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EXECUTIVE SUMMARY

Between 1999 and 2011 consumers in the U.S. experienced an unprecedented increase 
in and fluctuation of gasoline prices. In July 2008, gasoline prices exceeded $4 per 
gallon, marking the highest price in real value in U.S. history. In the same year, the 
nation’s transit ridership reached 10.7 billion trips, the highest level since the Federal-
Aid Highway Act of 1956.

The rising gasoline prices were considered to have resulted in substantial changes in 
travel behavior in terms of trip taking, choices of travel destinations, selection of vehicles 
for higher fuel efficiency, or travel mode. A change in travel mode from driving to transit 
results in a higher level of transit demand and ridership for transit agencies. With this 
background, gasoline price increases in the last decade have generated substantial interest 
in developing a better understanding of how people respond to fluctuations in gasoline 
prices—particularly with respect to switching modes from driving to public transit—so that 
transit agencies can better prepare for higher demand for their services during periods of 
increased gasoline prices.

The extensive literature review conducted for this study revealed that estimated values 
of elasticity obtained in the previous studies varied by geographic area, transit mode, 
travelers’ demographic characteristics, trip characteristics, types of data, and analytical 
method. In particular, types of ridership data used in the previous studies included cross-
sectional, time-series, pooled, and panel datasets of ridership for one or multiple agencies. 
The literature review revealed several important data and methodological issues that 
should be addressed in an analysis in addition to several different types of effects of 
gasoline prices on transit ridership.

Based on the literature review, the study has made improvements in developing four 
specifications of panel data regression analysis to analyze the net effect of gasoline prices 
on ridership in ten major urbanized areas (UAs) in the U.S. over a ten-year period. First, this 
study used monthly data on gasoline prices and ridership in order to gauge the effects in the 
short and long term. Monthly gasoline price data were collected from the Energy Information 
Administration, Department of Energy, for ten major UAs over the period of 2002 to 2011; 
monthly transit ridership data by agency were obtained from the National Transit Database 
and processed to obtain data for the ten UAs. Transit ridership data included the four main 
modes of transit—bus, commuter rail, light rail and heavy rail—and the aggregate of these 
four modes. The use of panel data allowed us to simultaneously take into account temporal 
and cross-sectional variation to obtain more robust, generalizable results.

To minimize the effects of omitted variables, a regression analysis was used to 
comprehensively control for a set of variables that potentially affect transit ridership, 
including factors both internal and external to transit services, such as, in the former case, 
transit fare and service frequency, and, in the latter, economic conditions and socioeconomic 
characteristics of potential travelers. In addition to the baseline specification model that 
simply examines potentially influential factors of transit ridership, the instrumental variable 
(IV) method was employed to address simultaneity between the supply of service and 
ridership (IV model), which may cause a bias in estimated coefficients of other independent 
variables, including gasoline prices. Comparison of the results from these first two models 
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confirmed that there is no substantial difference in the estimated coefficients for gasoline 
prices. Thus, the two models that examine short- and long-term effects and non-constant 
elasticity were specified based on the baseline specification.

The main findings of this study are:

•	 The short-run elasticity of bus ridership to gasoline price (i.e., the cross-price 
elasticity) is 0.06, indicating a 0.6 percent increase in ridership in response to a 10 
percent increase in the current gasoline prices. The short-run elasticity was about 
the same level for the aggregate transit ridership (0.5-0.6), but was not significantly 
different from zero for the three rail modes.

•	 The long-run cross-price elasticity, on the other hand, was significant for all modes 
and ranged from 0.084 for bus to 0.116 for light rail, with commuter rail, heavy rail, 
and the aggregate transit in between. In other words, a total change in ridership 
ranges from 0.84 percent to 1.16 percent in response to a 10 percent increase in 
gasoline prices. Higher values of elasticity were found for gasoline prices higher 
than $4 for light rail and higher than $3 for the other modes. A percent increase in 
ridership in response to a 10 percent increase in gasoline prices exceeds 1 percent 
for bus (1.67 percent), commuter rail (2.05 percent), and the aggregate transit (1.80 
percent). Similarly, light rail shows a very high rate of 9.34 percent for the same 
level of increase over $4 of gasoline prices.

