), to improve social interaction and public life—can help

in creating demand for these more efficient transportation modes, and utilize the urban street space more effectively.

The study area (Figure 1) consists of approximately 5 square miles concentrated in the core of Downtown San Jose. Within the study area, Interstate 280 (I-280) and California State Route 87 (CA 87) serve as important routes of entry and exit into the downtown area.

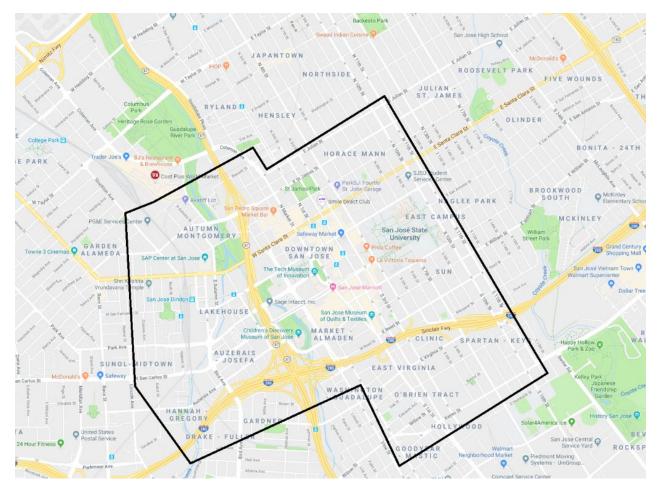


Figure 1. Study Area Map

STUDY OBJECTIVES

Simulation models can aid transportation planners and designers in assessing the impact of various alternatives to existing systems. The use of simulation can help the City of San Jose visualize and evaluate the collective behaviors and patterns of travelers as well as the implications these behaviors have for the whole transportation network. Network performance can be analyzed and compared for before and after scenarios to answer "what-if" questions.

The objectives of this study are:

• To assess complete-street and tactical-urbanism strategies identified by the City of San Jose, through microscopic traffic simulation models.

- To test and refine scenariO–Development techniques and develop a micro-simulation evaluation framework that can help other cities adopt similar strategies.
- To provide a framework to use the 3-D visualization created from the simulation models for public information campaigns.

REPORT ORGANIZATION

The report is organized as follows. Chapter 2 presents a literature review of relevant past studies. Chapter 3 outlines the development and coding for the model, detailing the process of data collection, network coding, calibration, and validation for the base conditions (2015 traffic). Chapter 4 describes and compares the results for different scenarios, including both quantitative metrics and 3-D visualizations; it also discusses the use of the latter for public information campaigns. Finally, Chapter 5 contains a summary of conclusions along with recommendations for future work.

II. LITERATURE REVIEW

This chapter reviews traffic simulation applications, and potential advantages and disadvantages that microsimulation offers over more macroscopic modeling. It also discusses complete streets and tactical urbanism within a downtown context, and the development of large-scale microscopic traffic simulation models.

TRAFFIC SIMULATION

Simulation, a way of numerically modeling the behavior of systems over time through the use of computer software, is an increasingly popular and effective tool for analyzing the behavior and interactions of traffic systems. Simulation models can provide an understanding of cause-and-effect relationships and satisfy a wide range of applications, including evaluation of alternative treatments, testing of new designs, training of personnel, and safety analysis. Simulation models are useful in studying models too complicated for analytical treatment and cases where there is a need to view vehicle animation.⁹ Modern traffic simulation models can answer "what-if" questions to aid system designers in assessing the impact of various changes on existing systems in a cost-effective way.¹⁰ Based on the simulation model for an underlying transportation network, one can obtain performance measures such as delay, emissions, average speeds, travel time, and others.

SIMULATION MODEL CHOICES

Depending on the desired level of detail to be studied, simulation models can be classified as microscopic, mesoscopic, or macroscopic.

Microscopic models provide a detailed representation of the traffic process, considering the characteristics of individual vehicles and simulating vehicle interactions in the traffic stream based on car-following and lane-changing theories. Microsimulation offers benefits in clarity, accuracy, and flexibility. It can provide a comprehensive real-time visual display to illustrate traffic operations in a readily understandable manner. Individual vehicles make their own decision on speed, lane changing, and route choice. The dynamic evolution of traffic congestion and the effectiveness of traffic management strategies can be evaluated with microsimulation. These models are typically used for short-term and congestion-related issues. Compared to macroscopic models, a microscopic model is only practical for smaller networks and shorter modeling periods, due to the high number of data inputs, calibration and validation efforts, and computing power for modeling and analysis.¹¹

Macroscopic models describe systems and their activities and interactions at a low level of detail. Rather than considering individual vehicles' behaviors and interactions, macroscopic models consider aggregate variables such as average speeds. These models consider variables such as land use, socioeconomic demographical data, and travel behaviors to perform operational analysis and long-term forecasting. In a macroscopic traffic model, trips are assumed to load simultaneously on a link and to share the same speed and time period. Lower-fidelity models are easier and less costly to develop, execute, and maintain. However, due to the low level of detail, their representation of the real-world system may be less accurate. Macroscopic models are more appropriate for regional or large-scale systems, and can provide predictions of current and future travel patterns and demand.¹²

A mesoscopic model is a hybrid of microscopic and macroscopic models. These models do represent vehicles and some of their behaviors individually, but model some features of the system only in the aggregate, simplifying interactions. For example, such a model might represent individual vehicles' decisions to change lanes, but model this decision as being made in response to aggregate traffic flow, rather than to the vehicle's proximity to other individual vehicles.^{13, 14}

Models can also be classified as deterministic or stochastic. Deterministic models have no random variables and perform the same way for a given set of initial conditions. Stochastic models have processes that include probability functions, introducing randomness into the model, and their exact outcomes will differ each time the model is run, though they may be qualitatively similar.

ADVANTAGES AND DISADVANTAGES OF TRAFFIC SIMULATION

Traffic simulation models are powerful tools because they provide relatively inexpensive, fast, and risk-free evaluation environments. They not only account for a variety of different scenarios that cannot be practically tested in real-world conditions, but also provide various network performance measures, becoming a very useful and widely accepted tool in transportation engineering applications.

Park, Yun, & Choi provided a case study reviewing four discrete-time microscopic traffic models and evaluating their performances.¹⁵ One of the models was CORSIM, which is a microscopic simulation model developed for the Federal Highway Administration (FHWA) and is used mainly in modeling urban traffic conditions.^{16,17} CORSIM does not have a robust multimodal functionality. In addition, because it relies on link-based, as opposed to routebased, input volumes it is difficult to use for obtaining network-level measures. Paramics, developed by Quadstone Limited, is a suite of high-performance tools for microscopic traffic simulation. This software allows application program interfaces (APIs). However, these APIs are not built into the model and need to be created by the user. The program lacks automatic vehicle diffusion for vehicles that get stuck at a simulated network location (e.g., trying to change a lane), potentially creating large discrepancy and high variability in data output. SIMTRAFFIC, created by Trafficware Inc., is companion software to SYNCHRO, a signal optimization tool, and only able to run SYNCHRO input files.¹⁸ This software focuses on checking and fine-tuning traffic signal operation. PTV VISSIM, created by PTV Vision, is a microscopic behavior-based simulation model developed to model urban transportation operations.¹⁹ A weakness of this program is its lack of a built-in actuated controller program (overcome through an add-on RBC interface) and its inability to produce HCM compatible output. CORSIM and SIMTRAFFIC have network limits, while PTV VISSIM and Paramics do not. In evaluating these programs for modeling signalized intersections, Park et al. concluded that PTV VISSIM and Paramics more effectively modeled various signal timing plan use cases compared to SIMTRAFFIC and CORSIM.

We chose PTV VISSIM for this study primarily due to the program's ability to analyze multimodal

traffic (i.e., automobile, bicycles, and pedestrians) as well as transit operations under constraints such as lane configuration, traffic composition, traffic signals, transit stops, and other similar criteria, thus making it a useful tool for the evaluation of various alternatives.²⁰ PTV VISSIM also allows for the interaction of different modes of transportation, including bicycles, transit, automobiles, and pedestrians. This flexibility of being able to model interactions between different modes of transportation is ideal for evaluating the network changes expected in our study.

Shortcomings of traffic simulations include the amount of time needed to develop a good simulation model, difficulty understanding simulation data, and computer limitations, and can also include unrealistically simplified driver behavior.

Table 1, reproduced from Chapter 31 of the Highway Capacity Manual (HCM 2000),²¹ summarizes the strengths and flaws of the simulation approach to traffic modeling.

Simulation Strengths	Simulation Shortcomings
Other analytical approaches may not be appropriate	
Can experiment off-line without using an on-line trial-and-error approach	Simulation models require considerable input characteristics and data, which may be difficult or impossible to obtain
Can experiment with new situations that do not exist today	Simulation models may require verification, calibration, and validation, which, if overlooked, make such models useless or not dependable
Can provide insight into what variables are important and how they interrelate	Development of simulation models requires knowledge in a variety of disciplines, including traffic flow theory, computer programming and operation, probability, decision making, and statistical analysis
Can provide time and space sequence information as well as means and variances	The simulation model may be difficult for analysts to use because of the lack of documentation for unique computer facilities
Can study system in real-time, compressed time, or expanded time	Some users may apply simulation models and not understand what they represent
Can conduct potentially unsafe experiments without risk to system users	Some users may apply simulation models and not know or appreciate model limitations and assumptions
Can replicate base conditions for equitable comparison of improvement alternatives	
Can study the effects of changes on the operation of a system	
Can handle interacting queuing processes	
Can transfer unserved queued from one time period to the next	
Can vary demand over time and space	
Can model unusual arrival and service patterns that do not follow more traditional mathematical distributions	

Table 1. HCM Simulation Model Analysis

SIMULATION STUDY STEPS

Successfully using a mathematical model requires understanding its operations and input data. Lieberman and Rathi²² suggested the following process to build and apply traffic simulation models:

- 1. Define the problem and model objectives.
- 2. Define the system to be studied.
- 3. Develop the model.
- 4. Calibrate the model.
- 5. Verify the model.
- 6. Validate the model.
- 7. Document activities.

The first step in any study is to identify and describe the scope of the problem. This step includes stating the model's purpose and identifying the information desired from the model, such as travel time, travel volume, and queue lengths.

The second step is to identify the geographical boundary of the physical area being modeled , data input, and traffic control environment (e.g., signals, stop signs etc.). The elements in this step include city streets, state highways, highway geometrics, peak hour factor, intersection volumes, and speed data.

The third step, model development, identifies the type of model that should be used, depending on the level of complexity needed to satisfy the objectives. At this point, a model type (whether microscopic, macroscopic, or mesoscopic, and whether deterministic or stochastic) and appropriate software for running that model are also selected. Calibration criteria and a logical structure for integrating model components (such as street network and traffic controls) are established.

The fourth step is to calibrate the model. The real-world data needed for calibration is collected and introduced into the model. Details such as signal timing, satellite imagery, vehicle composition, speeds, and traffic are all needed to complete the simulation model. A small section of the modeled area is tested against real-world data to calibrate the model. This step entails adjusting simulation factors such as perception time, headway allocations, and traffic control device locations, and determines whether the calibration is accurate and adequate.

The fifth step, verification of the model, includes a visual check to monitor for any unrealistic and unusual network behavior. It may be that the software replicates a model component properly as designed, but that its performance deviates from the theoretical

expectations or empirical observations; if this occurs, one must go back to step four, model calibration.

The sixth step is to validate the model by collecting, reducing, and organizing data from the model to compare to actual data. At this step, statistical tests establish whether the model describes the real system at an acceptable level of accuracy. Validation is extremely crucial because a model that cannot replicate known data cannot be trusted as a proxy for unknown data. Therefore, in addition to the statistical test results, one must be attentive to the proper representation of vital processes within the overall model, errors in the input data, reasonable output developed from simulation trials, and potential "bugs" in the model and algorithms utilized. A detailed inspection of the animation is an excellent tool for observing the traffic setting and interpreting the simulation output. Validation often occurs alongside calibration and verification.

The seventh and final logical step described by Liberman and Rathi, to be carried out simultaneously with all the others, is proper documentation. This includes summarizing the steps taken to create the model, creating a user manual, and documenting algorithms and software used. Documentation provides future users with a guide with which they can critique and understand the model and its analysis.

DEVELOPMENT OF LARGE-SCALE MICROSCOPIC TRAFFIC SIMULATION MODEL

Large-scale traffic simulation models require detailed data from many sources, as well as proper calibration and validation. Small errors in microscopic models are greatly magnified in large networks.²³

Jha et al.²⁴ developed and calibrated a microscopic traffic simulation model, using MITSIMLab, for the entire metropolitan area of Des Moines, Iowa. Origin–Destination (O–D) Zone aggregations was used to generate 19,000 to 21,000 O–D pairs (number of trips from a zone (origin) to another zone (destination)). Parameters and inputs to be calibrated for this model included parameters of the driving behavior model, parameters of the route choice model, O–D flows, and habitual travel times. Although ideally these should all be calibrated jointly, the scale of the model led them to calibrate the driving behavior parameters separately from the others. An iterative process was used to calibrate the remaining parameter and inputs. The paper concluded that its calibration and validation results were promising.

More recently, Bartin et al.²⁵ calibrated and validated a large-scale traffic simulation network with a case study in New Jersey. Their model was developed using PARAMICS and calibrated and validated using throughout, queue lengths, and travel times at selected key locations in the network. Bartin et al. described the calibration and validation process as an iterative process including error-checking, demand estimation, capacity calibration, route choice calibration, and system performance calibration. Their paper details the modeling effort required to build a large-scale traffic simulation model, including the available data requirements, generating and O–D matrix, where displays the number of trips going from each origin to each destination and the results of the calibration and validation process.

Edara, Sharma and McGhee²⁶ developed a large-scale traffic simulation model for hurricane evacuation, for a case study of Virginia's Hampton roads region, using PTV VISSIM. Their approach to the O–D demand matrix utilized the Abbreviated Transportation Model (ATM), which is based on tract and population data from the 2000 U.S. Census.

COMPLETE STREETS

The term "complete streets" refers to roads designed to accommodate multiple modes, activities and users, including pedestrians, cyclists, transit riders, drivers, and local business owners and residents. An example of a downtown street before and after conversion to a complete street is shown in Figure 2.²⁷ In the 'before' illustration the bus stop is obstructed by an illegally parked car; in the 'after' illustration, a bus bulb has provided to address this issue. This is one example of how complete street conversion supports more efficient modes of travel. There are several studies, documented in the subsequent section of this chapter, that reported benefits of complete street conversions; however, the literature has also noted that the benefits depend heavily on the local context.²⁸

Figure 2. Illustration of Before (Top) and After (Bottom) Complete Street Conversion²⁹

Road Diet

Aroad diet conversion is a type of complete street conversion in which the number of lanes and effective width of a road are reduced, so that the road space can be used for other purposes and travel modes.³⁰ Road diet reconfigurations typically consist of converting an undivided four-lane roadway to a three-lane undivided roadway made up of two through lanes and a center two-way left-turn lane, as seen in Figure 3. Research on an urban arterial street noted that while road diet conversion may increase travel time due to capacity reduction, the benefits associated with the reduction in traffic crashes overwhelmingly exceed the costs of additional delay.³¹ In addition to reducing overall crashes, road diets improve safety by reducing vehicle speed differential and vehicle interactions. When traffic is reduced to one lane per direction, the speed differential is limited by the lead vehicle.³² Litman³³ has also mentioned that post-road diet conversion, off-peak traffic may move slower but peak-period traffic may move faster. Nixon et al.³⁴ have noted the need to study the impact of road diet programs both on the road diet location itself and on the surrounding streets.

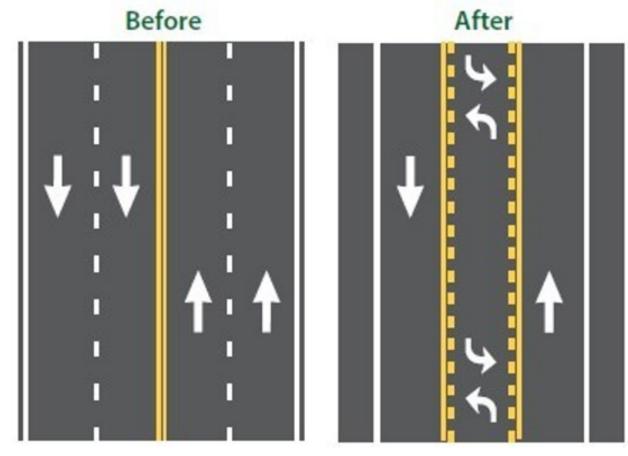


Figure 3. Typical Road Diet Basic Design³⁵

One-way to Two-way Street Conversions

One-way streets to two-way street conversions allow for better local access and reduced speeds.³⁶ The most common reasons for converting one-way to two- way streets include

the improvement of confusing circulation patterns, increased business exposure and access to passing motorists, slower traffic speeds, and improved pedestrian and bicycle safety.³⁷ Sisiopiku and Chemmannur³⁸ studied the conversion of one-way street pairs to two-way streets in downtown Birmingham using Synchro and CORSIM. A comparison of the pre- and post-conversion conditions indicated no major negative impacts on traffic circulation, such as unfavorable delays or spillbacks. Chiu, Zhou, and Hernandez³⁹ used a multiple resolution simulation and assignment approach, entailing integration of two traffic simulation model—to estimate traffic and environmental impacts resulting from downtown traffic flow conversions. Their study included a case study in El Paso, concluding that two-way configurations do not always improve traffic performance; however, they also showed that if carefully analyzed and designed, opportunities exist in order to make a two-way configuration a desirable option.

Complete Street Effects on Neighboring Streets

In one of the previous sections ("Road Diet"), several studies demonstrating the benefits of complete streets conversions were cited and documented. However, studies cited in that section, with the exception of Nixon et al.⁴⁰ focused only on the corridor being converted without analyzing the effects on the surrounding network. However, understanding network-wide effects are critical for understanding whether traffic and safety issues have merely been passed on to adjacent streets.

In addition to the previously cited Nixon et al. study, there have been a few others recently that have attempted to examine the effects of complete street conversion on surrounding network. Smart Growth America showcased a project in Seattle, Washington where the redesign of Stone Way North reduced speeds, increased bicycle traffic, and decreased collisions while peak traffic volumes city-wide remained consistent and no traffic diversion to parallel streets occurred.⁴¹ Zhu et al.⁴² studied the effects of complete streets on travel behavior in the Los Angeles area, by comparing complete to incomplete streets. The study reported that three out of six sites had lower total traffic volume on the complete streets compared with the incomplete streets. Two other sites showed the opposite to be the case, and, on one of the sites, there was no significant difference in traffic volumes between complete and incomplete streets are site-specific and results can vary greatly depending on the location and function of the complete streets. These studies in addition to the Nixon et al.,⁴³ indicate that a pre-implementation assessment of network effects of complete street conversion may be useful for agencies considering these changes.

TACTICAL URBANISM

The phrase "tactical urbanism" refers to low-cost, temporary interventions, such as temporary street closures for farmers markets and/or public pedestrian plazas, intended to improve local neighborhoods and city gathering places.⁴⁴ More specifically, the Street Plans Collaborative defines "tactical urbanism" as an approach to urban change that features the following five characteristics:

- 1. A deliberate phased approach to instigating change;
- 2. The offering of local solutions for local planning challenges;
- 3. Short-term commitment and realistic expectations;
- 4. Low risks, with a possibility of high reward; and
- 5. The development of social capital between citizens and the building of organizational capacity between public-private institutions, non-profits, and their constituents.

Examples of tactical urbanism include ad hoc conversion of on-street parking spaces to dining or seating areas, filling of awkward corners where the excess pavement is unused, and others.⁴⁵ Tactical urbanism projects can also serve as pilot studies by generating data and public feedback for the temporary changes in street design. This allows cities to test out and improve upon ideas before they invest in more costly, permanent solutions.

Pop-up Bikeways

Pop-up bikeways are temporary bikeways installed as a result of community interest and/ or in order to gather community feedback on new bike infrastructure. The Scott Street Popup Bikeway Demonstration in May 2016 resulted from residents and business owners in West San Carlos and South Bascom Urban Villages of San Jose calling for streets to safer be for people walking and biking. Community members and partners created a two–Day demonstration project showing what a safer Scott Street could look like.⁴⁶ The twO–Day project featured temporary shared-lane markings (sharrow) on the street created with sidewalk chalk, as shown in Figure 4; free bike repair; bicycle safety classes; free yoga; and games for families.

Figure 4. Scott Street Pop-up Bikeway Demonstration (Source: City of San Jose)

To evaluate the long-term goal of having a series of protected bikeways, the City of San Jose had another "pop-up" bikeway in 2017. From August 7 to August 13, the City created a protected bikeway, shown in Figure 5, and 4th Street and bikers were encouraged to fill out brief surveys about their experience.⁴⁷ Overall, the survey results indicated that most respondents had an overall positive impression of the bikeway, including 61% of those respondents who experienced the bikeway by automobile.⁴⁸

Parklet located at south end of pop-up bikeway

Trees as barriers along bikeway

Northbound contraflow lanes

Wooden planter boxes as barriers along bikeway

Two-way cycletrack

Plastic wave-shaped delineators along bikeway

Figure 5. Different Complete Street Treatments in Downtown San Jose⁴⁹

CONCLUSIONS FROM LITERATURE REVIEW

This chapter reviewed background information on the development of traffic simulation models in general and on complete street strategies. Complete streets are integral components of multi-modal transport systems and more livable communities. Microsimulation allows for detailed modeling and visualization of transportation networks. As Nixon et al. emphasized,⁵⁰ complete street conversions can have network-wide impacts; some recent research has started examining the network-wide impacts post-implementation. The simulation approach allows for studying the network-wide impacts of complete street strategies. Studying network-wide impacts is critical to assess the potential migration of safety and traffic issues onto neighboring streets. Our study aims to provide network output evaluation metrics on complete street conversions in order to help agencies select optimal strategies for their downtown plans prior to implementation.

III. NETWORK MODELING

The investigators worked with the City's transportation planning and traffic engineering division to create the model for downtown San Jose. Towards that end, the city identified the downtown core area to be modeled in PTV VISSIM. To replicate downtown San Jose's most congested period, the downtown core network was modeled according to the weekday afternoon peak hour travel demand. This chapter explains the network modeling procedure, including data collection, model building, and calibration and validation. The peak hour counts for different transportation modes were obtained from the city. Figure 6 shows the map for the downtown core (blue shade) and downtown frame (purple shade). Based on our discussions with the City of San Jose staff, only the downtown core was modeled.

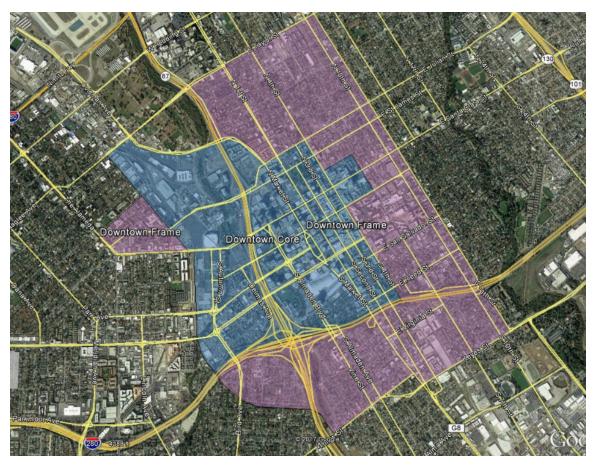


Figure 6. Map with Downtown San Jose Core and Frame

CREATING THE NETWORK

Road Network

PTV VISSIM has built-in satellite imagery from Microsoft's Bing Maps, which was used as a basis for tracing the traffic network for the San Jose downtown core. Specific lane geometry, including for automobile lanes and bike lanes, was verified through satellite images and street views in Google Maps. Cars and heavy goods vehicles (HGV), i.e. trucks, were prohibited from Class 1 and 2 bike lanes, except at links approaching an intersection. In PTV VISSIM, links are used to model street segments while connectors are used to join links with each other, e.g., at intersections. The complete network consisted of 1,051 links and 2,242 connectors for a total of 3,293 links and connectors, shown in Figure 4. Note that since the evaluation of complete street strategies in the downtown is the purpose of the model, no freeways mainline segments were included in the model based on our discussion with the stakeholders. Off-ramps and on-ramps to the regional freeways that connected with the downtown core served as origins and destinations in the PTV VISSIM model.

