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Approaches for evaluating the quality of bicycling have become increasingly important for planning bicycle infrastructure 
improvements. Mekuria, Furth, and Nixon’s (2012) “Level of Traffic Stress” (LTS) approach, which requires minimal data inputs 
and produces a simple and intuitive output, has emerged as a widely-used framework for identifying streets that are “low-stress” 
for cyclists. The LTS framework is based on a hierarchy of characteristics, largely related to traffic speed and roadway layout, that 
are presumed to cause higher or lower levels of stress. Despite the apparent simplicity of LTS, several key challenges emerge 
from its application. Firstly, multiple LTS classification methods have been developed, and it is difficult to know whether they 
represent stress in equivalent ways. Secondly, LTS is intended only to define an ordinal scale of stressfulness, but has often been 
misinterpreted as defining a continuous scale; there is no intended implication that the stress levels are spaced equally. Third, 
while LTS provides a useful summary of diverse infrastructural variables, it is poorly understood which of these variables are most 
strongly associated with cyclist satisfaction and may, therefore, be most important to capture in an LTS framework.
These challenges were examined in the contexts of two U.S. cities: Portland, Oregon, which has a very well-developed bicycling 
infrastructure, and Austin, Texas, which has more moderately-developed bicycling infrastructure. In both cities, LTS outcomes 
differed depending on the LTS classification method used. In addition, even when classified using the same method, LTS outcomes 
differed depending on the source of the data used. This suggests that LTS analyses based on different methods or data sources 
are unlikely to be comparable. Associations between LTS classifications and continuously-scaled user satisfaction data from the 
crowdsourcing mobile app Ride Report suggested that LTS levels represented a fairly linear scale, though differences in average 
Ride Report scores between successive LTS levels were rarely large. Ride Report user satisfaction data were most strongly 
and consistently associated with variables related to bicycling-specific infrastructure, such as bike lanes and boulevards, and 
indicators of street size. These variables may be most useful for developing LTS classification methods with minimal data inputs. 
Unsurprisingly, our analysis also supports the addition of bicycle-specific infrastructure and reduction of roadway size and traffic 
volume as among the most effective approaches for reducing LTS levels and maximizing user satisfaction along cycling networks.
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EXECUTIVE SUMMARY

The “Level of Traffic Stress” (LTS) framework is an increasingly popular approach to 
evaluating the quality of roadways for bicycling. First described by Mekuria, Furth, and 
Nixon,1 the framework provides a straightforward ordinal system for classifying the overall 
stress level of street segments based on variables related to bicycle infrastructure, roadway 
size and layout, and intersection characteristics. LTS levels typically range from 1 to 4. 
Segments that are are assumed to be comfortable for inexperienced cyclists and children 
are classified as LTS 1. Segments that are comfortable only for the most experienced 
cyclists are classified as LTS 4. Intermediate levels are considered appropriate for cyclists 
with moderate experience.

OBJECTIVE 1: AGREEMENT OF LTS RESULTS ACROSS DIFFERENT 
CLASSIFICATION METHODS AND DATA SOURCES

One of the greatest assets of the LTS system is its simplicity. When used appropriately, 
it aggregates many variables into an intuitive scale that enables comparison acoss 
diverse street segments. Despite its apparent simplicity, however, LTS can be difficult to 
implement and interpret. The challenge of collecting numerous segment-level variables to 
fuel LTS analysis has prompted the development of alternative simplified LTS classification 
methods that require fewer and more commonly-available inputs (Table 1). Most of these 
methods also produce outputs on a four-level scale; however it is not yet well-understood 
whether different methods typically yield the same outcomes. This study’s first objective 
was to examine the equivalency of outputs from different LTS methods, for the same 
street segments, using different sources of input data. Python scripts were used to 
calculate LTS classifications according to the seven methods listed in Table 1 across large 
samples of street segments in Portland, Oregon and in Austin, Texas, the two cities in 
which crowdsourced cyclist satisfaction data were most readily available for later stages 
of the analysis (see Objectives 2 and 3, below). Parallel classifications were conducted 
with manually-audited data, which were assumed to be most reliable, and with data from 
OpenStreetMap (OSM) and local agencies, which depended on numerous assumptions 
to fill in missing values. Visual comparisons of histograms and Cohen’s kappa coefficients 
were used to assess agreement between classifications derived from the different methods 
and data sources.

Table 1.	 LTS Methods Evaluated in This Study

Author(s) Abbreviated Name Year Input Variables
Conveyal2 Conveyal 2015 4
Furth3 Furth 2017 6
Lowry, Furth, and Hadden-Loh4 Lowry 2016 4
Mekuria, Furth, and Nixon5 Mekuria 2012 18
Montgomery County, Maryland6 Montgomery 2017 12
Oregon Department of Transportation7 ODoT 2017 15
People For Bikes8 PFB 2017 6
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Different LTS methods were found to produce substantially different results. Figure 1 shows 
histograms of street segments for each of the methods, all calculated using the same, audit-
derived data. If the methods had produced similar results, all of the histograms within each 
city (Portland, top row; Austin, bottom row) would have been shaped similarly. Instead, 
the histograms had substantially inconsistent shapes, favouring different LTS levels. 
Classifications were somewhat more consistent in Austin than in Portland, potentially due 
to greater design consistency among Austin streets. Linearly weighted kappa coefficients 
comparing LTS methods based on audit data also tended to be slightly higher, indicating 
greater agreement, in Austin (0.59 on average between all pairs of methods except for 
those with PFB) than in Portland (0.54). Nonetheless, these weighted kappa coefficients 
represent only moderate levels of agreement.9

Figure 1.	 Histograms of Street Segment Count by LTS Level
Note: All classifications are based on audited data.

OBJECTIVE 2: ASSOCIATIONS BETWEEN LTS AND CROWDSOURCED 
BICYCLE USER SATISFACTION 

Although LTS levels were intended to be defined on an ordinal scale, they have often been 
misinterpreted as a continuous scale. This study’s second objective was to evaluate whether 
there is any merit to this interpretation. Is there a linear association between LTS levels and 
a continuous measure of cyclist satisfaction? If so, what is the approximate interval between 
successive LTS levels? To address these questions, the authors compared cyclist satisfaction 
scores derived from a crowdsourcing smartphone application called Ride Report, to LTS 
classifications throughout Portland and Austin, the two cities where the app had the most 
extensive user base. Ride Report asked users to rate their bicycle rides on a “thumbs up-
thumbs down” scale. Ratings were then aggregated in to a score representing the proportion 
of positive ratings along each street segment. Spearman rank correlations (rS) were used to 
evaluate associations between LTS and Ride Report score, and Ride Report score means 
were used to examine the linearity and degree of difference between successive LTS levels. 
Ride Report scores derived from subsets of cyclists and cycling conditions, such as cyclist 
age and trip length, were used to investigate the ways in which relationships between LTS 
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and cyclist satisfaction were influenced by personal and trip-related factors.

In line with expectations, correlations between LTS and Ride Report scores were generally 
negative, suggesting that lower LTS levels were associated with greater cyclist satisfaction 
(Figure 2). Trends between LTS and Ride Report scores were also reasonably linear, 
with each decrease in LTS level corresponding to an approximately 2–3% increase in 
Ride Report score. Given the narrow distribution of Ride Report scores across all street 
segments, this corresponded to an increase from each city’s median segment to between 
65th and 75th percentile of segments within that that, a substantial improvement.

Nonetheless, rank correlations between LTS and Ride Report scores were not strong 
(rS=0.26 on average between all LTS methods in Portland; rS=0.13 in Austin; both statistics 
based on audit data). The weakness of these correlations may be been driven by the 
imprecision of both LTS classification methods and crowdsourced cycling quality data. 
Interestingly, rank correlations between LTS and cycling quality were higher when Ride 
Report scores were based only on responses from cyclists who rode relatively slowly and 
made shorter trips, which were presumed to be indicators of less cycling experience. This 
suggests that LTS may have been most representative of less experienced cyclists. 

Figure 2.	 95% Confidence Intervals for Average Ride Report Scores by LTS Level
Note: All classifications are based on audited data.

OBJECTIVE 3: ASSOCIATIONS BETWEEN CYCLING ENVIRONMENT 
VARIABLES AND USER SATISFACTION

Consideration of which variables have the strongest influence on cycling satisfaction is 
important for the development of improved LTS methods. The third objective of this study 
was to examine associations between individual street environment variables and Ride 
Report scores. Regression models were used to predict Ride Report scores based on 
variables from each of the three data sources (audit, OSM, and local), while controlling for 
spatial autocorrelation between segments. 
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Bike lanes and other bicycling-specific infrastructure had the strongest and most 
consistently positive associations with Ride Report scores, while indicators of large roads 
had the strongest negative associations. Even the combination of all environmental 
variables, however, was able to explain only a modest fraction of the variance in Ride 
Report scores, underscoring the complexity both of cyclists’ perceptions of quality and 
of the environmental characteristics that contribute to them. These results suggest that 
a streamlined LTS method might focus on bicycle infrastructure and road size variables. 
Unsurprisingly, these are already some of the key variables driving existing LTS methods. 
Thus, both the theoretical framework laid out by LTS systems, and our empirical results, 
support the view that planners ought to prioritize bicycling-specific infrastructure and 
smaller, less trafficked roadways in order to improve the quality of cycling networks.
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I.  INTRODUCTION

Improvement of bicycling infrastructure is expected to increase bicycling and to foster 
concomitant environmental sustainability and health benefits. As a result, significant 
attention has turned to understanding and measuring the quality of streets for bicycling. The 
“Level of Traffic Stress” (LTS) framework has become a widely used approach for analyzing 
bicycling quality along individual street segments and communicating opportunities to 
improve comfort, safety, and connectivity.10 The framework has quickly permeated active 
transportation planning. For example, recent plans prepared for agencies in Berkeley, 
CA, Washington, D.C., Montgomery County, MD, and Colorado have used LTS to assess 
current conditions and the impacts of proposed improvements.11

LTS attempts to measure the suitability of street segments for bicycling, particularly for 
individuals concerned about safety related to interactions with motor vehicles. LTS levels 
are based on factors understood to feel more or less stressful for cyclists, including speed 
limit, number of traffic lanes, width of bicycle and parking lanes, presence of a center line, 
and frequency of bicycle lane blockage. The levels are also linked to presumed thresholds 
of comfort for cyclists with different degrees of experience. Streets classified as LTS 1, 
such as bicycle boulevards and neighborhood streets, should feel comfortable even for 
inexperienced cyclists and children, whom Geller refers to as “interested but concerned” 
cyclists.12 Mid-range LTS levels, exemplified by bicycle lanes along streets with speeds 
above 25 mph and with various degrees of separation from traffic, should be comfortable 
for “enthused and confident” cyclists, who have some experience with cycling but varying 
levels of comfort with traffic. Streets classified as LTS 4, such as high-speed, multi-lane 
streets with mixed traffic, should feel comfortable only for the most experienced, “strong and 
fearless” cyclists. Thus, key features of LTS include its intuitive organization, coordination 
with Geller’s “types of cyclists,” transparency of application, and ease of communicability.

Despite LTS’s intuitive appeal, practitioners face several notable challenges when applying 
and interpreting LTS analyses. In addition to Mekuria et al.’s “original” LTS classification 
method,13 herein referred to simply as the Mekuria method, a number of alternative methods 
have developed in order to accommodate data limitations (e.g. the Conveyal method), to 
address localized context (e.g., the Montgomery method),14 or to better represent how 
bicyclists perceive stress (e.g., Furth’s “LTS 2.0”).15

While well-intentioned in their development, the diversity of LTS methods can be confusing. 
Most of the methods produce similarly-labeled outputs: a four-tiered ordinal structure 
referred to as levels 1 through 4. These scales are not, however, necessarily identical across 
methods; “LTS 2” could have an entirely different meaning depending on the method and 
source data used to derive it. Moreover, while LTS levels are numeric, the scale is ordinal; 
they do not describe how much better successive levels are from one another. While such 
an ordinal scale is not theoretically problematic, it can easily be misinterpreted, and often 
is by practitioners who are not intimately familiar with LTS methods. It is all too easy to 
misinterpret LTS levels as representing equally-spaced values on a continuous scale. 
Mekuria et al. might have introduced LTS levels as “A, B, C, D” in order to reinforce their 
non-numeric ordinality. Today, it would be difficult to encourage adoption of an alternative 
nomenclature because the numeric levels are so widely-used in planning practice.
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One reason why LTS is attractive is that it aggregates many different factors into a 
single scale. This also, however, makes it difficult to tell which individual factors are most 
associated with cyclist satisfaction. This project addresses each of these challenging 
questions—the agreement of classificaiton results between different LTS methods and data 
sources, the association between LTS and continuous measures of cycling satisfaction, 
and the association of individual environmental factors with cyclist satisfaction—through 
three core objectives.

OBJECTIVE 1: AGREEMENT OF LTS RESULTS ACROSS DIFFERENT 
CLASSIFICATION METHODS AND DATA SOURCES

The study’s first objective was to examine the agreement of classifications based on 
different LTS methods and using data from different sources.  For streets in Portland, 
Oregon and in Austin, Texas, seven LTS measures were calculated (Table 2), three times 
each with three sources of data: audits conducted by the authors and research assistants; 
OpenStreetMap (OSM); and local agencies’ GIS databases (in Portland only). The resulting 
ordinal outcomes were then compared. Portland and Austin were chosen because these 
cities were best represented in the crowdsourced dataset used to address the second 
and third study objective; moreover, these cities offered a degree of difference in bicycling 
infrastructure provision and local cycling culture, with Portland representing one of the 
most cycling-oriented cities in the U.S. Portland also offered unusually detailed datasets 
from local agencies that accounted for nearly all variables used by LTS analyses, allowing 
for a direct comparison of local agency data to audited and OSM data.

Table 2.	 LTS Methods Evaluated in This Study

Author(s) Abbreviated Name Year Input Variables

Conveyal16 Conveyal 2015 4

Furth17 Furth 2017 6
Lowry, Furth, and Hadden-Loh18 Lowry 2016 4
Mekuria, Furth, and Nixon19 Mekuria 2012 18
Montgomery County, Maryland20 Montgomery 2017 12
Oregon Department of Transportation21 ODoT 2017 15
People For Bikes22 PFB 2017 6

OBJECTIVE 2: ASSOCIATIONS BETWEEN LTS AND A MEASURE OF USER 
SATISFACTION 

The second objective was to investigate the association between LTS levels and a 
continuous measure of user satisfaction. LTS methods have defined levels based on 
plausible a priori assumptions about what roadway characteristics result in more or less 
stress for cyclists. This contrasts notably with the Highway Capacity Manual’s Bicycle 
Level of Service (BLoS),23 which was based on regression models estimating relationships 
between bicycling infrastructure and user ratings.24 LTS methods’ a priori definitions have 
allowed them to be sensitive to factors, such as detailed intersection treatments, whose 
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associations with cyclist satisfaction, especially in combination with one another, might be 
difficult to detect in noisy empirical data. Because LTS levels were not defined in relation 
to an indicator of user satisfaction, they offer no way to interpret how much better or worse 
one LTS level is than another in terms of user satisfaction. This study compared LTS levels 
to Ride Report scores to examine the strength and linearity of relationships between LTS 
and a continuous measure of user satisfaction.   

OBJECTIVE 3: ASSOCIATIONS BETWEEN CYCLING ENVIRONMENT 
VARIABLES AND USER SATISFACTION

While new LTS methods have tended to be developed to accommodate data constraints, 
it may also be prudent to develop LTS classification methods that concentrate on factors 
most strongly related to user satisfaction. The third objective of this study was to examine 
relationships between individual cycling environment variables and Ride Report scores 
to identify which variables might represent the greatest opportunities for bicycle network 
improvements.
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II.  BACKGROUND

Since its inception in 2012, the LTS concept has become popular among researchers and 
practitioners. LTS evaluations in research literature have included analyses of San Jose, 
California by Mekuria et al.;25 San Diego, California by Scrivener;26 Atlanta, Georgia by 
Mingus;27 Seattle, Washington by Lowry, Furth, and Hadden-Loh;28 and Washington, D.C. 
by Semler et al.29

LTS analyses are also prevalent in planning documents prepared by agencies and 
consultants. These have included plans for Berkeley, CA; Washington, D.C.; Montgomery 
County, MD; and the State of Colorado.30 Informal discussions with transportation planning 
practitioners have revealed familiarity with and interest in LTS, including a desire to 
incorporate LTS into future work at agencies where it has not yet been used.31

Researchers and agencies use LTS to assess current conditions and describe the impacts of 
proposed improvements. Notably, LTS analyses tend to reveal substantial discontinuities in 
low-stress networks—clusters of internally-connected low-stress “islands” separated from 
each other by high-stress streets—between major neighborhoods and key destinations. 
LTS patterns are also frequently mapped spatially.32 For example, maps of low-stress 
islands and separating high-stress corridors may be used to identify opportunities for 
infrastructure improvements that provide low-stress “bridges” between islands.

LEVEL OF TRAFFIC STRESS (LTS) CLASSIFICATION METHODS

The Original LTS

The first LTS classification method was developed by Mekuria, Furth, and Nixon.33 The 
method used 21 variables arranged in decision matrices to identify an LTS level for each 
street segment in a network, along a four-point scale, where 1 represented the lowest stress 
and 4 the highest. Qualitatively, Mekuria et al. defined LTS 1 as “suitable for children”; LTS 
2 was “the traffic stress that most adults will tolerate” according to Dutch bikeway design 
criteria;34 LTS 3 and 4 represented “greater levels of stress.”35

LTS was framed as a simpler, more intuitive alternative to the Bicycle Level of Service 
(BLoS) scale, which was adopted by the Highway Capacity Manual and uses a linear 
model fed by data that are not commonly available in existing datasets (e.g., FHWA’s 
pavement condition rating).36 Nevertheless, the original LTS approach still relied on a 
large number of variables, many of which tend not to be available from existing, public 
sources (e.g., the lengths of right-turn lanes). Thus, many researchers and practitioners 
have looked for ways to further streamline the operationalization of the approach, reducing 
the need to collect custom data for LTS studies.

Adaptations of LTS

The Conveyal LTS method represented an extreme simplification, drawing solely from 
data that were widely available from OpenStreetMap (OSM).37 The Conveyal method 
used four variables, and assumed that three of these could be inferred from the fourth—
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highway class—in the case of missing data. The meaningfulness of distinctions between 
LTS classes was substantially diluted by calculating them based on such limited data; 
however, this approach did allow application almost anywhere in the world without 
collecting additional data.

Lowry et al. developed an LTS method based on four variables similar to those used by 
Conveyal, but which were collected from a local agency (their study was in Seattle, WA) 
and were therefore more specific (e.g., separate binary indicators were used to represent 
three different types of bike lanes instead of all bike lanes being represented by same 
indicator).38

People for Bikes (PFB) also developed a classification method intended to be used with 
OSM data.39 Similarly to Conveyal, they provided a set of assumptions with which to fill 
missing data. They used six variables to calculate a two-level scale (low and high stress), 
which reflected the imprecision of their inputs.