•	 Threshold boost effects of gasoline prices were found at the $3 mark for commuter 
rail and heavy rail, resulting in a substantially higher rate of ridership increase: 5.27 
percent for commuter rail and 4.85-6.15 percent for heavy rail in response to a 10 
percent increase in gasoline prices that crosses the $3 mark.

•	 The fare elasticity of transit ridership (i.e., the own-price elasticity) was generally 
found to be greater than the gasoline price elasticity and is consistent with findings 
from previous studies.

While the effects of gasoline prices on transit ridership obtained in this study are generally 
modest, compared to some of the findings in the other studies on the subject, the implication 
of more substantial effects found for gasoline prices over $3 is important. As it is likely that 
gasoline prices will remain above $3 per gallon and possibility increase in the future due 
to a market price increase and/or an increase in fuel taxes and potential carbon taxes, the 
effects of gasoline prices will be on the higher end of this study’s findings or even higher. 
Furthermore, while a ridership increase may be good news for transit agencies during the 
off-peak periods, even a small percentage of ridership increase can require a substantial 
increase in service supply and facility capacity during the peak periods when the service 
level is at or near the maximum supply capacity for transit agencies.

This study provides a more comprehensive understanding of the net effects of gasoline 
prices on transit ridership, which gives insight and guidance for how transit agencies will 
plan and prepare for accommodating higher transit travel needs of the public through 
pricing strategies, general financing, capacity management, and operations planning for 
different transit modes during times of substantial gasoline price increases.
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I.  INTRODUCTION

Between 1999 and 2011 consumers in the U.S. experienced an unprecedented gasoline 
price increase. Although gasoline prices sharply increased during the oil crisis due to 
Organization of the Petroleum Exporting Countries’ (OPEC) oil embargo in 1973, the 
Iran-Iraq war in 1981, and Iraq’s invasion of Kuwait in 1990, gasoline prices gradually 
declined thereafter and became stable (Figure 1). Gasoline prices spiked again in 2005 
due to the confluence of a number of factors, including new, major, oil-consuming nations, 
aging U.S. refining infrastructure, and increased demand, and were further accentuated 
by the Hurricane Katrina disaster (Figure 2, Bomberg and Kockelman, 2007). In July 2008 
gasoline prices exceeded $4 per gallon in nominal value and marked the highest price in 
real value in U.S. history (Figure 1 and Figure 2).

 

Figure 1.	 Historic Price of Regular Gasoline in the U.S. (in 2011 Dollars)
Source: Facts, http://zfacts.com/p/35.html

http://zfacts.com/p/35.html
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Figure 2.	 Nominal and Inflation-adjusted Gasoline Prices in the U.S. between 
1990 and 2013 (adjusted in 2013 Dollars)

Source: Author’s graph based on data from the Energy Information Administration, Department of Energy.

When gasoline prices substantially increased in 2008, drivers were reported to have 
adjusted their travel behavior by driving less and using transit (APTA 2012; Cooper 2009). 
High gasoline prices were also reported to have prompted drivers to shift to more fuel-
efficient cars (Korkki 2009; Busse, Knittel, and Zettelmeyer 2009). The American Public 
Transportation Association (APTA) (2012) reported that total driving declined by 56 billion 
vehicle miles traveled (VMT) (1.9 percent) or by 91 billion person miles of travel (1.8 
percent) between 2007 and 2008. APTA also reported that transit ridership rose by 5.2 
percent during the second quarter of 2008 compared to the prior year, after an increase 
of 3.4 percent in the first quarter of 2008. Transit ridership in 2008 peaked with 10.7 billion 
trips, the highest level since the Federal-Aid Highway Act of 1956 (Cooper 2009). APTA 
attributed the decline in driving and the increase in transit ridership to the gasoline price 
increase, although it did not take into account other factors, such as economic conditions. 
In April 2011, gasoline prices in many urban areas surpassed the $4-per-gallon mark again 
and raised serious concerns among motorists.