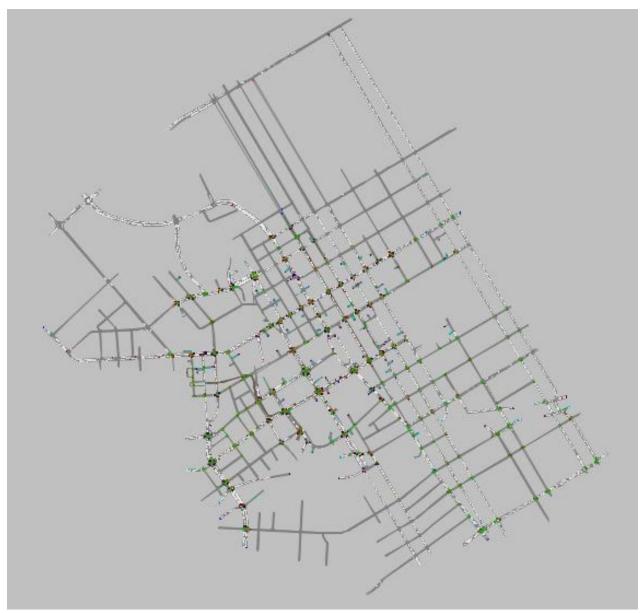


Figure 7. PTV VISSIM Model for the Downtown Core

Vehicle Data and Composition

To create an accurate existing baseline PM-peak traffic model, the City of San Jose provided intersection turning movement data for downtown surface streets and a list of parking lots

within the downtown area. The number of parking spaces in a lot was used as an estimate of volume inputs at the parking lot's exit. In addition, off-ramp volumes provided, by Caltrans in terms of annual daily traffic (ADT), were converted to the peak hour volumes using Equation 1 for preliminary volume inputs.

Peak Hour Volume=(ADT)*(K-factor) (1)

where

ADT: Annual daily traffic

K-factor: Proportion of daily traffic occurring during the peak hour

The methodology for determining input volumes in PTV VISSIM involved these steps:

- 1. Convert off-ramp ADT to peak hour volumes using Equation 1, assuming a K-factor of 10%
- 2. For parking lots, use 50% of available parking spaces as PM peak hour volume input.

Based on the discussions with the City of San Jose staff, vehicle compositions maintained their PTV VISSIM default values of 98% cars and 2% HGVs.

Speed Data

PTV VISSIM requires speed distributions to be defined for all vehicle classes. Speed survey data was provided for key corridors in downtown San Jose. Using this data, a minimum speed, 15th percentile speed, 85th percentile speed, and a maximum desired speed was set for each corridor (see Figure 5 for an example input for the speed profile in PTV VISSIM for one of the links).

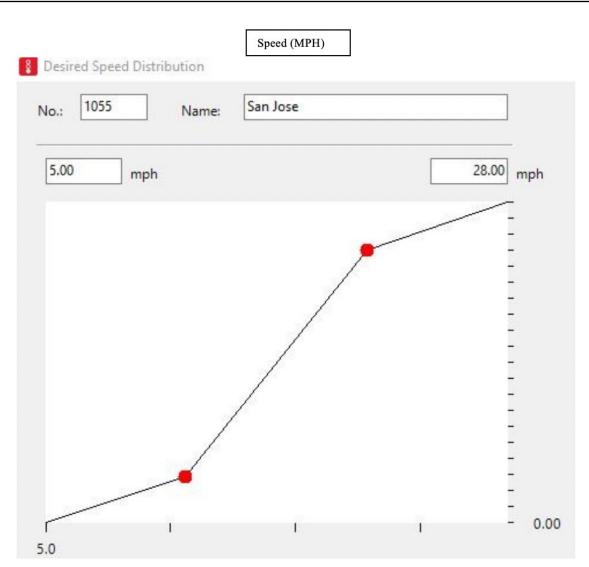


Figure 8. Speed Distribution for Vehicles with Speed in MPH on X-axis and Percentiles on the Y-axis

Conflict Areas

Conflict areas are overlapped links and connectors within the PTV VISSIM network. The priority of movement on these conflict areas need to be defined clearly to prevent vehicles, cyclists, and pedestrians from appearing to be colliding or moving over each other in simulation. These movement priorities were assigned at merge points for vehicles exiting the parking lots and at intersections for left and right turn movements yielding to through traffic. Priorities of movement through the conflict areas, i.e., areas of PTV VISSIM network where there is overlap between two links/connectors, are assigned such that it replicates the real-world behavior of traffic. For example, in case of a permitted left-turn (i.e., where left-turn movement needs to yield to a simultaneously allowed opposing through movement. It ensures that the left-turning vehicle in the simulation environment will wait for the opposing through vehicle to pass through. Conflict area priorities were also assigned at locations where the tramline intersected the road, giving priority to the tram transit vehicles.

Signal Timing Data

After setting up the network geometry, vehicle inputs and composition, speed data, and conflict areas, the next step involved setting up the traffic signals with signal timing sheets provided by the City of San Jose. All signals were modeled by a Ring Barrier Controller (RBC) interface in PTV VISSIM which can model actuated signal timing patterns, as well as coordination if there is any. Signal heads and signal controllers were created and assigned to each other through the PTV VISSIMRBC interface. This type of controller fulfilled our needs of modeling protected left turns (i.e., exclusive left-turn phase with no conflicting movement allowed at the same time), vehicle extensions, and vehicle detections. Figure 6 shows an example of a standard signal timing template. Coordination was added to the corridors where the signal systems operate on a coordinated signal timing plan during the afternoon peak-hour period.

File View Help					N	otes									Frequer	ncy 1	
Base Timing	Basic																
 □ Timing by SG ⊕ ØBasic ⊕ Advanced ⊕ Patterns / Coordination □ Pattern Schedule ☑ Sequence 	 SG Number SG Name Min Green Veh Extension 	1 5 3	2 10 5	3	4 5 3	5 5 3	6 5 5	7	8 5 3								
□ Conflict SGs	Max 1	15	40		30	15	40		30			-		-			
Detectors	Yellow Red Clearance	3	3.2	3	3.2	3	3.2	3	3.2				-				-
SC Communication Preempts Transit Priority	Ped SG Number Walk		5		5		5	0.0	5								
	Ped Clear (FDW)	-	17		18		17	-	18							-	
	Start Up																
	Min Recall Max Recall																
Pattern 1 🕀	Ped Recall																
CycleLength 0	Soft Recall																
Global Values 🛛 🕀	NSE Max Recall																
1 19sec	Ø2 44:2sec									04 34.2	sec						
5 19sec	Ø6 44.2sec									08 34.2	sec						
										_							
															>	Lock	Diagram
rors (0) Warnings (0) Messages (1)				1/20												

Figure 9. Ring Barrier Controller Timing Interface for PTV VISSIM

Vehicle Routes

With parking lots and on-ramps as origins and the same parking lots and off-ramps as destinations. Routes were chosen to minimize travel time from origin to destination using Google Maps for a Wednesday between 5:00–6:00 PM, the PM peak period. Google Maps would produce a minimum of one and maximum of three possible routes with every origin-destination pair and their travel time. The total input flow at the origins to destinations was divided into all routes based on travel time. Routes between O–D pairs that utilized a freeway mainline were not coded into the network since the network of interest did

not have any freeways. All other routes provided by Google Maps were coded into the network. Figure 7 shows an example of a route decision generated by Google Maps and how it was coded into the network.

Figure 10. Route Decision from Google Maps and its coding in the Network

Transit

Public transport lines were incorporated into the model similarly to vehicle routes, where buses follow same fixed route every day. According to PTV VISSIM,⁵¹ a PT (Public Transport) line consists of buses or trams serving a fixed sequence PT stops according to a timetable.

Cyclists

Cyclists were coded into the model as their own vehicle class and routed through corridors with Class 2 bike lanes. Based on the data provided by the city, an estimate of 30 cyclists per hour for each corridor was coded into the network. Cyclists' speeds ranged from 9.32 to 12.43 mph. Cyclists were coded in the corridors listed in Table 2. These corridors were identified as having bike lanes based on the data provided by the city.

Table 2.Cyclists Corridors

Streets with most significant bicycle traffic						
	San Fernando Street					
	3rd Street					
	4th Street					
	7th Street					
	Paseo de San Antonio					

Pedestrians

Pedestrians were coded into the model using real-world data from pedestrian areas. Pedestrian signal heads and detectors were placed at each end of the footpath link crosswalk. An

estimate of 100 pedestrians per hour per origin was coded into the network. Pedestrian input was assumed to comprise 50% males (1022: IMO-M 30–50) and 50% females (1023: IMO-F 30–50), with speeds ranging from 2.17–3.62 mph and 1.59–2.66 mph, respectively based on the program default values. Pedestrians were assigned to the intersections listed in Table 3 based on turning movement counts data obtained from the city.

 Intersections with Pedestrians	
 1st Street/Santa Clara Street	
1st Street/San Fernando Street	
1st Street/St. John Street	
1st Street/St. James Street	
2nd Street/Santa Clara Street	
2nd Street/San Fernando Street	
2nd Street/St. John Street	
2nd Street/St. James Street	
3rd Street/Santa Clara Street	
3rd Street/San Fernando Street	
4th Street/Santa Clara Street	
 4th Street/San Fernando Street	

Table 3. Intersections with Significant Pedestrian Traffic

ORIGIN-DESTINATION MATRIX AND ROUTES

An origin-destination (O–D) matrix O–D is a table displaying the number of trips going from each origin to each destination. This is how PTV VISSIM routes traffic in the network. The process involved identifying network locations as Origins and Destinations and providing VISSIM with the path between each O–D pair. The paths or routes between each O–D pair was identified using Google Maps. Parking lot exits and freeway off-ramp locations on the network were used as origins and the same parking lot entrances and on-ramp locations were used as destinations. The routes between each O–D pair were generated with Google Maps for a Wednesday afternoon peak period of 5:00–6:00 PM. These routes were then coded into VISSIM as static routing decisions made by each vehicle at each origin. The process for obtaining the volume counts for each O–D pair is described in the next section. Appendix B: Origin-Destination Matrices shows the final O–D matrix for the base network.

CALIBRATING THE NETWORK

As noted in the literature review section, calibration and validation are necessary steps to ensure the model's reliability and accuracy. Calibration efforts included comparing the model's traffic volumes to those of the City of San Jose's and/or Caltrans' count data, as well as comparing the model's estimated travel times to the distribution of the travel times observed in the real world. Behavior parameters were iteratively modified such that the model's data closely resembled the actual data.

Driving Behavior Parameters

The network consisted only of local streets that utilized one driving behavior parameter set. This set used the unaltered "Urban (motorized)" driving behavior default values in PTV VISSIM. Figure 8 below shows a screenshot of the final parameter set for the City of San Jose network. Note that each of the parameters shown in the screen shot below represents the central tendency or the average value for that parameter's distribution. Each vehicle in the simulation environment gets a value from the distribution assigned to it that in turn controls its behavior.

* Driving E	Behavior Parameter Set		×
No.: 1	Name: Urban (moto	orized)	
Following	Lane Change Lateral Sigr	nal Control	
Look ahead	d distance	Car following model	
min.:	0.00 ft	Wiedemann 74	~
max.:	820.21 ft	Model parameters	
	4 Observed vehicles	Average standstill distance:	6.56
look back	distance	Additive part of safety distance:	2.00
min.:	0.00 ft	Multiplic. part of safety distance:	3.00
max.:			
2		-	
Temporary	lack of attention		
	Duration: 0.00 s		
	Probability: 0.00 %		
Smoot	h closeup behavior		
Stands	still distance for 1.64 ft		
└── static c	obstacles:		

Figure 11. Driving Behavior Parameter for the Model

Vehicle Record Data

The validation of the PTV VISSIM model was based on the comparison of the real-world traffic datawith the same data elements collected in the PTVVISSIMenviron mentusing features named "data collection points", "queue counters.", and "travel time measurements" These were placed at study area intersections and key corridor segments. Data collectors tallied every vehicle passing over the location where the data collection point is placed for the analysis period of 3,600 seconds. The analysis period did not involve the prior 1500 seconds of warm-up time and subsequent 900 seconds of clearing time. Data collectors also measured speed for each individual vehicle passing through their location and output the average spot speed (i.e., speed measured at a point in the network rather than over a segment). VHelper, a PTV VISSIM utility program, was used as a preliminary calibration and validation tool to catch coding mistakes and to estimate and visualize intersection turning volumes.⁵² Queue counters provide average queue length, maximum queue length, and number of vehicle-stops within the queue as outputs. Queue size measured in vehicles is counted from the location of the queue counter on the link upstream to the final vehicle that is in queue condition. If the queue backed up from multiple different approaches, the total queue is the sum for all of gueues at all approaches. Travel times were measured as the average travel time, including waiting or dwell times, for vehicles to cross the first (start) and second (destination) cross-sections specified for the travel time measurement (a built-in VISSIM feature) placed on the key corridors. Delay could be found for any selected segment where travel time was measured. A delay time measurement determined the mean time delay over free flow travel time calculated from all vehicles observed on a single or several link sections. Table 4 displays the locations of data collectors, queue counters, and the corridors for which travel time was measured.

Data Collectors	Queue Counters	Corridors with Travel / Delay Time Measurements
Market Street/Santa Clara Street	Market Street/Santa Clara Street	EB Santa Clara Street
Market Street/San Fernando Street	Market Street/San Fernando Street	WB Santa Clara Street
Market Street/San Carlos Street	Market Street/San Carlos Street	NB Market Street
3rd Street/Santa Clara Street	3rd Street/Santa Clara Street	SB Market Street
3rd Street/San Fernando Street	3rd Street/San Fernando Street	NB 3rd Street
3rd Street/San Carlos Street	3rd Street/San Carlos Street	SB 4th Street
3rd Street/San Salvador Street	3rd Street/San Salvador Street	EB San Fernando Street
3rd Street/Reed Street	3rd Street/Reed Street	WB San Fernando Street
4th Street/Santa Clara Street	4th Street/Santa Clara Street	NB Almaden
4th Street/San Fernando Street	4th Street/San Fernando Street	SB Almaden
4th Street/San Carlos Street	4th Street/San Carlos Street	
4th Street/William Street	4th Street/William Street	
4th Street/San Salvador Street	4th Street/San Salvador Street	
4th Street/Reed Street	4th Street/Reed Street	
Almaden Boulevard (W)/Santa Clara Street	Almaden Boulevard (W)/Santa Clara Street	
Almaden Boulevard (E)/Santa Clara Street	Almaden Boulevard (E)/Santa Clara Street	
Almaden Boulevard/San Fernando Street	Almaden Boulevard/San Fernando Street	
Almaden Boulevard/Park Avenue	Almaden Boulevard/Park Avenue	
Almaden Boulevard/San Carlos Street	Almaden Boulevard/San Carlos Street	
Almaden Boulevard/Woz Way	Almaden Boulevard/Woz Way	

Table 4. Data Collectors, Queue Counters, and Travel Time Corridor Locations

VALIDATING THE BASE NETWORK

The validation process compared output data from multiple runs of the well-calibrated network to the volume and travel time data from the real world. This process required estimation of the Geoffrey E. Havers (GEH) statistic, which will be described presently.⁵³ A validated network justifies the simulation's usage in different future scenarios. Estimated GEH statistics for the base model (i.e., the model for 2015 network traffic conditions) indicated that the network was representing real-world conditions reasonably well.

Seed Numbers

Validation requires multiple runs of the simulation model using different seed numbers. Random seed numbers in PTV VISSIM affect the values of the driver behavior and input traffic volume generators used in the model. Note that driver behavior parameters selected at the calibration stage represented the average values or the central tendency for the parameters. For each run with a different seed number the model picks a value from that distribution and produces different output. In other words, seed values influence the arrival times of vehicles in the networks and stochastic variability of the driving behaviors, allowing for the accounting of random variations in traffic patterns at the same location.⁵⁴ Running the simulation with the same seed number would produce the same exact data for volumes, speeds, queue lengths, and travel times at any given network location. Changing the seed number would output differing results based on the actual values of the driving behavior parameters derived from the specified distribution for these parameters. For this project, validation of the base network was based on 10 simulation runs.

GEH Statistics Validation for Turning Movement Counts

The GEH Statistic is a formula commonly used in transportation analysis to compare two sets of traffic volumes. The empirically measured GEH Statistic was used to compare field counts by the City of San Jose to simulation turning volumes. The formula is defined by Equation 2.

$$GEH = \sqrt{\frac{2(M-C)^2}{M+C}}$$
(2)

where

M: Traffic volume from the simulation model

C: Traffic volume observed in the real world

The GEH statistic is useful for comparing traffic volumes because the formula does not follow a linear pattern and a single acceptance threshold based on GEH can be used over a fairly wide range of traffic volumes, avoiding common pitfalls witnessed in using simple percentage comparisons.⁵⁵ For traffic modeling work in the existing base scenario, a GEH of less than 5.0 is considered a good match between the model and observed volumes. The measurements with GEHs in the 5.0–10.0 range have a medium chance of error and those with GEHs greater than 10.0 have a high probability of error.⁵⁶ Data collected from model runs using 10 different seed numbers were averaged and used to calculate the GEH statistic for each output measurement.

With 74.71% of GEH statistics lower than 5.0 and only 5.75% of GEH statistics higher than 10.0 for the turning movement counts at key intersections, these values meet the following validation criteria, defined based on the Washington State Department of Transportation (WSDOT) guidelines:⁵⁷

- 1. A minimum of two-thirds of GEH statistics for turning movements less than 5.0
- 2. A minimum of ninety percent of GEH statistics for turning movements less than 10.0

Complete statistics detailing average vehicle counts for turning movements from 10 different seed number runs, the field data values, and the corresponding calculated GEH statistic can be found in Appendix B.

Speed Validation

The City of San Jose provided average speed data for peak hours on key corridors. This information was compared and matched with spot speed (speed measured at a point in the network) data from PTV VISSIM to ensure the replication of the drivers' behavior. As a calibration target, the average speed of straight-through movements at intersections in the corridor was required to fall in the range of speeds provided by the City. Table 5 summarizes average speed data from 10 runs compared to corridor speed data from the City. Speed data provided by the City can be found in Appendix E.

	Average from Model (mph)	Range from City Data (mph)	
Market Street	11.8	7–18	
Almaden Boulevard	12.0	10–16	
3rd Street	12.4	12–25	
4th Street	8.9	6–16	
San Carlos Street	13.9	5–11	
St. James Street	10.2	8–20	
Santa Clara Street	11.7	11–23	

Table 5. Existing Baseline Speed (mph) Summary

Travel Time Validation

In addition to the GEH statistic for traffic counts and speed validation, travel times were recorded for key corridors. Since no real travel time data was available, estimates for 'actual' travel times were obtained from Google Maps during a Wednesday PM peak. Approximately, 80% of travel times along the key corridors were within Google Maps' estimated travel time range. Table 6 summarizes travel times in the model and from Google Maps.

Travel Time Corridors	Vehicles	Existing Baseline (min)	Google Range (min)
EB Santa Clara Street	134	6.9	4–12
WB Santa Clara Street	141	5.9	2–8
NB Market Street	2	6.1	3–9
SB Market Street	69	8.7	4–12
NB 3rd Street	83	6.2	2–7
SB 4th Street	288	12.3	3–8
EB San Fernando Street	52	13.7	5
WB San Fernando Street	15	7.1	3–6
NB Almaden	57	5.0	2–6
SB Almaden	235	8.7	2–8

Table 6. Existing Baseline Travel Time Summary

RESULTS FROM NETWORK MODELING

Based on the validation data, the base model was well-calibrated based on the guidelines specified by WSDOT. In certain locations, however, there were some specific movements that did not calibrate quite as well, including:

- EB movements at 4th Street/San Fernando Street. Modeled travel times were much longer than observed travel times, possibly due to queues on San Fernando Street resulting from modeled vehicles waiting to change lanes to turn right.
- SB movements on 4th Street. Modeled travel times were much longer than observed travel times, possibly due to queues on 4th Street resulting from vehicle slowdown in conflict areas despite having priority.

The travel times that did not calibrate have a lower, yet, acceptable volume. There were only two corridors out of the ten shown in Table 6 for which the travel time was found to be significantly outside the range reported by Google Maps. As such, these discrepancies are not anticipated to have a significant impact on the analysis for future scenarios discussed in forthcoming chapters.

Analysis and Network Measures of Effectiveness

Table 7 shows the network measures of effectiveness (MOEs), including vehicles, travel time, speed, delay, and stops, derived from the Existing Condition Baseline PTV VISSIM model.

Ν	letwork	
Number of Vehicles	15,250	
Total Travel Time (h)	9,325,456	
Total Distance (mi)	16,647	
Total Delay (h)	5,171,654	
Pe	r Vehicle	
Average Speed (mph)	6	
Average Delay (s)	286	
Average Number of Stops	6	
Average Stop Delay (s)	157	

Table 7. Existing Baseline Network Measures of Effectiveness

The numbers in Table 7 are compared to the scenarios discussed in the next chapter to assess the network-wide impacts of the complete street strategies evaluated in the next section.

IV. ALTERNATIVE SCENARIOS

After calibrating and validating the existing condition baseline model, referred to as Scenario 0 in the remainder of this report, complete street conversion scenarios were discussed with the city and implemented in PTV VISSIM in order to analyze changes in the overall MOEs listed in Table 7. The impact of complete street conversions on the overall network is a major contribution of the study.

2040 TRAFFIC VOLUMES

The initial plan was to test each of the conversion scenarios and report detailed output metrics for both 2015 and 2040 volumes. The city provided the 2040 volumes from the travel demand forecasting models. These traffic volumes were in the form of zonal O–D matrices. The zones for the City of San Jose are shown in the figure below.

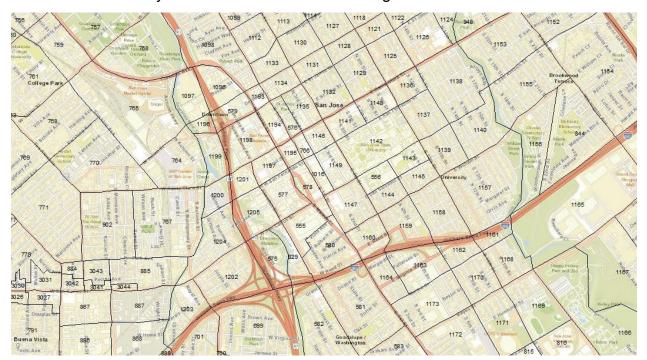


Figure 12. Zones for the O–D Matrices (Year 2015 and 2040)

Note that the region shown in Figure 4 is larger than the downtown core modeled in PTV VISSIM. In comparing the O–D matrices for the year 2015 (Scenario 0) and for 2040 it was apparent that the city's travel demand model is forecasting a large increase in automobile traffic. Several zones according to the model are expected to have the automobile volume increase by a factor of as much as 20. Clearly, the projected increase in automobile travel demand is not sustainable with the current network; inputting anywhere close to that traffic volume in the PTV VISSIM O–D led to complete gridlock in the scenario network.