The Montgomery County, Maryland LTS method was also designed to use local agency 
data and therefore presumed higher-quality input data.40 It used fourteen variables, 
including variables not used by other LTS methods, such as the number of driveways 
along a segment, presumably because these data were conveniently available through 
Montgomery County-specific dataset. It also increased the apparent precision of 
classification by adding a fifth mid-level class: LTS 2.5. The addition of this fractional level 
increases the risk of misinterpreting LTS levels as representing a continuous scale, with 
LTS being “halfway between” LTS 2 and LTS 3 in terms of stress level.

The Oregon Department of Transportation (ODoT) developed a customized LTS based 
on 18 variables, most of them overlapping with those used in the Mekuria method.41 The 
ODOT method was focused more on precision than simplification, requiring additional 
variables related to left-turn lanes, and including many of the turning-lane variables of 
the Mekuria LTS, even though these data are some of the least widely available, often 
requiring manual auditing of each street segment.

Furth, a co-author on the studies that developed the Mekuria and Lowry methods, later 
developed “LTS 2.0,” which required only nine variables and did not account for intersection 
treatments, significantly reducing the complexity of conducting an LTS analyses.42 This 
method drew on traffic volumes, lane counts and speed limits as key inputs, while omitting 
metrics that do not tend to be available from secondary sources, such as the frequency of 
bike lane blockage.

Other LTS classification methods have been developed for analyzing specific cities. The 
city of Auckland, New Zealand, for example, developed a tool for evaluating quality of 
service which had many similarities to LTS frameworks. Although it was infeasible for 
us to analyze all LTS methods developed to date, the seven methods included in this 
study represent the breadth of LTS methods developed for both generalized and specific 
contexts, and with both extensive and minimal data requirements.
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III.  LITERATURE REVIEW

As outlined above, the primary goals of this study included evaluation of the correspondence 
of different LTS methods to one another (Objective 1), of correlations between LTS 
levels and a measure of user satisfaction (Objective 2), and of the correlations between 
individual environmental variables and a measure of user satisfaction (Objective 3). Our 
study harnesses data crowdsourced from the mobile app Ride Report as a measure 
of user satisfaction. To the authors’ knowledge, no study had previously examined 
correspondence between different LTS methods, so this literature review focuses on the 
latter two objectives. Objective 2 is situated within a body of research that compares LTS 
to behavioral and perceptual outcomes, while Objective 3 is related to studies investigating 
the role of individual variables in either promoting or impeding bikeability. Both of these 
objectives are related to previous bicycling research utilizing crowdsourced data, some of 
which involved LTS.

THE PREDICTIVE VALIDITY OF LTS (OBJECTIVE 2)

Prior research has explored whether LTS classifications can predict several behavioral 
outcomes related to bicycling. Questions investigated have included: whether LTS 
predicts the propensity to bicycle or not bicycle; whether LTS predicts the use of bikeshare 
programs; and whether LTS correlates with safety outcomes.

Travel Behavior

Wang et al. found mixed evidence for an association between LTS and travel behavior, 
finding that correlations between LTS and bicycling are dependent on how bicycling was 
measured.43 Exploring the case of the Salem-Keizer, Oregon region, they found LTS did 
not predict bicycle mode share as measured by the U.S. American Community Survey. 
However, LTS was significantly associated with the number of bicycle trips as measured 
with the Oregon Household Activity Survey (OHAS). Notably, the OHAS captures bicycle 
trips for all purposes, while census data only measures commuting. 

Fitch, Handy, and Thigpen found that the presence of more comfortable, lower-stress 
routes was positively associated with children’s bicycling to school.44 Studying schools in 
Davis, California, they found that the greater the availability of LTS 1 and LTS 2 routes 
to a school, the greater the number of parked bicycles observed during rack counts. 
Their modeling suggests that if students had no comfortable bicycle routes to school, 
then bicycling rates would be far below the current city average.  They conclude that 
traffic stress “is likely one of the primary ways in which the urban environment influences 
bicycling to school.”

Both the Wang et al. study and the Fitch, Handy, and Thigpen study explored the 
relationship between bicycle trips and traffic stress as calculated using the original 
Mekuria LTS method.
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Cyclist Safety

Chen et al. aggregated ten years of bicycle-automobile crash data for four New Hampshire 
cities to determine whether LTS can be effective in estimating crash risk for locations 
without historical records of crashes.45 Their analysis centered on four goals: (1) identifying 
the relationship between traffic stress and injury severity; (2) identifying the relationship 
between traffic stress and crash frequencies; (3) establishing if an increase in traffic 
stress leads to an increase in crash severity; and (4) measuring the relationship between 
crowdsourced data and LTS.

The researchers developed a mixed logit model with independent variables including 
roadways characteristics, speed limits, vehicle volumes, LTS (Mekuria method), and crash 
history locations. Results from the model showed that LTS could effectively predict crash 
severity. LTS levels could also indicate where bike lanes might be added or removed 
to improve crash safety, with a focus on locating bike lanes on roadways classified as 
LTS 1, 2, or 3.

Bikeshare Usage

Prabhakar and Rixey explored the relationship between LTS and bikeshare ridership 
within the Capital Bikeshare network in Montgomery County, Maryland.46 They used linear 
regression to model and predict the relationship between bikeshare ridership and low-
stress bicycle connections between stations and to estimate total trips per year. They 
determined that, between pairs of bikeshare docking stations, lower-stress roadways were 
associated with higher bikeshare ridership, and that longer detours required to achieve 
a low-stress route were associated with lower bikeshare ridership. They conclude that 
providing more low-stress connections could better enable trips between origins and 
destinations that have other characteristics favorable to bicycling, such as in places with 
high activity density and origin-destination pairs with relatively short travel distances. 

VALIDITY OF LTS INPUTS (OBJECTIVE 3)

LTS methods draw on variables that are commonly recognized as being important 
influences on bicyclists’ perceptions and behaviors.47 However, additional variables that 
are also associated with bicycling behavior may be neglected by LTS methods. Potential 
blind spots of LTS include characteristics of the built and natural environment, measures 
of the mental difficulty of routes, and traffic volumes; these are all variables which were not 
included in the Mekuria method, but have since been included in others.48 In a discussion 
about LTS with the authors, a practitioner also expressed concern about the absence of 
demographic variables, which have not been included in any known LTS methods.49 
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CROWDSOURCED APP DATA IN BICYCLE RESEARCH AND PLANNING

The cyclist satisfaction data used in this study were derived from crowdsourced scores 
collected with the Ride Report app. Crowdsourcing provides an opportunity to collect larger 
samples of responses from more geographically dispersed and heterogeneous locations 
than do conventional approaches to gathering cycling quality data, such as intercept 
surveying or capturing ratings from a closed sample of recruited participants.50

The present study is not the first to examine associations between LTS and crowdsourced 
app data. Chen et al. explored correlations between LTS and cycling volume data from 
the STRAVA app.51 While Chen et al. use STRAVA (note that it has been used by other 
researchers and agencies), they also discuss a potential deficiency of STRAVA: its user 
base is biased toward highly-experienced recreational cyclists. App developers aiming to 
market their data for planning purposes have substantial incentive to design their products 
in such a way that they capture a more diverse spectrum of cyclists. The Ride Report data 
used in this study were likely more representative of inexperienced cyclists than many 
crowdsourced data sources because the Ride Report app was used to track participation 
in events that encourage inexperienced cyclists to try cycling more, such as National Bike 
Month. Nonetheless, it is unlikely that apps with large-volume user bases will ever be able 
to account and control for detailed characteristics, such as cyclists’ demographics and 
other personal factors, to the same extent as traditional travel surveys, which demand 
substantial interaction between respondents and researchers.

Other studies have harnessed crowdsourced bicycling data outside of the context of LTS. 
Molina identified five general ways in which municipalities have harnessed crowdsourced 
data, including bicycling demand modeling, network planning, safety analysis, suitability, 
and route choice modeling.52 For the specific purpose of planning practice and research, 
several agencies have utilized the CycleTracks app, which was developed by the San 
Francisco County Transportation Authority (SFCTA), or its derivatives.53 CycleTracks was 
designed specifically to appeal to utilitarian cyclists as opposed to recreational riders.
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IV.  METHODS

CYCLING ENVIRONMENT DATA

Data necessary to determine LTS classes according to each of the six evaluated methods 
were collected from three types of sources: OpenStreetMap (OSM); local agencies; and 
a Google Street View-enabled audit conducted by the authors and research assistants. 
Table 3 summarizes these sources for each of 23 variables. Substantial effort was put 
into identifying measures that were similar across each of the sources. In cases where 
comparable measures were not available or contained missing records, assumptions 
were used to fill missing values. These assumptions are outlined in Table 3 and reported 
in detail in Appendix A.

OSM data were downloaded in June and September of 2018, for all streets in Portland and 
Austin respectively. These data were processed into relevant variables using a custom 
Python module developed by the authors, providing records for 30,487 non-freeway street 
segments in Portland, and 36,936 in Austin. The OSM data and their processing is further 
described in the next section, titled “OpenStreetMap Data.” 

Data from local agencies were collected only for Portland, and were compiled from GIS 
shapefiles representing bikeways, pavement maintenance, pavement markings, parking 
slots, street signs, speed limits, traffic signals, average weekday traffic volumes, zoning 
districts, and traffic islands (Table 3). All of these datasets, with the exception of traffic 
volumes, were publicly available from the City of Portland’s Portland Maps Open Data 
portal. The latest revision dates for each of these datasets are included in Table 4. Traffic 
volumes were acquired directly from the Portland Bureau of Transportation (PBoT). The 
local datasets and their processing are further described in the section titled “Local Agency 
Data,” below.

Audits were conducted using the most recent Google Street View in both Portland (n = 635 
street segments) and Austin (n = 445 street segments), along segments selected through 
stratified random sampling aimed at representing streets of varying sizes, within varying 
built environment contexts, and with varying Ride Report scores. The same audit protocol 
was used in bot Portland and Austin. A subsample of streets in each city were audited 
by multiple auditors to evaluate inter-rater reliability (see the section titled “Assessing 
Inter-Rater Reliability”, below). The audits were considered to be the most reliable data 
source. Comparisons between audited measures and corresponding OSM and local data 
measurements are summarized in Table 3. The audit protocol and sampling approach are 
further described in the section titled “Audited Data,” below. 
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Table 3.	 Summary of Data Collected From Audit, OSM, and Local Sources
Variable OSM Source Local Source Audit Source
Bike facility buffer 
width 
(continuous)

Numeric value from 
‘cycleway:buffer:*’ tag 
or assumed based on 
‘Separated Bike Lane’
Pearson correlation with 
audit data: 0.52 (Portland), 
0.51 (Austin)

Assumed based on 
‘Separated Bike Lane’
Pearson correlation with 
audit data: 0.34 (Portland)

Measured from Google Maps 
imagery

Bike facility width 
(continuous)

Numeric value from
‘cycleway:*:width’ tag or 
assumed based on ‘Bike 
Lane’ or ‘Separated Bike 
Lane’

Pearson correlation with 
audit data: 0.07 (Portland), 
0.22 (Austin)

Assumed based on ‘Bike 
Lane’ and ‘Separated Bike 
Lane’
Pearson correlation with 
audit data: 0.17 (Portland)

Measured from Google Maps 
imagery

Bike lane 
(binary)

Yes if ‘cycleway:*’ tag 
equals ‘lane’ or ‘opposite_
lane’, otherwise No
Agreement with audit data:
97% (Portland), 86% 
(Austin)

City of Portland Bike 
Network Shapefile (2017)
Agreement with audit data:
94% Portland

Identified from Google Maps 
imagery or Street View

Buffered bike lane* 
(binary)

Not available City of Portland Bike 
Network Shapefile (2017)
Used as intermediary

Identified from Google Maps 
imagery or Street View

Cycle track* 
(binary)

Not available City of Portland Bike 
Network Shapefile (2017)
Used as intermediary

Identified from Google Maps 
imagery or Street View

Separated bike lane* 
(binary)

Yes if ‘cycleway:*’ tag 
equals ‘track’, ‘opposite_
track’ or ‘buffered_lane’, 
otherwise No
Agreement with audit data: 
96% (Portland), 96% 
(Austin)

City of Portland Bike 
Network Shapefile (2017)
Agreement with audit data:
94% (Portland)

Combination of ‘Buffered Bike 
Lane’ and ‘Cycle Track’

Bicycle boulevard* 
(binary)

Not available City of Portland Bike 
Network Shapefile (2017)
Agreement with audit data: 
86% (Portland)

Identified from Google Maps 
imagery or Street View

Center turn lane* 
(binary)

Yes if ‘turn:lanes:both_ways’ 
tag equals ‘left’, otherwise 
No
Agreement with audit data: 
96% (Portland), 90% 
(Austin)

Not available Identified from Google Maps 
imagery or Street View

Curb-to-curb width 
(continuous)

Numeric value from ‘width’ 
or ‘est_width’ tags, or 
assumed based on ‘Lanes’ 
and ‘Parking’
Pearson correlation with 
audit data: 0.37 (Portland), 
0.51 (Austin)

City of Portland Pavement 
Maintenance Shapefile 
(2018)
Pearson correlation with 
audit data: 0.54 (Portland)

Measured from Google Maps 
imagery

https://gis-pdx.opendata.arcgis.com/datasets/bicycle-network
https://gis-pdx.opendata.arcgis.com/datasets/bicycle-network
https://gis-pdx.opendata.arcgis.com/datasets/bicycle-network
https://gis-pdx.opendata.arcgis.com/datasets/bicycle-network
https://gis-pdx.opendata.arcgis.com/datasets/bicycle-network
https://gis-pdx.opendata.arcgis.com/datasets/bicycle-network
https://gis-pdx.opendata.arcgis.com/datasets/bicycle-network
https://gis-pdx.opendata.arcgis.com/datasets/bicycle-network
https://gis-pdx.opendata.arcgis.com/datasets/bicycle-network
https://gis-pdx.opendata.arcgis.com/datasets/bicycle-network
https://gis-pdx.opendata.arcgis.com/datasets/pavement-maintenance
https://gis-pdx.opendata.arcgis.com/datasets/pavement-maintenance
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Variable OSM Source Local Source Audit Source
Lanes 
(count)

Numeric value from ‘lanes’ 
tag, or assumed based on 
‘highway’ tag
Pearson correlation with 
audit data: 0.42 (Portland) 
0.54 (Austin)

City of Portland Pavement 
Maintenance Shapefile 
(2018)
Pearson correlation with 
audit data: 0.73 (Portland)

Counted from Google Maps 
imagery or Street View

One way 
(binary)

Yes if ‘oneway’ tag equals 
‘yes’ or ‘-1’, otherwise No
Agreement with audit data: 
98% (Portland), 100% 
(Austin)

OSM values assumed Identified from Google Maps 
imagery or Street View

Left turn lanes 
(count)

Count of ‘left’ or ‘slight_left’ 
within ‘turn:lanes:*’ tag
Pearson correlation with 
audit data: 0.52 (Portland), 
0.44 (Austin)

No direct measure or proxy 
available. Assumed to be 0 
for all segments.

Counted from Google Maps 
imagery or Street View

Right turn lanes 
(count)

Count of ‘right’ or ‘slight_
right’ within ‘turn:lanes:*’ tag
Pearson correlation with 
audit data: 0.19 (Portland), 
0.09 (Austin)

City of Portland Pavement 
Marking Symbols Shapefile 
(2018)
Pearson correlation with 
audit data: 0.00 (Portland)

Counted from Google Maps 
imagery or Street View

High speed right turn 
lane 
(binary)

No direct measure 
available. Assumed based 
on ‘highway’ tag.

No direct measure 
available. Assumed based 
on OSM ‘highway’ tag.

Identified from Google Maps 
imagery or Street View

Parking 
(binary)

Yes if ‘marked,’ ‘parallel,’ 
‘inline,’ ‘perpendicular,’ 
‘orthogonal’ or ‘diagonal’ 
in ‘parking:lane:*’ tag, 
otherwise No
Agreement with audit 
data: 90% (Portland), 64% 
(Austin)

City of Portland Parking 
Slots Shapefile (2018); City 
of Portland Signs Shapefile 
(2018)
Agreement with audit data: 
91% (Portland)

Identified from Google Maps 
imagery or Street View

Speed limit 
(continuous)

Numeric value in 
‘maxspeed:*’ tag, or 
assumed based on 
‘highway’ tag

City of Portland Speed Limit 
Shapefile (2018)
Pearson correlation with 
OSM data: 0.81 (Portland)

Local values assumed

Traffic signal 
(binary)

Yes if ‘traffic_signals’ in 
‘highway’ tag of either end 
node, otherwise No
Agreement with audit 
data: 82% (Portland), 98% 
(Austin)

City of Portland Traffic 
Signals Shapefile (2017)
Agreement with audit data: 
80% (Portland)

Identified from Google Maps 
imagery or Street View

ADT 
(continuous)

Assumed based on 
‘highway’ tag

Portland Bureau of 
Transportation 2015 
Average Weekday (AWD) 
traffic volume shapefile or 
assumed based on OSM 
‘highway’ tag

Local values assumed

Residential street 
(binary)

Yes if ‘residential’ in 
‘highway’ tag, otherwise No
Agreement with audit 
data: 64% (Portland), 49% 
(Austin)

City of Portland Zoning 
Shapefile (2017)
Agreement with audit data: 
88% (Portland)

Identified from Google Maps 
imagery or Street View

https://gis-pdx.opendata.arcgis.com/datasets/pavement-maintenance
https://gis-pdx.opendata.arcgis.com/datasets/pavement-maintenance
https://gis-pdx.opendata.arcgis.com/datasets/pavement-marking-symbols
https://gis-pdx.opendata.arcgis.com/datasets/pavement-marking-symbols
https://gis-pdx.opendata.arcgis.com/datasets/parking-slots
https://gis-pdx.opendata.arcgis.com/datasets/parking-slots
https://gis-pdx.opendata.arcgis.com/datasets/signs
https://gis-pdx.opendata.arcgis.com/datasets/signs
https://gis-pdx.opendata.arcgis.com/datasets/speed-limits
https://gis-pdx.opendata.arcgis.com/datasets/speed-limits
https://gis-pdx.opendata.arcgis.com/datasets/traffic-signals
https://gis-pdx.opendata.arcgis.com/datasets/traffic-signals
https://gis-pdx.opendata.arcgis.com/datasets/zoning
https://gis-pdx.opendata.arcgis.com/datasets/zoning
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Variable OSM Source Local Source Audit Source
Bike lane obstructed 
(binary)

No direct measure 
available. Assumed to be 
Yes for all segments.

Assumed from zoning 
categories including ‘Mixed,’ 
‘Central,’ and ‘High’, City of 
Portland Zoning Shapefile 
(2017)
Agreement with audit data: 
40% (Portland)

Identified from Google Maps 
imagery or Street View

Bike lane aligned 
through intersection 
(binary)

No direct measure 
available. Assumed based 
on ‘highway’ tag.

No direct measure 
available. Assumed based 
on OSM ‘highway’ tag.