Gasoline price increases in the last decade have generated interest in gaining insight 
through rigorous research into how people respond in their travel behavior to the fluctuation 
of gasoline prices. A substantial increase in travel cost due to rising gasoline prices can 
affect motorists’ travel behavior—whether or not to take a trip, which place to travel, which 
mode of travel to take, and which route to take—in an effort to reduce expenditures on fuel. 
For transit agencies, the way people respond to gasoline prices means potential changes 
in transit service demand, as well as an increase in operating costs—particularly for bus 
services. The magnitude of change in transit ridership in response to a change in gasoline 
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price is measured by elasticity, which is defined as the ratio of a percentage change in one 
variable to a percentage change in another variable. A comprehensive understanding of 
elasticity of ridership to gasoline prices for different modes of transit is important to guide 
transit agencies’ preparation in terms of pricing strategies, capacity management, and 
supply of different modes of transit services during times of such gasoline price changes.

Given the importance of the subject, this study uses panel data of transit ridership and 
gasoline prices from ten major urbanized areas (UA) in the United States for the maximum 
of a ten-year period and controls for a comprehensive set of factors to estimate the short- 
and long-term effects of the price of gasoline on transit ridership for bus, light rail, heavy 
rail, commuter rail, and these four modes combined. An analysis using panel data allows 
us to simultaneously take into account temporal and cross-sectional variation to obtain 
more robust, generalizable results (Greene 2012).

The remainder of the report is organized as follows. Section 2 reviews the recent studies 
that analyzed the effect of gasoline prices on transit ridership with a focus on types of 
data and analytical methods used. Improving upon the past studies reviewed, Section 3 
presents the panel data regression methods applied in this study. Section 4 describes data 
and data sources. Section 5 reports results from a series of panel data regression analyses. 
Section 6 provides a discussion of analysis findings and concludes with implications for 
transit planning, as well as potential improvements for future research.
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II.  LITERATURE REVIEW

The gasoline price increase in the U.S. fostered research that yielded a broad literature 
on the gasoline price elasticity of travel demand. The literature review in this section pays 
particular attention to limitations of recent studies and highlights some of the improvements 
that need to be made in the analytical method used to estimate the net effects of gasoline 
prices on transit ridership, which is measured by the elasticity of transit ridership to the 
price of gasoline.1 In this case, the value of elasticity is the ratio of the percent change in 
transit ridership to the percent change in gasoline price. For example, an elasticity value of 
0.10 indicates transit ridership increases by 1 percent in response to a 10 percent increase 
in the price of gasoline.

Some of the more recent studies specifically examined the effect of changes in the price 
of gasoline on public transit use. (Blanchard 2009; Currie and Phung 2007; Maley and 
Weinberger 2009). There is another group of studies that included an analysis of the effect 
of gasoline price along with other factors on transit use (Bomberg and Kockelman 2007; 
Chen, Varley, and Chen 2010; Kain and Liu 1999; Lane 2010; Mattson 2008; Novak and 
Savage 2013; Stover and Bae,2011; Taylor et al. 2009; Yanmaz-Tuzel and Ozbay 2010). 
The results obtained in recent literature on the subject of gasoline price elasticity of transit 
ridership significantly vary by location of study, mode of transit, type of data used, type 
of effect estimated (i.e., short-term or long-term effect), and estimation method used, as 
discussed in this review.