The alternative approach adopted for this work then was to model the scenario provided with varying traffic volume to provide the city with an estimate on what the network might look like with either a modest increase (in the range of 5 to 10%) in automobile demand or an aggressive decrease in automobile travel demand (i.e., decrease of 20%). A total of five scenarios are analyzed in this report (including scenario 0 which is the base case). Each

scenario is described along with the network metrics collected in the subsequent sections of this chapter. Also, note that the base network may be used to model any traffic/street redesign including tactical urbanism. However, based on the conversation with the stakeholders, at this point, the street redesign scenario only includes the conversion of existing one-way streets to two-way operations.

SCENARIO 1: ALMADEN BOULEVARD CONVERSION WITH 2015 DEMAND LEVEL

Assumptions

In the existing condition baseline model (Scenario 0), Almaden Boulevard between St. John Street and Santa Clara Street is a one-way southbound street. This scenario converted this section of Almaden Boulevard to a two-way street, allowing left and right turns from Santa Clara Street onto Almaden Boulevard. Additional turns added included right turns onto Carlysle Street and left turns onto St. John Street from Almaden Blvd. Previous research has shown that converting one-way street pairs to two-way operations has a positive impact on the livability of communities.⁵⁸

Vehicle Routes

Converting Almaden Blvd. to two-way operation meant that, for some of the O–D pairs, there were additional ways for vehicles to more effectively traverse to their destinations. A total of 56 vehicle routes were adjusted to utilize a newly added northbound Almaden Boulevard segment between St. John Street and Santa Clara Street. Appendix G lists routes adjusted for the Almaden Boulevard Conversion scenario. Modifications to the routes allowed us to examine the impact of the conversion on the overall network beyond just the street corridor being converted.

Analysis and Network Measures of Effectiveness (MOEs)

Table 8 below shows the network measures of effectiveness for Scenario 1, and compares it to the base case (Scenario 0). It may be observed that the conversion of Almaden St to the two-way operation did not result in a noticeable reduction on the average speeds at key data collection locations, and in fact, some of the peak hour speeds marginally increased (e.g., at St. James Street), potentially due to smoother flow of traffic.

	Scenario 1 (Almaden Conversion)	Scenario 0 (Existing Baseline)
Market Street	12.3	11.8
Almaden Boulevard	12.0	12.0
3rd Street	12.3	12.4
4th Street	8.9	8.9
San Carlos Street	14.2	13.9
St. James Street	12.8	10.2
Santa Clara Street	11.7	11.7

Table 8. Scenario 1 (Almaden Conversion) Speed (mph) Summary

Travel Time Corridors	Scenario 1 (Almaden Conversion)	Scenario 0 (Existing Baseline)
EB Santa Clara Street	6.6	6.9
WB Santa Clara Street	5.8	5.9
NB Market Street	6.1	6.1
SB Market Street	8.5	8.7
NB 3rd Street	6.1	6.2
SB 4th Street	12.2	12.3
EB San Fernando Street	13.4	13.7
WB San Fernando Street	7.1	7.1
NB Almaden	4.7	5.0
SB Almaden	9.3	8.7

Table 9. Almaden Conversion Travel Time Summary

Table 9 shows the travel-time comparisons; it may be observed that travel time average for Scenario 1 and Scenario 0 on all major corridors of the downtown core were essentially unchanged.

Network				
	Scenario 1 (Almaden Conversion)	Scenario 0 (Existing Baseline)		
Number of Vehicles	15,177	15,250		
Total Travel Time (h)	9,264,036	9,325,456		
Total Distance (mi)	16,531	16,647		
Total Delay (h)	5,137,334	5,171,654		
	Per Vehicle			
	Almaden	Existing Baseline		
Average Speed (mph)	6	6		
Average Delay (s)	285	286		
Average Number of Stops	6	6		
Average Stop Delay (s)	156	157		

Table 10. Almaden Conversion Network Measures of Effectiveness

Table 10 shows the average delays for automobile traffic, which on average was not adversely affected by the conversion.

SCENARIO 2: ALMADEN BOULEVARD CONVERSION AND INCREASE AUTOMOBILE DEMAND 5%

Assumptions

Scenario 2 considered the same Almaden Boulevard conversion as Scenario 1, but with input volume increased by 5% throughout the network.

Analysis and Network Measures of Effectiveness (MOEs)

Table 11 below shows the network measures of effectiveness for Scenario 2. It is apparent

that while the speed at some of the locations was reduced by a small amount, the overall level of service (LOS) of the network did not noticeably worsen by 5% increase in automobile demand. The travel times on the corridor also increased only slightly. The highest percentage increase in travel time, compared to Scenario 1, is on EB Santa Clara and NB 3rd Street, with 12% and 13%, respectively.

	Almaden plus 5% Demand (Scenario 2)	Almaden Conversion (Scenario 1)	Existing Baseline (Scenario 0)
Market Street	12.2	12.3	11.8
Almaden Boulevard	12.0	12.0	12.0
3rd Street	12.3	12.3	12.4
4th Street	8.7	8.9	8.9
San Carlos Street	14.1	14.2	13.9
St. James Street	12.8	12.8	10.2
Santa Clara Street	11.4	11.7	11.7

Table 11. Almaden Conversion plus 5% Demand Speed (mph) Summary

Table 12. Almaden Conversion plus 5% Demand Travel Time Summary

Travel Time Corridors	Almaden Conversion plus 5% Demand (min)	Almaden Conversion (min)	Existing Baseline (min)
EB Santa Clara Street	7.4	6.6	6.9
WB Santa Clara Street	5.8	5.8	5.9
NB Market Street	6.5	6.1	6.1
SB Market Street	8.7	8.5	8.7
NB 3rd Street	6.9	6.1	6.2
SB 4th Street	13.1	12.2	12.3
EB San Fernando Street	14.5	13.4	13.7
WB San Fernando Street	7.0	7.1	7.1
NB Almaden	4.6	4.7	5.0
SB Almaden	9.4	9.3	8.7

Network				
	Almaden plus 5% Demand	Almaden	Existing Baseline	
Number of Vehicles	15,527	15,177	15,250	
Total Travel Time (h)	10,031,002	9,264,036	9,325,456	
Total Distance (mi)	16,937	16,531	16,647	
Total Delay (h)	5,799,015	5,137,334	5,171,654	
	Per Vehicle			
	Almaden plus 5% Demand	Almaden	Existing Baseline	
Average Speed (mph)	6	6	6	
Average Delay (s)	310	285	286	
Average Number of Stops	6	6	6	
Average Stop Delay (s)	174	156	157	

Table 13. Almaden Conversion plus 5% Demand Network Measures ofEffectiveness

The network-level indicators worsened due to increased automobile demand, with average delay per vehicle increasing from 285 s to 310 seconds, an almost 9% increase.

SCENARIO 3: ALMADEN BOULEVARD CONVERSION AND INCREASE DEMAND 10%

Assumptions

Scenario 3 considered the same Almaden Boulevard conversion as Scenario 1, but with automobile demand increased by 10%.

Analysis and Network Measures of Effectiveness (MOEs)

Table 14 below shows the network measures of effectiveness for Scenario 3. It is apparent that the average speed at key network locations was reduced by a small amount.

	Almaden plus 10 % Demand	Almaden plus 5% Demand	Almaden Conversion	Existing Baseline
Market Street	12.0	12.2	12.3	11.8
Almaden Boulevard	11.8	12.0	12.0	12.0
3rd Street	12.2	12.3	12.3	12.4
4th Street	8.6	8.7	8.9	8.9
San Carlos Street	14.1	14.1	14.2	13.9
St. James Street	9.8	12.8	12.8	10.2
Santa Clara Street	11.4	11.4	11.7	11.7

Table 14. Almaden Conversion plus 10% Demand Speed (mph) Summary

Table 15. Almaden Conversion plus 10% Demand Travel Time Summary

Travel Time Corridors	Almaden Conversion plus 10% Demand (min)	Almaden Conversion plus 5% Demand (min)	Almaden Conversion (min)	Existing Baseline (min)
EB Santa Clara Street	7.6	7.4	6.6	6.9
WB Santa Clara Street	6.1	5.8	5.8	5.9
NB Market Street	5.7	6.5	6.1	6.1
SB Market Street	8.7	8.7	8.5	8.7
NB 3rd Street	6.1	6.9	6.1	6.2
SB 4th Street	13.5	13.1	12.2	12.3
EB San Fernando Street	16.5	14.5	13.4	13.7
WB San Fernando Street	7.2	7.0	7.1	7.1
NB Almaden	4.5	4.6	4.7	5.0
SB Almaden	9.4	9.4	9.3	8.7

Travel time increased by 20.4% on Fernando St compared to the base case. The networkwide metrics in Table 16 show that the average delay for this scenario increased by 14.2% compared to the base case.

Network				
	Almaden plus 10% Demand	Almaden plus 5% Demand	Almaden	Existing Baseline
Number of Vehicles	14,801	15,527	15,177	15,250
Total Travel Time (h)	9,949,705	10,031,002	9,264,036	9,325,456
Total Distance (mi)	16,142	16,937	16,531	16,647
Total Delay (h)	5,901,180	5,799,015	5,137,334	5,171,654
	Pe	r Vehicle		
	Almaden plus 10% Demand	Almaden plus 5% Demand	Almaden	Existing Baseline
Average Speed (mph)	5.8	6.1	6.4	6.4
Average Delay (s)	326.5	310.7	285.1	285.9
Average Number of Stops	7.1	6.8	6.4	6.2
Average Stop Delay (s)	186.2	173.9	156.4	157.4

Table 16. Almaden Conversion plus 10% Demand Network Measures of
Effectiveness

SCENARIO VISUALS AND PUBLIC OUTREACH

It is clear from the scenarios and the analysis of the data from 2040 Envision San Jose⁵⁹ that the conversion scenarios' success may depend on the TDM measures the city is able to adopt. These measures include congestion pricing, transit oriented development etc. In this case, public outreach is even more critical to the success of realizing a multimodal downtown core. The Safe, Accountable, Flexible, Efficient, Transportation Equity Act: A Legacy for Users (SAFETEA-LU) mandated the use of visualization techniques for describing plans to the public within transportation planning process.^{60, 61} Even though the legislation expired in 2009, it remains a good guideline. Accordingly, the agencies (e.g., cities and Metropolitan Planning Organizations (MPOs)) generally need to organize public meetings to publicize plans and get feedback from the public prior to the implementation of street redesign projects. For each of the scenarios tested in the report, a 3D video was developed that may be used in public meetings prior to real-world implementation. Differences between scenarios with varying demands may be used to help stakeholders decide between various plans to redesign the streets. Previous studies^{62, 63} indicated that visualization techniques are useful for the public, and most of the participants at the public meetings want transportation agencies to spend more time and budget on video simulation and public involvement. Visualization helps audiences to picture transportation plans and associated impacts, using composite images, video overlay, and animations.

There is some evidence in the literature for a lower participation rate of female residents and young residents in public meetings; however, conducting outreach activities at schools, youth centers, shopping malls, etc. could increase the rate of female and young resident participation. The internet could be an effective medium for keeping the younger participants involved.⁶⁴

To increase the public involvement, the City of San Jose may leverage the credibility of individual(s) who play the role of a bridge between residents and other project partners,⁶⁵

such as superintendents of schools and/or San Jose State University faculty. Also, articles or advertisements in a neighborhood newspaper, and social media, could be used to increase public engagement.

Finally, it is not only public opinion that matters prior to project implementation; in addition, deliberation on the course of action, through partnership and communication, could gather multidisciplinary organizations with diverse interests to provide a robust strategy and practical action plan.⁶⁶ Communicating with planners, designers, and developers at early conceptual stages maximizes the benefits of the project, since both planners and designers are likely to be more open to modifying plans before having started than to making considerable design changes after the fact. The City is welcome to use the videos provided by the investigators of this project for any of its outreach plans. Moreover, since the modeled networks for each scenario have been provided to the city, they can create appropriate scenarios and create customized videos to use for public outreach.

V. CONCLUSION

SUMMARY AND EVALUATION OF RESULTS

This proposal addresses the needs identified by the City of San Jose, and the PIs have been in direct contact with the City. The City can use the results from the model to a) evaluate the strategies specifically evaluated and tested as part of this effort; b) demonstrate the transportation network operations before and after implementation of the strategies to stakeholders, including the community and businesses, via 3D animation; and c) run and evaluate future scenarios through the simulation model provided to the City by the investigators. To the broader research community, the proposed effort will provide a framework for evaluating combinations of strategies aimed at improved multimodal mobility and public life. The research will help communities around North America that have been reluctant to develop scenarios due to the lack of resources, capacity, or expertise, by offering a more effective method for illustrating the impact of policy/planning changes.

RELIABILITY OF DATA

For the 2015 base case model, the speeds from the PTV VISSIM model was within the range of the data provided by the city (Table 5). Travel time through major corridors in the city were also well-validated. GEH statistics for turning movement counts at intersections were also within the acceptable range and within the guidance provided by organizations such as WSDOT. Hence, we are confident the model is accurately capturing the real-world O–D patterns as well as road user behavior in the base case. The evaluation for the 2040 data was based on the city's output from the regional travel demand model. It accounts for the Envision San Jose 2040 general plan. However, the automobile demand estimate using the regional model is projected to overwhelm the network. The city, therefore, needs to reduce automobile demand through extensive TDM measures such as congestion pricing and transit oriented developments in addition to the redesign of streets.

RECOMMENDATION FOR IMPROVEMENT AND FURTHER RESEARCH

This research provided a framework for examining the network-wide impacts of complete street conversions. Most previous research on complete streets focused only on the impact on the streets being converted. For the broader research community, this research shows the way to move towards evaluation of complete networks and not just complete streets. The abrupt ending of sidewalks and lack of integration of pedestrian routes is often cited⁶⁷ as a reason for low pedestrian travel mode share and only complete networks can help address this issue. For the key stakeholders, the City of San Jose, the added value of this work is in the results documented in this report and the PTV VISSIM models provided to the city. The city staff can use the downtown core network provided by the research team and can address future scenarios as they are proposed. This will be especially critical for future tactical urbanism strategies that the city develops for using city streets for public interactions during events such as a street fair or farmer's markets.

APPENDIX A: ORIGIN-DESTINATION MATRIX

				Or	rigin-Destir	nation Matri	x from Off-Ra	mps to Parking	g Lots			
	F. Bird Ave/ SB 280 Off	G. S 10th St/ EB 280 Off	H. Grant St/ EB 280 Off	I. S 6th St/ EB 280 Off	J. Bird Ave/ WB 280 Off	K. S 11th St/ WB 280 Off	L. Margaret St/ WB 280 Off	M. W Santa Clara St/ NB 87 Off	N. Woz Way/ NB 87 Off	O. W Julian St/ NB 87 Off	P. Park Ave/ SB 87 Off	Q. W Julian St/ SB 87 Off
1. San Jose Water Lot #2 (East)	11.0	7.6	17.8	-	17.2	-	6.7	17.9	16.6	10.7	17.4	6.9
2. SJ State University 7th Street	-	28.3	8.9	16.0	7.6	57.0	17.0	38.7	42.0	23.9	28.0	11.8
3. SJ State University 10th Street Garage	-	135.0	5.3	94.4	-	53.7	41.3	24.6	12.6	17.7	18.3	11.4
4. Caltrain Parking Lot #2	7.9	-	7.1	-	13.8	-	-	29.9	13.1	7.7	14.1	4.9
5. Autumn St. Lot (Akatiff Lot)	4.8	-	-	-	8.3	-	-	10.9	7.2	4.6	8.6	3.0
6. City Hall Garage	3.2	17.9	3.6	26.6	5.6	13.8	11.0	7.3	4.8	3.1	5.7	2.0
7. (City View Plaza Garage) Park Center Plaza I	-	2.3	10.7	6.7	12.9	4.7	17.0	24.0	10.2	10.2	0.4	6.6
8. 10 Almaden	-	6.0	8.9	4.5	6.2	-	7.5	16.2	-	3.4	1.3	4.4
9. Comerica - 333 W. Santa Clara	5.7	1.5	3.6	-	9.4	2.7	6.7	1.1	5.5	5.5	7.0	3.5
10. Opus West - 225 W. Santa Clara	7.7	-	5.3	-	4.8	-	5.2	1.6	3.4	7.5	15.2	4.8
11. Victory Parking Lot	4.2	16.6	8.9	11.2	7.4	-	6.7	8.1	6.4	4.1	7.5	2.6
12. 3rd Street Garage	-	33.2	6.2	7.5	14.0	27.6	9.4	18.4	10.3	7.8	13.0	5.0
13. Koll Building Garage	-	6.0	16.6	20.2	13.4	63.7	10.1	17.6	9.1	7.5	10.3	4.8
14. 160 W. Santa Clara	5.1	1.5	0.9	-	8.9	-	5.0	11.6	5.2	4.9	9.1	3.2
15. Hyatt Place Hotel Garage	2.1	5.0	5.2	4.2	22.0	2.9	2.3	6.1	1.0	0.7	15.3	0.4
16. Market & San Carlos (Block 8)	1.2	8.6	11.5	9.5	2.0	5.0	4.0	2.6	1.7	1.1	44.1	0.7
17. Pavilion Parking Garage	3.2	8.3	17.8	8.3	5.5	13.7	7.8	7.3	4.8	9.2	5.7	2.0

				Oı	rigin-Destiı	nation Matri	x from Off-Ra	mps to Parking	y Lots			
	F. Bird Ave/ SB 280 Off	G. S 10th St/ EB 280 Off	H. Grant St/ EB 280 Off	I. S 6th St/ EB 280 Off	J. Bird Ave/ WB 280 Off	K. S 11th St/ WB 280 Off	L. Margaret St/ WB 280 Off	M. W Santa Clara St/ NB 87 Off	N. Woz Way/ NB 87 Off	O. W Julian St/ NB 87 Off	P. Park Ave/ SB 87 Off	Q. W Julian St/ SB 87 Off
18. Riverpark	1.4	3.0	8.9	12.4	45.9	3.4	1.5	2.7	20.3	6.5	0.4	4.5
19. San Fernando & South Second Street Lot	1.5	11.4	11.8	10.6	2.7	6.7	5.3	3.5	2.3	5.5	6.4	3.7
20. 4th Street Garage	7.2	42.3	19.6	5.3	12.6	30.9	10.4	16.4	10.8	6.9	7.7	4.5
21. Ernst & Young Garage	3.9	-	1.8	2.2	6.7	-	0.7	6.6	5.8	3.7	6.9	2.4
22. Almaden Bl & Woz Wy Lot	-	1.5	3.6	8.0	6.5	1.3	10.0	0.5	7.5	3.6	6.7	0.7
23. 2nd & San Carlos Garage	-	9.1	19.6	8.3	8.5	14.2	11.0	11.1	7.4	4.7	10.3	116.2
24.Colonnade (201 S. Fourth)	1.4	10.1	13.9	6.4	4.7	10.7	4.7	4.8	2.1	1.3	6.4	0.9
25. Sentry Lot	0.5	-	3.7	_	0.8	-	1.7	1.1	0.7	0.5	0.9	0.3
26. Community Towers	0.7	5.0	5.2	-	1.2	2.9	2.3	1.5	1.2	0.7	1.2	0.4
27. Valley Title	-	17.5	19.6	18.0	5.1	12.4	8.0	6.6	4.4	5.2	5.2	9.8
28. Fountain Alley	1.8	13.5	22.2	3.0	9.6	7.9	6.3	4.2	2.8	1.8	23.6	1.1
29. 95 S. Market Street	0.9	4.9	7.1	5.7	1.6	4.0	3.2	2.1	1.4	0.9	1.7	0.6
30. San Jose Hilton Towers and Garage	1.9	8.7	7.1	11.9	3.4	1.3	6.6	4.4	2.9	1.9	3.4	1.2
31. I-280/1st St	1.1	8.1	8.3	6.7	1.9	4.7	3.8	6.1	1.6	57.6	1.9	-
32. Adobe Systems Inc Garage	2.4	1.5	1.8	9.8	4.1	1.3	5.5	0.5	3.6	2.3	4.2	1.5
33. 4th & St. John Garage	-	48.2	3.6	3.0	18.7	35.1	12.2	24.5	11.5	10.4	12.5	6.7
34. Convention Center	-	22.7	8.9	23.7	11.3	9.4	17.9	16.3	0.4	35.6	18.3	24.2
35. Woz/87 Surface Lot	-	14.1	1.8	15.7	4.5	-	1.0	5.9	3.9	2.5	4.6	1.6
36. Almaden/Balbach Lot	-	3.2	3.3	2.7	0.8	1.9	4.8	1.0	0.7	1.8	0.8	0.3

				Oı	rigin-Destir	nation Matri	x from Off-Ra	mps to Parking	g Lots			
	F. Bird Ave/ SB 280 Off	G. S 10th St/ EB 280 Off	H. Grant St/ EB 280 Off	I. S 6th St/ EB 280 Off	J. Bird Ave/ WB 280 Off	K. S 11th St/ WB 280 Off	L. Margaret St/ WB 280 Off	M. W Santa Clara St/ NB 87 Off	N. Woz Way/ NB 87 Off	O. W Julian St/ NB 87 Off	P. Park Ave/ SB 87 Off	Q. W Julian St/ SB 87 Off
37. Fairmont Plaza Garage	0.3	3.0	14.2	5.6	10.2	7.4	7.9	-	9.5	7.1	9.5	4.6
38. 1st & San Salvador Lot	-	5.0	2.6	2.1	0.6	12.7	8.0	3.3	0.5	1.8	1.3	22.2
39. Arena Lot D	1.9	-	5.3	11.9	3.4	-	-	4.4	2.9	1.9	3.4	1.2
40. Arena Lots A, B and C	6.0	-	3.6	-	10.4	-	-	81.5	9.1	5.8	10.7	3.7
41. South Hall Surface Lot	-	6.3	11.4	9.2	2.6	6.4	9.5	3.4	2.3	1.4	2.7	1.3
42. Financial Plaza Garage	4.1	10.6	8.9	-	7.1	-	2.2	9.4	5.9	4.6	7.3	2.6
43. Notre Dame/ Carlyse Lot	2.1	1.5	1.8	-	3.7	-	8.6	4.9	3.2	2.1	3.8	1.3
44. Park and Go	-	4.6	6.2	3.8	2.3	7.8	9.6	1.4	2.5	2.7	7.0	0.4
45. Market & San Pedro Garage	-	15.1	11.0	19.1	23.4	-	1.0	27.2	20.3	13.0	12.4	8.4
46. Second and San Salvador Lot	0.6	4.3	4.4	3.6	6.6	7.0	2.5	1.3	0.9	2.6	1.3	0.4
47. Second and St. James Lot	1.3	-	15.9	8.1	4.0	5.7	4.5	3.0	2.0	1.3	2.3	0.8
48. Third and Santa Clara Garage	-	10.9	4.9	4.0	2.3	8.0	11.2	1.5	2.5	2.7	7.1	1.5