Identified from Google Maps 
imagery or Street View

Bike lane continuous 
through intersection 
(binary)

No direct measure 
available. Assumed to be 
Yes for all segments with 
bike lanes.

No direct measure 
available. Assumed to be 
Yes for all segments with 
bike lanes.

Identified from Google Maps 
imagery or Street View

Pedestrian refuge 
across cross street 
(binary)

No direct measure or proxy 
available. Assumed to be 
No for all segments. 

City of Portland Traffic 
Islands and Circles 
Shapefile (2018)
Agreement with audit data: 
95% (Portland)

Identified from Google Maps 
imagery or Street View

Note: Italics denote assumptions based on other variables. “Agreement” between binary datasets is measured as 
the percent of records from the dataset represented by that column that have the same value in the other specified 
dataset. See Appendix A for more detailed information about data sources, processing, and assumptions.
* Not required for LTS. Collected as an intermediary for calculating other variables or for analysis of correlations with 
Ride Report scores.

OPENSTREETMAP DATA

OpenStreetMap (OSM) is a worldwide repository of free, vector-based geodata. Historically 
it has focused on highway systems, though it increasingly includes additional data about land 
uses, landforms, and other common topographic geodata. All OSM data are volunteered 
to the system, so they are often referred to as Volunteered Geographic Information 
(VGI).54 As a result, OSM data can be detailed and comprehensive in some places while 
being sparse in others. Bicycle facilities, which are often mapped in OSM quite soon after 
installation, exemplify the type of infrastructure that may be well accounted for by OSM. 
A 2015 study evaluating the completeness of OpenStreetMap bicycle infrastructure found 
that approximately 95% of Portland bicycle lanes mapped in the OpenStreetMap database 
corresponded to actual existing bike lanes, as confirmed by examination of aerial photos.55

OSM data representing streets and intersections were gathered throughout Portland and 
Austin using the Overpass Application Programming Interface (API) through the OSMnx 
Python package (Boeing, 2017). Freeways, alleys, driveways, and off-street pedestrian 
and bicycle paths were removed from the dataset.56 OSMnx was used to restructure the 
street network datasets so that each block-length street segment between neighboring 
intersections (excluding alleys and private driveways) was represented by a single line. 
These block-length units were used throughout the study as the consistent geometric units 
of analysis onto which attributes from other datasets were attached.

https://gis-pdx.opendata.arcgis.com/datasets/zoning
https://gis-pdx.opendata.arcgis.com/datasets/zoning
https://gis-pdx.opendata.arcgis.com/datasets/traffic-islands-and-circles
https://gis-pdx.opendata.arcgis.com/datasets/traffic-islands-and-circles
https://gis-pdx.opendata.arcgis.com/datasets/traffic-islands-and-circles
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Attribute data in the OSM database are referred to as “tags.” The authors developed 
a Python module for parsing common tag:value pairs into categorical, binary, and 
continuous attributes for each street segment. The parsing rules are summarized in 
Appendix A. Parsing explicit values from OSM (e.g., definite presence or absence of a bike 
lane, as opposed to implicitly inferring absence based on lack of “cycleway” tag for that 
segment) yielded a wide range of levels of attribute completeness (Table 4). To produce a 
usable dataset across the study cities, assumptions were used to fill missing values (see 
variables beginning with ‘osm_assumed_’ in Appendix A). There were several key types 
of assumptions:

•	 All null values were set equal to 0 or “no.”

•	 (E.g., because there were no data related to pedestrian refuges in the OSM data, 
all intersections were assumed to have no pedestrian refuge.)

•	 Values were based on closely-related variables.

•	 (E.g., if there was a bikeway separated from traffic by a buffer, but no information 
about the width of the buffer, its width was assumed to be 2 ft.)

•	 Values were based on the ‘highway’ tag.

•	 (E.g., missing speed limits were assumed to be the 75th percentile of speeds from 
Portland Metro’s speed limit dataset within that ‘highway’ tag.)

Full definitions for all assumed variables are included in Appendix A.

Assumed versions of OSM variables facilitated the application of these variables in citywide 
LTS classification and other analyses, but the assumptions they are founded on inevitably 
reduce confidence in their accuracy. Assumptions were intended to provide conservative 
(i.e., producing relatively high LTS classes) yet plausible estimates of real values. Table 4 
demonstrates that certain variables (e.g., speed limit and number of traffic lanes) were 
much more likely to be based on explicit attributes than others. For example, despite the 
existence of OSM tagging conventions for bike facility width and bike facility buffer width, 
no segments in either Portland or Austin had these tags applied with standard values. 
Thus, bike facility widths and buffer widths were always assumed based on the presence 
of a bike lane or separated bike lane.
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Table 4.	 Attributes Available from Explicit Tag Values in Portland and Austin 
OSM Datasets

Street Segments with Attribute Values Backed by 
Explicit Tag Values (Not Null) in the OSM Datasets *

Number of Segments (% of Segments)
Attribute Portland Austin
Highway class (categorical) 30,487 (100%) 36,936 (100%)
Bike lane (binary) 2,931 (10%) 2,903 (8%)
Separated bike lane (binary) 45 (<1%) 566 (2%)
Bike facility width (continuous) 0 (0%) 0 (0%)
Bike facility buffer width (continuous) 0 (0%) 0 (0%)
One way (binary) 4,107 (13%) 8,529 (23%)
Lanes (continuous) 8,192 (27%) 4,253 (12%)
Right turn lanes (continuous) 295 (1%) 443 (1%)
Left turn lanes (continuous) 881 (3%) 1,398 (4%)
Center turn lane (binary) 207 (1%) 148 (<1%)
Parallel parking (binary) 63 (<1%) 252 (1%)
Perpendicular parking (binary) 7 (<1%) 22 (<1%)
Curb-to-curb width (continuous) 14 (<1%) 0 (0%)
Speed limit (continuous) 23,326 (77%) 2,798 (8%)
Traffic signal (binary) 3,336 (11%) 3,561 (10%)

Note: While it is possible for tags related to binary variables (e.g., “One way”) to have explicitly negative values 
(e.g., “No”), it appeared to be more common for negative values to be implied by the lack of a tag, based on visual 
inspection of satellite imagery. Thus a low proportion of explicit values does not necessarily indicate substantial 
missing data.

There is a notable semantic difference between OSM bikeway tags and conventional 
U.S. classifications, particularly with regard to bikeways that are separated from traffic 
by a painted or physical buffer or barrier. In U.S. bicycle planning, the term “bike lane” 
refers to an exclusive lane for bicycles that is separated from traffic by a painted line. 
This is consistent with the OSM tagging convention, “cycleway”:“lane.” However, U.S. 
bicycle planning further distinguishes between ‘buffered bike lanes’ and ‘cycle tracks,’ 
both of which are separated from traffic, the former by a painted buffer, and the latter by 
a more substantive, physical buffer, such as by bollards, planters, or raised pavement. 
OSM tagging conventions do not distinguish between these types. The “cycleway”:“track” 
tag is most frequently used to describe further separation. Some contributors have started 
using “cycleway”:“buffered_lane” in Austin, though not in Portland. Due to the inconsistent 
distinction between buffered lanes and cycle tracks, they were collectively defined as 
“separated bike lanes.” Unfortunately, this did not allow for identification of potential 
benefits due to the further separation provided by cycle tracks. It did, however, enable a 
consistent definition across the data sources.



Mineta Transportat ion Inst i tute

19
Methods

Local Agency Data

Local governments are common sources for built-environment data at citywide scales. 
Most cities provide GIS datasets representing streets and bicycle networks. In order to 
compare OSM and audited data, and in order to identify reasonable assumptions for 
missing OSM attributes, relevant GIS datasets were collected from the City of Portland’s 
‘PortlandMaps’ online data portal. These included shapefiles representing bicycle 
facilities; pavement characteristics (e.g., width, lanes); pavement markings (e.g., turn lane 
symbols); marked and metered parking slots; street signs (e.g., No Parking signs); speed 
limits; traffic signals; zoning districts; and traffic islands (e.g., medians). Average weekday 
(AWD) traffic volume estimates from 2015 were also acquired directly from the Portland 
Bureau of Transportation (PBoT). Relevant variables were extracted from these datasets 
and spatially joined to the OSM street segments. 

Due to the exceptional quality and availability of data offered by local agencies in Portland, 
including datasets that either matched or approximated nearly all attributes contributing to 
LTS classifications, the analysis of local agency data was focused on Portland. No local 
agency data for Austin for gathered or examined.

Attributes attached to linear features (e.g., center lines) were spatially joined using a 
customized algorithm that used Hausdorff distances to identify related features based 
on the similarity of their spatial envelopes. Compared with conventional spatial joining 
techniques relying on nearest neighbors, this approach improved the accuracy of matches 
between features with different lengths and in situations where the datasets represented 
large streets with different combinations of single and dual carriageways.

Point and polygon features were matched based on proximity to OSM street segments. 
For the parking variable, it was necessary to combine multiple local datasets in order to 
infer parking status. ‘No Parking This Block’ signs were isolated within the traffic signs 
dataset, and it was assumed that a street had no parking if at least one of these signs was 
located along both sides of a street segment. Furthermore, marked and metered parking 
slots were matched to each segment, and a given segment was assumed to have no 
parking if all slots for the segment were labeled as ‘No Parking.’ All other segments were 
assumed to have street parking.

Binary classes and continuous units of all local variables were coded to maintain consistency 
with similar OSM variables.

Audited Data

As a third data source, detailed audits (also known as inventories and ground-truths) of a 
subsample of street segments were gathered within both Portland and Austin. The same 
auditing approach was used in each city to reduce the likelihood of systematic measurement 
bias between the two cities. Because audit data were collected based on the authors’ own, 
detailed criteria, they were considered the most reliable data source. Figure 3 outlines the 
workflow used to identify subsamples of street segments for auditing, to develop and apply 
the auditing protocol, and to process the resulting data.

https://gis-pdx.opendata.arcgis.com/
https://gis-pdx.opendata.arcgis.com/datasets/bicycle-network
https://gis-pdx.opendata.arcgis.com/datasets/bicycle-network
https://gis-pdx.opendata.arcgis.com/datasets/pavement-maintenance
https://gis-pdx.opendata.arcgis.com/datasets/pavement-marking-symbols
https://gis-pdx.opendata.arcgis.com/datasets/parking-slots
https://gis-pdx.opendata.arcgis.com/datasets/signs
https://gis-pdx.opendata.arcgis.com/datasets/speed-limits
https://gis-pdx.opendata.arcgis.com/datasets/speed-limits
https://gis-pdx.opendata.arcgis.com/datasets/traffic-signals
https://gis-pdx.opendata.arcgis.com/datasets?q=zoning
https://gis-pdx.opendata.arcgis.com/datasets/traffic-islands-and-circles
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Figure 3.	 Auditing Workflow

Audits were conducted with Google Street View and Google Maps aerial imagery in 
order to complete the auditing quickly and efficiently. The efficacy of Street View as a 
transportation-environment auditing tool has been previously evaluated, and it has been 
deemed to be reasonably accurate while being substantially more time- and resource-
efficient than in-person auditing.57 The distance measurement tool in Google Maps also 
provided an efficient mechanism for measuring variables such as curb-to-curb width, parking 
lane width, and right-turn lane length, which would have been difficult and dangerous to 
measure in the field. Google Maps aerial imagery and the majority of Street View imagery 
in both Portland and Austin was from within the last two years and was sufficiently high-
resolution to identify street markings and signs.

Previous audits have been conducted for various units of analysis. Rodriguez and Vergel-
Tover audited block faces and blocks,58 Zegeer et al. audited intersections,59 and others 
have focused exclusively on street segments.60 For this study, street segments, defined as 
block-length street areas bounded by the nearest cross street in each direction, were the 
units of analysis used for audits. The audited segments corresponded with the geographical 
units for which Ride Report scores were available; thus, the same units were used for the 
audit as were used for all measurement and analyses throughout the study. 

Segments to be audited were sampled in each city through a stratified random process. 
Firstly, the pool of segments was limited to those for which Ride Report scores were 
available and whose lengths were between 100 and 500 m (328 and 1640 ft). The pool 
was then stratified according to three criteria: highway functional classes based on OSM 
highway tags; Ride Report score; and built environment density measure based on the 
continuity of building facades along each block face. Three functional classes were defined: 
“local” (OSM “highway” equaled “residential” or “unclassified”); “collector” (OSM “highway” 
equaled “tertiary”); and “arterial” (OSM “highway” equaled “secondary” or “primary”). Ride 
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Report scores were categorized into poorly-scoring segments (Ride Report score < 0.8) 
and relatively well-scoring segments (Ride Report score ≥ 0.8). Built environment density 
was defined based on ‘street wall continuity,’ the proportion of block faces along both sides 
of each street segment that were lined with buildings:61 if both sides of a segment were 
continuously lined with facades (within 200 m of the center line), continuity would be 1.0; 
if only one side had continuous facades, continuity would be 0.5; if no facades were within 
200 meters a segment, continuity was 0.0. Continuity measurements were made using a 
Python script and based on OSM building footprint data, which was fairly complete along 
candidate segments in Portland and Austin, as judged by visual comparisons with aerial 
imagery. Continuity followed a fairly normal distribution among segments in both cities. 
Two density classes, ‘low’ and ‘high,’ were defined for each city, with the boundary being 
the mean value for that city (0.50 in Portland; 0.43 in Austin).

This 3x2x2 stratification yielded twelve groups (Table 5). Approximately 60 segments 
were randomly sampled from each group. Some groups offered a pool of fewer than 60 
segments, in which case all available segments were sampled.

The final audit samples in Portland and Austin were assigned to auditors in a random order. 
Auditors were provided with the street name and cross street names for each segment 
in order to define the spatial extent of their audit. They were also provided with custom 
Google Maps and Street View links that were automatically centered on each segment.

Table 5.	 Stratified Sampling of Audit Segments within Portland and Austin

Group
Portland Austin

Pool Sample Audited* Pool Sample Audited*
Local, low R.R., low dens. 63 60 57 10 10 7
Local, low R.R., high dens. 64 60 51 40 40 25
Local, high R.R., low dens. 558 60 58 130 60 44
Local, high R.R., high dens. 1040 60 59 149 60 53
Collector, low R.R., low dens. 61 60 48 41 41 26
Collector, low R.R., high dens. 64 60 52 141 60 50
Collector, high R.R., low dens. 422 60 54 201 60 51
Collector, high R.R., high dens. 419 60 54 299 60 54
Arterial, low R.R., low dens. 64 60 57 22 22 15
Arterial, low R.R., high dens. 58 58 49 63 60 40
Arterial, high R.R., low dens. 147 60 41 109 60 46
Arterial, high R.R., high dens. 96 60 55 75 60 34
Total 3159 768 635 1285 615 445

* Counts of audited segments account only once for segments that were inadvertently audited twice. Thus, these are 
counts of unique segments, not audits.

Auditors were trained in the data collection protocol in order to ensure high reliability. 
A training session was conducted to provide guidance on the protocol and the ratings 
system, with a visual guide prepared for each audit question. The training included 
particular examples of situations, in order to increase homogeneity of ratings across 
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auditors. Throughout the auditing process, auditors asked for clarifications on how to 
address questions in the context of certain segments; responses to these questions were 
shared with all auditors in order to promote consistency in interpretation. All audits were 
conducted by student researchers. 

The audit consisted of 40 questions, including fields for tracking auditor name, identifying 
information for the segment and cross streets. Several questions were only shown based 
on responses to an earlier question, and questions about intersection treatments were 
shown twice in order to audit each end of a given segment. Questions capturing core built 
environment data were either multiple choice or open response requiring the answer to be 
a number (e.g., number of through-traffic lanes). All questions required either an explicit 
response (e.g., “Yes” or “No”) or a null responses (e.g., “Unable to Identify”). The audit was 
operationalized with Google Forms, enabling audit responses to be automatically collected 
in a Google Sheets spreadsheet. Each audit took approximately five minutes to complete.

Segments were randomly assigned to auditors, and approximately 10% of segments 
were assigned to two auditors in order to enable analysis of inter-auditor reliability (see 
“Assessing Inter-Auditor Reliability” below). More segments were audited redundantly 
than was originally intended, due to an erroneous interpretation of each direction of two-
way segments as being unique segments.62 This strengthened the ability to determine 
inter-auditor agreement, but diminished the effective audit sample size by approximately 
12% in Portland and 25% in Austin. These sample reductions were spread fairly evenly 
across the stratification groups.

Assessing Inter-Auditor Reliability

The reliability of an instrument refers to whether it yields similar results every time it is 
applied in the same context and circumstances. This assessment of inter-auditor reliability 
aimed to determine the degree to which two different, trained raters agreed regarding their 
assessment of the environment using the audit instrument. Higher agreement meant higher 
inter-auditor reliability. Percentage agreement is often used as an indicator of agreement, 
although it is often criticized because it does not correct for chance agreement. For this 
assessment, kappa coefficients were used to describe agreement among binary variables, 
weighted kappa coefficients for categorical and ordinal variables,63 and concordance 
statistics for continuous variables.64 Both weighted kappa coefficients and concordance 
statistics correct for chance agreement and range between 0 and 1, with higher values 
denoting higher agreement. The weights used in the weighted kappa coefficients penalize 
responses that are more distant over responses that are closer together. Percent 
agreement is also reported because it is a helpful descriptor in cases where features have 
a low prevalence and agreement is not perfect; in those circumstances kappa coefficients 
and concordance statistics may be low, but agreement may be quite high. The criteria 
by Landis and Koch were used to interpret agreement,65 with values of zero indicating 
no agreement, 0–0.20 indicating slight agreement, 0.21–0.40 indicating fair agreement, 
0.41–0.60 indicating moderate agreement, 0.61–0.80 indication substantial agreement, 
and 0.81–1 indicating almost perfect agreement.
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Agreement could not be determined for audit items that did not vary across segments (i.e. 
that always took the same value). This assessment focused solely on audit items that had 
variation in the sample for a given auditor. Agreement was analyzed across 142 segments 
in both Portland and Austin that were examined by multiple auditors. Overall, most of 
the audited measures had adequate inter-auditor agreement according to the Landis and 
Koch criteria (Table 6). The salient exceptions were bicycle facility width (concordance = 
0.321) and measured width of the buffer between the bicycle facility and the road, if present 
(weighted kappa = 0.27; agreement = 74.7%). There was fair to moderate agreement for 
measures of number of traffic lanes on the cross street (weighted kappa = 0.30) and 
whether or not there was a center line (kappa = 0.42). All other measures examined had 
either substantial or almost perfect agreement, indicating high inter-auditor reliability.