Table 1 shows that recent studies used a variety of locations and time periods to examine 
the causal effect of the price of gasoline on transit ridership. Some of these recent studies 
focus specifically on a city in the United States (Bomberg and Kockelman, 2007; Chen, 
Varley, and Chen 2010; Maley and Weinberger 2009; Yanmaz-Tuzel and Ozbay 2010) but 
their findings may not be generalized due to a lack of external validity. External validity 
becomes an issue when the results from data for one city may not be comparable to results 
from data for another city because the cities’ characteristics differ from one another. Other 
studies compare the gasoline price elasticity of transit ridership in a few cities (Currie 
and Phung 2008; Kain and Liu 1999) while some others analyze transit ridership in a 
group of cities or urban areas (Blanchard 2009; Lane 2010; Haire and Machemehl 2007; 
Storchmann 2001; Taylor et al. 2009). Among the recent studies that study transit ridership 
only in cities or urban areas, Mattson (2008) is an exception because of its geographic 
focus on urban and rural areas in the U.S. Upper Midwest and Mountain States.

Table 1.	 List of Location and Years Analyzed in Recent Studies of Gasoline Price 
Elasticity of Transit Ridership

Study Location Year
Bomberg and Kockelman 
(2007)

Austin, Texas February and April 2006

Kain and Liu (1999) San Diego, CA; Houston, TX 1980; 1990
Taylor, Miller, Iseki and Fink 
(2009)

265 US urbanized areas 2000

Currie and Phung (2007) US 1998-2005
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Table 1, Continued
Study Location Year
Haire and Machemehl (2007) 5 US cities: Atlanta, Dallas, Los Angeles, 

San Francisco, and Washington DC
1999-2006

Maley and Weinberger 
(2009)

Philadelphia January 2001-June 2008

Lane (2010) 9 US metropolitan areas: Boston; Chicago; 
Cleveland; Denver; Houston; LA; Miami; San 
Francisco; Seattle

January 2002/ June 2003-April 2008

Mattson (2008) Urban and rural areas in upper midwest and 
mountain states: Duluth, MN; St. Cloud, MN; 
Rochester, MN; Sioux Falss, SD, Fargo, ND, 
Billings, MT, Grand Forks, ND; Missoula, MT; 
Great Falls, MT; Rapid City, SD; Cheyenne, 
WY; Logan, UT. 

Time-series analysis: monthly data 
from January 1999-December 2006. 
Panel data analysis: annual data 
from 1997-2006. 

Yanmaz-Tuzel and Ozbay 
(2010)

Northern New Jersey, with one line running 
between Atlantic City and Philadelphia. 

1980 to 2008

Chen, Varley, and Chen 
(2010)

New Jersey and New York City January 1996-February 2009

Storchmann (2001) Germany, public transportation in urban areas 
of Germany

1980-1995

Curie and Phung (2008) Melbourne, Brisbane, and Adelaide in 
Australia

Melbourne (January 2002- 
December 2005), Brisbane (July 
2004-November 2006), Adelaide 
(January 2002-November 2006).

Blanchard (2009) 218 US cities 2002-2008
Stover and Bae (2011) 11 counties in Washington State January 2004-November 2008
Nowak and Savage (2013) Chicago metropolitan area January 1999 and December 2010

EFFECTS OF GEOGRAPHIC LOCATION AND SCALE ON GASOLINE PRICE 
ELASTICITY

The diversity of geographic location and scale of studies by Bomberg and Kockelman 
(2007), Chen, Varley, and Chen (2010), Maley and Weinberger (2009), Yanmaz-Tuzel 
and Ozbay (2010), Currie and Phung (2008), Kain and Liu (1999), Blanchard (2009), 
Lane (2010), Haire and Machemehl (2007), Storchmann (2001), and Taylor et al. (2009) 
raises the question of how the gas price elasticity of transit ridership varies by city size and 
location (i.e., urban or rural or mix of urban and rural).