				Origin-D	estination Ma	atrix Parkin	g Lots to On-Ra	amps				
	1. San Jose Wa- ter Lot #2 (East)	2. SJ State University 7th Street	3. SJ State University 10th Street Garage	4. Cal- train Parking Lot #2	5. Au- tumn St. Lot (Aka- tiff Lot)	6. City Hall Ga- rage	7. (City View Plaza Garage) Park Center Plaza I	8. 10 Al- maden	9. Comer- ica - 333 W. Santa Clara	10. Opus West - 225 W. Santa Clara	11. Victory Parking Lot	12. 3rd Street Garage
R: S 1st St/ EB 280 On	10.9	24.0	3.8	25.5	-	11.9	84.3	38.5	23.0	17.0	259.7	12.5
S: S 7th St/ EB 280 On	21.1	105.6	57.9	16.4	-	21.0	3.8	8.1	-	-	5.1	22.5
T: S 11th St/ EB 280 On	-	39.0	83.8	-	-	26.5	-	-	-	-	0.7	63.6
U: Bird Ave/ EB 280 On	16.2	-	-	24.7	28.0	-	30.6	32.4	24.0	9.1	-	-
V: S 10th St/ WB 280 On	26.4	50.0	83.1	40.4	24.8	26.3	3.8	0.8	-	-	22.2	48.9
W: E Reed St/ WB 280 On	22.5	207.1	46.3	26.4	26.3	22.4	30.6	2.4	9.4	40.8	23.4	20.5
X: Vine St/ WB 280 On	16.6	23.7	3.8	36.9	23.1	11.7	3.8	13.0	31.3	48.0	6.5	15.7
Y: Bird Ave/ WB 280 On	28.0	-	-	42.8	48.4	-	26.8	16.2	10.4	0.9	2.9	68.4
Z: Park Ave/ NB 87 On	11.2	12.9	0.6	17.2	11.4	9.1	19.2	18.3	7.3	12.7	14.4	3.0
AA: W Julian St/ NB 87 On	13.6	16.7	43.0	20.8	23.5	9.1	3.8	5.7	5.2	61.4	18.5	44.1
AB: W Julian St/ SB 87 On 1 (Loop)	15.0	21.5	46.9	22.9	25.9	10.5	7.7	22.2	1.0	67.7	15.5	48.5
AC: W Julian St/ SB 87 On 2	8.4	18.0	28.2	13.2	14.5	8.3	7.7	3.2	14.9	37.8	13.4	27.1
AD: Delmas Ave/ SB 87 On	10.1	13.5	2.5	16.9	19.1	9.1	49.8	23.1	23.4	4.5	17.7	-

				Origin-De	stination M	atrix Parking	g Lots to On-R	amps				
	13. Koll Building Garage	14. 160 W. Santa Clara	15. Hyatt Place Ho- tel Garage	16. Mar- ket & San Carlos (Block 8)	17. Pavilion Parking Garage	18. River- park	19. San Fernando & South Sec- ond Street Lot	20. 4th Street Garage	21. Ernst & Young Garage	22. Almaden Bl & Woz Wy Lot	23. 2nd & San Carlos Garage	24.Colon- nade (201 S Fourth)
R: S 1st St/ EB 280 On	28.1	16.7	2.2	4.1	38.1	4.4	3.3	16.5	22.4	12.7	16.6	4.4
S: S 7th St/ EB 280 On	28.5	32.5	4.2	3.8	61.0	10.1	6.5	47.1	31.8	45.2	32.3	-
T: S 11th St/ EB 280 On	35.4	24.5	-	4.8	46.0	-	8.2	41.2	-	-	30.2	1.0
U: Bird Ave/ EB 280 On	-	24.9	3.2	3.1	-	13.5	5.0	-	33.4	34.6	-	-
V: S 10th St/ WB 280 On	17.7	17.5	-	4.8	40.7	3.8	10.4	93.1	11.3	0.7	30.1	12.7
W: E Reed St/ WB 280 On	14.1	25.8	4.9	8.4	40.3	10.5	7.6	53.0	9.1	13.3	58.2	9.1
X: Vine St/ WB 280 On	21.0	40.6	3.3	8.4	27.1	7.3	10.3	10.0	34.2	35.5	33.9	6.7
Y: Bird Ave/ WB 280 On	-	27.6	5.6	5.4	-	19.2	8.6	1.8	0.4	-	-	-
Z: Park Ave/ NB 87 On	7.7	9.0	2.2	2.2	16.9	37.2	5.4	14.2	27.0	24.1	18.0	9.8
AA: W Julian St/ NB 87 On	8.3	15.7	2.7	5.4	28.5	0.4	4.2	57.3	1.2	1.1	30.6	8.5
AB: W Julian St/ SB 87 On 1 (Loop)	5.9	12.6	3.0	5.6	8.7	0.5	4.6	11.8	4.6	0.7	26.8	9.8
AC: W Julian St/ SB 87 On 2	10.1	7.8	1.7	2.0	23.6	2.8	2.6	-	1.7	3.3	58.6	4.6
AD: Delmas Ave/ SB 87 On	23.3	8.8	2.2	2.1	26.1	15.4	3.4	14.1	22.8	23.7	18.6	120.5

				Origin-De	estination M	atrix Parking	g Lots to On-R	amps				
	25. Sentry Lot (nw c/o Notre Dame/	26. Com- munity Towers	27. Valley Title	28. Foun- tain Alley	29. 95 S. Market Street	30. San Jose Hil- ton Tow- ers and Garage	31. I-280/1st St	32. Adobe Systems Inc Ga- rage	33. 4th & St. John Garage	34. Con- vention Center	35. Woz/87 Surface Lot	36. Almaden/ Balbach Lot
R: S 1st St/ EB 280 On	3.0	2.1	15.6	5.4	2.4	9.5	2.9	7.5	33.4	57.1	6.6	5.3
S: S 7th St/ EB 280 On	2.4	4.0	30.4	10.4	4.6	6.3	5.6	14.6	112.8	78.1	30.8	3.4
T: S 11th St/ EB 280 On	-	5.1	18.5	13.2	0.2	14.0	7.0	-	120.4	13.4	-	2.4
U: Bird Ave/ EB 280 On	1.9	-	-	3.9	3.5	-	4.3	11.2	-	-	11.0	-
V: S 10th St/ WB 280 On	3.1	5.0	6.9	13.1	5.7	10.5	8.1	5.0	123.1	9.3	13.1	2.4
W: E Reed St/ WB 280 On	2.6	4.5	25.0	11.1	4.9	10.5	14.1	9.4	288.6	17.8	0.6	2.0
X: Vine St/ WB 280 On	1.9	3.0	9.9	8.2	5.2	6.0	4.4	20.7	39.0	11.8	61.6	1.5
Y: Bird Ave/ WB 280 On	3.2	-	-	-	6.1	-	-	19.3	-	-	17.2	-
Z: Park Ave/ NB 87 On	1.3	2.1	9.2	5.6	4.9	8.2	1.6	7.8	16.9	24.5	0.6	1.0
AA: W Julian St/ NB 87 On	1.6	2.6	12.6	6.7	3.0	9.9	3.6	3.4	78.1	38.2	0.7	1.2
AB: W Julian St/ SB 87 On 1 (Loop)	1.7	2.9	0.8	7.4	3.3	10.9	4.0	6.6	95.3	18.5	0.9	1.4
AC: W Julian St/ SB 87 On 2	1.0	1.6	12.1	4.1	1.8	6.1	-	5.8	37.4	3.8	0.5	0.8
AD: Delmas Ave/ SB 87 On	1.3	2.1	10.1	5.5	2.4	8.0	1.1	10.9	20.0	37.3	5.4	1.0

				Origin-De	estination M	atrix Parking	Lots to On-R	lamps				
	37. Fairmont Plaza Garage	38. 1st & San Salvador Lot	39. Arena Lot D	40. Arena Lots A, B and C	41. South Hall Sur- face Lot	42. Finan- cial Plaza Garage	43. Notre Dame/Car- lyse Lot	44. Park and Go	45. Mar- ket & San Pedro Garage	46. Second and San Salvador Lot	47. Second and St. James Lot	48. Third and Santa Clara Garage
R: S 1st St/ EB 280 On	24.3	1.2	5.6	23.6	12.9	13.2	7.6	3.8	63.8	6.6	8.1	4.0
S: S 7th St/ EB 280 On	15.4	1.0	5.2	-	13.9	6.7	0.7	2.8	34.2	9.4	7.3	4.5
T: S 11th St/ EB 280 On	18.8	1.7	-	-	-	-	7.4	3.5	99.3	13.1	9.2	3.6
U: Bird Ave/ EB 280 On	-	-	8.4	35.1	-	19.7	-	-	51.5	-	-	-
V: S 10th St/ WB 280 On	15.0	1.7	13.8	-	0.2	17.5	18.5	3.5	55.0	12.5	9.2	3.5
W: E Reed St/ WB 280 On	14.3	2.0	11.7	48.8	6.8	17.6	10.2	3.0	71.8	12.0	7.8	3.0
X: Vine St/ WB 280 On	51.2	3.4	11.4	20.5	19.7	51.3	22.9	2.2	51.6	6.7	5.8	2.2
Y: Bird Ave/ WB 280 On	-	-	14.6	60.8	1.1	34.1	1.8	3.7	42.2	-	-	3.8
Z: Park Ave/ NB 87 On	11.0	2.4	4.2	15.7	13.4	13.7	7.9	1.5	39.4	5.4	3.9	1.9
AA: W Julian St/ NB 87 On	24.3	0.9	7.1	29.6	6.0	5.4	9.5	1.8	34.1	5.5	4.7	1.8
AB: W Julian St/ SB 87 On 1 (Loop)	39.3	1.0	7.8	32.6	1.3	13.3	10.5	2.0	57.5	6.0	5.2	2.0
AC: W Julian St/ SB 87 On 2	16.2	1.5	4.4	18.2	0.9	10.2	5.9	1.9	49.3	3.4	2.9	1.1
AD: Delmas Ave/ SB 87 On	32.1	0.7	5.8	25.6	1.3	11.5	7.7	2.2	46.4	4.4	3.8	2.0

APPENDIX B: GEH SATISTICS

				GE	H Statis	tic Existing	g Baseline	Summary						
Intersection	Move- ment Direction	Simula- tion	Actual	GEH Sta- tistic	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
	NBL	44	69	3.33	50	42	44	39	47	41	39	52	46	39
	NBT	228	225	0.20	224	231	221	230	213	229	245	204	256	232
	NBR	24	80	7.77	14	24	29	31	31	20	30	16	21	22
	EBL	61	65	0.50	56	70	62	64	64	56	57	58	64	58
	EBT	524	591	2.84	526	512	512	520	531	550	536	498	534	530
Market/Santa	EBR	82	93	1.18	77	110	77	65	78	88	75	84	82	73
Clara	SBL	169	161	0.62	191	174	163	161	161	158	170	183	163	167
	SBT	711	820	3.94	709	757	764	716	706	723	714	651	661	705
	SBR	100	109	0.88	101	92	109	83	84	105	97	105	121	104
	WBL	26	78	7.21	23	24	30	24	22	26	31	30	26	23
	WBT	421	400	1.04	418	394	414	420	439	429	405	425	441	431
	WBR	55	81	3.15	51	63	57	61	51	68	54	47	45	62
	NBL	39	32	1.17	42	34	38	37	41	34	51	32	41	31
	NBT	208	226	1.22	219	217	179	202	202	212	210	216	213	186
	NBR	47	34	2.04	57	48	48	50	40	28	52	45	52	36
	EBL	52	37	2.25	41	52	47	64	59	51	69	31	55	49
	EBT	205	234	1.96	220	206	186	245	230	163	226	138	234	209
Market/San	EBR	56	129	7.59	62	54	52	56	69	40	69	39	64	60
Fernando	SBL	57	98	4.66	46	60	74	57	55	50	54	48	68	51
	SBT	854	918	2.15	873	922	890	863	856	886	831	783	778	826
	SBR	43	49	0.88	41	41	42	39	42	54	38	37	50	43
	WBL	46	54	1.13	51	53	41	48	33	54	50	31	57	45
	WBT	131	177	3.71	130	116	145	125	122	139	138	109	153	136
	WBR	19	54	5.79	15	11	42	19	6	26	16	11	22	33

				GE	H Statis	tic Existing	g Baseline	Summary						
Intersection	Move- ment Direction	Simula- tion	Actual	GEH Sta- tistic	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
	NBL	95	112	1.67	84	85	96	109	93	89	96	101	98	111
	NBT	255	246	0.57	273	266	238	242	244	259	251	256	264	259
	NBR	10	15	1.41	11	10	12	13	8	10	14	9	7	11
	EBL	78	67	1.29	99	68	67	73	88	65	82	70	86	35
	EBT	329	270	3.41	329	332	332	326	309	315	354	332	330	109
Market/San Carlos	EBR	153	188	2.68	152	152	162	161	149	154	158	135	151	55
	SBL	72	62	1.22	76	59	72	72	98	67	70	55	81	63
	SBT	729	938	7.24	772	794	740	737	721	734	690	707	666	705
	SBR	62	108	4.99	67	59	63	59	65	68	70	44	62	84
	WBT	165	169	0.31	136	167	159	181	162	181	179	142	175	156
	WBR	53	31	3.39	59	40	57	52	68	54	46	43	54	44
	NBL	99	86	1.35	98	86	107	86	114	104	99	98	95	89
	NBT	230	289	3.66	213	243	208	231	238	225	252	211	248	228
	NBR	45	174	12.33	44	41	51	37	46	54	35	49	47	57
3rd/Santa Clara	EBL	82	74	0.91	90	72	72	91	81	86	95	73	75	71
olara	EBT	611	749	5.29	603	589	596	574	636	609	668	585	643	603
	WBT	431	483	2.43	436	438	408	437	437	448	417	438	424	480
	WBR	72	67	0.60	77	69	73	72	83	55	80	67	71	82
	NBL	88	80	0.87	89	63	85	88	100	93	82	105	86	88
	NBT	388	489	4.82	380	383	372	350	396	422	392	393	403	386
	NBR	201	255	3.58	212	193	188	187	220	202	208	195	202	155
3rd/San Fer- nando	EBL	25	67	6.19	22	22	24	30	30	20	28	19	31	28
папао	EBT	201	223	1.51	191	179	176	231	226	162	245	181	222	195
	WBT	140	226	6.36	147	130	132	121	137	139	177	129	144	136
	WBR	14	85	10.09	12	16	17	17	19	7	17	10	13	20

				GE	H Statis	tic Existing	g Baseline	Summary						
Intersection	Move- ment Direction	Simula- tion	Actual	GEH Sta- tistic	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
	NBL	67	65	0.25	60	84	64	54	69	75	62	75	64	79
	NBT	505	501	0.18	488	492	513	462	528	547	488	503	521	483
	NBR	48	89	4.95	51	35	49	57	41	44	48	50	53	55
3rd/San Carlos	EBL	175	176	0.08	191	178	178	164	153	165	192	184	171	83
	EBT	95	76	2.05	98	88	89	100	104	100	98	82	98	65
	WBT	23	72	7.11	27	17	29	23	31	22	27	11	16	22
	WBR	16	71	8.34	17	5	14	16	24	18	30	8	14	6
	NBL	11	36	5.16	10	11	10	5	16	10	11	8	14	13
	NBT	468	412	2.67	445	469	459	425	497	503	442	489	487	471
	NBR	22	31	1.75	28	25	23	26	17	21	21	16	24	25
3rd/San Sal- vador	EBL	56	55	0.13	73	56	66	49	59	64	46	44	51	40
	EBT	99	107	0.79	106	101	97	88	93	100	110	95	98	74
	WBT	152	172	1.57	145	164	164	156	156	121	163	157	143	139
	WBR	95	136	3.81	79	83	92	106	91	101	100	102	97	103
	NBL	44	22	3.83	38	48	42	42	42	54	52	43	31	48
	NBT	238	278	2.49	218	238	247	224	278	256	227	239	212	239
	NBR	189	201	0.86	191	183	223	207	190	191	163	180	169	191
3rd/Reed	EBL	27	28	0.19	25	33	30	26	21	26	24	31	31	24
	EBT	264	219	2.90	283	255	257	276	270	254	264	243	278	250
	WBT	510	554	1.91	494	526	552	511	496	527	508	466	511	466
	WBR	169	148	1.67	157	160	150	156	182	184	162	175	191	172
	EBT	465	705	9.92	475	453	460	421	455	461	505	461	491	475
	EBR	192	192	0.00	177	183	202	186	215	210	178	185	191	187
	SBL	91	151	5.45	112	87	110	98	80	68	89	71	102	87
4th/Santa Clara	SBT	731	805	2.67	731	779	727	726	760	712	704	719	723	720
	SBR	26	114	10.52	26	30	32	22	28	24	27	19	24	29
	WBL	89	114	2.48	77	83	88	98	99	91	94	93	78	95
	WBT	476	430	2.16	487	473	464	485	485	489	454	487	457	532

				GE	H Statis	tic Existing	g Baseline	Summary						
Intersection	Move- ment Direction	Simula- tion	Actual	GEH Sta- tistic	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 2
	EBT	201	286	5.45	190	185	191	227	214	161	236	197	206	172
	EBR	179	194	1.10	180	166	156	178	209	172	193	157	202	159
	SBL	26	109	10.10	22	17	25	30	32	26	33	18	28	27
4th/San Fer- nando	SBT	810	990	6.00	822	825	815	836	872	801	781	787	755	830
hando	SBR	88	112	2.40	79	85	65	127	131	74	102	53	77	105
	WBL	129	193	5.04	135	126	119	117	132	125	170	115	125	124
	WBT	89	212	10.03	84	84	81	99	77	79	102	86	105	75
	EBR	90	159	6.18	91	93	88	90	97	89	91	78	93	67
th/San Carlos	SBT	979	1252	8.17	994	962	967	1024	1038	971	963	940	954	954
	SBR	38	149	11.48	40	23	42	38	55	40	55	19	27	28
	EBT	146	115	2.71	153	140	129	155	131	157	151	165	132	142
	EBR	29	54	3.88	27	21	25	24	35	36	31	31	32	27
	SBL	68	84	1.84	67	62	61	78	66	70	61	79	70	65
4th/Williams	SBT	1011	1273	7.75	1003	1010	1032	1038	1032	1009	1013	977	986	1006
	SBR	17	55	6.33	17	17	22	16	20	7	21	17	19	10
	WBL	13	66	8.43	23	15	10	8	7	11	16	10	15	10
	WBT	104	123	1.78	99	111	92	106	123	108	88	101	110	123
	EBT	70	101	3.35	77	75	59	73	67	67	80	62	69	55
	EBR	51	38	1.95	58	51	58	41	42	54	50	50	57	43
	SBL	182	229	3.28	170	198	200	176	189	186	169	169	181	181
4th/San Sal- vador	SBT	879	1254	11.48	888	875	850	911	926	868	880	850	860	842
14401	SBR	61	125	6.64	65	46	70	74	64	49	64	59	62	65
	WBL	185	196	0.80	158	199	186	188	184	170	202	200	177	177
	WBT	165	208	3.15	151	167	194	169	150	182	151	164	154	189

				GE	H Statis	tic Existing	g Baseline	Summary						
Intersection	Move- ment Direction	Simula- tion	Actual	GEH Sta- tistic	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
	EBT	115	151	3.12	111	105	109	110	132	125	118	117	109	110
	EBR	342	276	3.75	369	329	373	364	336	329	321	317	340	332
	SBL	168	242	5.17	168	166	151	190	184	140	177	151	181	147
4th/Reed	SBT	786	989	6.81	773	802	801	759	792	802	785	776	786	786
	SBR	192	263	4.71	164	167	218	198	183	198	214	182	201	143
	WBL	171	207	2.62	187	159	179	161	155	181	173	201	146	212
	WBT	495	399	4.54	492	519	503	475	496	512	469	474	513	491
	EBT	663	884	7.95	669	638	621	669	693	696	677	630	672	610
	EBR	223	268	2.87	231	250	220	196	234	202	215	236	225	195
Almaden/San-	SBL	29	30	0.18	28	33	28	34	31	26	35	22	20	20
ta Clara (W)	SBT	249	191	3.91	229	261	270	247	245	246	255	249	236	216
	SBR	59	76	2.07	61	67	56	54	49	67	54	72	54	43
	WBT	416	472	2.66	428	381	387	401	393	416	436	424	481	410
	NBL	90	92	0.21	101	102	86	87	75	89	86	77	104	89
	NBT	201	194	0.50	184	234	171	223	225	192	248	104	229	171
	NBR	40	95	6.69	41	51	37	41	49	31	44	22	48	42
Almaden/San-	EBL	143	101	3.80	135	142	148	142	141	155	149	144	134	117
ta Clara (E)	EBT	548	806	9.92	560	532	501	564	581	564	568	509	554	518
	WBL	120	118	0.18	122	127	135	106	119	120	106	108	138	125
	WBT	324	385	3.24	323	277	302	311	313	324	349	344	370	322
	WBR	138	111	2.42	140	136	140	119	172	125	130	140	140	136

				GE	H Statis	tic Existin	g Baseline	Summary						
Intersection	Move- ment Direction	Simula- tion	Actual	GEH Sta- tistic	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
	NBL	5	21	4.44	5	5	5	7	5	4	10	1	5	5
	NBT	210	275	4.17	196	244	172	268	260	164	240	85	257	155
	NBR	103	123	1.88	95	92	102	128	120	95	129	47	121	102
	EBL	27	27	0.00	33	28	29	24	20	26	36	17	28	23
	EBT	163	107	4.82	159	174	152	187	179	138	181	108	185	158
Almaden/San	EBR	93	162	6.11	95	87	77	114	106	72	113	74	97	83
Fernando	SBL	64	101	4.07	72	57	54	69	78	49	64	66	69	48
	SBT	512	499	0.58	498	557	551	482	513	498	494	502	510	414
	SBR	24	10	3.40	21	21	32	19	23	23	23	28	25	16
	WBL	109	256	10.88	93	103	124	119	115	107	114	88	119	110
	WBT	125	148	1.97	132	103	115	128	128	120	145	99	157	127
	WBR	35	46	1.73	35	32	33	28	38	34	51	27	38	33
	NBL	56	58	0.26	54	70	56	56	65	51	64	26	59	59
	NBT	187	183	0.29	191	227	155	217	200	174	208	93	221	122
	NBR	15	17	0.50	22	18	17	16	14	13	13	5	16	6
	EBL	124	95	2.77	124	124	136	137	140	107	137	78	135	108
	EBT	94	75	2.07	91	84	110	101	108	88	71	82	110	69
	EBR	93	148	5.01	104	80	99	94	87	95	104	79	96	58
Almaden/Park	SBL	30	39	1.53	30	32	24	28	39	30	35	21	30	24
	SBT	655	887	8.36	683	655	626	641	671	658	657	704	600	475
	SBR	120	106	1.32	115	120	132	115	125	113	123	119	117	109
	WBL	147	195	3.67	157	140	151	150	140	159	169	102	155	115
	WBT	190	154	2.74	188	196	193	183	214	191	216	152	178	167
	WBR	33	55	3.32	29	29	32	41	47	30	34	18	37	23

				GE	H Statis	tic Existing	g Baseline	Summary						
Intersection	Move- ment Direction	Simula- tion	Actual	GEH Sta- tistic	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
	NBL	41	61	2.80	38	43	38	49	46	49	35	29	39	22
	NBT	190	196	0.43	208	204	188	190	192	206	182	126	211	92
	NBR	106	61	4.92	119	113	97	104	106	107	115	73	123	53
	EBL	91	116	2.46	94	89	98	95	92	84	103	65	93	53
	EBT	440	458	0.85	455	437	427	445	432	415	452	431	463	229
Almaden/San	EBR	126	142	1.38	103	119	150	119	149	115	135	107	134	54
Carlos	SBL	104	137	3.01	116	98	116	104	93	102	115	85	106	48
	SBT	696	1102	13.54	720	681	678	689	724	693	704	727	651	511
	SBR	68	63	0.62	71	66	66	67	61	83	65	60	72	62
	WBL	80	98	1.91	76	85	77	83	85	97	81	64	73	80
	WBT	186	232	3.18	172	167	189	206	187	178	197	170	204	208
	WBR	86	68	2.05	88	103	73	94	86	82	100	53	91	98
	NBL	60	36	3.46	54	54	68	59	65	68	54	52	66	57
	NBT	276	175	6.73	315	288	258	263	278	274	267	265	279	211
	NBR	76	63	1.56	76	84	62	75	66	86	83	83	66	55
	EBL	46	25	3.52	52	37	45	54	41	51	45	42	45	38
	EBT	140	184	3.46	137	136	138	148	134	125	138	151	151	112
Almaden/Woz	EBR	234	224	0.66	244	214	239	237	215	268	213	236	242	244
Way	SBL	73	110	3.87	71	80	80	84	76	54	78	65	72	63
	SBT	822	1179	11.29	835	822	806	799	868	850	850	828	737	583
	SBR	11	14	0.85	8	18	12	10	10	10	14	7	10	9
		78	168	8.12	82	73	72	65	106	77	77	81	72	59
	WBT	71	45	3.41	70	62	72	64	82	71	70	69	78	47
	WBR	33	47	2.21	28	37	21	32	33	35	32	31	45	27