Table 6.	 Inter-Auditor Agreement of Street Segment Data

  Agreement Measure
Audited Variable Percent Agreement Kappa Weighted Kappa Concordance
Bike facility (check all that apply): 
None, Sharrow, Paved Shoulder, 
Lane, Sidepath

90.1% 0.91

Number of through lanes 98.6% 0.87

Street is one way (y/n) 98.6% 0.95

Street center line (y/n) 69.0% 0.42

Center turn lane (y/n) 95.8% 0.74

Number of residential driveways/
curb cuts

0.906

Number of commercial 
driveways/curb cuts

0.799

Presence of parking 
(none, one side, both sides)

84.5% 0.85

Moving cars based 
on Google Street View

0.804

Moving cars based on Google 
Street View, truncated at 5+

93.0% 0.72

Curb-to-curb width (feet) 0.852

Number of cross street 
traffic lanes

83.1% 0.30

Bike lane on cross street (no bike 
lane, dropped bike lane, 
straight bike lane)

94.4% 0.87

Bike lane approach to 
intersection (no bike lane, 
dropped bike lane, 
straight bike lane)

97.2% 0.93

Bike facility buffer width (feet; 
smallest of either side)

73.7% 0.27

Bike facility width 
(feet; smallest of either side)

0.321
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Audit Data Processing

Raw audit data were transformed into binary and continuous variables consistent with 
those provided by the OSM and local data sources (Appendix A). Null values were 
interpreted as 0 for continuous measures (e.g., ‘Left Turn Lanes’ == ‘None’ → 0) and 
‘No’ for binary measures (e.g., ‘Median Refuge’ == ‘Unable to Identify’ → ‘No’). Data 
for segments that were audited multiple times, either by different auditors or due to the 
segment directionality issue, were aggregated by taking the maximum value from each 
segment in order to maintain the most conservative (i.e., highest-stress) observation. 
Because LTS classifications take as inputs intersection-related variables from one or the 
other end of a segment (rather than classifying LTS separately at each end), intersection-
related variables were also aggregated as the maximum among both ends of a segment.

EPA Smart Location Data

Data from the U.S. Environmental Protection Agency (EPA) Smart Location Database 
(SLD) were used to account for neighborhood-scale social and built environmental 
characteristics in statistical models developed to address Objective 3.66 The EPA provides 
SLD variables for every census block group in the U.S. Fifteen of these variables were 
gathered for this study, including the National Walkability Index, which was accessed from 
a separate data file (Table 7). These variables were then each spatially joined to the street 
segments within a given block group. Segments along the boundary between two block 
groups, or which traversed multiple block groups, were assigned the average of each 
variable among those block groups, in order to summarize their combined characteristics.

Table 7.	 EPA Smart Location Database (SLD) Variables

Descriptive Variable Name EPA SLD Field Code or Description of Derivation
Percent of zero-car households Pct_AO0
Housing units per acre Calculated by dividing housing units (CountHU) from 

unprotected land area (Ac_Unrp)
Population per acre Calculated by dividing population (TotPop) from 

unprotected land area (Ac_Unrp)
Jobs per acre Calculated by dividing employment (TotEmp) from 

unprotected land area (Ac_Unrp)
Jobs per household D2a_JpHH
Employment entropy D2b_E5Mix 
Employment and household entropy D2a_EpHHm
Trip production/attraction equilibrium D2c_TripEq
Street network density D3a
Pedestrian-oriented street network density D3apo
Intersection density D3b
Pedestrian-oriented intersection density D3bpo3
Proportion of block group jobs within ½ mile of a fixed 
guideway transit stop

D4b050

Regional Centrality Index D5dei
National Walkability Index Separate Data File
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LTS CLASSIFICATION

Authors of LTS methods tend to describe them as being straightforward, but in fact 
operationalizing them can be fairly complex. The Mekuria method was defined by a series 
of seven lookup tables related to different combinations of bike lane presence, parking 
presence and intersection treatments. Within each table, LTS values were identified by 
cross-referencing potential combinations of roadway attributes (See Appendix C). Many of 
the tables also included footnotes that added additional levels of decision making complexity, 
sometimes including additional variables. Multiple tables might have be applicable to a 
given street segment. Following the “weakest link” principle, each segment was assigned 
the maximum LTS value derived from any relevant table. While the table system was fairly 
intuitive for manual classification, it did not translate efficiently into a coding algorithm. Other 
LTS systems were also documented by similar series of lookup tables.

After exploring decision tree-based approaches for classification, the authors instead 
choose to implement a rule-based approach that provided greater interpretability and 
flexibility.  Classification was driven by a sequence of conditional (“if…then…”) rules, each 
leading to a specific LTS class if the rule tested positive. Once all rules were applied 
to each street segment, the highest candidate LTS class was assigned to the segment, 
similar to the “weakest link” principle used by the Mekuria method.

The classification process was operationalized in Python. Each classification operation 
was fed by three tables containing: (1) street segment-level source data; (2) assumptions 
necessary to link that source data with a specific method; and (3) rules for classifying the 
assumption-transformed data into LTS classes (Figure 4).

Figure 4.	 LTS Classification Workflow
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Classification rules were developed for seven LTS methods:

1.	Conveyal – This method was developed by the transportation consultancy and 
software development firm Conveyal and was designed explicitly to require minimal 
data inputs, almost all of which were available through OSM.67 The Conveyal method 
was developed in partnership with the World Bank in an effort to provide high-level 
analyses in nearly any location worldwide.

2.	Furth – Furth published this method, which he called “LTS 2.0,” in order to streamline 
data requirements and improve geographic generalizability.68

3.	Lowry – This method with streamlined data inputs was published within a broader 
study on bicycle facility stress.69

4.	Mekuria – This was the “original” LTS method, developed by a Mineta Transportation 
Institute research project.70

5.	Montgomery – Montgomery County, MD developed their own LTS method to support 
their 2018 Bike Master Plan.71

6.	ODoT – The Oregon Department of Transportation (ODoT) developed their own 
LTS method to support bicycle planning within Oregon.72

7.	PFB – This method was developed by People for Bikes (PFB) in order to conduct 
LTS analyses throughout the United States using OSM data.73

Table 8 summarizes the number of rules and input variables for each LTS method.

Table 8.	 Classification Rules and Variables for Each of the LTS Methods 

Method Rules Variables
Conveyal 7 Functional Class (Categorical)

Lanes (Count)
Speed Limit (Ratio)
Bike Lane (Binary)

Furth 134 Bike Lane Width (Continuous)
Parking Lane Width (Continuous)
Center line (Binary)
ADT (Count)
Speed Limit (Continuous)
One Way (Binary)

Lowry 37 Residential Land Use (Binary)
Lanes (Continuous)
Speed Limit (Continuous)
Bike Facility (Categorical)
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Method Rules Variables
Mekuria 61 Bike Lane Width (Continuous)

Right Turn Lanes (Count)
Right Turn Lane Length (Continuous)
Bike Lane Continuous at Intersection (Binary)
Bike Lane Aligned Through Intersection (Binary)
Right turn lane speed (Continuous)
Parking Lane Width (Continuous)
Lanes Per Direction (Count)
Residential Land Use (Binary)
High Parking Turnover (Binary)
Speed Limit (Continuous)
Bike Lane Frequently Blocked (Binary)
Raised Median (Binary)
Center line (Binary)
Pedestrian Refuge at Intersections (Binary)
Traffic Signal at Intersections (Binary)
Cross Street Speed Limit (Continuous)
Cross Street Lanes (Count)

Montgomery 94 Bike Facility Width (Continuous)
Bike Facility Type (Categorical)
Speed Limit (Continuous)
Parking Lane Width (Continuous)
Parking (Binary)
High Parking Turnover (Binary)
Center line (Binary)
ADT (Count)
Residential Land Use (Binary)
Bike Facility Buffer Type (Categorical)
Many Driveways (Binary)
Raised Median (Binary)

ODoT 75 Bike Lane Width (Continuous)
Parking Lane Width (Continuous)
Speed Limit (Continuous)
Lanes per Direction (Count)
Bike Lane Frequently Blocked (Binary)
Center line (Binary)
Right Turn Lanes (Count)
Right Turn Lane Length (Continuous)
Right Turn Lane Speed (Continuous)
Bike Lane Aligned Through Intersection (Binary)
Left Turn Lanes (Count)
Traffic Signal at Intersections (Binary)
Pedestrian Refuge at Intersections (Binary)
Cross Street Speed Limit (Continuous)
Cross Street Lanes (Count)

PFB 26 Bike Facility (Categorical)
Residential Land Use (Binary)
Speed Limit (Continuous)
Lanes per Direction (Count)
Parking (Binary)
Curb-to-Curb Width (Continuous)

The Mekuria method produced a four-level classification scheme, with segments being 
classified as LTS 1, LTS 2, LTS 2, or LTS 4. The majority of alternative methods have 
followed suit. Two of the methods, however, produced different numbers of levels. The 
Montgomery system was designed to produce seven levels: LTS 0, LTS 1, LTS 2, LTS 
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2.5, LTS 3, LTS 4, and LTS 5. To simplify comparison with other systems, the authors 
elected to combine Montgomery LTS 0 with LTS 1, LTS 2.5 with LTS 2, and LTS 5 with 
LTS 4, producing a more traditional four-level scheme. The PFB method was designed 
to produce only two levels: “low” and “high.” Because it would have been problematic to 
artificially refine these into four levels, this two-level structure was maintained.

RIDE REPORT DATA

Crowdsourced scores reflecting cycling satisfaction were acquired from Knock Software 
Inc. (hereafter referred to as “Knock”), the makers of the Ride Report app, for all street 
segments in Portland and Austin with sufficient data. Ride Report is available for public 
download on the iOS and Android mobile phone operating systems. Users agree to have 
their movement analyzed based on information collected by the smartphone. Once the 
app detects a bicycling trip it automatically records the route; the app also detects the 
end of each trip and stops recording automatically. Shortly after the trip has ended, the 
app prompts the user to rate their satisfaction with the trip on a binary scale (thumbs-up, 
thumbs-down). The app then transmits the trip route and rating to Knock. If a user declines 
to rate a trip, the route is still transmitted to Knock, but the trip is not scored. 

To derive segment-level scores, Knock assigns the overall trip satisfaction score to each 
segment in the route.  For a given segment, Knock reports the proportion of ratings of a 
trip that shared the segment that were positive.  Thus, a segment for which all routes that 
traversed it rated positively would have a score of 1; a segment with all negative ratings 
would have a score of 0. The assumption is that as the number of users increases, the 
score of each segment will uniquely reflect segment-level conditions. Ride Report scores 
were based on ratings recorded prior to November 2017. In Portland, Ride Report began 
collecting data in December of 2014 and usership peaked in May 2017, coinciding with 
the League of American Bicyclists’ National Bike Month, for which Ride Report has been 
used to track commuting competitions, with approximately 1,800 unique users who made 
cycling trips. Data collection in Austin began in April of 2015, and peaked in November 
of 2016 with approximately 200 cycling users. Ride Report continues to collect data with 
increasing large user bases in both cities.

The vast majority of ratings were positive, so the distributions of segment-level scores were 
substantially left-skewed. The average score among all users in Portland was 0.90 and 
among all users in Austin was 0.88. Scores were only calculated if there were minimum of 
20 ratings along a given segment. This preserved anonymity of users and ensured that the 
segment scores were reliable. All scores were calculated by Knock prior to being delivered 
to the authors, so the authors had access only to aggregated segment-level scores rather 
than to individual routes or ratings. No attributes other than segment-level scores were 
made available. 

Knock’s segments were also based on OSM streets and were predominantly block-
length, but in some cases had slightly different lengths than the analysis segments. Knock 
segments were spatially joined to the study segments, and when there was more than one 
Ride Report score joined to a study segment, their scores were averaged. This process 
resulted in 8,198 segments with Ride Report scores in Portland, and 2,104 in Austin.
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Customized Ride Report “Queries”

In Portland, Knock also prepared customized Ride Report scores based on subsets of 
ratings representing various cyclist characteristics (Table 15). Because other scores were 
based on ratings made by only a subset of riders, they were available for only for the 
segments along which these riders rode and for which there were a critical number of 
ratings to reliably determine a score. Because Ride Report usership was smaller in Austin 
than in Portland, Knock could only reliably calculate these subset scores in Portland. They 
were not available for Austin.

Knock used metadata about app users and the spatiotemporal attributes of rides to 
compile subsets of ratings for certain types of riders (e.g., male riders) or rides (e.g., 
during inclement weather). They used these rating subsets to calculate customized scores 
reflective of those conditions (e.g., scores based on male riders or trips during inclement 
weather). The customized ratings are herein referred to as “queries.”

Gender-based queries relied on data collected from surveys conducted for National Bike 
Challenge events, connections between the Ride Report app and the iOS or Android health 
apps, or gender estimates based on user email addresses using the Gender API (with only 
matches with >90% confidence being used). Age-based queries relied on data gathered 
from the National Bike Challenge surveys and app connections. It was notable that no 
segments had sufficient ratings from cyclists over the age of 65 with which to compute 
reliable scores. This may have been because few users were over the age of 65, because 
few of these older users provided their age, or because older cyclists did not travel along 
sufficiently-overlapping routes to provide reliable scores.

Socioeconomic disadvantage queries relied upon the starting and ending points of rides 
relative to Community of Concern areas, as defined by TriMet, the Portland area transit 
agency.74 If more than 25% of trip staring or ending points for a given rider were within a 
Community of Concern, the rider was assumed to be socioeconomically disadvantaged or 
regularly exposed to a disadvantaged community. This was a highly imprecise measure, 
but was the best available proxy for considering disadvantaged populations and their 
communities given the extremely limited person-level data. 

Queries related to cycling strength were based on two measures: speed and cycling 
frequency. Slow and fast riders were identified based on their average trip speed (total trip 
distance / total trip time) over their entire history as Ride Report users. High, medium, and 
low-frequency riders were identified based on their average weekly cycling trip count. The 
boundaries used to define each category are reported in the “Definition” column of Table 15.

Queries based on ride distance were based on distances computed along the OSM street 
network between ride start and end points. Queries based on time of day and date were 
based on metadata automatically recorded for each ride. Ride dates allowed them to be 
categorized by season. Queries based on weather at time of each ride were calculated by 
linking ride times and dates with National Weather Service data.

https://gender-api.com/
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A notable shortcoming of the Ride Report app was that it could sometimes misidentify 
transportation modes. In the authors’ personal use of the app, it reported false positives 
(e.g., the app estimated that you were riding a bicycle when you were actually riding the 
bus) much more frequently than false negatives (e.g., the app estimated that you were 
riding a bus when you were actually riding a bicycle). The authors presumed that users 
were much more likely to supply a rating when the app detected bicycle riding correctly. 
Because scores were based only on rated trips, they assumed that classification errors did 
not substantially affect scoring.

Ride Report ratings tended to be positive, with the average segment score receiving a 
thumbs up 90% of the time.

STATISTICAL ANALYSES

Objective 1: Agreement of LTS Results Across Different Classification 
Methods and Data Sources

Kappa coefficients were computed in order to assess the similarity of different LTS methods 
(e.g., Mekuria, Conveyal, Furth) while holding data sources constant. Kappa coefficients 
were also used to compare different data sources (e.g., audit, OSM, local agency) while 
holding LTS methods constant. Because audit data were only available for a subset of 
street segments, additional sets of kappa coefficients were calculated using only audited 
streets, facilitating direct comparisons between methods on the same sample of streets. 
A kappa coefficient of 1 would indicate perfect agreement, while 0 would indicate no more 
agreement than would be expected due to chance (e.g., random matches between four-
class sets would likely yield 25% correct matches). A Negative kappa coefficient would 
indicate that agreement is lower than random. Thus, kappa coefficients provided a more 
robust measure of methods’ similarity than would “percent agreement,” by correcting for 
chance agreement. 

Weighted kappa coefficients are appropriate when categorical variables are ordinal rather 
than nominal, so that disagreements between proximate levels (e.g., 1 and 2) are weighted 
less heavily than disagreements between more distant levels (e.g. 1 and 4). Linear 
weighting applies a linearly decreasing weight to successively greater disagreements, 
assuming that that the importance of an additional unit of disagreement is constant no 
matter the degree of disagreement. Kappa coefficients were interpreted based on the 
ranges suggested by Landis and Koch (1977): 0–0.2: poor agreement; 0.2–0.4: fair 
agreement; 0.4-0.6: moderate agreement; 0.6–0.8: substantial agreement; and 0.8–1.0: 
almost perfect agreement.
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Objective 2: Associations Between LTS and Crowdsourced Bicycle User 
Satisfaction

Additionally, the degree of correlation between LTS levels and Ride Report ratings was 
examined using Spearman’s rank correlation coefficient (ρ), a non-parametric approach 
appropriate for ordinal variables. Spearman coefficients summarize the degree to which 
two variables can be described using a monotonic function. This contrasts with the more 
commonly-used Pearson correlation coefficient (r), which assesses continuous rather 
than ordinal relationships. Like the Pearson correlation, values of the Spearman rank 
correlation range between -1 (inversely correlated) and 1 (positively correlated).75 For 
the sake of intuitiveness, Spearman coefficients between LTS (for which lower values 
represent greater comfort) and Ride Report scores (for which higher values represent 
greater comfort) were multiplied by -1 so that positive coefficients indicated conceptual 
agreement about cycling satisfaction.

Objective 3: Associations Between Cycling Environment Variables and 
User Satisfaction

Grouped logistic regression models were developed to evaluate associations between 
individual cycling environment variables and Ride Report scores.76 Since Ride Report ratings 
were aggregations from individual binary ratings, the effect of contextual environmental 
variables on the proportion of positive ratings was estimated for each segment.

The regression models built on the following form:

Yi = SatisfactoryRatingsi / TotalRatingsi = f(Z(Xi))

where Yi is the proportion of ratings for each segment, i, that are satisfactory, and Z(Xi) is 
a vector of contextual environmental characteristics.

Because nearby street segments were likely to have unobserved similarities that might 
have affected their Ride Report scores, the models included terms to account for spatial 
autocorrelation using a technique developed by Clapp et al.77 This involved including 
second-order Taylor expansion terms of two-dimensional spatial coordinates (longitude 
and latitude) in the regression equation. The full models, with these terms included, took 
the form:

Yi = SatisfactoryRatingsi / TotalRatingsi = f(Z(Xi), Lati, Loni, Lati
2, Loni

2, Lati x Loni)

where the additional terms are Lati, the latitude of the segment; Loni, the longitude of the 
segment; their squares; and their product. Intuitively, these terms control for the impact of 
spatial proximity among segments on Ride Report outcomes.



Mineta Transportat ion Inst i tute

32

V.  RESULTS

OBJECTIVE 1: AGREEMENT OF LTS RESULTS ACROSS DIFFERENT 
CLASSIFICATION METHODS AND DATA SOURCES

For the same street, different classification results could be obtained depending on the 
LTS method used, as well as on the data source used. Figure 5 shows how the shapes of 
LTS distributions sometimes varied substantially across methods (rows) and data sources 
(columns). If all LTS methods and data sources had produced the same classification 
outcome, all distributions in black (representing audited segments) within each city 
(Portland, n=633; Austin n=445) would have had similar shapes, as would all distributions 
in blue (representing all segments; Portland: n=30,487; Austin: n=36,936). Instead, 
methods and data sources produced a variety of distributions.

Unsurprisingly, the distributions were largely right-skewed, with a greater proportion of 
segments classified as LTS 1 and 2, and lower proportions at higher LTS values. This 
skew is especially pronounced within the all-segment (blue) samples, in which the vast 
majority of segments were residential streets. These distributions were representative of 
the true distributions of traffic stress within the population of Portland and Austin streets. 
The audited (black) samples, in contrast, were purposefully chosen to represent a range 
of traffic stresses, so they were more evenly distributed across LTS levels.