There are certain conditions that influence the magnitude of elasticity. First, the traveler 
must have the option to either drive or take public transit for his/her trip. A majority of 
current transit users in the U.S. are transit-dependent and do not have access to private 
automobiles. Zero-vehicle households represent the largest share of the transit market, 
accounting for 48.5 percent of trips while persons living in households with inadequate 
vehicles access account for an additional 17.1 percent (Chu 2012). For all income groups, 
transit use increases in urban areas (Pucher and Renne 2001). In the urban center of 
metro areas like New York, Washington DC, Chicago and San Francisco, individuals may 
choose to ride public transportation for convenience. For these individuals who do not 
own personal vehicles, travel behavior is not affected by gas prices. On the other hand, 



Mineta Transportat ion Inst i tute

13
Literature Review

those who reside in suburban areas of large metropolitan areas, small cities, and rural 
areas are more likely to own a private car and potentially be a transit rider by choice 
(Pucher and Renne 2005). Second, to cause a switch in travel modes, the effect of a 
gasoline price increase on the generalized costs of making a trip (e.g., commuting trip, 
social trip) has to be substantial. Following this, it is likely that those who usually drive 
relatively long distances may be more sensitive to a gasoline price hike and may switch to 
public transit to avoid additional financial burden (Maley and Weinberger 2009; Currie and 
Phung 2007). At the same time, taking transit should not impose substantial non-monetary 
burdens, such as longer travel time and inconvenience—at least no more of a burden 
than an increase in monetary costs due to a fuel cost increase. These conditions lead to 
a variance in response based on residential location, mode of transit, and demographic 
characteristics.2

VARIATION IN GASOLINE PRICE ELASTICITY BY TRANSIT MODE

Table 2 shows that studies vary widely in the modes examined; some focus exclusively 
on rail (Chen, Varley, and Chen 2010) or bus (Kain and Liu 1999; Mattson 2008); some 
analyze the total ridership of multiple modes and multiple transit systems combined for a 
large geographic area, such as an urbanized area or metropolitan area (Taylor et al. 2009; 
Yanmaz-Tuzel and Ozbay 2010), while others consider each mode separately, as well as 
all modes combined (Currie and Phung 2007; Haire and Machemehl 2007; Lane 2010). 
Studies that focus only on bus or rail ridership may not be generalizable to other modes in 
these areas, as studies have asserted that the gasoline price elasticity of ridership varies 
by mode (Maley and Weinberger 2009). On the other hand, studies that use aggregate 
data for the entire transit system obtain the average effect of a change in the price of 
gasoline on all modes without distinguishing variance among different modes. Given that 
the characteristics of trips and travelers vary by mode—for example, travel distance of 
rail trips is usually longer than that of local bus trips, and bus riders are more likely to be 
transit-dependent for financial reasons than are rail riders3—it is important to conduct an 
analysis of the price of gasoline elasticity to transit ridership by mode. 

Table 2.	 Type of Data and Mode Analyzed in Recent Studies of Gasoline Price 
Elasticity of Transit Ridership

Study Type of Data Mode Level of Aggregation
Bomberg and 
Kockelman 
(2007)

Cross-section Bicycle, driving, and transit Individual household 

Kain and Liu 
(1999)

Cross-section Bus Metro service area in Houston, and MTS 
service area in San Diego. 

Taylor, Miller, 
Iseki and Fink 
(2009)

Cross-section Total level of transit service provided 
by all transit agencies in an 
urbanized area

Urbanized area level 

Currie and 
Phung (2007)

Time series Bus, light rail, heavy rail, total for all 
modes combined

By mode for all of US

Haire and 
Machemehl 
(2007)

Time series Bus, light rail, heavy rail, commuter 
rail

By mode for each of 5 US cities
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Table 2, Continued
Study Type of Data Mode Level of Aggregation
Maley and 
Weinberger 
(2009)

Time series Rail provided by Regional Rail 
Division of SEPTA. Bus service, nine 
light rail or street car route service 
and two subway route service 
provided by City Transit Division of 
SEPTA.

By mode

Lane (2010)  Time series Bus, rail, bus and rail combined For nine cities combined, monthly data 
analysis by mode: bus, rail, and bus 
and rail combined. For each of 9 cities 
separately he analyzed monthly data 
by mode: bus, rail and bus and rail 
combined. 