				GEH	Statistic	c Almaden	Conversi	on Summa	ry					
Intersection	Move- ment Direction	Simula- tion	Actual	GEH Sta- tistic	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
	NBL	45	69	3.18	50	51	41	45	36	47	41	40	53	43
	NBT	220	225	0.34	216	236	236	217	229	214	217	231	193	237
	NBR	24	80	7.77	14	14	24	29	31	31	18	28	24	28
	EBL	59	65	0.76	52	57	68	63	65	69	60	56	49	62
	EBT	504	591	3.72	497	508	499	518	523	530	547	544	422	529
Market/Santa	EBR	75	93	1.96	65	75	112	78	67	76	88	77	59	72
Clara	SBL	160	161	0.08	159	186	169	162	164	151	153	178	141	158
	SBT	712	820	3.90	593	692	756	769	736	698	718	724	731	687
	SBR	98	109	1.08	74	102	96	110	86	81	106	97	110	108
	WBL	25	78	7.39	21	23	24	30	24	22	27	32	22	31
	WBT	414	400	0.69	410	409	393	419	428	445	426	399	398	431
	WBR	57	81	2.89	51	51	64	57	63	49	68	53	55	62
	NBL	41	32	1.49	39	43	35	40	36	42	33	50	43	43
	NBT	203	226	1.57	205	217	218	181	202	206	213	208	193	198
	NBR	48	34	2.19	51	53	45	56	51	47	35	52	45	46
	EBL	50	37	1.97	39	39	56	49	64	57	44	64	37	63
	EBT	206	234	1.89	213	204	213	197	254	219	159	198	200	204
Market/San	EBR	55	129	7.72	56	59	54	54	59	64	37	58	58	49
Fernando	SBL	52	98	5.31	38	46	58	75	57	54	51	53	46	47
	SBT	852	918	2.22	676	859	905	912	883	840	872	848	870	835
	SBR	40	49	1.35	30	39	41	43	40	37	54	36	41	43
		46	54	1.13	48	61	61	42	47	32	56	50	35	42
	WBT	129	177	3.88	138	153	117	141	122	117	117	129	113	157
	WBR	17	54	6.21	18	24	9	38	17	6	17	13	9	22

				GEH	I Statistic	c Almaden	Conversi	on Summa	ry					
Intersection	Move- ment Direction	Simula- tion	Actual	GEH Sta- tistic	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 2
	NBL	90	112	2.19	85	87	84	95	107	91	90	97	80	92
	NBT	251	246	0.32	268	268	267	234	247	247	261	250	243	236
	NBR	10	15	1.41	11	10	10	13	13	8	9	14	7	10
	EBL	81	67	1.63	92	101	69	64	75	88	63	84	85	82
	EBT	336	270	3.79	329	340	330	333	324	310	330	355	362	317
Market/San Carlos	EBR	151	188	2.84	146	149	154	154	154	152	155	150	149	145
Curico	SBL	73	62	1.34	70	81	61	76	71	92	66	71	64	84
	SBT	722	938	7.50	590	747	777	758	762	713	732	691	723	726
	SBR	64	108	4.74	56	75	57	64	59	64	68	69	65	66
	WBT	164	169	0.39	144	145	172	163	181	154	177	171	170	158
	WBR	52	31	3.26	55	60	38	59	51	65	55	46	40	61
	NBL	98	86	1.25	101	101	84	108	85	112	101	99	91	103
	NBT	219	289	4.39	216	217	248	228	234	239	215	255	174	214
	NBR	46	174	12.20	43	43	40	52	39	48	53	35	54	43
3rd/Santa Clara	EBL	80	74	0.68	88	94	79	64	90	82	82	91	65	83
Clara	EBT	590	749	6.14	595	635	593	577	588	621	640	670	495	585
	WBT	433	483	2.34	432	425	428	415	433	435	449	409	433	470
	WBR	71	67	0.48	77	76	69	74	72	82	56	78	68	65
	NBL	85	80	0.55	89	87	64	91	87	101	83	81	80	93
	NBT	370	489	5.74	383	384	380	397	348	390	373	399	313	387
	NBR	197	255	3.86	199	200	192	200	189	211	191	221	185	194
3rd/San Fer- nando	EBL	24	67	6.37	19	22	26	25	31	29	22	21	22	24
nanuu	EBT	193	223	2.08	175	184	195	179	235	216	149	224	194	183
	WBT	142	226	6.19	149	149	133	127	122	131	142	173	142	148
	WBR	16	85	9.71	12	13	21	17	17	17	7	16	20	11

				GEH	Statistic	c Almaden	Conversi	on Summa	ry					
Intersection	Move- ment Direction	Simula- tion	Actual	GEH Sta- tistic	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
	NBL	68	65	0.37	63	64	83	63	53	72	74	62	65	79
	NBT	503	501	0.09	504	507	484	512	465	529	545	484	505	491
	NBR	45	89	5.38	48	53	35	45	51	37	41	43	46	50
3rd/San Carlos	EBL	173	176	0.23	179	192	177	176	163	153	167	190	160	184
Canob	EBT	101	76	2.66	98	100	95	92	104	103	97	100	108	110
	WBT	25	72	6.75	35	35	24	28	22	27	20	25	19	26
	WBR	14	71	8.74	23	23	9	15	14	19	12	20	5	13
	NBL	10	36	5.42	11	11	11	10	5	16	10	11	9	12
	NBT	466	412	2.58	463	468	466	457	424	499	505	444	469	463
	NBR	23	31	1.54	25	29	25	24	24	16	22	21	26	18
3rd/San Sal- vador	EBL	61	55	0.79	73	73	55	66	49	58	64	46	65	54
Vador	EBT	99	107	0.79	103	109	100	103	84	91	100	106	103	84
	WBT	154	172	1.41	147	145	168	163	156	158	121	164	150	174
	WBR	91	136	4.22	79	77	84	89	102	87	100	95	88	109
	NBL	44	22	3.83	45	45	48	42	42	42	55	52	41	32
	NBT	249	278	1.79	249	249	237	246	223	278	255	227	260	260
	NBR	195	201	0.43	204	205	176	220	210	196	193	159	201	176
3rd/Reed	EBL	26	28	0.38	27	24	33	26	26	21	27	24	31	19
	EBT	261	219	2.71	269	255	261	253	272	271	258	260	248	274
	WBT	524	554	1.29	499	510	566	534	510	504	507	524	534	537
	WBR	163	148	1.20	155	157	164	149	155	184	184	162	165	155

				GEH	Statistic	c Almaden	Conversi	on Summa	ry					
Intersection	Move- ment Direction	Simula- tion	Actual	GEH Sta- tistic	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
	EBT	447	705	10.75	466	496	449	443	445	431	472	505	378	452
	EBR	186	192	0.00	180	175	182	192	190	215	215	186	172	172
	SBL	93	151	5.25	108	109	92	106	98	80	71	89	87	101
4th/Santa Clara	SBT	732	805	2.63	712	723	789	713	715	734	728	702	731	774
Clara	SBR	27	114	10.36	26	26	30	31	22	27	25	27	25	30
	WBL	86	114	2.80	75	75	76	88	101	104	89	96	84	72
	WBT	477	430	2.21	486	483	471	466	482	487	477	450	472	503
	EBT	194	286	5.94	178	186	187	193	229	207	146	233	192	192
	EBR	177	194	1.25	175	178	181	163	179	201	170	190	168	173
	SBL	26	109	10.10	23	23	24	27	30	27	25	30	29	22
4th/San Fer- nando	SBT	823	990	5.55	849	833	878	803	819	856	798	770	807	838
Hanuu	SBR	98	112	1.37	128	100	115	70	125	117	67	96	87	84
	WBL	133	193	4.70	137	136	127	119	116	132	125	168	133	141
	WBT	85	212	10.42	84	84	82	82	100	76	79	100	85	78
	EBR	95	159	5.68	95	95	93	89	92	95	89	95	93	111
4th/San Carlos	SBT	989	1252	7.86	1009	1000	1023	950	1008	1028	969	953	966	1003
Carlos	SBR	39	149	11.35	55	57	32	43	36	45	30	45	24	38
	EBT	144	115	2.55	146	151	141	128	154	131	157	154	140	140
	EBR	29	54	3.88	27	25	22	25	24	36	35	31	36	23
	SBL	64	84	2.32	63	66	61	60	73	72	70	62	51	73
4th/Williams	SBT	1023	1273	7.38	1031	1014	1059	1010	1026	1016	1027	1014	1015	1028
	SBR	17	55	6.33	20	18	17	22	15	20	7	22	18	12
	WBL	14	66	8.22	23	23	15	12	8	7	11	16	16	12
	WBT	102	123	1.98	97	97	108	92	107	123	107	87	104	94

				GEH	Statistic	: Almaden	Conversi	on Summa	ry					
Intersection	Move- ment Direction	Simula- tion	Actual	GEH Sta- tistic	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
	EBT	72	101	3.12	72	82	77	65	67	66	67	77	79	58
	EBR	50	38	1.81	57	58	49	57	41	42	54	50	51	44
	SBL	188	229	2.84	182	179	208	195	178	186	182	167	204	188
4th/San Sal- vador	SBT	888	1254	11.18	915	902	917	841	900	902	888	875	863	898
Vadoi	SBR	60	125	6.76	66	64	48	67	69	56	45	59	62	64
	WBL	184	196	0.87	161	157	203	185	189	188	170	200	178	219
	WBT	165	208	3.15	154	150	169	189	169	153	182	152	165	162
	EBT	108	151	3.78	103	100	108	106	113	131	126	121	86	110
	EBR	349	276	4.13	377	364	331	361	366	342	332	304	363	336
	SBL	171	242	4.94	179	177	176	148	187	179	149	175	178	159
4th/Reed	SBT	798	989	6.39	797	787	832	806	760	794	817	779	801	799
	SBR	196	263	4.42	171	180	202	200	206	193	182	220	197	206
	WBL	175	207	2.32	186	186	163	178	160	161	182	174	174	183
	WBT	494	399	4.50	492	488	522	496	476	513	499	472	497	484
		57	-		55	55	56	51	56	50	64	58	56	72
	EBT	597	884	10.55	598	600	569	571	606	635	632	610	574	599
	EBR	222	268	2.94	225	227	247	219	196	236	202	218	221	228
Almaden/San-	SBL	12	30	3.93	10	10	12	4	18	15	8	14	13	10
ta Clara (W)	SBT	247	191	3.78	240	240	247	276	252	248	245	249	242	231
	SBR	58	76	2.20	64	63	64	56	55	48	67	53	53	67
	WBT	401	472	3.40	407	421	387	379	388	387	411	426	384	439
		57			57	55	62	49	54	56	48	65	60	64

				GEH	I Statistic	c Almaden	Conversi	on Summa	ry					
Intersection	Move- ment Direction	Simula- tion	Actual	GEH Sta- tistic	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
	NBL	121	92	2.81	126	128	139	103	119	97	115	112	123	149
	NBT	178	194	1.17	154	162	207	142	189	193	150	178	195	188
	NBR	45	95	5.98	41	42	54	44	41	48	31	40	51	49
Almaden/San-	EBL	70	101	3.35	62	63	59	72	70	73	77	73	77	65
ta Clara (E)	EBT	539	806	10.30	548	551	528	502	554	576	569	560	496	546
	WBL	117	118	0.09	113	115	125	135	101	117	117	104	118	119
	WBT	336	385	2.58	337	348	309	325	321	349	337	374	322	356
	WBR	117	111	0.56	116	118	112	120	103	138	113	107	121	121
	NBL	5	21	4.44	6	7	3	5	7	4	3	8	6	4
	NBT	214	275	3.90	192	221	263	167	259	246	152	193	216	228
	NBR	104	123	1.78	91	96	108	109	129	117	83	97	99	111
	EBL	29	27	0.38	33	33	28	30	25	18	26	34	27	35
	EBT	164	107	4.90	164	162	175	158	190	173	128	178	156	169
Almaden/San	EBR	99	162	5.51	93	94	92	86	115	98	78	116	107	100
Fernando	SBL	64	101	4.07	71	70	58	53	72	80	47	63	64	62
	SBT	504	499	0.22	484	500	540	558	478	508	491	490	497	504
	SBR	24	10	3.40	21	22	22	32	19	23	23	23	23	28
	WBL	103	256	11.42	99	105	93	120	121	99	94	97	96	112
	WBT	121	148	2.33	133	146	100	114	126	117	115	122	114	133
	WBR	36	46	1.56	34	35	31	31	29	36	34	48	34	49

				GEH	Statistic	c Almaden	Conversi	on Summa	ry					
Intersection	Move- ment Direction	Simula- tion	Actual	GEH Sta- tistic	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
	NBL	66	58	1.02	64	64	74	63	55	67	54	70	68	80
	NBT	191	183	0.59	194	203	223	163	209	198	160	185	176	212
	NBR	16	17	0.25	24	24	18	18	16	14	13	12	11	14
	EBL	133	95	3.56	101	123	126	141	138	142	108	130	159	133
	EBT	93	75	1.96	89	99	84	111	100	106	87	73	88	100
A loss o do o /D o vl/	EBR	97	148	4.61	89	106	81	101	94	91	92	110	103	100
Almaden/Park	SBL	33	39	1.00	31	34	32	29	28	39	29	34	33	38
	SBT	622	887	9.65	601	635	675	637	620	672	691	576	564	603
	SBR	120	106	1.32	106	111	117	131	111	118	108	115	138	126
	WBL	151	195	3.35	150	155	138	155	154	138	143	167	149	158
	WBT	192	154	2.89	166	187	197	196	177	214	183	217	197	179
	WBR	34	55	3.15	37	29	31	36	41	46	26	30	34	32
	NBL	43	61	2.50	42	39	44	40	48	46	42	35	47	37
	NBT	195	196	0.07	208	211	202	190	187	195	202	181	174	222
	NBR	110	61	5.30	124	120	116	97	105	104	107	117	108	107
	EBL	94	116	2.15	87	94	99	95	89	97	85	102	92	107
	EBT	442	458	0.75	417	456	437	421	447	428	428	460	456	459
Almaden/San	EBR	127	142	1.29	102	103	118	158	122	151	112	134	142	115
Carlos	SBL	108	137	2.62	107	113	100	107	102	99	101	114	110	118
	SBT	663	1102	14.78	634	689	710	677	667	730	708	635	605	630
	SBR	73	63	1.21	68	69	65	70	70	65	78	63	82	90
	WBL	85	98	1.36	71	77	89	78	82	86	97	79	93	84
	WBT	178	232	3.77	169	181	170	198	203	179	169	193	162	173
	WBR	91	68	2.58	88	88	100	76	95	85	80	97	98	91

				GEH	Statisti	c Almaden	Conversi	on Summa	ry					
Intersection	Move- ment Direction	Simula- tion	Actual	GEH Sta- tistic	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
	NBL	60	36	3.46	50	55	53	69	59	65	69	53	59	72
	NBT	280	175	6.96	319	315	289	258	258	282	274	268	258	306
	NBR	78	63	1.79	76	76	83	62	76	67	86	83	93	68
	EBL	46	25	3.52	53	59	38	45	54	45	46	43	45	37
	EBT	135	184	3.88	114	132	144	139	146	131	125	136	142	135
Almaden/Woz	EBR	231	224	0.46	259	258	220	242	225	227	223	200	238	210
Way	SBL	71	110	4.10	65	77	81	78	82	76	59	69	66	63
	SBT	787	1179	12.50	651	790	840	821	765	854	862	798	757	759
	SBR	10	14	1.15	5	9	17	12	10	10	10	15	7	8
	WBL	76	168	8.33	74	81	75	73	66	107	77	76	67	71
	WBT	72	45	3.53	64	71	63	72	64	83	73	70	76	80
	WBR	31	47	2.56	28	28	39	20	32	33	35	30	32	33

				GEH Stat	tistic Alm	naden Plus	5% Conv	ersion Sur	nmary					
Intersection	Move- ment Direction	Simula- tion	Actual	GEH Sta- tistic	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 2
	NBL	43	69	3.47	49	43	44	40	39	47	38	41	41	44
	NBT	226	225	0.07	228	234	201	233	198	223	230	235	232	243
	NBR	26	80	7.42	13	24	29	32	26	34	22	22	31	22
	EBL	65	65	0.00	63	72	62	68	70	71	57	54	66	70
	EBT	548	591	1.80	538	513	516	557	537	556	574	560	581	547
Market/Santa	EBR	84	93	0.96	81	116	84	72	79	90	92	74	79	73
Clara	SBL	165	161	0.31	192	167	160	159	159	158	158	181	161	157
	SBT	700	820	4.35	718	727	759	695	714	696	666	730	664	626
	SBR	99	109	0.98	104	95	116	85	85	84	107	102	108	101
	WBL	27	78	7.04	23	24	30	26	21	22	23	35	32	29
	WBT	441	400	2.00	428	425	432	441	439	452	449	426	463	450
	WBR	59	81	2.63	54	68	54	63	56	49	66	53	65	64
	NBL	42	32	1.64	46	34	41	37	44	45	36	52	43	42
	NBT	208	226	1.22	227	221	183	207	184	213	209	213	207	220
	NBR	48	34	2.19	51	44	49	51	41	49	41	44	48	63
	EBL	53	37	2.39	36	50	46	63	46	60	52	53	72	51
	EBT	202	234	2.17	199	202	172	251	183	227	191	172	225	197
Market/San	EBR	54	129	7.84	58	52	50	58	51	72	48	45	54	48
Fernando	SBL	57	98	4.66	50	61	78	55	58	57	51	53	50	57
	SBT	850	918	2.29	874	892	884	870	851	851	846	844	830	758
	SBR	43	49	0.88	39	43	44	40	43	43	54	39	44	43
	WBL	45	54	1.28	54	52	40	45	37	32	57	52	43	38
	WBT	127	177	4.06	134	109	122	126	129	123	119	129	142	136
	WBR	13	54	7.08	17	10	17	17	8	5	17	11	14	13

				GEH Stat	tistic Aln	naden Plus	5% Conv	ersion Sur	nmary					
Intersection	Move- ment Direction	Simula- tion	Actual	GEH Sta- tistic	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 2
	NBL	97	112	1.47	89	89	98	116	95	97	89	103	96	96
	NBT	266	246	1.25	280	286	250	266	267	270	266	265	242	265
	NBR	11	15	1.11	10	14	13	13	9	9	10	16	11	9
	EBL	78	67	1.29	104	65	69	82	44	91	62	82	84	100
	EBT	319	270	2.86	348	336	340	318	167	325	296	362	349	352
Market/San Carlos	EBR	152	188	2.76	155	157	162	157	85	151	145	164	162	178
0000	SBL	78	62	1.91	74	59	70	91	84	100	56	74	88	81
	SBT	709	938	7.98	744	785	747	745	698	709	679	675	696	615
	SBR	67	108	4.38	69	57	67	62	69	67	70	73	69	68
	WBT	167	169	0.15	139	168	166	181	154	165	179	175	163	182
	WBR	56	31	3.79	56	40	57	55	66	70	40	51	63	61
	NBL	99	86	1.35	97	85	105	93	112	111	90	103	104	93
	NBT	224	289	4.06	182	258	206	245	230	234	175	264	228	217
. .	NBR	45	174	12.33	42	40	56	39	47	49	48	38	44	48
3rd/Santa Clara	EBL	85	74	1.23	95	79	70	87	76	81	85	90	94	93
	EBT	630	749	4.53	633	611	639	611	604	642	667	674	643	574
	WBT	453	483	1.39	450	459	424	448	461	447	470	426	482	462
	WBR	75	67	0.95	81	69	73	76	85	85	58	87	69	62
	NBL	84	80	0.44	67	67	91	95	92	92	64	86	93	90
	NBT	373	489	5.59	314	400	378	376	364	370	311	433	402	377
a 1/a –	NBR	197	255	3.86	180	198	204	198	181	210	172	215	199	211
3rd/San Fer- nando	EBL	25	67	6.19	19	23	22	34	28	27	26	21	29	17
	EBT	193	223	2.08	185	186	168	246	180	222	163	199	207	175
	WBT	144	226	6.03	153	126	126	127	143	144	143	190	138	148
	WBR	12	85	10.48	9	11	15	19	16	18	5	14	10	6

				GEH Stat	tistic Alm	naden Plus	5% Conv	ersion Sur	nmary					
Intersection	Move- ment Direction	Simula- tion	Actual	GEH Sta- tistic	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 2
	NBL	71	65	0.73	58	88	63	58	76	78	61	64	84	80
	NBT	516	501	0.67	469	500	532	489	565	571	462	512	523	541
	NBR	43	89	5.66	49	38	39	50	37	45	36	47	47	44
3rd/San Carlos	EBL	170	176	0.46	198	185	194	168	104	154	121	195	191	190
Ganoo	EBT	96	76	2.16	96	94	86	105	82	106	79	105	110	98
	WBT	23	72	7.11	26	15	26	18	25	28	22	22	20	26
	WBR	14	71	8.74	17	10	9	11	18	22	16	25	4	6
	NBL	11	36	5.16	9	10	12	7	17	17	7	13	11	11
	NBT	480	412	3.22	416	492	478	440	533	538	432	465	485	516
	NBR	22	31	1.75	30	27	24	27	17	18	20	21	21	19
3rd/San Sal- vador	EBL	61	55	0.79	81	57	68	51	59	59	68	49	57	56
	EBT	98	107	0.89	109	103	101	89	75	101	96	118	94	96
	WBT	156	172	1.25	149	159	166	157	166	164	120	164	167	152
	WBR	93	136	4.02	79	84	82	103	88	97	92	106	109	94
	NBL	45	22	3.97	28	49	45	43	46	46	55	52	33	48
	NBT	254	278	1.47	187	245	256	242	289	287	264	240	258	274
	NBR	189	201	0.86	167	180	219	217	202	204	191	172	169	171
3rd/Reed	EBL	27	28	0.19	27	36	33	27	23	24	26	25	22	22
	EBT	276	219	3.62	306	271	271	285	264	276	255	269	295	265
	WBT	523	554	1.34	501	597	574	535	467	515	505	509	518	504
	WBR	175	148	2.12	165	183	158	164	199	203	188	172	159	156
	EBT	468	705	9.79	501	457	481	434	441	458	488	511	495	410
	EBR	200	192	0.00	179	190	207	201	212	223	214	184	193	194
	SBL	87	151	5.87	110	88	82	97	73	82	67	85	89	94
4th/Santa Clara	SBT	725	805	2.89	740	761	677	722	704	761	698	698	745	745
Ciara	SBR	26	114	10.52	26	28	29	22	24	30	23	27	28	25
	WBL	92	114	2.17	81	80	89	102	107	102	91	96	76	100
	WBT	496	430	3.07	502	489	475	501	520	496	495	472	521	492