Looking down the first column of Figure 5, which shows how audited streets were 
classified based on audit data in Portland (n=633), it can be seen that there were limited 
similarities between LTS methods. The Conveyal and Lowry distributions both decreased 
monotonically, but at different rates. The Conveyal method identified substantially more 
LTS 4 segments than did any other method, suggesting that it erred toward higher 
classification. The Furth, and ODoT methods were bimodal and had similar distributions, 
identifying relatively large numbers of LTS 1 and LTS 3 segments. Many of the distributions 
in the second and fourth columns, based on same sample of streets but classified using 
OSM vs. Local data, had different modes and overall shapes compared with those in the 
first column, demonstrating the non-equivalence of these data sources. The high degree 
of variability makes it difficult to make generalizations concerning whether certain methods 
or data sources were biased toward certain distributions. Outcomes appeared to be highly 
sensitive to both methods and data sources.

One exception is the Conveyal method, which offered fairly consistent classifications across 
each of the three data sources. Within both Portland and Austin, the Conveyal distributions 
based on audit and OSM data were highly similar. The local data in Portland appeared to 
displace some LTS 2 segments into LTS 3, but produced similar counts of LTS 1 and LTS 
4 segments. This consistency was unsurprising given the Conveyal method’s simplicity: it 
was based on only seven rules and taking as inputs only four variables—functional class, 
lane count, speed limit, and bike lane presence—that were widely available or could be 
reliably estimated (e.g., assumptions about lane count and speed limit based on functional 
class). This simplicity, however, may also make the Conveyal results imprecise compared 
with methods accounting for more detailed features, such as intersection infrastructure.
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Figure 5.	 Distributions of LTS Levels Derived from Various Classification 
Methods and Data Sources

It is notable that the People for Bikes (PFB) method, despite being fairly simple, with only 
six input variables, 26 rules, and two LTS outcome levels (as opposed to the standard four), 
yielded inconsistencies in modal values between audit and OSM data in both Portland 
and Austin. This was likely because of its high sensitivity to minor differences in certain 
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variables. For example, the presence or absence of parking in the PFB method often 
makes the difference between a Low and a High classification. Yet parking is one of the 
most difficult variables to account for explicitly in OSM and local datasets. In many cases, 
parking must be assumed based on a proxy, resulting in variability among the segments 
where parking is either known or estimated to occur. Where classification rules hinge on 
parking, variations in the quality of parking data may substantially influence LTS outcomes. 
To reduce this impact, LTS methods might avoid using variables that are inconsistently 
available, or at least minimize the extent to which these variables play decisive roles in 
swinging classifications in one direction or another.

Another notable trend across several of the methods was that fewer segments were 
classified as LTS 2 based on OSM and local data than with audit data. The Furth method, 
for example, produced no LTS 2 segments when using OSM data in Portland, and nearly 
none in Austin, even though a moderate number of segments were considered LTS 2 
based on the audit data. This discrepancy was due to the way that the Furth method 
differentiated between LTS 1, 2, and 3 based on variables related to speed, volume, 
and center line presence. If all of these were low, it classified as LTS 1, while if all are 
high, it classified as LTS 3. To be LTS 2, these variables needed to have mixed levels. 
However, because OSM attributes were sparse, these variables were often estimated 
based on the same proxies, such as the OSM highway tag, leading to highly colinear 
assumptions that drove LTS to either low or high extremes rather than the LTS 2 middle 
ground. Appendix D (available in the online supplementary materials) shows which rules 
had the greatest influence on classification for each method, demonstrating that different 
rules were influential depending on data sources. Many segments classified as LTS 2 
according to audit datasets were classified as LTS 3 according to OSM and local data due 
to conservative assumptions about speed, volume, and center lines. In particular, center 
line assumptions appeared to be a substantial driver of LTS 3 classifications using OSM 
and local datasets, both of which poorly represented this variable.

Consistency between LTS classifications across methods and data sources was also 
evaluated with Cohen’s kappa coefficients. Table 9 shows kappa coefficients comparing 
pairs of LTS methods (Method A vs. Method B) while data sources were held constant. 
Separate kappa coefficients for each data source in each city are reported in each column.

The most notable trend among kappa coefficients was that classifications were most 
similar between LTS methods when they were based on OSM data (typically around 0.9, 
or ‘almost perfect’ similarity) and least similar when based on audit data (typically between 
0.2 and 0.5, or ‘fair’ to ‘moderate’ similarity). This was surprising, given that audit data 
were considered the most reliable data source and OSM the least reliable. Sense can be 
made of this discrepancy, however, by considering that audit data resulted from highly 
detailed, segment-by-segment measurements that contained substantial classification 
heterogeneity, whereas OSM data were more generalized, with many missing data 
points that were filled by assumptions, resulting in greater homogeneity in classification. 
The detailed audit data, therefore, resulted in more varying classifications due to subtle 
differences between methods. In essence, there was more granular evidence on which 
to base different interpretations of traffic stress. With the more general OSM data, 
classifications were instead based on assumptions derived from major characteristics, 
such as highway class. 
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Table 10 shows Kappa coefficients between LTS classifications with different data sources 
(Data Source A vs. Data Source B) while LTS methods were held constant. Classifications 
from the Conveyal method, across all data source pairs, had notably greater similarity than 
those from any other method. Across all of the methods, no data source pairs had strikingly 
more or less similarity than any others. Trends in kappa coefficients were associated 
chiefly with methods, not data sources. However, it was notable that kappa coefficients in 
Portland were universally higher when all segments (n=30,487)  were accounted for than 
with only audited segments (n=633). This was likely due to the preponderance of LTS 1 
segments (as demonstrated by Figure 5), which may have been more likely than higher 
levels to be classified similarly no matter the method or data source.

The broad takeaway from Table 9 and Table 10 is that most pairs of methods and data 
sources, with the notable exception of comparisons of data sources involving the Conveyal 
method, had only moderate agreement (kappa coefficients between 0.4 and 0.6). As such, 
LTS methods were not readily comparable with one another, and most methods were 
sensitive to differences in data sources. If OSM data were used, different LTS methods 
yielded more similar classifications compared with audited data. Agreement was lower, but 
still either moderate or substantial, when comparing audited and local data.

Table 9.	 Linearly Weighted Cohen’s Kappa Coefficients Comparing Pairs of LTS 
Methods with Data Sources Held Constant

Weighted Kappa Coefficient
Portland Austin

LTS Method A LTS Method B
Audit Data 

n=633
Local Data 
n=30,487

OSM Data 
n=30,487

Audit Data 
n=445

OSM Data 
n=36,936

Conveyal Furth 0.60 0.76 0.83 0.67 0.89
Lowry 0.50 0.85 0.91 0.86 0.95
Mekuria 0.54 0.78 0.89 0.61 0.92
Montgomery 0.51 0.78 0.87 0.46 0.89
ODOT 0.52 0.65 0.88 0.53 0.90
PFB 0.41 0.59 0.70 0.39 0.97

Furth Lowry 0.39 0.72 0.82 0.61 0.91
Mekuria 0.48 0.75 0.89 0.58 0.94
Montgomery 0.47 0.79 0.90 0.49 0.98
ODOT 0.57 0.66 0.90 0.61 0.96
PFB 0.38 0.55 0.63 0.05 0.58

Lowry Mekuria 0.68 0.85 0.90 0.66 0.92
Montgomery 0.59 0.85 0.90 0.52 0.91
ODOT 0.37 0.67 0.89 0.51 0.92
PFB 0.39 0.61 0.67 0.38 0.95

Mekuria Montgomery 0.66 0.90 0.94 0.59 0.95
ODOT 0.61 0.75 0.96 0.65 0.96
PFB 0.32 0.60 0.46 0.07 0.52

Montgomery ODOT 0.54 0.70 0.94 0.59 0.96
PFB 0.18 0.60 0.56 -0.17 0.60

ODOT PFB 0.27 0.47 0.47 0.03 0.58
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Table 10.	 Linearly Weighted Cohen’s Kappa Coefficients Comparing Pairs of Data 
Sources with LTS Methods Held Constant

Weighted Kappa Coefficient
   Portland Austin

LTS Method Data Source A Data Source B

Audited 
Segments 

(n=633)

All  
Segments 
(n=30,487)  

Audited 
Segments 

(n=445)
Conveyal Audit Local 0.89

Audit OSM 0.99 0.91
Local OSM 0.89 0.92

Furth Audit Local 0.64
Audit OSM 0.64 0.58
Local OSM 0.68 0.81

Lowry Audit Local 0.65
Audit OSM 0.69 0.80
Local OSM 0.63 0.79

Mekuria Audit Local 0.59
Audit OSM 0.61 0.57
Local OSM 0.67 0.77

Montgomery Audit Local 0.67
Audit OSM 0.66 0.82
Local OSM 0.63 0.80

ODOT Audit Local 0.36
Audit OSM 0.65 0.57
Local OSM 0.40 0.60

PFB Audit Local 0.43
Audit OSM 0.41 0.37
Local OSM 0.59 0.67

To illustrate how different classification methods and input datasets yielded different LTS 
outcomes, example segments were identified to represent each of the four LTS levels 
according to the Mekuria method using audit data. Examples were purposefully chosen 
with high heterogeneity in LTS levels across methods and data sources.

Figure 6 and Table 11 show the LTS 1 example segment. Classifications based on each 
of the method-data combinations are reported at the top of the table, with the variables 
used as inputs for LTS classification listed below. The “R” numbers in parentheses next to 
each LTS level identify the rules, according to each method, that were responsible for that 
classification. These rule numbers can be cross-referenced with the tables in Appendix D 
(available in the online supplementary materials) for detailed analysis of which variables 
were chiefly responsible for shaping the results.

In this first example, the Mekuria classification was driven by the lack of a bicycle lane, 
number of lanes, and speed limit. Because the audit did not collect speed limits, due to 
the lack of speed limit signs available on each block, speed limit was assumed to be the 
value available from the local dataset: 25mph. Given this speed limit, two through lanes, 
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and residential land use, the segment was classified as LTS 1.

The Conveyal method, by contrast, classified this same segment as LTS 4 because it did 
not have a bicycle lane and was labeled as a secondary street in OSM. The Furth method 
responded to the segment’s relatively high traffic volume, nearly 9,000 vehicles per day on 
average, to result in an LTS 3 classification.

Classifications within the same methods tended to be fairly similar between data sources, 
though some minor differences resulted from differences in the assumptions used to fill in 
missing data, tending to bias results toward more conservative (i.e., higher) LTS levels. 
When using OSM and local data, for example, the Mekuria method drew on assumptions 
about non-residential land use and the presence of a center line to classify this segment 
as LTS 2.

Figure 7 and Table 12 show a segment in downtown Portland that was classified as LTS 2 
by the Mekuria method with audit data, owing to its lack of a bicycle lane and mixed land 
use context. However, because this street was labeled ‘residential’ by OSM, had a low 
speed limit, and had no center line, other methods classified it as LTS 1. This segment 
demonstrated how a single input variable defined in slightly different ways by different 
datasets could have a dramatic effect on LTS level. The PFB method, for example, 
classified this segment’s stress level as “High” based on the audit data, because auditors 
identified the land use as non-residential. With OSM data, however, the segment was 
considered “Low” because the street was labeled “residential,” the only available indicator 
of contextual land use. Imprecisely-defined terms, such as “residential,” cannot necessarily 
be assumed to mean the same thing from one context to another, and LTS methods did 
not included definitions for input data with sufficient detail to discriminate what should 
qualify as “residential.”

The segment described in Figure 8 and Table 13 was classified as LTS 3 with the Mekuria 
method with audit data, as a result of the bicycle lane being blocked by construction. While 
an indicator of lane blockage was not available from the OSM data, the Mekuria method 
still resulted in LTS 3 due to the assumption of a right-turn lane on a primary street (see 
Appendix A), though based on the more reliable audit data, there was no such lane. The 
local data provided the same result for yet another reason: the speed limit was assumed 
to be 35 mph due to the street classification, in lieu of an explicitly-defined speed limit in 
the local dataset. This demonstrated how the same LTS level may result from different 
rules within the same method. It also showed how assumptions used to fill missing data 
could play a substantial role in shaping LTS outcomes, and how these assumptions may 
nevertheless produce coincidentally consistent outputs.

The final example, illustrated in Figure 9 and Table 14, was classified as LTS 4 by the 
Mekuria method using audit data, and showed how criteria related to right turn lanes had 
a substantial influence on the Mekuria method. With the audit data, which identified two 
right turn lanes, this segment was automatically classified as LTS 4. None of the other data 
sources explicitly captured or assumed any right turn lanes, so their results were based on 
other criteria, mostly resulting in lower LTS levels.



Mineta Transportat ion Inst i tute

38
Results

Figure 6.	 LTS 1 Example: NW Glisan St Between 19th Ave and 18th Ave in Portland
Source: Google.
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Table 11.	 LTS 1 Example: NW Glisan St Between 19th Ave and 18th Ave in Portland

Data Source
Audit OSM Local

LTS Method
Conveyal LTS 4 (R7) LTS 4 (R7) LTS 4 (R7)
Furth LTS 3 (R23) LTS 3 (R65) LTS 3 (R23)
Lowry LTS 1 (R1) LTS 2 (R6) LTS 2 (R6)
Mekuria LTS 1 (R32) LTS 2 (R33) LTS 2 (R35)
Montgomery LTS 2 (R37) LTS 2 (R38) LTS 2 (R39)
ODoT LTS 1 (R29) LTS 2 (R30) LTS 1 (R29)
PFB High (R18) High (R18) High (R18)
Input Variable
Bike facility buffer width (ft) 0 0
Bike facility width (ft) 0 0
Bike lane (binary) False False False
Buffered bike lane (binary) False
Cycle track (binary) False
Separated bike lane (binary) False False False
Bicycle boulevard (binary) False False
Center turn lane (binary) False False
Center line (binary) True False
Curb-to-curb width (ft) 37
Lanes (count) 2 2 2
One way (binary) True True
Left turn lanes (count) 0 0
Right turn lanes (count) 0 0 0
High speed right turn lane (binary) False
Parking (binary) True True
Parking lane width (ft) 0
Speed limit (mph) 25 25
Traffic signal (binary) 1 1 1
ADT 8626
Residential street (binary) True False
Bike lane obstructed (binary) False
Bike lane aligned through intersection (binary) False
Bike lane continuous through intersection (binary) False
Pedestrian refuge across cross street (binary) False False
Cross street lanes (count) 2 1
OSM highway tag secondary
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Figure 7.	 LTS 2 Example: NW Johnson St Between NW 10th Ave and 
NW 11th Ave in Portland

Source: Google.
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Table 12.	 LTS 2 Example: NW Johnson St Between NW 10th Ave and NW 11th Ave in 
Portland

Data Source
Audit OSM Local

LTS Method
Conveyal LTS 1 (R1) LTS 1 (R1) LTS 1 (R1)
Furth LTS 1 (R9) LTS 1 (R9) LTS 3 (R58)
Lowry LTS 2 (R6) LTS 1 (R1) LTS 2 (R6)
Mekuria LTS 2 (R35) LTS 1 (R32) LTS 2 (R33)
Montgomery LTS 2 (R39) LTS 1  (R33) LTS 2 (R38)
ODoT LTS 1 (R29) LTS 1 (R29) LTS 4 (R40)
PFB High (R18) Low (R19) High (R18)
Input Variable
Bike facility buffer width (ft) 0 0
Bike facility width (ft) 0 0
Bike lane (binary) False False False
Buffered bike lane (binary) False
Cycle track (binary) False
Separated bike lane (binary) False False False
Bicycle boulevard (binary) False False
Center turn lane (binary) False False
Center line (binary) False True
Curb-to-curb width (ft) 29
Lanes (count) 2 2
One way (binary) False False
Left turn lanes (count) 0
Right turn lanes (count) 0 1
High speed right turn lane (binary) False
Parking (binary) True True
Parking lane width (ft) 0
Speed limit (mph) 25
Traffic signal (binary) False False False
ADT
Residential street (binary) False False
Bike lane obstructed (binary) False
Bike lane aligned through intersection (binary) False
Bike lane continuous through intersection (binary) False
Pedestrian refuge across cross street (binary) False False
Cross street lanes (count) 2 2
OSM highway tag residential
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Figure 8.	 LTS 3 Example: N Couch St Between NE MLK Blvd and 
NE Grand Ave in Portland

Source: Google.
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Table 13.	 LTS 3 Example: N Couch St Between NE MLK Blvd and NE Grand Ave in 
Portland

 Data Source
Audit OSM Local

LTS Method
Conveyal LTS 3 (R6) LTS 3 (R6) LTS 3 (R6)
Furth LTS 3 (R23) LTS 3 (R65) LTS 4 (R67)
Lowry LTS 1 (R7) LTS 1 (R7) LTS 3 (R31)
Mekuria LTS 3 (R19) LTS 3 (R3) LTS 3 (R17)
Montgomery LTS 2 (R6) LTS 2 (R6) LTS 4 (R54)
ODoT LTS 3 (R3) LTS 4 (R40) LTS 2 (R6)
PFB LTS 1 (R10) LTS 4 (R12) LTS 4 (R2)
Input Variable
Bike facility buffer width (ft) 0 0
Bike facility width (ft) 5 0
Bike lane (binary) True True True
Buffered bike lane (binary) True
Cycle track (binary) False
Separated bike lane (binary) False False False
Bicycle boulevard (binary) False False
Center turn lane (binary) False False
Center line (binary) True True
Curb-to-curb width (ft) 35
Lanes (count) 2 2 2
One way (binary) False True
Left turn lanes (count)
Right turn lanes (count) 0
High speed right turn lane (binary) False
Parking (binary) True 1
Parking lane width (ft) 8
Speed limit (mph) 25
Traffic signal (binary) True True True
ADT 18865
Residential street (binary) False False
Bike lane obstructed (binary) True
Bike lane aligned through intersection (binary) True
Bike lane continuous through intersection (binary) True
Pedestrian refuge across cross street (binary) False False
Cross street lanes (count) 3 4
OSM highway tag primary
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Figure 9.	 LTS 4 Example: N Interstate Ave Between N Graham St and 
N Knott St in Portland

Source: Google.
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Table 14.	 LTS 4 Example: N Interstate Ave Between N Graham St and N Knott St in 
Portland

Data Source
Audit OSM Local

LTS Method
Conveyal LTS3 (R6) LTS3 (R6) LTS3 (R6)
Furth LTS2 (R91) LTS4 (R73) LTS4 (R73)
Lowry LTS2 (R19) LTS3 (R27) LTS3 (R27)
Mekuria LTS4 (R4) LTS3 (R19) LTS3 (R19)
Montgomery LTS3 (R49) LTS4 (R51) LTS4 (R51)
ODoT LTS4 (R41) LTS3 (R5) LTS2 (R4)
PFB LTS1 (R9) LTS4 (R12) LTS4 (R7)
Input Variable
Bike facility buffer width (ft) 0 0
Bike facility width (ft) 7 0
Bike lane (binary) True True True
Buffered bike lane (binary) True
Cycle track (binary) False
Separated bike lane (binary) False False False
Bicycle boulevard (binary) False False
Center turn lane (binary) False False
Center line (binary) True True
Curb-to-curb width (ft) 86
Lanes (count) 2 4
One way (binary) False True
Left turn lanes (count)
Right turn lanes (count) 2
High speed right turn lane (binary) False
Parking (binary) False True
Parking lane width (ft) 0
Speed limit (mph) 30 30
Traffic signal (binary) False False False
ADT 13130
Residential street (binary) False False
Bike lane obstructed (binary) False
Bike lane aligned through intersection (binary) True
Bike lane continuous through intersection (binary) True
Pedestrian refuge across cross street (binary) False False
Cross street lanes 2 3
OSM highway tag secondary
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OBJECTIVE 2: ASSOCIATIONS BETWEEN LTS AND CROWDSOURCED 
BICYCLE USER SATISFACTION 

Bivariate relationships between LTS levels and Ride Report scores were examined in 
order to analyze whether LTS levels realistically expressed user satisfaction. In addition to 
analyzing “overall” Ride Report scores based on ratings from all riders and rides, analyses 
in Portland were repeated with queried Ride Report scores that representing specific rider 
and ride characteristics. Table 15 reports summary statistics for each of the queried score 
sets in comparison with the overall scores (first row).