Mattson (2008) Both time-
series data, and 
panel data were 
used. 

Bus For time-series analysis he divided 
monthly data from upper midwest 
and mountain states into 4 groups of 
metropolitan areas based on population 
size. Four groups are above 2 million 
population, 500 thousand to 2 million, 
100 thousand to 500 thousand, and 
below 100 thousand. For panel analysis, 
he used annual ridership data for each 
transit system.

Yanmaz-Tuzel 
and Ozbay 
(2010)

Time series Overall New Jersey transit ridership Monthly data for all modes combined in 
New Jersey

Chen, Varley, 
and Chen 
(2010)

Time series New Jersey commuter rail Monthly data on New Jersey commuter 
rail ridership

Storchman 
(2001)

Time series All urban public transportation: bus, 
tram and underground

He ran the regressions at the mode of 
transport level for a given purpose of 
travel for example, work, leisure etc. 
using annual data

Curie and 
Phung (2008)

Time series Rail, Australian (bus rapid transit) 
BRT, and bus

Using monthly data they ran regressions 
for each city separately after 
aggregating transit usage for all modes. 
They also ran city wide regression 
disaggregating at the rail, bus and bus 
rapid transit level. 

Stover and Bae 
(2011)

Time-series, 
panel data

Aggregate transit ridership Regress aggregate ridership for each 
county separately

Nowak and 
Savage (2013)

Time-series City heavy rail, city bus and 
suburban bus and suburban rail

Regress ridership for each model 
separately

Blanchard 
(2009)

Panel data Commuter rail, heavy rail, light rail 
and bus

Regress separately for each mode: 
motorbus, light rail, heavy rail, 
commuter rail using monthly data for 
218 cities

A wide variety of studies analyze transit ridership either by mode or by regional system, and 
using different geographic scales (i.e., cities, regions or the entire country). This variation 
generates inconsistencies. For example, Currie and Phung (2007) show that national 
light rail ridership in the United States has the highest elasticity, with values ranging from 
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0.27 to 0.38; heavy rail follows, with elasticities from 0.17 to 0.19; and bus ridership has 
elasticities from 0.04 to 0.08. Currie and Phung (2007) speculate that a higher share of 
“choice” riders—those who own or could easily own an automobile—choosing light rail 
could explain the high values of gasoline price elasticity for light rail. Haire and Machemehl 
(2007) estimated the gasoline price elasticity of ridership in five U.S. cities for four different 
modes—bus, light rail, heavy rail, and commuter rail—and obtained results different from 
Currie and Phung’s study, with the lowest elasticities for light rail (0.07), followed by heavy 
rail (0.26), commuter rail (0.27), and bus (0.24).

Lane (2010) analyzed the effect of the price of gasoline on transit ridership for both bus 
and rail modes, as well as the total ridership for the two modes combined, in nine U.S. 
metropolitan areas. Lane (2010) found that in some cities gasoline price had a positive 
effect on bus ridership but no statistically significant effect on rail ridership; while in a few 
other cities it had a positive effect on rail ridership but no effect on bus ridership. These 
results further indicate that transit ridership elasticity varies by mode and by geographic 
location, and that the use of different data—in terms of both geographic location and 
scale—will yield different estimates of elasticity for each mode.4