				GEH Stat	istic Alm	naden Plus	5% Conv	ersion Sur	nmary					
Intersection	Move- ment Direction	Simula- tion	Actual	GEH Sta- tistic	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
	EBT	196	286	5.80	174	195	187	250	161	212	153	217	211	195
	EBR	175	194	1.40	160	173	153	189	173	195	172	182	178	174
	SBL	21	109	10.92	17	9	23	28	21	23	24	28	16	17
4th/San Fer- nando	SBT	803	990	6.25	798	801	775	831	817	843	802	764	799	804
hando	SBR	77	112	3.60	63	67	50	113	90	102	68	74	77	65
	WBL	136	193	4.44	141	123	114	119	140	135	124	174	141	150
	WBT	85	212	10.42	86	86	79	98	78	76	80	107	76	86
	EBR	91	159	6.08	85	94	85	97	80	96	71	98	111	93
4th/San Carlos	SBT	962	1252	8.72	951	936	895	1022	983	1020	962	948	964	941
	SBR	35	149	11.89	41	24	34	28	43	48	35	42	24	30
	EBT	149	115	2.96	162	150	132	163	137	138	156	154	143	156
	EBR	31	54	3.53	27	22	26	26	39	38	37	33	25	34
	SBL	66	84	2.08	62	61	55	69	68	63	75	61	70	77
4th/Williams	SBT	1014	1273	7.66	980	1007	1016	1062	991	1034	1007	1011	1019	1015
	SBR	14	55	6.98	17	17	17	12	18	19	7	21	8	5
	WBL	14	66	8.22	23	15	12	10	8	8	12	15	12	21
	WBT	112	123	1.01	108	111	116	108	127	127	111	85	101	122
	EBT	70	101	3.35	80	78	66	72	53	74	66	83	62	61
	EBR	51	38	1.95	58	53	61	41	39	45	51	55	51	54
	SBL	185	229	3.06	171	190	193	186	184	184	192	169	183	193
4th/San Sal- vador	SBT	871	1254	11.75	853	861	822	922	862	907	877	867	882	861
1000	SBR	57	125	7.13	66	45	57	63	56	66	43	62	61	53
	WBL	192	196	0.29	164	195	191	196	198	195	168	202	215	191
	WBT	170	208	2.76	161	168	198	173	167	164	180	157	161	171

				GEH Stat	istic Alm	naden Plus	5% Conv	ersion Sur	nmary					
Intersection	Move- ment Direction	Simula- tion	Actual	GEH Sta- tistic	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
	EBT	120	151	2.66	118	114	119	113	126	131	125	123	117	113
	EBR	345	276	3.92	358	334	375	381	346	356	329	317	335	322
	SBL	165	242	5.40	160	166	147	195	172	184	142	170	148	166
4th/Reed	SBT	795	989	6.50	790	789	800	799	765	804	806	794	800	801
	SBR	190	263	4.85	158	227	217	217	147	202	161	193	183	193
	WBL	180	207	1.94	194	171	174	166	164	158	192	186	194	204
	WBT	513	399	5.34	508	548	525	494	526	526	543	492	491	476
		61	-		55	60	54	57	52	55	71	65	74	64
	EBT	636	884	9.00	629	610	599	641	649	659	652	644	621	653
	EBR	234	268	2.15	242	260	233	206	218	237	217	230	238	256
Almaden/San-	SBL	12	30	3.93	10	13	4	18	13	14	8	14	12	13
ta Clara (W)	SBT	245	191	3.66	232	247	274	246	225	255	252	248	240	228
	SBR	57	76	2.33	61	65	49	56	44	53	71	49	67	58
	WBT	418	472	2.56	422	419	387	415	407	416	428	441	454	391
		57			57	60	45	53	52	58	48	63	67	62
	NBL	118	92	2.54	126	142	105	123	91	104	121	106	152	114
	NBT	171	194	1.70	137	191	129	196	154	206	153	156	189	201
	NBR	43	95	6.26	34	55	43	43	44	56	28	36	49	42
Almaden/San-	EBL	73	101	3.00	67	65	76	73	81	79	76	70	66	77
ta Clara (E)	EBT	575	806	8.79	571	554	527	587	587	595	590	584	570	586
	WBL	120	118	0.18	120	126	140	107	121	118	117	109	133	113
	WBT	354	385	1.61	353	336	329	340	368	373	348	398	366	332
	WBR	121	111	0.93	120	120	117	109	130	142	111	114	118	129

				GEH Stat	tistic Alm	naden Plus	5% Conv	ersion Sur	nmary					
Intersection	Move- ment Direction	Simula- tion	Actual	GEH Sta- tistic	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
	NBL	4	21	4.81	3	5	3	7	3	4	3	3	4	4
	NBT	204	275	4.59	158	229	138	260	193	263	160	159	235	244
	NBR	100	123	2.18	87	85	85	123	90	114	89	85	129	114
	EBL	28	27	0.19	32	28	28	25	13	19	29	30	39	34
	EBT	162	107	4.74	150	175	152	191	125	180	159	157	182	147
Almaden/San	EBR	96	162	5.81	92	94	85	117	69	105	99	98	111	87
Fernando	SBL	65	101	3.95	74	61	54	73	73	81	57	55	65	59
	SBT	512	499	0.58	505	550	560	482	429	528	515	497	525	527
	SBR	23	10	3.20	22	20	31	20	20	22	23	25	29	14
	WBL	102	256	11.51	106	99	102	118	95	113	100	92	104	92
	WBT	123	148	2.15	137	103	110	127	125	130	121	122	134	124
	WBR	37	46	1.40	34	29	33	29	36	36	32	50	47	43
	NBL	64	58	0.77	56	76	54	65	62	68	53	62	85	56
	NBT	187	183	0.29	159	219	129	223	148	210	164	164	235	220
	NBR	14	17	0.76	18	18	17	15	10	14	13	10	16	12
	EBL	128	95	3.13	113	121	121	149	129	142	105	117	140	142
	EBT	97	75	2.37	87	84	116	104	94	111	93	77	100	100
Alexa el ser (De els	EBR	96	148	4.71	100	79	101	98	66	94	99	112	105	109
Almaden/Park	SBL	31	39	1.35	27	32	22	30	31	38	29	34	39	24
	SBT	619	887	9.77	647	641	635	639	456	656	699	561	609	650
	SBR	117	106	1.04	119	110	135	116	96	127	113	114	137	105
	WBL	149	195	3.51	159	151	143	158	119	144	146	161	153	154
	WBT	196	154	3.17	189	201	191	184	196	224	188	223	187	180
	WBR	34	55	3.15	28	28	32	41	40	49	26	27	34	39

				GEH Stat	istic Aln	naden Plus	5% Conv	ersion Sur	nmary					
Intersection	Move- ment Direction	Simula- tion	Actual	GEH Sta- tistic	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
	NBL	40	61	2.65	37	44	35	47	40	56	44	36	35	42
	NBT	198	196	0.14	211	210	186	200	140	202	203	194	228	204
	NBR	108	61	5.11	121	119	96	109	64	112	107	118	113	120
	EBL	64	116	2.35	93	96	89	91	65	96	81	103	107	100
	EBT	448	458	0.47	477	460	445	468	278	447	447	475	477	503
Almaden/San	EBR	126	142	1.38	120	124	153	108	109	149	120	128	112	137
Carlos	SBL	105	137	2.72	115	105	112	113	66	105	98	121	117	111
	SBT	661	1102	14.85	694	652	674	693	509	706	739	620	640	687
	SBR	70	63	0.86	71	66	69	70	51	67	85	61	89	67
	WBL	85	98	1.14	76	90	78	97	90	87	100	85	89	90
	WBT	187	232	3.11	171	177	198	214	182	188	172	198	169	197
	WBR	88	68	2.26	83	104	67	100	83	93	77	96	93	86
	NBL	65	36	4.08	52	60	70	62	68	67	74	56	74	70
	NBT	294	175	7.77	329	305	269	271	273	298	295	277	311	307
	NBR	79	63	1.90	76	86	66	74	70	72	88	86	75	95
	EBL	47	25	3.67	54	39	48	49	47	54	47	46	37	44
	EBT	140	184	3.46	135	151	139	151	136	140	133	140	139	134
Almaden/Woz	EBR	224	224	0.00	221	223	227	215	235	243	243	199	215	219
Way	SBL	73	110	3.87	77	79	82	77	59	78	62	75	73	67
	SBT	794	1179	12.26	804	793	807	782	642	839	874	773	772	854
	SBR	12	14	0.55	11	19	11	11	7	10	9	14	9	16
	WBL	83	168	7.59	86	78	71	70	107	106	79	81	71	76
	WBT	73	45	3.65	74	68	72	67	79	82	72	72	81	67
	WBR	32	47	2.39	30	38	22	33	33	31	37	30	32	33

Intersection	Movement Direction	Simulation	Actual	GEH Statistic	Seed 1	Seed 4	Seed 7
	NBL	42	69	3.62	30	54	43
	NBT	216	225	0.61	169	238	242
-	NBR	17	80	9.05	15	13	24
-	EBL	60	65	0.63	45	62	74
-	EBT	503	591	3.76	413	555	541
•	EBR	89	93	0.42	65	81	122
Market/Santa Clara	SBL	165	161	0.31	139	194	162
-	SBT	632	820	6.98	548	663	684
-	SBR	92	109	1.70	81	103	93
	WBL	24	78	7.56	22	25	24
-	WBT	416	400	0.79	372	445	431
-	WBR	51	81	3.69	39	54	61
	NBL	40	32	1.33	32	50	38
-	NBT	218	226	0.54	179	240	234
-	NBR	45	34	1.75	40	58	36
-	EBL	36	37	0.17	23	36	49
-	EBT	175	234	4.13	127	199	198
	EBR	53	129	7.97	47	58	55
larket/San Fernando	SBL	55	98	4.92	47	51	67
-	SBT	774	918	4.95	654	817	851
-	SBR	41	49	1.19	38	40	45
-	WBL	41	54	1.89	27	49	47
-	WBT	119	177	4.77	119	131	106
-	WBR	7	54	8.51	4	12	5
	NBL	86	112	2.61	72	93	94
-	NBT	273	246	1.68	249	286	285
	NBR	10	15	1.41	7	10	14
-	EBL	85	67	2.06	69	110	75
	EBT	358	270	4.97	330	371	372
Market/San Carlos	EBR	157	188	2.36	143	161	168
-	SBL	66	62	0.50	59	73	65
-	SBT	649	938	10.26	540	706	701
-	SBR	63	108	4.87	60	71	57
-	WBT	164	169	0.39	162	146	185
	WBR	51	31	3.12	50	60	43

Intersection	Movement Direction	Simulation	Actual	GEH Statistic	Seed 1	Seed 4	Seed 7
	NBL	91	86	0.53	86	99	87
	NBT	226	289	3.93	202	208	267
	NBR	43	174	12.58	38	49	42
3rd/Santa Clara	EBL	80	74	0.68	63	96	82
	EBT	594	749	5.98	499	651	631
	WBT	430	483	2.48	366	458	466
	WBR	69	67	0.24	59	80	68
	NBL	74	80	0.68	83	67	72
	NBT	379	489	5.28	367	349	420
	NBR	192	255	4.21	176	192	207
3rd/San Fernando	EBL	21	67	6.93	19	22	23
	EBT	171	223	3.70	158	187	169
	WBT	136	226	6.69	115	162	132
	WBR	11	85	10.68	13	8	12
	NBL	73	65	0.96	68	57	95
	NBT	495	501	0.27	457	498	530
	NBR	37	89	6.55	25	50	36
3rd/San Carlos	EBL	185	176	0.67	163	202	190
	EBT	99	76	2.46	92	105	101
	WBT	17	72	8.24	12	22	18
	WBR	8	71	10.02	9	10	5
	NBL	9	36	5.69	7	9	10
	NBT	469	412	2.72	438	446	523
	NBR	26	31	0.94	21	30	27
3rd/San Salvador	EBL	67	55	1.54	55	84	62
	EBT	97	107	0.99	75	110	107
	WBT	150	172	1.73	131	150	170
	WBR	72	136	6.28	57	80	80
	NBL	39	22	3.08	34	33	50
	NBT	217	278	3.88	200	196	255
	NBR	178	201	1.67	171	176	188
3rd/Reed	EBL	30	28	0.37	21	27	41
	EBT	260	219	2.65	202	301	278
	WBT	510	554	1.91	455	503	573
	WBR	174	148	2.05	165	173	185

Intersection	Movement Direction	Simulation	Actual	GEH Statistic	Seed 1	Seed 4	Seed 7
	EBT	462	705	10.06	393	515	477
	EBR	176	192	0.00	153	183	192
	SBL	89	151	5.66	74	109	85
4th/Santa Clara	SBT	688	805	4.28	552	733	778
	SBR	27	114	10.36	25	26	29
	WBL	84	114	3.02	84	83	86
	WBT	465	430	1.65	385	514	496
	EBT	184	286	6.65	177	184	190
	EBR	160	194	2.56	143	166	171
	SBL	16	109	11.76	19	15	13
4th/San Fernando	SBT	743	990	8.39	623	779	826
	SBR	62	112	5.36	61	50	76
	WBL	127	193	5.22	103	148	130
	WBT	84	212	10.52	80	91	81
	EBR	90	159	6.18	81	96	94
4th/San Carlos	SBT	882	1252	11.33	747	939	960
	SBR	25	149	13.29	21	32	23
	EBT	150	115	3.04	132	169	148
	EBR	25	54	4.61	22	30	23
	SBL	54	84	3.61	39	65	57
4th/Williams	SBT	964	1273	9.24	839	997	1055
	SBR	14	55	6.98	14	13	16
	WBL	19	66	7.21	16	25	16
	WBT	116	123	0.64	125	108	114
	EBT	72	101	3.12	56	81	79
	EBR	52	38	2.09	40	58	57
	SBL	179	229	3.50	162	173	202
4th/San Salvador	SBT	809	1254	13.86	702	852	872
	SBR	46	125	8.54	32	61	44
	WBL	177	196	1.39	156	169	206
	WBT	166	208	3.07	153	167	179
	EBT	113	151	3.31	101	117	122
	EBR	328	276	2.99	273	364	346
	SBL	145	242	6.97	112	154	169
4th/Reed	SBT	765	989	7.56	667	810	817
	SBR	173	263	6.10	167	141	210
	WBL	166	207	3.00	138	203	157
	WBT	516	399	5.47	446	550	552

Intersection	Movement Direction	Simulation	Actual	GEH Statistic	Seed 1	Seed 4	Seed 7
		62	N/A		63	59	64
	EBT	605	884	10.23	517	651	647
	EBR	248	268	1.25	203	261	279
Almaden/Santa Clara	SBL	10	30	4.47	8	10	12
(W)	SBT	227	191	2.49	198	227	255
	SBR	61	76	1.81	52	63	68
	WBT	398	472	3.55	325	438	430
		55	N/A		46	57	61
	NBL	121	92	2.81	84	132	146
	NBT	148	194	3.52	113	143	188
	NBR	40	95	6.69	30	35	55
Almaden/Santa Clara	EBL	67	101	3.71	66	65	70
(E)	EBT	545	806	10.04	459	592	585
	WBL	113	118	0.47	94	121	124
	WBT	329	385	2.96	289	363	336
	WBR	113	111	0.19	94	125	119
	NBL	2	21	5.60	1	2	4
	NBT	170	275	7.04	108	165	237
	NBR	70	123	5.40	40	86	85
	EBL	26	27	0.19	16	34	27
	EBT	146	107	3.47	119	156	163
Almaden/San Fer-	EBR	84	162	7.03	66	96	89
nando	SBL	70	101	3.35	64	81	64
	SBT	491	499	0.36	400	504	568
	SBR	24	10	3.40	20	23	28
	WBL	97	256	11.97	67	116	107
	WBT	113	148	3.06	103	136	101
	WBR	34	46	1.90	42	32	29

Intersection	Movement Direction	Simulation	Actual	GEH Statistic	Seed 1	Seed 4	Seed
	NBL	60	58	0.26	54	54	73
	NBT	163	183	1.52	120	153	216
	NBR	17	17	0.00	13	20	17
	EBL	102	95	0.71	73	116	118
	EBT	84	75	1.01	70	95	86
Almondon /Donk	EBR	89	148	5.42	78	102	88
Almaden/Park	SBL	28	39	1.90	22	28	35
	SBT	597	887	10.65	518	652	620
	SBR	111	106	0.48	89	127	118
	WBL	135	195	4.67	103	151	152
	WBT	180	154	2.01	150	184	206
	WBR	23	55	5.12	14	26	30
	NBL	36	61	3.59	34	36	38
	NBT	198	196	0.14	164	213	217
	NBR	110	61	5.30	84	118	127
	EBL	90	116	2.56	71	95	103
	EBT	466	458	0.37	425	499	473
	EBR	112	142	2.66	103	104	130
Imaden/San Carlos	SBL	111	137	2.33	100	120	115
	SBT	633	1102	15.92	552	699	649
	SBR	70	63	0.86	60	74	77
	WBL	82	98	1.69	76	76	92
	WBT	170	232	4.37	164	168	177
	WBR	83	68	1.73	61	80	109
	NBL	56	36	2.95	49	54	64
	NBT	306	175	8.45	240	346	331
	NBR	83	63	2.34	76	84	89
	EBL	41	25	2.79	32	55	37
	EBT	134	184	3.97	111	140	152
	EBR	193	224	2.15	160	230	189
Almaden/Woz Way	SBL	69	110	4.33	51	75	81
	SBT	739	1179	14.21	633	795	788
	SBR	12	14	0.55	7	10	18
	WBL	75	168	8.44	57	87	80
	WBT	64	45	2.57	52	70	70
	WBR	36	47	1.71	41	29	37

Intersection	Movement Direction	Simulation	Actual	GEH Statistic
	NBL	44	69	3.33
	NBT	182	225	3.01
	NBR	9	80	10.64
	EBL	30	65	5.08
	EBT	239	591	17.28
Markat/Canta Clara	EBR	33	93	7.56
Market/Santa Clara	SBL	94	161	5.93
	SBT	461	820	14.19
	SBR	53	109	6.22
	WBL	13	78	9.64
	WBT	369	400	1.58
	WBR	45	81	4.54
	NBL	39	32	1.17
	NBT	179	226	3.30
	NBR	25	34	1.66
	EBL	30	37	1.21
	EBT	151	234	5.98
	EBR	54	129	7.84
Market/San Fernando	SBL	33	98	8.03
	SBT	574	918	12.59
	SBR	18	49	5.36
	WBL	46	54	1.13
	WBT	109	177	5.69
	WBR	19	54	5.79
	NBL	79	112	3.38
	NBT	219	246	1.77
	NBR	9	15	1.73
	EBL	72	67	0.60
	EBT	237	270	2.07
Market/San Carlos	EBR	116	188	5.84
	SBL	32	62	4.38
	SBT	544	938	14.47
	SBR	59	108	5.36
	WBT	117	169	4.35

Intersection	Movement Direction	Simulation	Actual	GEH Statistic
	NBL	44	86	5.21
	NBT	110	289	12.67
	NBR	14	174	16.50
	EBL	17	74	8.45
	EBT	238	749	23.00
2rd/Canta Clara	WBT	4	N/A	N/A
3rd/Santa Clara	WBR	0	N/A	N/A
	EBR	41	N/A	N/A
	SBL	3	N/A	N/A
	SBT	0	N/A	N/A
	SBR	372	483	5.37
	WBL	52	67	1.94
	NBL	49	80	3.86
	NBT	234	489	13.41
	NBR	32	255	18.62
	EBL	4	67	10.57
	EBT	105	223	9.21
	EBR	8	N/A	N/A
3rd/San Fernando	SBL	0	N/A	N/A
	SBT	51	N/A	N/A
	SBR	3	N/A	N/A
	WBL	0	N/A	N/A
	WBT	108	226	9.13
	WBR	5	85	11.93
	NBL	49	65	2.12
	NBT	294	501	10.38
	NBR	42	89	5.81
	EBL	117	176	4.87
	EBT	86	76	1.11
	EBR	4	N/A	N/A
3rd/San Carlos	SBL	11	N/A	N/A
	SBT	79	N/A	N/A
	SBR	12	N/A	N/A
	WBL	0	N/A	N/A
	WBT	29	72	6.05
	WBR	57	71	1.75

Intersection	Movement Direction	Simulation	Actual	GEH Statistic
	NBL	10	36	5.42
	NBT	77	N/A	N/A
	SBT	290	412	6.51
	NBR	25	31	1.13
	EBL	57	55	0.27
Ord (Core Colvedor	EBT	89	107	1.82
3rd/San Salvador	EBR	0	N/A	N/A
	SBL	7	N/A	N/A
	SBR	1	N/A	N/A
	WBL	0	N/A	N/A
	WBT	119	172	4.39
	WBR	42	136	9.96
	NBL	30	22	1.57
	NBT	183	278	6.26
	NBR	214	201	0.90
	EBL	29	28	0.19
3rd/Reed	EBT	256	219	2.40
	SBL	43	N/A	N/A
	SBR	8	N/A	N/A
	WBT	449	554	4.69
	WBR	111	148	3.25
	NBL	5	N/A	N/A
	NBT	50	N/A	N/A
	NBR	0	N/A	N/A
	EBL	21	N/A	N/A
	EBT	175	705	25.27
1th/Canta Clara	EBR	66	66	0.00
4th/Santa Clara	SBL	0	151	17.38
	SBT	113	805	32.30
	SBR	0	114	15.10
	WBL	58	114	6.04
	WBT	419	430	0.53
	WBR	0	N/A	N/A

Intersection	Movement Direction	Simulation	Actual	GEH Statisti
	NBL	0	N/A	N/A
	NBT	56	N/A	N/A
	NBR	28	N/A	N/A
	EBL	3	N/A	N/A
	EBT	86	286	14.66
4th/San Fernando	EBR	28	194	15.76
40/3an Femanuo	SBL	0	109	14.76
	SBT	278	990	28.28
	SBR	6	112	13.80
	WBL	66	212	12.38
	WBT	107	193	7.02
	WBR	0	N/A	N/A
	NBL	0	N/A	N/A
	SBR	87	N/A	N/A
4th/San Carlos	EBL	20	N/A	N/A
411/5811 Carlos	EBR	86	159	6.60
	SBT	344	1252	32.14
	SBR	84	149	6.02
	NBL	0	N/A	N/A
	NBT	42	N/A	N/A
	NBR	0	N/A	N/A
	EBL	11	N/A	N/A
	EBT	153	115	3.28
4th/Williams	EBR	26	54	4.43
401/001118	SBL	10	84	10.79
	SBT	502	1273	25.88
	SBR	6	55	8.87
	WBL	25	66	6.08
	WBT	79	123	4.38
	WBR	6	N/A	N/A
	NBL	0	N/A	N/A
	NBT	58	N/A	N/A
	NBR	0	N/A	N/A
	EBL	15	N/A	N/A
	EBT	61	101	4.44
Ath/Con Solvador	EBR	51	38	1.95
4th/San Salvador	SBL	30	229	17.49
	SBT	339	1254	32.42
	SBR	37	125	9.78
	WBL	124	208	6.52
	WBT	124	196	5.69

Intersection	Movement Direction	Simulation	Actual	GEH Statistic
	EBL	6	N/A	N/A
	EBT	118	151	2.85
	EBR	389	276	6.20
	SBL	71	242	13.67
4th/Reed	SBT	432	989	20.90
	SBR	160	263	7.08
	WBL	177	207	2.17
	WBT	404	399	0.25
	WBR	21	N/A	N/A
	EBT	339	884	22.04
	EBR	132	268	9.62
Alexandres (Original Olawa (IAI)	SBL	23	30	1.36
Almaden/Santa Clara (W)	SBT	183	191	0.59
	SBR	58	76	2.20
	WBT	376	472	4.66
	NBL	87	92	0.53
	NBT	136	194	4.52
	NBR	11	95	11.54
	EBL	78	101	2.43
Almaden/Santa Clara €	EBT	277	806	22.73
	WBL	85	118	3.28
	WBT	283	385	5.58
	WBR	108	111	0.29
	NBL	3	21	5.20
	NBT	131	275	10.11
	NBR	55	123	7.21
	EBL	21	27	1.22
	EBT	110	107	0.29
	EBR	67	162	8.88
Almaden/San Fernando	SBL	50	101	5.87
	SBT	344	499	7.55
	SBR	10	10	0.00
	WBL	93	256	12.34
	WBT	116	148	2.79