Differences between queried scores tended to be small. Scores based on longer distance 
rides, presumably made by stronger riders, were higher than for shorter rides. Scores 
based on rides during colder seasons and with colder weather were slightly lower than 
those made during warmer times, consistent with the expectation that cold weather riding 
was relatively unpleasant. Scores based on female riders, however, were higher on 
average than those from male riders, despite evidence that female cyclists tend to be 
more concerned with infrastructure safety than their male counterparts.  It is speculated 
that Ride Report users may tend to choose safer or otherwise more pleasurable routes, 
accounting for this result. The larger number of segments with reliable scores based on 
male riders (4,210) compared with female riders (2,889) was consistent with research 
showing that males cycle at higher rates than females. 

Older riders produced slightly higher scores than younger riders, and those who cycled 
occasionally produced higher scores than those who cycled frequently. Surprisingly, there 
was no notable difference in scores between fast and slow cyclists. Cyclists presumed to be 
socioeconomically disadvantaged produced higher scores than those who weren’t. Many 
of these differences were small enough, however, that it was difficult to conclude whether 
different types of cyclists had substantially different interpretations of what constituted a 
high quality route.

Table 15.	 Portland Ride Report Query Summaries

Category Name Definition
Segment 

Count
Average Ride 
Report Score

Overall Overall 8,198 0.90
Gender Male Gender = Male 4,210 0.89

Female Gender = Female 2,889 0.93
Age Young Age Cyclist Age < 25 244 0.91

Young Middle Age 25 ≤ Cyclist Age < 45 3,810 0.92
Older Middle Age 45 ≤ Cyclist Age < 65 1,375 0.93
Older Cyclist Age ≥ 65 0 NA

Distance Short Distance Trip Distance ≤ 1 mi 646 0.88
Mid-Distance 1 mi < Trip Distance < 5 mi 5,742 0.90
Long Distance Trip Distance ≥ 5 m 4,636 0.91

Time of Day Late Night Trip Starts 10 PM - 4 AM 787 0.97
Early Morning Trip Starts 4 AM - 7 AM 805 0.95
Morning Commute Trip Starts 7 AM - 11 AM 3,740 0.89
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Category Name Definition
Segment 

Count
Average Ride 
Report Score

Midday Trip Starts 11 AM - 3 PM 2,980 0.90
Afternoon Trip Starts 3 PM - 7 PM 4,607 0.88
Evening Trip Starts 7 PM - 10 PM 2,235 0.93

Season Winter Trip in Dec, Jan, or Feb 1,940 0.88
Spring Trip in Mar, Apr, or May 5,031 0.92
Summer Trip in June, Jul, Aug 3,723 0.90
Fall Trip in Sep, Oct, Nov 3,746 0.88

Weather Hot Trip While Temp > 80° F 1,609 0.91
Warm 60° F < Trip While Temp ≤ 80° F 5,323 0.90
Cool 45° F < Trip While Temp ≤ 60° F 5,301 0.89
Cold Trip While Temp ≤ 45° F 1,987 0.88
Not Rainy Trip while it is not raining 7,702 0.91
Rainy Trip while it is raining 2,667 0.87

Socioeconomic 
Disadvantage

Not Disadvantaged Cyclists that have fewer than 25% of 
their trip ends (start or end) within a 
TriMet Community of Concern

5,871 0.90

Disadvantaged Cyclists that have at least 25% of their 
trip ends (start or end) within a TriMet 
Community of Concern

4,740 0.91

Cycling Speed Fast Cyclists with an average trip speed 
(total dist. / total time) of ≥ 12 mph

5,626 0.90

Slow Cyclists with an average trip speed 
(total dist. / total time) of < 12 mph

4,645 0.90

Cycling 
Frequency

High Frequency Cyclists who have ridden ≥ 4 days per 
week on average throughout their use 
of the Ride Report App

4,052 0.91

Medium Frequency Cyclists who have ridden more than 1 
day but less than 4 days per week on 
average throughout their use of the 
Ride Report App

4,161 0.92

Low Frequency Cyclists who have ridden 1 day or less 
per week on average throughout their 
use of the Ride Report App

3,306 0.93

Table 16 shows the Spearman rank correlation coefficients between Ride Report scores 
and LTS levels for each of the seven LTS methods, in Portland and Austin, all of which 
were calculated with audited data. Sample sizes for each correlation corresponded with 
the number of segments along which the corresponding Ride Report query provided 
reliable scores. Correlations involving small samples (<50% of segments in the “overall” 
Ride Report sample) or which were not statistically significant with 95% confidence, were 
omitted from the table.

None of the Spearman rank correlations were especially high (max(rs) = 0.35 among overall 
Ride Report scores; max(rs) = 0.53 among filtered scores), indicating that the relationship 
between LTS levels and perceived quality of bicycling facilities, as measured by Ride 
Report, was generally weak. If the measures had correlated strongly, this would have 
been further evidence of their mutual efficacy. These results, however, either suggested 
that LTS poorly represented cyclist experiences, that Ride Report poorly captured those 
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experiences, or both.

The strength of correlations was moderate, but higher in Portland than in Austin. In 
Portland, Ride Report scores’ correlations with the Conveyal LTS were also stronger than 
with the other LTS methods, suggesting that simpler methods might better represent cyclist 
perceptions than more complex methods. This trend did not, however, hold in Austin, where 
the Furth method was most strongly correlated with Ride Report scores. This difference 
underscores how indicators of infrastructure quality, and the needs of residents, may vary 
between cities.

Given the large number of unknown factors that might contribute to Ride Report users’ 
ratings of a given route, and the highly generalizing approach through which these ratings 
were aggregated into segment-specific scores, it was unsurprising that Ride Report scores 
were not perfectly correlated with LTS. Ride Report scores were expected to be noisy, 
affected by numerous influences (such as weather, or someone simply having a bad day) 
that were entirely unrelated to LTS. In some ways, then, it was impressive that Ride Report 
and LTS were even moderately correlated in some cases. Ride Report’s efficacy as an 
indicator of user satisfaction was clearly better than random.

The relatively high correlations for some filtered Ride Report scores, particularly in contrast 
to overall scores, suggested that LTS may better represent the experiences of certain types 
of cyclists. Correlations with midday (11am-3pm) Ride Report scores, for example, tended 
to be almost twice as strong as those from other times of day; the authors speculate that 
midday cycling may potentially be a proxy for more cautious, less experienced cyclists. 
Substantial differences in correlations based on fast cyclists (lower correlations) and slow 
cyclists (higher correlations) also suggested that LTS was more representative of less 
experienced cyclists, consistent with Mekuria et al.’s original intention.78

Table 16.	 Spearman Correlations Between LTS Levels and Ride Report Scores

LTS Method (All Calculated with Audit Data)
Ride Report Query Conveyal Furth Lowry Mekuria Mtgmry. ODoT PFB
Overall (Portland) (n=633) 0.35 0.26 0.28 0.28 0.20 0.21 0.26
Overall (Austin) (n=445) 0.14 0.25 0.14 0.11 0.17 0.18 -0.05
Gender (Portland)
Male (n=538) 0.25 0.14 0.17 0.18 * 0.11 0.21
Female (n=394) 0.20 0.14 0.15 0.22 0.19 0.18 0.19
Age (Portland)
Young (n=20) * * * * * * *
Young-middle (n=503) 0.18 * 0.11 0.15 * * 0.09
Older middle (n=191) * * * * * * *
Older (n=0) * * * * * * *
Distance (Portland)
Short (n=94) * * * 0.23 * 0.23 *
Medium (n=606) 0.32 0.20 0.24 0.26 0.15 0.17 0.28
Long (n=508) 0.22 0.19 0.11 0.15 0.12 0.16
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LTS Method (All Calculated with Audit Data)
Ride Report Query Conveyal Furth Lowry Mekuria Mtgmry. ODoT PFB
Time of Day (Portland)
Late night (n=108) * * * * 0.20 * *
Early morning (n=98) * * * * * * 0.20
Mrng. commute (n=482) 0.29 0.23 0.14 0.20 0.14 0.15 0.16
Midday (n=429) 0.53 0.36 0.47 0.47 0.38 0.32 0.37
Afternoon (n=633) 0.26 0.17 0.20 0.19 0.11 0.11 0.19
Evening (n=346) 0.26 0.18 0.16 0.21 0.12 0.16 0.22
Season (Portland)
Winter (n=304) * * * * * * *
Spring (n=586) 0.38 0.26 0.30 0.31 0.21 0.18 0.25
Summer (n=527) 0.12 * * 0.11 * 0.11 0.10
Fall (n=525) 0.44 0.38 0.28 0.32 0.27 0.27 0.26
Weather (Portland)
Hot (n=226) * * * * * * *
Warm (n=618) 0.25 0.14 0.18 0.19 0.11 0.14 0.20
Cool (n=603) 0.34 0.27 0.23 0.27 0.19 0.21 0.21
Cold (n=300) 0.47 0.37 0.30 0.31 0.26 0.25 0.20
Not Rainy (n=633) 0.35 0.26 0.27 0.28 0.20 0.21 0.25
Rainy (n=415) 0.34 0.20 0.23 0.26 0.14 0.18 0.19
Socioeconomics (Portland)
Not disadv. (n=607) 0.27 0.18 0.17 0.18 0.08 0.12 0.24
Disadvantaged (n=569) 0.36 0.28 0.30 0.29 0.25 0.22 0.21
Cycling Speed (Portland)
Fast cyclists (n=595) 0.29 0.18 0.22 0.22 0.09 0.12 0.22
Slow cyclists (n=568) 0.38 0.22 0.32 0.31 0.28 0.23 0.25
Cycling Frequency
Frequent cyclists (n=519) 0.37 0.29 0.34 0.32 0.26 0.24 0.25
Medium Freq. (n=538) 0.10 * * 0.09 0.10 * *
Infreq. cyclists (n=448) 0.33 0.27 0.30 0.24 0.18 0.12 0.21

All correlations were multiplied by -1 so positive values represent expected directionality of relationship.
* Considered unreliable: Spearman rank correlation not significantly different from 0 with 95% confidence, or query-
specific Ride Report scores available for fewer than 50% (n < 317) of audited Portland street segments

To examine whether associations between LTS and user satisfaction were linear, 95% 
confidence intervals were calculate for average Ride Report scores among segments with 
each LTS level (Figure 10). Ride Report scores mostly decreased monotonically across 
successive LTS levels, though there were some cases where the average Ride Report 
score for LTS 2 was less than that for LTS 3. This suggested that differences between 
the middle LTS classes were less meaningful than differences at the extremes of the 
LTS scale. Potentially, a three-level system that combined the middle two classes would 
provide more consistent differentiation between levels. This may have been one of the 
reasons why PFB used a two-level LTS system, though these two levels still were not 
highly differentiable based on Ride Report scores.

The confidence intervals plotted in Figure 10 demonstrate that differences between 
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successive LTS levels were not typically significant, particularly within the smaller, audited 
samples of street segments (black bars). The Furth LTS calculated with audited data in 
Austin provided some of the best separation with this smaller sample size, offering nearly 
non-overlapping confidence intervals for all but the middle two levels, which had nearly the 
same average. There was more separation between LTS levels with the full-city samples 
(blue bars), which had narrower confidence intervals. The Conveyal LTS with OSM data 
in Portland, Lowry LTS with OSM and local data in Portland, and Mekuria LTS with local 
data in Portland had significantly different mean Ride Report scores at all of their levels.

The range in Ride Report score associated with the full range of LTS levels was 
approximately 0.05 to 0.1, depending on LTS method and data source. Assuming a 
monotonic decrease, which is more reasonable an assumption with some LTS methods 
than others, this describes an increase in Ride Report score of between 0.017 and 0.033 
points for every one-level decrease in LTS. Assuming a causal relationship between LTS 
level and Ride Report score, a one-level LTS decrease might result in an approximately 
2–3% higher probability of a Ride Report user providing a satisfactory (thumbs-up) rating 
for a route that included that segment. Because the distribution of Ride Report scores 
was quite narrow, this would constitute an improvement of the mean Ride Report score 
from the initial median score to between the initial 65th and 75th percentiles. While this 
interpretation is contingent on a number of assumptions, it suggests that decreasing an 
LTS level might translate into a sizable increase in the percentage of cyclists who are 
would give a positive rating for a ride along that segment.
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Figure 10.	 Confidence Intervals (95%) on Average Ride Report Scores 
by LTS Level
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OBJECTIVE 3: ASSOCIATIONS BETWEEN SPECIFIC CYCLING 
ENVIRONMENT VARIABLES AND USER SATISFACTION

To investigate which street environment variables might be most useful for improving 
user satisfaction, and therefore be useful as inputs for an LTS classifier, Ride Report 
scores in Portland were regressed onto street environment variables from each of the 
three data sources (Table 17). Model variations based on each data source and sample 
size (audited segments vs. all segments) were compared to null models that included only 
a constant term and control terms for spatial autocorrelation. The aim of modeling was to 
compare estimates across samples and data sources, not to maximize predictive power 
or parsimony. Thus, all relevant and available variables were entered for each model, 
especially to the extent that they facilitated meaningful comparisons. Terms were removed 
using a backwards stepwise process until all terms were significant at a 95% confidence 
level. The traffic signal variable was retained in Model 1.1 because it was nearly significant 
at this level (P=0.07).

Which variables were retained in the models was likely affected by high multicollinearity 
between certain variables. The average variance inflation factor (VIF) among independent 
variables in the models ranged from 1.8 to 13.7. VIFs for variables associated with street 
size, such as lane count, curb-to-curb width, and speed limit, were especially high, ranging 
from 14.0 to 61.1, in models based on local agency data (Models 3.1 and 3.2). Due to this 
multicollinearity, the absence of certain variables from the final models did not necessarily 
suggest that these variables were unrelated to Ride Report, but rather that covariates may 
have masked these relationships.

Comparisons of fit across the models suggested that individual variables had minimal 
influence on Ride Report scores. Baseline models had McFadden R2 statistics of 0.11 
and 0.14 for “audited segments” and “all segments” models respectively.79 Comparable 
models with audited, OSM, and local data had only slightly improved fit, with McFadden 
R2 ranging from 0.21 to 0.22. Based on the Akaike information criterion (AIC), the best 
models were those using OSM data (Models 2.1 and 2.2). By another metric, the area 
under the curve (AUC) of the receiver operator characteristic (ROC), models that included 
segment-level variables had only marginally more predictive power (ROC AUC = 0.61 and 
0.62, for Models 2.1 and 2.2 respectively) than the null models (ROC AUC  = 0.58 and 
0.60, for Models 0.1 and 0.2 respectively).80 In sum, available street environment variables 
had fairly weak associations with Ride Report scores, suggesting that other factors, such 
as weather or personal preferences, may have had greater influences on Ride Report 
users’ ratings than roadway characteristics.

The directionality-of-effect estimates for independent variables were generally consistent with 
expectations. Bicycle-oriented infrastructure, such as bike lanes and bicycle boulevards, were 
positively correlated with Ride Report scores. These infrastructure variables also had some 
of the strongest correlations. Similarly, some street configuration variables were significant. 
Increased buffer widths and parking lane width (Model 1.1) were positively correlated, while 
roadway width (lane count and curb-to-curb width) and variables related to large streets 
(center line, ‘large street,’ median, and right turn lanes/length) were negatively correlated. 
Intersection density, the only EPA variable whose effect was statistically significant in any 
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of the models, was positively correlated with Ride Report scores, consistent with existing 
research on relationships between bicycling and the built environment.81

Several variables had notably inconsistent or counterintuitive estimated effects. Negative 
associations between one-way traffic flow and Ride Report scores across different models 
suggested that a segment being one-way was an unreliable indicator of rider satisfaction. 
Speed limit and cross-street speed limit had small but positive correlations in models where 
these variables had statistically significant effects. Counterintuitively, this suggested that 
bicyclists might prefer streets with higher speed limits. This might be explained, in part, 
by confounding relationships between speed limit and other indicators of street size, such 
as width, center line, or a ‘large street’ label. Alternatively, it might suggest that cyclists 
prefer larger streets that may be more engaging places or have desired land uses along 
them (e.g., the quintessential ‘Main Street’). In the model based on audit data (Model 1.1), 
cross-street lane count was negatively correlated with Ride Report scores, as expected, 
but the version estimated with local data (Model 3.1) indicated a positive correlation. This 
discrepancy might be explained by the audited data’s being more reliable than those from 
PBoT’s dataset.