Intersection	Movement Direction	Simulation	Actual	GEH Statistic
	NBL	54	58	0.53
	NBT	163	183	1.52
	NBR	18	17	0.24
	EBL	0	95	13.78
	EBT	11	75	9.76
Alexada a /Davis	EBR	10	148	15.53
Almaden/Park	SBL	26	39	2.28
	SBT	569	887	11.79
	SBR	71	106	3.72
	WBL	134	195	4.76
	WBT	126	154	2.37
	WBR	30	55	3.83
	NBL	42	61	2.65
	NBT	164	196	2.39
	NBR	99	61	4.25
	EBL	69	116	4.89
	EBT	355	458	5.11
	EBR	80	142	5.88
Almaden/San Carlos	SBL	57	137	8.12
	SBT	610	1102	16.82
	SBR	63	63	0.00
	WBL	62	98	4.02
	WBT	162	232	4.99
	WBR	77	68	1.06
	NBL	47	36	1.71
	NBT	234	175	4.13
	NBR	57	63	0.77
	EBL	49	25	3.95
	EBT	97	184	7.34
Almadan (Mar Mar	EBR	224	224	0.00
Almaden/Woz Way	SBL	57	110	5.80
	SBT	707	1179	15.37
	SBR	8	14	1.81
	WBL	70	168	8.98
	WBT	57	45	1.68

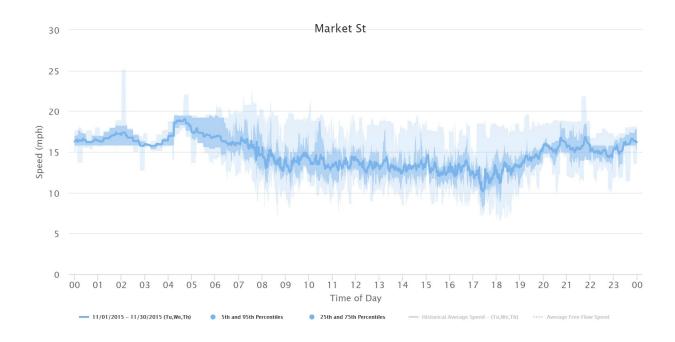
APPENDIX C: NETWORK EVALUATION PERFORMANCE MEASURES

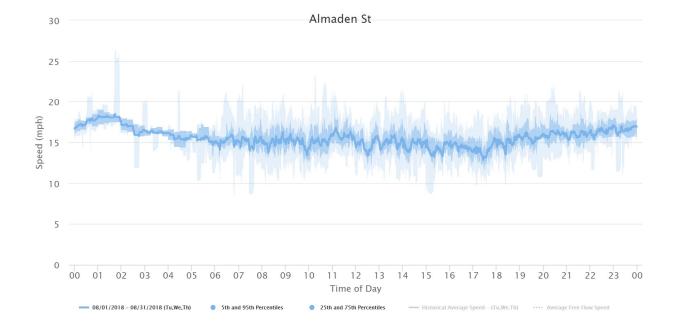
				Ne	twork						
	Existing Baseline	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
Number of Vehicles	15,250	15,274	15,123	15,171	15,252	15,586	15,242	15,387	14,876	15,337	14,161
Total Travel Time (h)	9,325,456	9,144,229	9,179,212	9,457,626	9,057,988	9,403,192	9,565,522	8,953,946	9,765,196	9,402,190	9,753,426
Total Distance (mi)	16,647	16,699	16,583	16,474	16,672	16,998	16,562	16,875	16,204	16,751	15,677
Total Delay (h)	5,171,654	4,972,059	5,043,151	5,342,906	4,894,770	5,139,563	5,448,645	4,755,920	5,729,112	5,218,762	5,839,475
				Per	Vehicle						
	Existing Baseline	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
Average Speed (mph)	6.4	6.6	6.5	6.3	6.6	6.5	6.2	6.8	6.0	6.4	5.8
Average Delay (s)	285.9	275.0	282.1	294.5	272.5	280.0	300.7	263.4	317.8	287.2	330.8
Average Number of Stops	6.2	6.0	6.4	6.5	6.1	6.3	6.3	5.9	6.3	6.3	6.0
Average Stop Delay (s)	157.4	152.6	154.0	165.2	141.2	145.9	172.3	139.1	193.9	152.4	205.6
				Ne	twork						
	Almaden	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
Number of Vehicles	15,177	14,788	15,337	15,345	15,240	15,316	15,452	15,147	15,267	14,917	15,222
Total Travel Time (h)	9,264,036	9,246,354	9,131,078	9,002,356	9,465,632	8,993,877	9,312,797	9,449,477	9,155,768	9,410,976	9,325,102
Total Distance (mi)	16,531	16,238	16,766	16,741	16,482	16,666	16,825	16,418	16,671	16,238	16,562
Total Delay (h)	5,137,334	5,189,846	4,947,629	4,827,375	5,350,491	4,834,328	5,090,650	5,365,567	5,001,494	5,354,637	5,194,021
				Per	Vehicle						
	Almaden	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
Average Speed (mph)	6.4	6.3	6.6	6.7	6.3	6.7	6.5	6.3	6.6	6.2	6.4
Average Delay (s)	285.1	290.6	272.8	268.1	294.3	269.2	279.3	297.7	278.1	297.6	290.9
Average Number of Stop	os 6.4	6.1	6.2	6.3	6.7	6.2	6.4	6.4	6.3	6.4	6.7
Average Stop Delay (s)) 174.0	171.0	148.2	139.9	161.9	138.6	146.1	172.1	150.0	166.1	159.8

				Ne	etwork						
	Almaden plus 5% Demand	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
Number of Vehicles	15,527	15,385	15,532	15,441	15,706	14,968	15,973	15,243	15,584	15,663	15,776
Total Travel Time (h)	10,031,002	10,114,041	9,689,818	10,073,770	9,530,102	10,547,546	9,934,489	10,481,100	9,835,387	9,862,602	10,241,164
Total Distance (mi)	16,937	16,855	16,960	16,748	16,997	16,575	17,356	16,790	17,055	17,018	17,013
Total Delay (h)	5,799,015	5,899,757	5,451,437	5,887,399	5,279,649	6,385,346	5,574,348	6,304,735	5,583,058	5,619,505	6,004,922
				Per	Vehicle						
	Almaden plus 5% Demand	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
Average Speed (mph)	6.1	6.0	6.3	6.0	6.4	5.7	6.3	5.8	6.2	6.2	6.0
Average Delay (s)	310.7	314.8	294.6	317.0	285.4	341.3	293.5	337.7	299.9	303.8	319.4
Average Number of Stops	6.8	6.7	6.7	7.0	6.6	6.6	6.8	7.1	6.6	6.9	7.1
Average Stop Delay (s)	173.9	184.2	160.5	178.9	147.9	205.6	154.4	197.1	167.4	166.6	176.5

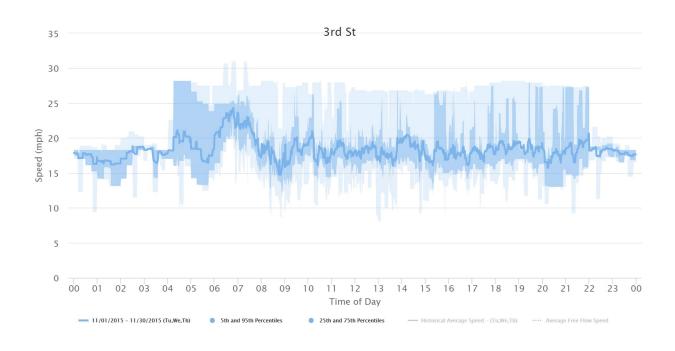
	Network			
	Almaden plus 10% Demand	Seed 1	Seed 4	Seed 7
Number of Vehicles	14,801	12,832	15,685	15,887
Total Travel Time (h)	9,949,705	8,809,378	10,689,781	10,349,95
Total Distance (mi)	16,142	14,009	17,152	17,266
Total Delay (h)	5,901,180	5,278,483	6,393,010	6,032,048
	Per Vehicle			
	Almaden plus 10% Demand	Seed 1	Seed 4	Seed 7
Average Speed (mph)	5.8	5.7	5.8	6.0
Average Delay (s)	326.5	329.5	332.4	317.6
Average Number of Stops	7.1	7.0	7.1	7.1
Average Stop Delay (s)	186.2	188.9	194.3	175.3
	Network			
	3rd and 4th Co	nversion minu Seed 1	ıs 20% Deman	d
Number of Vehicles		11,021		
Total Travel Time (h)		8,393,658		
Total Distance (mi)		11,960		
Total Delay (h)		5,422,056		
	Per Vehicle			
	3rd and 4th Co	nversion minu Seed 1	ıs 20% Deman	d
Average Speed (mph)		5.1		
Average Delay (s)		387.5		
Average Number of Stops		5.9		
Average Stop Delay (s)		291.2		

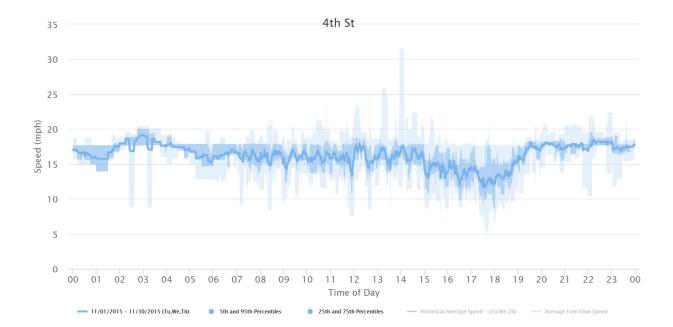
APPENDIX D: TRAVEL-TIME

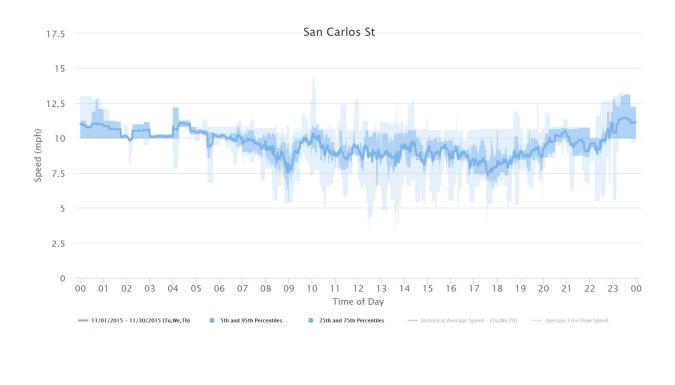

Travel Time Corridors	Existing Base- line (min)	Google Range (min)	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
EB Santa Clara Street	6.9	4–12	6.8	6.6	6.6	6.4	7.4	7.1	7.4	7.1	6.7	6.8
WB Santa Clara Street	5.9	2–8	6.0	5.6	6.0	6.1	5.9	5.8	5.8	5.6	6.1	5.7
NB Market Street	6.1	3–9	4.8	5.8	6.5	5.5	6.0	8.9	5.1	6.2	6.1	5.7
SB Market Street	8.7	4–12	9.8	8.5	8.8	8.3	9.2	8.5	8.0	8.3	8.9	8.2
NB 3rd Street	6.2	2–7	5.6	5.6	8.0	5.2	6.0	8.9	5.6	5.7	5.4	5.7
SB 4th Street	12.3	3–8	12.0	13.3	12.5	11.5	10.5	12.8	11.7	14.6	12.2	13.4
EB San Fernando Street	13.7	5	13.9	14.4	11.8	11.4	12.5	14.8	10.8	21.7	12.2	12.8
WB San Fernando Street	7.1	3–6	7.3	7.6	7.3	6.7	7.2	6.3	7.6	7.2	7.0	6.0
NB Almaden	5.0	2–6	5.6	5.4	6.3	4.0	4.2	4.0	4.3	6.7	4.5	4.7
SB Almaden	8.7	2–8	7.9	8.5	10.4	9.4	8.3	8.5	8.1	7.5	10.0	10.4
Travel Time Corridors	Almaden Con-	Google Range	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
	version (min)	(min)	0000		0000					0000 22	0000 20	0000 20
EB Santa Clara Street	6.6	-	6.5	6.3	6.3	6.4	6.5	7.1	6.2	7.2	6.4	7.1
EB Santa Clara Street WB Santa Clara Street		(min)					6.5 5.9	7.1 5.8	6.2 5.6			
	6.6	(min) 4–12	6.5	6.3	6.3	6.4				7.2	6.4	7.1
WB Santa Clara Street	6.6 5.8	(min) 4–12 2–8	6.5 5.8	6.3 6.1	6.3 5.7	6.4 5.7	5.9	5.8	5.6	7.2	6.4 5.7	7.1
WB Santa Clara Street NB Market Street	6.6 5.8 6.1	(min) 4–12 2–8 3–9	6.5 5.8 6.2	6.3 6.1 5.5	6.3 5.7 5.4	6.4 5.7 6.4	5.9 5.4	5.8 5.3	5.6 9.2	7.2 5.6 5.1	6.4 5.7 5.8	7.1 5.9 6.6
WB Santa Clara Street NB Market Street SB Market Street	6.6 5.8 6.1 8.5	(min) 4–12 2–8 3–9 4–12	6.5 5.8 6.2 8.3	6.3 6.1 5.5 9.7	6.3 5.7 5.4 8.3	6.4 5.7 6.4 8.7	5.9 5.4 8.2	5.8 5.3 8.7	5.6 9.2 8.5	7.2 5.6 5.1 7.8	6.4 5.7 5.8 8.1	7.1 5.9 6.6 9.1
WB Santa Clara Street NB Market Street SB Market Street NB 3rd Street	6.6 5.8 6.1 8.5 6.1	(min) 4–12 2–8 3–9 4–12 2–7	6.5 5.8 6.2 8.3 6.2	6.3 6.1 5.5 9.7 5.8	6.3 5.7 5.4 8.3 5.3	6.4 5.7 6.4 8.7 6.3	5.9 5.4 8.2 5.5	5.8 5.3 8.7 5.9	5.6 9.2 8.5 7.9	7.2 5.6 5.1 7.8 5.8	6.4 5.7 5.8 8.1 5.9	7.1 5.9 6.6 9.1 6.9
WB Santa Clara Street NB Market Street SB Market Street NB 3rd Street SB 4th Street	6.6 5.8 6.1 8.5 6.1 12.2	(min) 4–12 2–8 3–9 4–12 2–7 3–8	6.5 5.8 6.2 8.3 6.2 12.1	6.3 6.1 5.5 9.7 5.8 11.7	6.3 5.7 5.4 8.3 5.3 11.8	6.4 5.7 6.4 8.7 6.3 12.8	5.9 5.4 8.2 5.5 11.2	5.8 5.3 8.7 5.9 11.3	5.6 9.2 8.5 7.9 13.1	7.2 5.6 5.1 7.8 5.8 12.3	6.4 5.7 5.8 8.1 5.9 12.8	7.1 5.9 6.6 9.1 6.9 12.2
WB Santa Clara Street NB Market Street SB Market Street NB 3rd Street SB 4th Street EB San Fernando Street	6.6 5.8 6.1 8.5 6.1 12.2 13.4	(min) 4–12 2–8 3–9 4–12 2–7 3–8 5	6.5 5.8 6.2 8.3 6.2 12.1 13.5	6.3 6.1 5.5 9.7 5.8 11.7 12.8	6.3 5.7 5.4 8.3 5.3 11.8 15.0	6.4 5.7 6.4 8.7 6.3 12.8 12.6	5.9 5.4 8.2 5.5 11.2 11.3	5.8 5.3 8.7 5.9 11.3 13.9	5.6 9.2 8.5 7.9 13.1 15.3	7.2 5.6 5.1 7.8 5.8 12.3 14.2	6.4 5.7 5.8 8.1 5.9 12.8 13.1	7.1 5.9 6.6 9.1 6.9 12.2 13.2

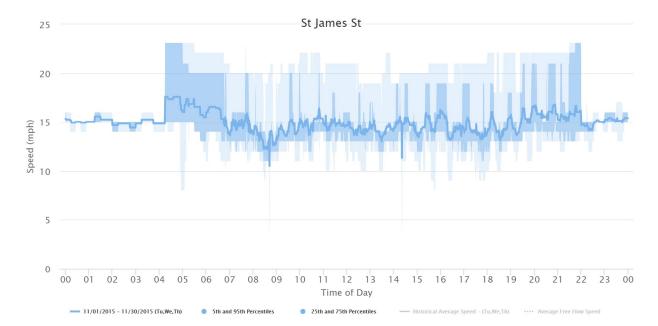

Travel Time Corridors	Almaden Con- version plus 5% Demand (min)	Google Range (min)	Seed 1	Seed 4	Seed 7	Seed 10	Seed 13	Seed 16	Seed 19	Seed 22	Seed 25	Seed 28
EB Santa Clara Street	7.4	4–12	6.5	7.0	6.9	6.5	8.2	7.8	6.9	7.9	6.9	9.4
WB Santa Clara Street	5.8	2–8	5.9	6.1	5.5	6.1	5.7	5.7	5.5	5.7	5.6	6.2
NB Market Street	6.5	3–9	4.7	4.8	6.6	5.7	5.9	7.7	7.3	7.9	5.8	8.3
SB Market Street	8.7	4–12	10.3	8.5	9.2	8.2	8.5	8.7	8.3	7.8	8.3	9.7
NB 3rd Street	6.9	2–7	7.2	5.5	6.9	5.5	7.0	5.8	11.1	6.0	7.7	5.8
SB 4th Street	13.1	3–8	13.1	13.7	14.1	11.4	13.3	11.6	13.9	13.0	13.0	13.7
EB San Fernando Street	14.5	5	12.7	14.9	13.9	12.5	16.1	12.4	17.1	14.9	14.0	16.0
WB San Fernando Street	7.0	3–6	6.9	7.1	6.5	6.9	6.8	7.5	6.8	7.3	7.7	6.7
NB Almaden	4.6	2–6	4.1	4.6	4.0	4.2	5.2	4.2	5.0	4.2	6.5	4.3
SB Almaden	9.4	2–8	8.5	8.4	10.2	9.1	10.2	9.0	8.6	11.6	10.5	8.4

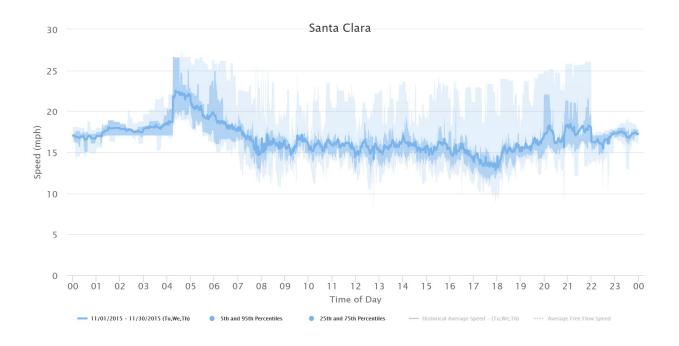
Travel Time Corridors	Almaden Conversion plus 10% Demand (min)	Google Range (min)	Seed 1	Seed 4	Seed 7
EB Santa Clara Street	7.6	4–12	7.1	7.5	8.2
WB Santa Clara Street	6.1	2–8	6.0	6.3	5.9
NB Market Street	5.7	3–9	5.8	5.4	5.8
SB Market Street	8.7	4–12	8.6	9.2	8.3
NB 3rd Street	6.1	2–7	6.3	6.4	5.7
SB 4th Street	13.5	3–8	13.7	13.6	13.1
EB San Fernando Street	16.5	5	18.5	14.0	16.9
WB San Fernando Street	7.2	3–6	6.7	7.4	7.5
NB Almaden	4.5	2–6	4.3	4.6	4.8
SB Almaden	9.4	2–8	9.4	8.9	9.8


Travel Time Corridors	3rd and 4th Conversion minus 20% Demand (min) Seed 1	Google Range (min)
EB Santa Clara Street	20.4	4–12
WB Santa Clara Street	5.5	2–8
NB Market Street	5.0	3–9
SB Market Street	9.7	4–12
NB 3rd Street	10.9	2–7
SB 3rd Street	5.2	N/A
NB 4th Street	N/A	N/A
SB 4th Street	N/A	3–8
EB San Fernando Street	17.3	5
WB San Fernando Street	6.2	3–6
NB Almaden	3.7	2–6
SB Almaden	5.4	2–8


APPENDIX E: SPEED DATA






Appendix E: Speed Data

APPENDIX F: PEAK HOUR TRAFFIC COUNTS

Nede	Interpotion	Deried	Deek Herr	N	orthbou	nd	E	astbour	nd	So	outhbou	nd	W	estbou	nd	Count
Node	Intersection	Period	Peak Hour	L	Т	R	L	т	R	L	т	R	L	т	R	Date
3249	ALMADEN /PARK	PM	5:00-6:00	162	352	107	90	582	380	101	1160	66	266	334	36	10/18/16
3061	ALMADEN /SAN CARLOS	PM	5:00-6:00	107	198	22	48	351	253	65	920	108	0	187	32	10/18/16
3251	ALMADEN/SAN FERNANDO	PM	4:45-5:45	36	175	63	25	184	224	110	1179	14	168	45	47	10/25/16
3252	ALMADEN/SANTA CLARA (E)	PM	5:00-6:00	21	275	123	27	107	162	101	499	10	256	148	46	5/5/15
3253	ALMADEN/SANTA CLARA (W)	PM	5:00-6:00	0	0	0	0	143	173	85	404	56	95	128	0	5/5/15
3244	ALMADEN/WOZ	PM	5:00-6:00	81	131	186	0	207	52	35	246	32	134	363	0	5/12/15
4087	BALBACH/MARKET	PM	5:00-6:00	26	103	37	81	321	78	0	0	0	0	206	24	12/6/16
3077	BIRD/SAN CARLOS	PM	5:00-6:00	6	119	34	11	68	5	17	28	34	12	107	67	10/14/14
3513	FIRST /SANTA CLARA	PM	5:00-6:00	72	120	72	65	793	0	0	0	0	0	540	38	3/4/14
3506	FIRST/REED	PM	4:30-5:30	68	198	16	210	598	64	174	333	187	11	412	32	5/12/15
3510	FIRST/SAN CARLOS	PM		0	0	0	0	0	159	0	1252	149	0	0	0	5/12/15
3511	FIRST/SAN FERNANDO	PM	5:00-6:00	0	0	0	0	613	212	96	730	97	163	414	0	5/25/17
3512	FIRST/SAN SALVADOR	PM	4:50-5:50	0	0	0	0	705	175	151	805	114	155	430	0	2/25/14
3537	FOURTH /REED	PM	4:15–5:15	34	88	29	51	653	60	121	550	47	55	346	30	2/18/16
3538	FOURTH /SAN CARLOS	PM	5:00-6:00	0	0	0	155	78	384	106	903	0	0	0	0	5/19/15
3540	FOURTH /SAN SALVADOR	PM	4:30-5:30	108	365	0	0	0	0	0	492	5	430	286	158	5/19/15
3545	FOURTH /WILLIAM	PM	4:30-5:30	131	281	43	71	565	88	184	861	166	0	0	0	2/27/18
3539	FOURTH/SAN FERNANDO	PM	5:00-6:00	84	325	64	9	163	276	4	303	24	20	115	10	9/12/17
3541	FOURTH/SANTA CLARA	PM	5:00-6:00	0	0	0	0	222	139	49	564	107	72	122	0	11/3/16
3107	MARKET /SAN CARLOS	PM	5:00-6:00	80	489	255	67	223	0	0	0	0	0	226	85	2/25/14
3669	MARKET /SAN SALVADOR	PM	5:00-6:00	36	412	31	55	107	0	0	0	0	0	172	136	5/12/15
3667	MARKET/SAN FERNANDO	PM	4:45–5:45	0	0	0	0	714	139	55	267	74	106	494	0	3/4/14
3670	MARKET/SANTA CLARA	PM	4:45–5:45	0	250	344	257	263	218	408	610	0	0	0	0	3/17/16
3671	MARKET/ST JAMES	PM	5:00-6:00	29	225	69	7	279	192	10	123	6	27	111	13	11/9/16
3731	PARK/WOZ	PM	5:00-6:00	27	1337	85	44	134	0	0	0	0	0	75	337	9/12/17
3750	REED/SECOND	PM	5:00-6:00	20	36	24	34	695	33	136	153	17	33	374	17	10/20/16
3751	REED/SEVENTH	PM	5:00-6:00	1	202	0	0	0	0	0	904	665	36	291	114	5/19/15