Several cross-street and intersection factors had unexpected associations with Ride 
Report scores. Median refuges and traffic signals, for example, had a fairly substantial 
negative associations with Ride Report score, despite being potentially valuable assets 
for bicyclists negotiating busy crossings. Median refuges might, however, have simply 
indicated the need to cross a large street, which was less preferred than crossing a smaller 
street even if a median refuge or signal was provided. Unfortunately, median refuges and 
signals simply did not occur at small street crossings, leading to unbalanced levels in 
observations that made it difficult to estimate their effect statistically while holding street 
size constant. Alternatively, crossing large cross streets might have compelled riders to be 
less critical of the relatively low-stress segments they were riding on. This might explain not 
only the negative associations between crossing infrastructure and Ride Report scores, 
but also the counterintuitive positive associations between Ride Report scores and “large” 
cross streets (Models 2.1 and 2.2).
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Table 17.	 Logistic Regression Models Estimating Overall Ride Report Scores

Base Case Audit Data OSM Data Local Data
Audited 

Segments
n=633

All 
Segments
n=8,198

Audited 
Segments

n=633

Audited 
Segments

n=633

All 
Segments
n=8,198

Audited 
Segments

n=633

All 
Segments
n=8,198

Model 0.1 Model 0.2 Model 1.1 Model 2.1 Model 2.2 Model 3.1 Model 3.2
Independent Variables Regression Coefficient Estimates
Segment
Bike lane (binary) 0.22 0.33  0.78 0.34  0.10
Separ. bike ln. (binary) 0.20  0.16 0.12  0.11
Cycle track (binary) 0.54
Buffered bike ln. (binary) 0.36
Bike blvd (binary) 0.49 0.59  0.22
Sharrow (binary) 0.57 0.24
Bike ln. buffer width (ft) 0.01
Bike ln. obstruct. (binary) -0.31
Lanes (count) -0.02 -0.06
Curb-to-curb width (ft) -0.05 0.004 -0.01
Parking lane width (ft) 0.05
Speed limit (mph) 0.01
One way street (binary) -0.24 0.11 -0.04
Center line (binary) -0.25 -0.08  -0.20
Large street (binary)† -0.27  -0.46
Median (binary) -0.35
Right turn lanes (count) -0.03
Right turn ln. length (ft) -0.03
Cross Street
Median refuge (binary) -0.28
Lanes (count) -0.02 0.04 0.04
Traffic signal (binary) -0.03* -0.12 -0.10
Large street (binary) 0.03 0.03
Speed limit (mph) 0.01 0.003
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Base Case Audit Data OSM Data Local Data
Audited 

Segments
n=633

All 
Segments
n=8,198

Audited 
Segments

n=633

Audited 
Segments

n=633

All 
Segments
n=8,198

Audited 
Segments

n=633

All 
Segments
n=8,198

Model 0.1 Model 0.2 Model 1.1 Model 2.1 Model 2.2 Model 3.1 Model 3.2
Independent Variables Regression Coefficient Estimates
EPA intersection density 0.09 0.001 0.001 0.001 0.001
Longitude 0.76 0.58 0.55 0.61 0.42 0.54 0.42
Latitude 0.79 0.45 0.67 0.72 0.40 0.67 0.39
Longitude2 0.37 -0.12 0.30 0.25 -0.04 0.22 -0.07
Latitute2 0.23 -0.08 0.18 0.20 -0.05 0.16 -0.09
Longitude x latitude 0.81 -0.03 0.66 0.69 0.02 0.64 0.07
Constant 2.16 2.56 2.14 1.61 2.25 1.24 2.64
Model Summary
McFadden R2 0.11 0.14 0.21 0.22 0.21 0.21 0.21
AIC 20467.72 173086.52 18273.03 17927.17 158563.45 18263.72 159457.95
Log-Likelihood -10228 -86537 -9113.5 -8950.6 -79269 -9114.9 -79713
ROC Area Under Curve 0.58 0.60 0.61 0.61 0.62 0.60 0.62
Average VIF 3.8 1.8 4.5 2.9 1.7 13.7 11.8

* p=0.07. All other parameter estimates are significant at the P<0.05 (95%) level.
† Includes OSM ‘highway’ tags with values of ‘trunk,’ ‘primary,’ or ‘secondary’
Note: Cell colors are coordinated with shading in Figure 11 to facilitate interpretation.
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The curves in Figure 11 graphically represent associations between the predictor variables 
with the largest and most consistent associations with Ride Report scores. Curve colors are 
coordinated with the cells in Table 17 that contain associated effect estimates. The curves 
illustrate the estimated change in Ride Report score based on change in that variable 
while all other independent variable were held constant at their mean (for continuous 
variables) or mode (for categorical variables). Curves representing each audited-segment 
model were plotted side by side in order to facilitate comparison; these curves had different 
intercepts owing to the different mean or mode values for other variables in each model.

The leftmost panel in Figure 11 shows that adding a bike lane was estimated to improve 
Ride Report score by between 0.02 and 0.04. Because the Ride Report scores have a low 
variance, this represents a shift of the initial median Ride Report score from its initial value 
to between the initial 67th and 85th percentiles, a substantial improvement. A separated 
bike lane, likewise, might improve the Ride Report score between 0.01 and 0.05, or a shift 
of the median from its initial value to between the initial 59th and 91st percentiles, with the 
latter estimate representing audited cycle tracks. A bike boulevard was associated with a 
score increase of between 0.04 and 0.06, or a shift of the median from its initial value to 
between the initial 85th and 95th percentiles. A larger street, by contrast, was estimated to 
reduce Ride Report score by between 0.01 and 0.04, or a shift of the median downward 
from the its initial value to between the initial 43rd and 28th percentiles. These results 
suggest that bicycle infrastructure and street size had sizable and predictable associations 
with user perceptions.

Figure 11.	 Marginal Associations Between Segment Variables and 
Ride Report Scores 

Based on logistic regression models. Estimates assume average or modal values of all other independent variables 
in a given model. Separate estimates are presented for models based on audit, OSM, and local data sources. 

All estimates are based on models developed from the “audited segments” sample in Portland (n=633). 
Colors coordinate with shading on coefficients in Table 16.
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VI.  CONCLUSIONS

The Level of Traffic Stress (LTS) framework offers a concise metric for characterizing the 
quality of urban streets for bicycling, aggregating diverse infrastructure variables into an 
intuitive ordinal scale. Consequently, it has been widely embraced by planners in order 
to streamline analyses of bicycle network quality and communicate these findings to 
decisionmakers and the public. LTS’s concision, however, can also risk misinterpretation: 
what, exactly, is “LTS 2”? Different LTS methods, developed in order to facilitate analyses 
with different data needs, in different geographies, or with updated understandings of what 
constitutes bikeability, have led to diverse definitions of LTS levels. Different data sources 
that offer varying levels of precision, or require assumptions to fill missing data, can also 
dramatically affect LTS outcomes. LTS levels can also be easily misinterpreted as a 
continuous scale, implying that the degree of improvement is consistent between sequential 
levels. Because LTS levels result from combinations of variables, it can also be difficult to 
interpret which specific variables might have the greatest influence on cycling quality.

This study examined each of these issues, providing an empirical foundation for more 
precise interpretation of LTS analyses. Firstly, it found that LTS outcomes can vary 
substantially depending on the methods and data sources used. The implications of this 
finding could be interpreted in two ways: either differences between LTS methods and 
data sources ought to be clearly acknowledged to reduce the likelihood of inappropriate 
comparison, or results that differ from the those of the original Mekuria LTS might be 
considered “wrong.” The authors prefer the former approach because it allows for LTS to 
be adaptable to evolving contexts and improvements in theory and evidence about what 
constitutes high-quality cycleways. If multiple LTS methods are going to coexist, however, 
they need to be clearly differentiated in order to avoid apples-to-oranges comparisons.

Taking a cue from Furth’s “LTS 2.0,” the authors recommend that planners adopt more 
careful naming conventions in order to distinguish variants. This report demonstrates an 
author name-based convention: e.g., Mekuria LTS, or ODoT LTS. Key data sources should 
also be noted prominently. Methods and data sources ought to be emphasized in titles, 
abstracts, and introductions so that readers more thoroughly understand that an analysis 
reflects a particular interpretation of the LTS concept, and not a universal method. For 
example, an analysis might be titled: “Using the Lowry LTS with OpenStreetMap Data to 
Identify Low-Stress Cycleways in Oakland, CA.” A simpler version—“Using LTS to Identify 
Low-Stress Cycleways…”—would inappropriately imply that LTS is a universally-defined 
method. Because LTS methods are so varied, they require more specific labeling.

This study also demonstrated the value of comparing LTS methods in order to better 
understand what methodological and data differences influence their results. In many 
cases, it is beyond the reasonable scope of an LTS study to apply multiple methods and 
compare their results. If resources are constrained, planners might nonetheless begin 
a study by comparing several methods along a small subset of streets, drawing on 
both audited and existing data to understand how different methods and data sources 
might unintentionally bias results. Such a pre-study might reveal the importance of more 
widespread auditing of critical variables for the full-scale analysis, or reveal the utility of 
one LTS method over another for revealing important case-specific factors. At a minimum, 
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it would provide awareness of data gaps and methodological differences that could be 
used to contextualize more widespread results. If sufficient data are available, analysts 
are encouraged to calculate LTS levels across their full study area using several methods, 
allowing them to determine points of ambiguity or conflict, and which of the methods 
best represents users’ interpretations of the cycling network. The Python code provided 
alongside this study can help analysts efficiently apply the seven LTS methods examined 
here. While different LTS methods and data sources may produce substantially different 
outcomes, it is important to confront these differences transparently, and comparing them 
may enrich LTS analyses.

Another key finding was that LTS levels derived from most methods and data sources were 
consistently correlated, albeit weakly, with an independent measure of cyclist satisfaction: 
Ride Report score. This suggested that LTS may serve as a reasonable indicator of 
satisfactory facilities. A one-level decrease in LTS was, on average, associated with a shift 
from the median of Ride Report Scores from its initial value to between the initial 65th and 75th 
percentiles, a substantial improvement. However, differences in average Ride Report scores 
between successive LTS levels, and even LTS extremes, did not tend to be statistically 
significant. Therefore, it would be imprudent for planners to claim that LTS 1 segments 
are necessarily more satisfactory than LTS 4 segments, though they did tend to be more 
satisfactory on average for most of the methods, data sources, and geographies analyzed.

An important related finding was that relationships between LTS levels and Ride Report 
scores were fairly linear. This provides some vindication for interpreting LTS as a continuous 
variable in analytical contexts where this would be useful, such as in weighting streets 
in a network analysis based on their LTS levels. However, analysts should still strive to 
interpret LTS as an ordinal variable whenever possible in order to maintain consistency 
with its theoretical and definitional roots. The approximate linear relationship between LTS 
level and percentage of satisfied riders is an empirical, not theoretical finding, and may not 
be valid for certain methods, data sources, or contexts. Linearity was more apparent for 
some methods and geographies than others. For example, Conveyal LTS levels showed a 
highly linear association with Ride Report scores in Portland, but not in Austin. If possible, 
analysts should compare their LTS results to an independent continuous measure, such 
as Ride Report scores or the results of a customized user survey, before using interpreting 
them as a continuous variable.

Thirdly, this study reinforced that certain infrastructural variables were more indicative of 
cyclist satisfaction than others. Measures of cycling-specific infrastructure, such as bike 
lanes and bicycle boulevards, exhibited some of the strongest positive correlations with 
Ride Report scores. A bike lane or separated bike lane corresponded with an improvement 
in the median Ride Report score from its initial value to between the initial 59th and 
91st percentiles, depending on the facility type and data source. Bicycle boulevards 
corresponded with even larger improvements. Unsurprisingly, large, heavily-trafficked 
streets corresponded with decreases in median Ride Report score from its initial value to 
between the initial 43rd and 28th percentiles.
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These findings show that measures of bicycle-specific infrastructure and indicators of 
large, heavily-trafficked streets may be the most crucial variables to include in an LTS 
framework. Analyses with limited capacity to collect high-quality data might prioritize 
these variables, or identify reliable indicators of them, and use an LTS framework that 
focuses on these basic criteria. For example, one reason that the Conveyal LTS may 
have corresponded so closely with Ride Report scores, despite being the simplest method 
included in this study, was that its key input variable was highway class, a close proxy for 
roadway size and volume. By heavily leveraging this single type of widely-available data, 
it out-performed, on average, much more complex methods that relied on more obscure 
variables with more missing or low-quality data. The tradeoff for Conveyal’s high-level 
performance, however, was that it could not account for nuanced characteristics, such as 
aspects of intersection design that were captured by the Mekuria method assuming that 
complete and high-quality data were available. 

Because street size and bicycle infrastructure were most strongly and consistently 
associated with Ride Report scores, planners might also prioritize these characteristics in 
their recommendations for actionable improvements. Unsurprisingly, these are the same 
conclusions that might be drawn from close examination of LTS methods. According to 
most of the LTS methods evaluated, reducing traffic lanes and turning lanes, reducing 
speed limits, reducing traffic volume, and adding bicycle-specific infrastructure are some 
of the clearest ways to reduce LTS levels. This conclusion may be frustrating for planners 
looking for ways to maintain auto-oriented streets while providing for bicycles: “how do 
I make this arterial into an LTS1 1?” The study’s empirical findings, and the theoretical 
frameworks provided by LTS methods, show that this is a very unrealistic goal. The best 
way to reduce cyclists stress along a large, auto-oriented street is to remove traffic and 
dedicate more space to cyclists.

While this study provides a useful foundation for critiquing LTS variants, future work 
could offer several important improvements. Foremost, research could be expanded to 
additional cities. Portland and Austin were selected for this study on the basis of data 
availability, but these cities are not highly representative of the U.S. or global context. 
Portland is an eminent bicycling city within the U.S., and has been used heavily as a case 
study in bicycling research.82 A potential benefit of studying Portland is that the results 
are comparable to this broad array of existing work.83 Austin was included to improve 
the generalizability of the analysis, but this city also has unusually high levels of bicycle 
ridership and infrastructure compared with major U.S. cities.84 However, aspects of the 
Portland analysis involving local agency data and customized Ride Report queries could 
not be completely replicated in Austin due to data limitations. Discrepancies in findings 
between the two cities reveal the importance of examining additional geographies to better 
understand how different cities are represented by LTS framework. Hopefully, the tools the 
authors have developed for efficient LTS classification will enable future analyses across 
a more diverse set of cities.

A more sophisticated approach for comparing LTS methods would be to investigate the 
degree of network connectivity they estimate, rather that comparing segment-by-segment 
classifications. Mekuria et al. emphasized how LTS could be used to identify discontinuities 
in low-stress networks, resulting in low stress “islands.”85 One way to judge the agreement 
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of LTS methods might be to examine differences in the shapes of low-stress islands, or 
the degree of low-stress connectivity. Whereas direct comparisons of segment-based LTS 
levels effectively equalize the importance of each segment, comparing connectivity would 
emphasize key segments that may be responsible for linking, or separating, large portions 
of the network to either side. Methods that appear to be quite similar in terms of overall 
classification might nonetheless show substantially different connectivity if they classify 
only a few key segments differently. Summarizing LTS results in this way might also be 
more useful for planners looking to identify focused interventions.

Further development of precise and efficient methods for measuring user satisfaction is 
a key area for future work on bicycling research at-large. Ride Report offered a novel 
approach for gathering ratings from many cyclists along a large sample of street segments. 
However, because it relied on aggregation of binary ratings across partially-overlapping 
trips, it was an imprecise metric that provided only limited accountability for personal and 
trip characteristics. Because users contributed ratings voluntarily, it also had substantial 
potential for response bias. Conventional survey methods, such as randomized travel 
surveys or intercept surveys, cannot feasibly capture similarly-large samples of respondents 
or street segments, but they would likely provide deeper and more controlled insights about 
user perceptions. Future research should look for opportunities to improve the precision 
and richness of crowdsourced data, or combine it with data from more traditional surveys 
in order to account for user satisfaction in more precise ways. 

This study helps practitioners and researchers understand the limitations of LTS methods, 
the extent to which they relate to cyclist satisfaction, and the individual variables that most 
strongly relate to cyclist satisfaction. It also provides a computational toolset for researchers 
and practitioners to efficiently calculate LTS levels based on a variety methods and data 
inputs. With these methods, analysts can evaluate the agreement LTS results derived 
from different methods and data sources, and their associations with other indicators of 
cycling quality in diverse locations. Hopefully, this will facilitate increased awareness of 
LTS’s inherent limitations, as well as of opportunities to use it responsibly to promote 
lower-stress cycling infrastructure.
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APPENDIX A: VARIABLE DEFINITIONS

Style Key

Monospaced: Variable name or value, OSM tag, Python-style logical statement

Italics: Audit question (see Appendix **)

*: Wildcard (any value) in OSM tag

Bike Facility Buffer Width (feet)

Audit

audit_bike_facility_buffer_width: Direct from Bike Facility Buffer Width (lowest 
of both sides) audit question. Maximum value among redundant audits.

OSM

osm_bike_facility_buffer_width: Direct from cycleway:buffer:* if this tag has a 
numeric value. Meters converted to feet. Otherwise, NaN.

osm_assumed_bike_facility_buffer_width: Direct from osm_bike_facility_
buffer_width if explicitly available. Otherwise, assumed to be 2 if osm_separated_
bike_lane is explicitly positive. Otherwise, assumed to be 0.

Portland Local

local_assumed_bike_facility_buffer_width: Assumed to be 2 if local_separated_
bike_lane is explicitly positive. Otherwise, assumed to be 0.

Bike Facility Width (feet)

Audit

audit_bike_facility_width: Direct from Bike Lane Width (lowest of both sides) 
audit question. Maximum value among redundant audits.

OSM

osm_bike_facility_width: Direct from cycleway:width or cycleway:*:width if this 
tag has a numeric value. Meters converted to feet. Otherwise, NaN.

osm_assumed_bike_facility_width: Direct from osm_bike_facility_width if 
explicitly available. Otherwise, assumed to be 4 if osm_bike_lane is explicitly 
positive. Otherwise, assumed to be 6 if osm_separated_bike_lane is explicitly 
positive. Otherwise, 0.

Portland Local

local_assumed_bike_facility_width: Assumed to be 2 if local_bike_lane is 
explicitly positive. Otherwise, assumed to be 6 if local_separated_bike_lane is 
explicitly positive. Otherwise, 0.
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Bike Lane (1: Yes, 0: No)

Audit

audit_bike_lane: 1 if lane is checked on Bike Facility (check all that apply) audit 
question. Otherwise, 0. Maximum value among redundant audits.

OSM

osm_bike_lane: 1 if lane or opposite_lane within any of the following tags: 
{cycleway, cycleway:backward, cycleway:right, cycleway:left, cycleway:both}. 
Otherwise, NaN.

osm_assumed_bike_lane: 1 if osm_bike_lane is explicitly positive. Otherwise, 
assumed to be 0.

Portland Local

local_bike_lane: 1 if (Facility == ‘BL’) and (Status == ‘ACTIVE’) in the City of 
Portland Bike Network shapefile. Otherwise, NaN.

local_assumed_bike_lane: 1 if local_bike_lane is explicitly positive. Otherwise, 
assumed to be 0.

Separated Bike Lane (1: Yes, 0: No)

Audit

audit_separated_bike_lane: 1 if lane is checked on Bike Facility (check all that 
apply) audit question and audit_bike_facility_buffer_width > 0. Otherwise, 0. 
Maximum value among redundant audits.

OSM

osm_separated_bike_lane: 1 if track, opposite_track or buffered_lane within any 
of the following tags: {cycleway, cycleway:backward, cycleway:right, cycleway:left, 
cycleway:both}. Otherwise, NaN.

osm_assumed_separated_bike_lane: 1 if osm_separated_bike_lane is explicitly 
positive or if osm_bike_facility_buffer_width is explicitly positive. Otherwise, 
assumed to be 0.