Node	Intersection	Period	Peak Hour	Northbound			Eastbound			Southbound			Westbound			Count
				L	т	R	L	т	R	L	Т	R	L	т	R	Date
3753	REED/THIRD	PM	5:00-6:00	35	194	0	74	0	330	0	1216	48	0	0	0	10/28/15
3766	SAN CARLOS /THIRD	PM	4:45–5:45	71	112	51	49	159	83	20	28	35	22	132	48	11/9/16
3764	SAN CARLOS/SECOND	PM	5:00-6:00	57	220	25	112	94	166	53	860	105	195	133	60	2/13/13
3763	SAN CARLOS/WOZ	PM	5:00–6:00	70	229	14	103	64	112	31	739	110	181	138	37	2/6/13
3770	SAN FERNANDO/SECOND	PM	5:00-6:00	21	251	146	29	105	139	111	454	22	280	154	55	2/13/13
3773	SAN FERNANDO/THIRD	PM	5:00-6:00	55	269	130	34	101	163	97	443	43	264	152	47	2/5/13
3779	SAN SALVADOR/SECOND	PM	5:00-6:00	0	0	0	0	884	268	30	191	76	0	472	0	3/12/13
4111	SAN SALVADOR/SEVENTH	PM	5:00-6:00	99	314	72	0	0	184	51	1313	88	297	0	117	7/17/13
3781	SAN SALVADOR/THIRD	PM	5:00-6:00	0	0	0	0	268	178	88	978	113	214	180	0	3/19/13
3785	SANTA CLARA/10TH	PM	5:00-6:00	0	0	0	0	74	47	194	1205	115	158	218	0	3/19/13
3782	SANTA CLARA/SECOND	PM	5:00-6:00	0	0	0	0	115	54	84	1273	55	66	123	0	3/12/13
3786	SANTA CLARA/THIRD	PM	5:00-6:00	3	273	45	7	3	17	67	1009	32	76	9	68	3/20/13
3797	SECOND/WILLIAM	PM	4:45–5:45	0	0	0	0	85	35	90	482	71	63	130	0	10/17/13
3805	SEVENTH/WILLIAM	PM	5:00-6:00	0	0	0	0	106	44	65	492	32	61	62	0	10/17/13
3827	THIRD/WILLIAM	PM	5:00-6:00	27	361	52	25	123	0	0	0	0	0	89	66	3/12/13

APPENDIX G: VEHICLE ROUTES ADJUSTED FOR ALMADEN CONVERSION

Adjusted Routes
1–19
7–36
8–36
13–16
13–28
13–31
13–35
17–35
18–34
22–34
23–34
27–32
35–34
37–34
40–34
50–26
51–34
66–18
66–30
66–7
68–13
70–13
70–15
70–16
70–50
70–51
70–68
70–88
72–12
72–13
72–53
73–15
73–16
73–41
73–42
73–74
73–9
74–24

Adjusted Routes
75–57
76–112
76–19
76–21
76–22
76–62
76–65
77–54
66–5
67–9
70–12
70–14
71–8
71–9
74–20
74–21
74–22
76–18

- 1. "Introduction to Complete Streets."
- 2. "Transportation For America Future of Transportation National Survey (2010)."
- 3. Childress, "How Transit Agencies Can Improve the Public Involvement Process to Deliver Better Transportation Solutions."
- 4. "Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU)"; Cheu et al., "Public Preferences on the Use of Visualization in the Public Involvement Process in Transportation Planning."
- 5. Cheu et al., "Public Preferences on the Use of Visualization in the Public Involvement Process in Transportation Planning."
- 6. Bureau, American Community Survey.
- 7. Bureau.
- 8. Ehrenfeucht and Loukaitou-Sideris, "Planning Urban Sidewalks."
- 9. Lieberman and Rathi, "Traffic Simulation."
- 10. Yang, Koutsopoulos, and Ben-Akiva, "Simulation Laboratory for Evaluating Dynamic Traffic Management Systems."
- 11. Rousseau et al., "An Implementation Framework for Integrating Regional Planning Model with Microscopic Traffic Simulation."
- 12. Rousseau et al.
- 13. Lieberman and Rathi, "Traffic Simulation."
- 14. Luk, Stewart, and Walsh, "Microsimulation Traffic Models-Usage, Limitations and Applications."
- 15. Park, Yun, and Choi, "Evaluation of Microscopic Simulation Tools for Coordinated Signal System Deployment."
- 16. "Paramics Microsimulation."
- 17. Choa, Milam, and Stanek, "Corsim, Paramics, and Vissim."
- 18. "Trafficware, a CUBIC Company A Tradition of Innovation."
- 19. "PTV Vissim."

- 20. Vision, "VISSIM 7, User Manual."
- 21. HCM, *HCM 2000*.
- 22. Lieberman and Rathi, "Traffic Simulation."
- 23. Jha et al., "Development and Calibration of a Large-Scale Microscopic Traffic Simulation Model."
- 24. Jha et al.
- 25. Bartin et al., "Calibration and Validation of Large-Scale Traffic Simulation Networks."
- 26. Edara, Sharma, and McGhee, "Development of a Large-Scale Traffic Simulation Model for Hurricane Evacuation—Methodology and Lessons Learned."
- 27. Officials, Urban Street Design Guide.
- 28. Le Vine, "How Overwhelming Is the Evidence in Favor of Road Diets?"
- 29. Officials, Urban Street Design Guide.
- 30. "Road Diets (Roadway Reconfiguration) Safety | Federal Highway Administration."
- 31. Noland et al., "Costs and Benefits of a Road Diet Conversion."
- 32. Knapp et al., "Road Diet Informational Guide."
- 33. Litman, Toward More Comprehensive and Multi-Modal Transport Evaluation.
- 34. Nixon, Agrawal, and Simons, "Designing Road Diet Evaluations."
- 35. "Road Diets (Roadway Reconfiguration) Safety | Federal Highway Administration."
- 36. "One-Way/Two-Way Street Conversions."
- 37. "One-Way/Two-Way Street Conversions."
- 38. Sisiopiku and Chemmannur, "Conversion of One-Way Street Pairs to Two-Way Operations in Downtown Birmingham."
- 39. Chiu, Zhou, and Hernandez, "Evaluating Urban Downtown One-Way to Two-Way Street Conversion Using Multiple Resolution Simulation and Assignment Approach."
- 40. Nixon, Agrawal, and Simons, "Designing Road Diet Evaluations."
- 41. "Introduction to Complete Streets."

- 42. Zhu and Wang, "Effects of Complete Streets on Travel Behavior and Exposure to Vehicular Emissions."
- 43. Nixon, Agrawal, and Simons, "Slimming the Streets."
- 44. Pfeifer, "The Planner's Guide to Tactical Urbanism."
- 45. Pande and Wolshon, Traffic Engineering Handbook.
- 46. Nixon, "Evaluating San José's 4th Street Pop-up Bikeway."
- 47. Nixon.
- 48. Nixon.
- 49. Nixon.
- 50. Nixon, Agrawal, and Simons, "Slimming the Streets."
- 51. Vision, "VISSIM 7, User Manual."
- 52. "VHelper."
- 53. Balakrishna et al., "Calibration of Microscopic Traffic Simulation Models."
- 54. Vision, "VISSIM 7, User Manual."
- 55. Kilbert, "A Microsimulation of Traffic, Parking, and Emissions at California Polytechnic State University-San Luis Obispo."
- 56. "Protocol for VISSIM Simulation."
- 57. "Protocol for VISSIM Simulation."
- 58. Riggs and Gilderbloom, "Two-Way Street Conversion."
- 59. "San Jose, CA Official Website Envision San José 2040 General Plan."
- 60. "Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU)."
- 61. Cheu et al., "Public Preferences on the Use of Visualization in the Public Involvement Process in Transportation Planning."
- 62. Cheu et al.
- 63. Howard and Gaborit, "Using Virtual Environment Technology to Improve Public

Participation in Urban Planning Process."

- 64. Cheu et al., "Public Preferences on the Use of Visualization in the Public Involvement Process in Transportation Planning."
- 65. Geraghty et al., "Partnership Moves Community toward Complete Streets."
- 66. Geraghty et al.
- 67. Moran et al., "Understanding the Relationships between the Physical Environment and Physical Activity in Older Adults."

BIBLIOGRAPHY

- Balakrishna, Ramachandran, Constantinos Antoniou, Moshe Ben-Akiva, Haris N.
 Koutsopoulos, and Yang Wen. "Calibration of Microscopic Traffic Simulation Models: Methods and Application." *Transportation Research Record* 1999, no. 1 (2007): 198–207.
- Bartin, Bekir, Kaan Ozbay, Jingqin Gao, and Abdullah Kurkcu. "Calibration and Validation of Large-Scale Traffic Simulation Networks: A Case Study." *Procedia Computer Science* 130 (2018): 844–849.
- City of San Jose. "San Jose, CA Official Website Envision San José 2040 General Plan." Accessed November 2, 2019. https://www.sanjoseca.gov/index. aspx?nid=1737.
- Cheu, Ruey Long, Marilyn Valdez, Srivatsava Kamatham, and Raed Aldouri. "Public Preferences on the Use of Visualization in the Public Involvement Process in Transportation Planning." *Transportation Research Record* 2245, no. 1 (2011): 17–26.
- Childress, Brandi. "How Transit Agencies Can Improve the Public Involvement Process to Deliver Better Transportation Solutions." MS Thesis, Thesis. San Jose University, 2007. Transweb. sjsu. edu. Mineta ..., 2007.
- Chiu, Yi-Chang, Xuesong Zhou, and Jessica Hernandez. "Evaluating Urban Downtown One-Way to Two-Way Street Conversion Using Multiple Resolution Simulation and Assignment Approach." *Journal of Urban Planning and Development* 133, no. 4 (2007): 222–232.
- Choa, Fred, Ronald T. Milam, and David Stanek. "Corsim, Paramics, and Vissim: What the Manuals Never Told You." In *Ninth TRB Conference on the Application of Transportation Planning MethodsTransportation Research BoardLouisiana Transportation Research CenterLouisiana Department of Transportation and DevelopmentLouisiana Planning Council*, 2004.
- Edara, Praveen, Siddharth Sharma, and Catherine McGhee. "Development of a Large-Scale Traffic Simulation Model for Hurricane Evacuation—Methodology and Lessons Learned." *Natural Hazards Review* 11, no. 4 (2010): 127–139.
- Ehrenfeucht, Renia, and Anastasia Loukaitou-Sideris. "Planning Urban Sidewalks: Infrastructure, Daily Life and Destinations." *Journal of Urban Design* 15, no. 4 (2010): 459–471.
- Geraghty, Anne B., Walt Seifert, Terry Preston, Christopher V. Holm, Teri H. Duarte, and Steve M. Farrar. "Partnership Moves Community toward Complete Streets." *American Journal of Preventive Medicine* 37, no. 6 (2009): S420–S427.

- Howard, Toby LJ, and Nicolas Gaborit. "Using Virtual Environment Technology to Improve Public Participation in Urban Planning Process." *Journal of Urban Planning and Development* 133, no. 4 (2007): 233–241.
- Smart Growth America. "Introduction to Complete Streets." Accessed November 1, 2019. https://smartgrowthamerica.org/resources/introduction-to-complete-streets/.
- Jha, Mithilesh, Ganesh Gopalan, Adam Garms, Bhanu P. Mahanti, Tomer Toledo, and Moshe E. Ben-Akiva. "Development and Calibration of a Large-Scale Microscopic Traffic Simulation Model." *Transportation Research Record* 1876, no. 1 (2004): 121–131.
- Kilbert, Steven Michael. "A Microsimulation of Traffic, Parking, and Emissions at California Polytechnic State University-San Luis Obispo." California Polytechnic State University, San Luis Obispo, 2011. http://digitalcommons.calpoly.edu/ theses/452/.
- Knapp, Keith, Brian Chandler, Jennifer Atkinson, Thomas Welch, Heather Rigdon, Richard Retting, Stacey Meekins, Eric Widstrand, and Richard J. Porter. "Road Diet Informational Guide." United States. Federal Highway Administration. Office of Safety, 2014.
- Le Vine, Scott. "How Overwhelming Is the Evidence in Favor of Road Diets? A Note on the Cost-Benefit Methodology Proposed by Noland et al.(2015)." *Case Studies on Transport Policy* 5, no. 1 (2017): 143–149.

Lieberman, Edward, and Ajay K. Rathi. "Traffic Simulation." Traffic Flow Theory, 1997.

- Litman, Todd. *Toward More Comprehensive and Multi-Modal Transport Evaluation*. Victoria Transport Policy Institute, 2012. http://newmobilitywest.org/wp-content/ uploads/2014/11/Expand-Definition-of-LOS.pdf.
- Luk, James, David Stewart, and Dennis Walsh. "Microsimulation Traffic Models-Usage, Limitations and Applications." In *Research into Practice: 22nd ARRB ConferenceARRB Group Limited*, 2006.
- Moran, Mika, Jelle Van Cauwenberg, Rachel Hercky-Linnewiel, Ester Cerin, Benedicte Deforche, and Pnina Plaut. "Understanding the Relationships between the Physical Environment and Physical Activity in Older Adults: A Systematic Review of Qualitative Studies." *International Journal of Behavioral Nutrition and Physical Activity* 11, no. 1 (July 17, 2014): 79. https://doi.org/10.1186/1479-5868-11-79.
- National Association of City Transportation Officials *Urban Street Design Guide*. Island Press, 2013.
- Nixon, Hilary. "Evaluating San José's 4th Street Pop-up Bikeway: What Does the Public Think?," 2018.

- Nixon, Hilary, Asha Weinstein Agrawal, and Cameron Simons. "Designing Road Diet Evaluations: Lessons Learned from San Jose's Lincoln Avenue Road Diet," 2017.
 - —. "Slimming the Streets: Best Practices for Designing Road Diet Evaluations." *ITE Journal* 88, no. 3 (2018).
- Noland, Robert B., Dong Gao, Eric J. Gonzales, and Charles Brown. "Costs and Benefits of a Road Diet Conversion." *Case Studies on Transport Policy* 3, no. 4 (2015): 449–458.
- "One-Way/Two-Way Street Conversions." Accessed November 2, 2019. https://safety. fhwa.dot.gov/saferjourney1/library/countermeasures/13.htm.
- Pande, Anurag, and Brian Wolshon. *Traffic Engineering Handbook*. John Wiley & Sons, 2016. https://books.google.com/books?hl=en&lr=&id=V1XKCQAAQB AJ&oi=fnd&pg=PR17&dq=Pande+and+wolshon&ots=TYiYZOzeMY&sig=T_rf3SkAbwFDtb6FV_J5Jli7Jj0.
- "Paramics Microsimulation." Accessed November 1, 2019. https://www.paramics.co.uk/ en/.
- Park, Byungkyu, Ilsoo Yun, and Keechoo Choi. "Evaluation of Microscopic Simulation Tools for Coordinated Signal System Deployment." *KSCE Journal of Civil Engineering* 8, no. 2 (2004): 239–248.
- Pfeifer, Laura. "The Planner's Guide to Tactical Urbanism." *Montereal, Canada Page*, 2013.

"Protocol for VISSIM Simulation." Washington State Department of Transportation, n.d.

- "PTV Vissim." Accessed November 1, 2019. http://vision-traffic.ptvgroup.com/en-us/ products/ptv-vissim/.
- Riggs, William, and John Gilderbloom. "Two-Way Street Conversion: Evidence of Increased Livability in Louisville." *Journal of Planning Education and Research* 36, no. 1 (2016): 105–118.
- "Road Diets (Roadway Reconfiguration) Safety | Federal Highway Administration." Accessed November 2, 2019. https://safety.fhwa.dot.gov/road_diets/.
- Rousseau, Guy, Wolfgang Scherr, Fang Yuan, and Cherry Xiong. "An Implementation Framework for Integrating Regional Planning Model with Microscopic Traffic Simulation." In *Logistics: The Emerging Frontiers of Transportation and Development in China*, 3816–3825, 2009.
- "Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU)." Accessed September 28, 2019. https://www.fhwa.dot.gov/

safetealu/.

- Sisiopiku, Virginia P., and Jugnu Chemmannur. "Conversion of One-Way Street Pairs to Two-Way Operations in Downtown Birmingham." In *Metropolitan Conference on Public Transportation Research, Chicago, Illinois*, 2008.
- "Trafficware, a CUBIC Company A Tradition of Innovation." Accessed November 1, 2019. https://www.trafficware.com/.
- "Transportation For America Future of Transportation National Survey (2010)." Accessed December 20, 2019. http://t4america.org/maps-tools/ polling/2010survey/.
- Transportation Research Board. *Highway Capacity Manual 2000*. Washington DC: Transportation Research Board, 2000.
- "VHelper." Accessed November 2, 2019. http://www.trananswers.com/vhelper/vhelper. html.
- US Census Bureau. *American Community Survey*. US Department of Commerce, Economics and Statistics Administration, US Census Bureau Washington, DC, 2010.
- Vision, P. T. V. "VISSIM 7, User Manual." PTV Vision. (2015). VISSIM 8 (2013).
- Yang, Qi, Haris N. Koutsopoulos, and Moshe E. Ben-Akiva. "Simulation Laboratory for Evaluating Dynamic Traffic Management Systems." *Transportation Research Record* 1710, no. 1 (2000): 122–130.
- Zhu, Yifang, and Rui Wang. "Effects of Complete Streets on Travel Behavior and Exposure to Vehicular Emissions," 2017, 111.

ABOUT THE AUTHORS

BERNICE LIU

Bernice Liu is a Master's degree candidate in Civil and Environmental Engineering at California Polytechnic State University, San Luis Obispo. She has a certified engineerin-training (EIT) and has interned with W-Trans (June 2017–September 2017) and WSP Global, Inc. (September 2018–December 2018).

ALIREZA SHAMS, PHD

Dr. Alireza Shams is a Lecturer in the Civil Environmental Engineering department at Cal Poly San Luis Obispo. He received his Ph.D. from Clemson University in 2018. His research interests include Civil Integrated Management (CIM), Application of new sensing technologies in Transportation, Transportation Safety, and Geographic Information System (GIS).

JONATHAN HOWARD

Jonathan Howard is a Master's degree candidate in Civil and Environmental Engineering at California Polytechnic State University, San Luis Obispo. He received in BS degree from Cal Poly and is working full-time with Caltrans District 5.

SERENA ALEXANDER, PH.D.

Serena Alexander is an Assistant Professor with the Department of Urban and Regional Planning at San José State University. Her primary research interests are in the areas of environmental planning, climate action, land-use and transportation planning, community economic development, and sustainable urban design. Before joining the SJSU faculty, Dr. Alexander conducted community economic development and environmental policy research at the Center for Economic Development and the Great Lakes Environmental Finance Center at Cleveland State University, where she also received her doctorate in Urban Studies. She holds master's degrees in Urban and Regional Planning from California State Polytechnic University, Pomona, and Architecture from Azad University of Tehran.

ALEX HUGHES

Alex Hughes is a Master of Urban and Regional Planning student at San Jose State University with research interests in policy and transportation. He holds a Bachelor's degree in Anthropology from the University of California Riverside with a dual emphasis in Cultural Anthropology and Archaeology. Currently, he works for the City of San Jose as a Planner I in the Planning, Building, and Code Enforcement Department.

ANURAG PANDE, PH.D.

Anurag Pande, Ph.D., is Professor of Civil Engineering at California Polytechnic State

University, San Luis Obispo. He also serves as the Faculty Liaison for Service-Learning and as such manages Cal Poly's outreach efforts to local and regional government and non-profit agencies.

PEER REVIEW

San José State University, of the California State University system, and the Mineta Transportation Institute (MTI) Board of Trustees have agreed upon a peer review process required for all research published by MTI. The purpose of the review process is to ensure that the results presented are based upon a professionally acceptable research protocol.

MTI FOUNDER

Hon. Norman Y. Mineta

MTI BOARD OF TRUSTEES

Founder, Honorable Norman Mineta (Ex-Officio) Secretary (ret.), US Department of Transportation

Chair. Abbas Mohaddes (TE 2021) President & COO Econolite Group Inc.

Vice Chair, Will Kempton (TE 2022) Retired

Executive Director, Karen Philbrick, PhD (Ex-Officio) Mineta Transportation Institute San José State University

Richard Anderson (Ex-Officio) President & CEO Amtrak

David Castagnetti (TE 2021) Co-Founder Mehlman Castagnetti Rosen & Thomas

Maria Cino (TE 2021) Vice President America & U.S. Government **Relations Hewlett-Packard Enterprise** **Grace Crunican*** (TE 2022) Retired

Donna DeMartino (TE 2021) General Manager & CEO San Joaquin Regional Transit District

Nuria Fernandez* (TE 2020) General Manager & CEO Santa Clara Valley Transportation Authority (VTA)

John Flaherty (TE 2020) Senior Fellow Silicon Valley American Leadership Form

Rose Guilbault (TE 2020) **Board Member** Peninsula Corridor Joint Powers Board

lan Jefferies (Ex-Officio) President & CEO Association of American Railroads

Diane Woodend Jones (TE 2022) Principal & Chair of Board Lea + Elliott, Inc.

Therese McMillan (TE 2022) Executive Director Metropolitan Transportation Commission (MTC)

Bradley Mims (TE 2020) President & CEO Conference of Minority Transportation Officials (COMTO)

Jeff Morales (TE 2022) Managing Principal InfraStrategies, LLC

Dan Moshavi, PhD (Ex-Officio) Dean, Lucas College and Graduate School of Business San José State University

Takayoshi Oshima (TE 2021) Chairman & CEO Allied Telesis, Inc.

Toks Omishakin (Ex-Officio) Director California Department of Transportation (Caltrans)

Paul Skoutelas (Ex-Officio) President & CEO American Public Transportation Association (APTA)

Dan Smith (TE 2020) President Capstone Financial Group, Inc.

Beverley Swaim-Staley (TE 2022) President Union Station Redevelopment Corporation

Jim Tymon (Ex-Officio) **Executive Director** American Association of State Highway and Transportation Officials (AASHTO)

Larry Willis (Ex-Officio) President **Transportation Trades** Dept., AFL-CIO

(TE) = Term Expiration * = Past Chair, Board of Trustees

Directors

Karen Philbrick, Ph.D. **Executive Director**

Hilary Nixon, Ph.D. **Deputy Executive Director**

Asha Weinstein Agrawal, Ph.D. Education Director National Transportation Finance

Brian Michael Jenkins National Transportation Security Center Director

Center Director

Research Associates Policy Oversight Committee

Jan Botha, Ph.D. **Civil & Environmental Engineering** San José State University

Katherine Kao Cushing, Ph.D. **Enviromental Science** San José State University

Dave Czerwinski, Ph.D. Marketing and Decision Science San José State University

Frances Edwards, Ph.D. **Political Science** San José State University

Taeho Park, Ph.D. Organization and Management San José State University

Christa Bailey Martin Luther King, Jr. Library San José State University