Portland Local

local_separated_bike_lane: 1 if (Facility in [‘BBL’,’PBL’]) and (Status == ‘ACTIVE’) 
in the City of Portland Bike Network shapefile. Otherwise, NaN.

local_assumed_separated_bike_lane: 1 if local_separated_bike_lane is 
explicitly positive. Otherwise, assumed to be 0.

https://gis-pdx.opendata.arcgis.com/datasets/bicycle-network
https://gis-pdx.opendata.arcgis.com/datasets/bicycle-network
https://gis-pdx.opendata.arcgis.com/datasets/bicycle-network
https://gis-pdx.opendata.arcgis.com/datasets/bicycle-network
https://gis-pdx.opendata.arcgis.com/datasets/bicycle-network
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Center Turn Lane (1: Yes, 0: No)

Audit

audit_center_turn_lane: 1 if lane is checked on Center Turn Lane (at segment 
midpoint) audit question. Otherwise, 0. Maximum value among redundant audits.

OSM

osm_center_turn_lane: 1 if left in turn:lanes:both_ways tag. Otherwise, NaN.

osm_assumed_center_turn_lane: 1 if osm_center_turn_lane is explicitly 
positive. Otherwise, assumed to be 0.

Curb-to-Curb Width (feet)

Audit

audit_curb_to_curb_width: Direct from Curb-to-Curb Width (ft) audit question. 
Maximum value among redundant audits.

OSM

osm_curb_to_curb_width: Direct from width or est_width if this tag has a numeric 
value. Meters converted to feet. Otherwise, NaN.

osm_assumed_curb_to_curb_width: Direct from osm_curb_to_curb_width 
if explicitly available. Otherwise, assumed to be (osm_assumed_lanes * 10) + 
(osm_assumed_parallel_parking * 16). 

Portland Local

local_width: Direct from RoadWidth attribute in the City of Portland Pavement 
Maintenance shapefile. Otherwise, NaN.

local_assumed_width: Direct from local_width if explicitly available. Otherwise, 
coded as a function of osm_highway class based on 75 percentile width among 
known widths within each class:

80 if osm_highway == ‘trunk’

70 if osm_highway == ‘primary’

55 if osm_highway == ‘secondary’

45 if osm_highway == ‘tertiary’

35 if oms_highway in [‘residential’, ‘unclassified’]

20 if osm_highway == ‘living_street’

https://gis-pdx.opendata.arcgis.com/datasets/pavement-maintenance
https://gis-pdx.opendata.arcgis.com/datasets/pavement-maintenance
https://gis-pdx.opendata.arcgis.com/datasets/pavement-maintenance
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Lanes (count)

Audit

audit_lanes: Direct from ‘Through Traffic Lanes (at segment midpoint, in all 
directions)’ audit question. Maximum value among redundant audits.

OSM

osm_lanes: Direct from lanes tag if it has a numeric value. Meters converted to 
feet. Otherwise, NaN.

osm_assumed_lanes: Direct from osm_lanes if explicitly available. Otherwise, 
coded as a function of OSM highway classes based on 75 percentile among known 
local_lanes within each class:

2 if osm_highway in [‘trunk’, ‘tertiary’ ,‘residential’, ‘unclassified’, ‘living_street’]

4 if osm_highway in [‘primary’, ‘secondary’]

Portland Local

local_lanes: Direct from NumberOfLa attribute in the City of Portland Pavement 
Maintenance shapefile. Otherwise, NaN.

local_assumed_lanes: Direct from local_lanes if explicitly available. Otherwise, 
coded as a function of osm_highway class based on 75 percentile among known 
local_lanes within each class:

2 if osm_highway in [‘trunk’, ‘tertiary’ ,‘residential’, ‘unclassified’, ‘living_street’]

4 if osm_highway in [‘primary’, ‘secondary’]

One Way (1: Yes, 0: No)

Audit

audit_oneway: Direct from ‘One Way’ audit question. Maximum value among 
redundant audits.

OSM

osm_oneway: 1 if ‘yes’ or -1 in the oneway tag. 0 if ‘no’ in the oneway tag. 
Otherwise, NaN.

osm_assumed_oneway: Direct from osm_oneway if explicitly available. 
Otherwise, assumed to be 0.

osm_oneway_based_on_parallel: Direct from osm_assumed_oneway but 
adjusted to 0 for segments that have a closely aligned parallel segment (i.e., a dual 
carriageway). These segments are classified as one way in the OSM database for 
routing purposes, but are actually just one side of a larger, two way street with a 
median. This aligns better with the definition of one way streets used by the audit.

https://gis-pdx.opendata.arcgis.com/datasets/pavement-maintenance
https://gis-pdx.opendata.arcgis.com/datasets/pavement-maintenance
https://gis-pdx.opendata.arcgis.com/datasets/pavement-maintenance
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Left Turn Lanes (count)

Audit

audit_left_turn_lanes: Direct from ‘Left Turn Lanes (Sample Street)’ audit 
question. Maximum value among redundant audits and ends of each audited 
segment.

OSM

osm_left_turn_lanes: Count of instances of left or slight_left within values of the 
following tags: {turn:lanes, turn:lanes:forward, turn:lanes:backward}. Otherwise, 
NaN. Values for these tags take the following form: turn:lanes=left|through|right|rig
ht, which denotes a left turn lane, a through lane, and two right turn lanes.

osm_assumed_left_turn_lanes: Direct from osm_left_turn_lanes if explicitly 
available. Otherwise, assumed to be 0.

Portland Local

local_assumed_left_turn_lanes: No data available. Assumed to be 0 for all 
segments.

Right Turn Lanes (count)

Audit

audit_right_turn_lanes: Direct from ‘Right Turn Lanes (Sample Street)’ audit 
question. Maximum value among redundant audits and ends of each audited 
segment.

OSM

osm_right_turn_lanes: Count of instances of ‘right’ or ‘slight_right’ within values 
of the following tags: {turn:lanes, turn:lanes:forward, turn:lanes:backward}. 
Otherwise, NaN. Values for these tags take the following form: turn:lanes=left|thr
ough|right|right, which denotes a left turn lane, a through lane, and two right turn 
lanes.

osm_assumed_right_turn_lanes: Direct from osm_right_turn_lanes if explicitly 
available. Otherwise, assumed to be 1 if osm_highway == ‘primary’. Otherwise, 
assumed to be 0.

Portland Local

local_right_turn_lanes: 1 if right arrow symbol (SymbolStyl == ‘AR’) from the City 
of Portland Pavement Marking Symbols shapefile within 20 meters of a segment 
center line. Otherwise, assumed to be 0.

https://gis-pdx.opendata.arcgis.com/datasets/pavement-marking-symbols
https://gis-pdx.opendata.arcgis.com/datasets/pavement-marking-symbols
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High Speed Right Turn Lane (binary)

Audit

audit_high_speed_right_turn: 1 if ‘Rounded Corner (>15 mph)’ marked for ‘Right 
Turn Radius (Sample Street)’ audit question. Otherwise, 0. Maximum value among 
redundant audits.

OSM

osm_assumed_high_speed_right_turn: 1 if osm_highway in [‘trunk’, ‘primary’]. 
Otherwise, assumed to be 0

Portland Local

local_assumed_high_speed_right_turn: 1 if osm_highway in [‘trunk’, ‘primary’]. 
Otherwise, assumed to be 0

Parking (1: Yes, 0: No)

Audit

audit_parking: 1 if ‘One Side’ or ‘Both Sides’ in response to ‘Parking’ audit 
question. Otherwise, 0. Maximum value among redundant audits.

OSM

osm_parallel_parking: 1 if ‘marked’, ‘parallel’ or ‘inline’ within any of the following 
tags: {parking:lane:right, parking:lane:left, parking:lane:both}. Otherwise, NaN.

osm_assumed_parallel_parking: Direct from osm_parallel_parking if explicitly 
available. Otherwise, assumed to be 0 if osm_highway in [‘primary’, ‘secondary’, 
‘tertiary’]. Otherwise, assumed to be 1.

osm_perpendicular_parking:  1 if ‘perpendicular’, ‘orthogonal’ or ‘diagonal’ within 
any of the following tags: {parking:lane:right, parking:lane:left, parking:lane:both}. 
Otherwise, NaN.

osm_assumed_perpendicular_parking: Direct from osm_perpendicular_
parking if explicitly available. Otherwise, assumed to be 0

Portland Local

local_parking: 0 if all parking slots in the City of Portland Parking Slots shapefile, 
on both sides of a segment, are labeled ‘no parking’ (ParkingDur == ‘NOPARKING’). 
Otherwise,  0 if ‘No Parking This Block’ signs in the City of Portland Signs shapefile 
(SignCode == ‘P1060’) are on both sides of a segment. Otherwise, assumed to 
be 1.

https://gis-pdx.opendata.arcgis.com/datasets/parking-slots
https://gis-pdx.opendata.arcgis.com/datasets/parking-slots
https://gis-pdx.opendata.arcgis.com/datasets/signs
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Speed Limit (mph)

OSM

osm_speed_limit: Direct from maxspeed, maxspeed:forward or 
maxspeed:backward tags if they have a numeric value. Kilometers per hour 
converted to miles per hour, as necessary (units parsed from value suffixes). 
Otherwise, NaN.

osm_assumed_speed_limit: Direct from osm_speed_limit if explicitly available. 
Otherwise, coded as a function of osm_highway class based on 75 percentile 
among known local_speed_limit within each class:

45 if osm_highway == ‘trunk’

35 if osm_highway in [‘primary’, ‘secondary’]

30 if osm_highway == ‘tertiary’

25 if oms_highway in [‘residential’, ‘unclassified’]

15 if osm_highway == ‘living_street’

Portland Local

local_speed_limit: Direct from SpeedLimit field of the City of Portland Speed 
Limits shapefile. Otherwise, NaN.

local_assumed_speed_limit: Direct from local_speed_limit if explicitly available. 
Otherwise, coded as a function of osm_highway class based on 75 percentile 
among known local_speed_limit within each class:

45 if osm_highway == ‘trunk’

35 if osm_highway in [‘primary’, ‘secondary’]

30 if osm_highway == ‘tertiary’

25 if oms_highway in [‘residential’, ‘unclassified’]

15 if osm_highway == ‘living_street’

Traffic Signal (1: Yes, 0: No)

Audit

audit_traffic_signal: 1 if ‘Stop Light’ or ‘RRFB’ marked in ‘Intersection Control’ 
audit question. Otherwise, 0. Maximum value among redundant audits and ends 
of each audited segment.

OSM

osm_traffic_signal: 1 if ‘traffic_signals’ within the highway tag of the node at 
either end of a segment. Otherwise, NaN.

https://gis-pdx.opendata.arcgis.com/datasets/speed-limits
https://gis-pdx.opendata.arcgis.com/datasets/speed-limits
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osm_assumed_traffic_signal: Direct from osm_traffic_signal if explicitly 
available. Otherwise, 0.

Portland Local

local_traffic_signal: 1 if a traffic signal point from City of Portland Traffic Signals 
shapefile is within 30 meters of either end of a segment. Otherwise, 0.

Highway Class (categorical)

OSM

osm_highway: Direct from highway tag of each segment.

ADT (count)

OSM

osm_assumed_adt: coded as a function of osm_highway class based on 75 
percentile among known local_awd within each class:

30000 if osm_highway == ‘trunk’

20000 if osm_highway == ‘primary’

10000 if osm_highway == ‘secondary’

5000   if osm_highway == ‘tertiary’

1500   if oms_highway in [‘residential’, ‘unclassified’]

500     if osm_highway == ‘living_street’

Portland Local

local_awd: Direct from AWD_volume field of the ‘2015_AWD_volumes’ shapefile 
from the Portland Bureau of Transportation (PBoT). Otherwise, NaN.

local_assumed_adt: Direct from local_awd if explicitly available. Otherwise, 
coded as a function of osm_highway class based on 75 percentile among known 
local_awd within each class:

30000 if osm_highway == ‘trunk’

20000 if osm_highway == ‘primary’

10000 if osm_highway == ‘secondary’

5000   if osm_highway == ‘tertiary’

1500   if oms_highway in [‘residential’, ‘unclassified’]

500     if osm_highway == ‘living_street’

https://gis-pdx.opendata.arcgis.com/datasets/traffic-signals
https://gis-pdx.opendata.arcgis.com/datasets/traffic-signals
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Residential Street (1: Yes, 0: No)

Audit

audit_residential: 1 if ‘Residential’ or ‘Bike Boulevard/Neighborhood Greenway’ 
marked in ‘Street Type’ audit question. Otherwise, 0. Maximum value among redundant 
audits.

OSM

osm_highway_residential: 1 if osm_highway == ’residential’. Otherwise, 0.

Portland Local

local_residential: 1 if (‘Dwelling’ in CMP_DESC) and (‘High’ not in CMP_DESC) 
from City of Portland Zoning districts adjacent to each segment. Otherwise, 0.

Bike Lane Obstructed (1: Yes, 0: No)

Audit

audit_bike_lane_obstructed: 1 if ‘Yes’ in ‘Bike Lane Obstructed’ audit question. 
Otherwise, 0. Maximum value among redundant audits.

OSM

osm_assumed_bike_lane_obstructed: 1 if for all segments.

Portland Local

local_high_intensity: 1 if (‘Mixed’ in CMP_DESC) or (‘Central’ in CMP_DESC) 
or (‘High’ in CMP_DESC) from City of Portland Zoning districts adjacent to each 
segment. Otherwise, 0.

Bike Lane Aligned Through Intersection (1: Yes, 0: No)

Audit

audit_bike_lane_aligned: 1 if ‘Straight’ in ‘Bike Lane Approach to Intersection 
(Sample Street)’ audit question. Otherwise, 0. Maximum value among redundant 
audits and ends of each audited segment.

OSM

osm_assumed_bike_lane_aligned: 1 if osm_highway in [‘trunk’,’primary’]. 
Otherwise, 0.

Portland Local

local_assumed_bike_lane_aligned: 1 if osm_highway in [‘trunk’,’primary’]. 
Otherwise, 0.

https://gis-pdx.opendata.arcgis.com/datasets/zoning
https://gis-pdx.opendata.arcgis.com/datasets?q=zoning
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Bike Lane Continuous Through Intersection (1: Yes, 0: No)

Audit

audit_bike_lane_continuous: 1 if ‘Straight’ or ‘Skewed’ marked (but not 
`Dropped`) in ‘Bike Lane Approach to Intersection (Sample Street)’ audit question. 
Otherwise, 0. Maximum value among redundant audits and ends of each audited 
segment.

OSM

osm_assumed_bike_lane_continuous: 1 if osm_bike_lane or osm_separated_
bike_lane are explicitly positive. Otherwise, 0.

Portland Local

local_assumed_bike_lane_continuous: 1 if local_bike_lane or local_separated_
bike_lane are explicitly positive. Otherwise, 0.

Pedestrian Refuge Across Cross Street (1: Yes, 0: No)

Audit

audit_cross_street_island: 1 if ‘Yes (>6 ft wide)’ marked in ‘Median Refuge 
(Cross Street)’ audit question. Otherwise, 0. Maximum value among redundant 
audits and ends of each audited segment.

OSM

osm_assumed_cross_street_island: 0 for all segments.

Portland Local

local_cross_street_island: 1 if a pedestrian refuge point (IslandType == 3340) 
from the City of Portland Traffic Islands and Circles shapefile within 20 meters of 
either end of a segment. Otherwise, 0.

https://gis-pdx.opendata.arcgis.com/datasets/traffic-islands-and-circles


Mineta Transportat ion Inst i tute

71

APPENDIX B: STREET SEGMENT AUDIT FORM



Mineta Transportat ion Inst i tute

72
Appendix B: Street Segment Audit Form



Mineta Transportat ion Inst i tute

73
Appendix B: Street Segment Audit Form



Mineta Transportat ion Inst i tute

74
Appendix B: Street Segment Audit Form



Mineta Transportat ion Inst i tute

75
Appendix B: Street Segment Audit Form



Mineta Transportat ion Inst i tute

76
Appendix B: Street Segment Audit Form



Mineta Transportat ion Inst i tute

77
Appendix B: Street Segment Audit Form



Mineta Transportat ion Inst i tute

78
Appendix B: Street Segment Audit Form



Mineta Transportat ion Inst i tute

79

APPENDIX C: ORIGINAL CLASSIFICATION TABLES FOR 
LTS METHODS

Conveyal 86

Webpage: https://blog.conveyal.com/better-measures-of-bike-accessibility-d875ae-

5ed831

Javascript code: https://github.com/conveyal/r5/blob/master/src/main/java/com/convey-

al/r5/labeling/LevelOfTrafficStressLabeler.java

Rules Summary:

Does not allow cars: LTS 1

Is a service road: Unknown LTS

Is residential or living street: LTS 1

Has 3 or fewer lanes and max speed 25 mph or less: LTS 2

Has 3 or fewer lanes and unknown max speed: LTS 2

Is tertiary or smaller road:

Has unknown lanes and max speed 25 mph or less: LTS 2

Has bike lane: LTS 2

Otherwise: LTS 3

Is larger than tertiary road

Has bike lane: LTS 3

Otherwise: LTS 4

https://blog.conveyal.com/better-measures-of-bike-accessibility-d875ae5ed831
https://blog.conveyal.com/better-measures-of-bike-accessibility-d875ae5ed831
https://github.com/conveyal/r5/blob/master/src/main/java/com/conveyal/r5/labeling/LevelOfTrafficStressLabeler.java
https://github.com/conveyal/r5/blob/master/src/main/java/com/conveyal/r5/labeling/LevelOfTrafficStressLabeler.java
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Furth 87

Webpage: http://www.northeastern.edu/peter.furth/criteria-for-level-of-traffic-stress/

Classification Tables:

http://www.northeastern.edu/peter.furth/criteria-for-level-of-traffic-stress/
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Lowry 88

Journal Article: https://www.sciencedirect.com/science/article/pii/S0965856416000306

Classification Tables:

https://www.sciencedirect.com/science/article/pii/S0965856416000306
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Mekuria 89

Report: https://transweb.sjsu.edu/research/low-stress-bicycling-and-network-connectivi-

ty

Classification Tables:
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Montgomery 90

Website: http://www.mcatlas.org/bikestress/

Classification Tables: (right and next page)
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Oregon Department of Transportation (ODoT) 91

Manual: https://www.oregon.gov/ODOT/Planning/Documents/APMv2_Ch14.pdf

Classification Tables:

https://www.oregon.gov/ODOT/Planning/Documents/APMv2_Ch14.pdf
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Appendix C: Original Classification Tables forLTS Methods 
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Appendix C: Original Classification Tables forLTS Methods 

People for Bikes (PFB) 92

Website: https://bna.peopleforbikes.org/#/methodology

Classification Tables:
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APPENDIX D: STANDARDIZED RULE-BASED 
CLASSIFICATION TABLES FOR LTS METHODS� 

(AVAILABLE IN ONLINE SUPPLEMENTARY MATERIALS)
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ABBREVIATIONS AND ACRONYMS

ADT Average Daily Traffic
BLos Bicycle Level of Service
EPA United States Environmental Protection Agency
HCM Highway Capacity Manual
LTS Level of Traffic Stress
PHAS Oregon Household Activity Survey
ODoT Oregon Department of Transportation
OSM OpenStreetMap
PFB People for Bikes
rS Spearman rank correlation coefficient
SFCTA San Francisco County Transportation Authority
SLD EPA Smart Location Database
VIF Variance Inflation Factor
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