VARIATION IN GASOLINE PRICE ELASTICITY BY TRIP CHARACTERISTIC

Previous studies show that the gasoline price elasticity of transit ridership varies significantly 
by trip purpose, which is another way of grouping transit trips. Storchmann (2001) found 
that the cross-price elasticity for public transit in Germany varies by trip purpose: 0.202 
for work-related trips, 0.12 for school trips, 0.05 for leisure trips, 0.03 for shopping trips, 
and 0.02 for holiday trips. Travel distance also affects gasoline price elasticity of transit 
ridership as found by Currie and Phung (2008). For example, they found that the gasoline 
price elasticity of transit ridership is higher for longer distance travel in Melbourne. This 
finding is explained by the higher cost savings accrued by a mode shift from automobile to 
public transit for long-distance trips. These results suggest that it is important to take into 
account trip characteristics, such as transit mode, trip purpose, and travel distance, when 
analyzing the gasoline price elasticity of transit ridership. Information on trip purpose, 
however, typically has been omitted in regression analysis due to limited data availability. 
To address this limitation, surveys of transit riders need to be conducted to collect data on 
whether riders use different modes for different trip purposes and, if so, which mode they 
ride for which purpose.5

NON-CONSTANT ELASTICITY OF GASOLINE PRICE

Two recent studies raised a question about more complex effects of gasoline price on 
transit ridership. Chen, Varley, and Chen (2010) examined symmetry of price elasticity 
of transit ridership—whether the magnitude of elasticity is the same depending on an 
increase or decrease in gasoline price—and found that the ridership elasticity to a rise 
in the gasoline price is higher than the elasticity to a fall in the gasoline price. Maley and 
Weinberger (2009) suggest different levels of transit elasticity by the level of gasoline 
price; travelers may be much more sensitive to a gasoline price change between $2 and 
$3 per gallon, although they may not be sensitive to a change in a lower price range. 
When gasoline prices are in the low range of $2 to $3, travelers may be less conscious of 
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their spending on gasoline since the overall expenditure is low; hence, they may be less 
sensitive to a change in price. In other words, the gasoline price elasticity of ridership is not 
constant and possibly has a threshold effect at a price of about $3 per gallon of gasoline. 
This idea motivated Maley and Weinberger to add a squared term for gasoline price along 
with a linear term in their regression analysis; however, they did so in an ad hoc manner 
without providing any theoretical basis for adding the squared term. The implication of 
these complex effects of gasoline price on transit elasticity for an analytical methodology is 
that the most commonly used simple log-log regression model, which assumes a constant 
elasticity regardless of the value of gasoline price or ridership, is not adequate and should 
be modified to capture this complexity in elasticity.

LAGGED EFFECTS OF GASOLINE PRICE CHANGES

Distinction between short- and long-term elasticity is important. Travelers may adjust 
to gasoline price hikes by making personal budget adjustments, decreasing non-work, 
discretionary travel, or linking discretionary trips together in the short term. In addition, it 
is less likely that they change travel mode in response to a gasoline price hike that does 
not continue for a particular period of time (Horowitz 1982; Keyes 1982; Yanmaz-Tuzel 
and Ozbay 2010). To address this difference between short- and long-term elasticity, a 
time-series data analysis for a city or transit system over longer time horizons is better 
suited, as it can capture temporal variation in gasoline prices (Maley and Weinberger 
2009; Yanmaz-Tuzel and Ozbay 2010; Curie and Phung 2008).

As seen in Table 3, some studies use time-series data to analyze only short-term, 
instantaneous effects of a gasoline price change (i.e., the effect of a change in the price 
of gasoline measured over different time periods, either monthly or yearly) on transit 
ridership (Currie and Phung 2008; Maley and Weinberger 2009; Storchmann 2001), while 
other studies use time-series data to examine both short- and long-term effects (Chen, 
Varley, and Chen 2010; Mattson 2008; Yanmaz-Tuzel and Ozbay 2010). A few studies 
find that long-run effects of gasoline price change are statistically significant. Mattson 
(2008) used monthly data and a polynomial distribution lag model with 15 lags of gasoline 
price to analyze the long-term effects of changes in gasoline price on ridership and found 
that coefficients for gasoline price up to the seventh lag (i.e., the seventh month) were 
statistically significant. Studies by Keyes (1982), Litman (2004), and Yanmaz-Tuzel and 
Ozbay (2010) concluded that the long-term elasticity is larger than short-term elasticity, as 
a more lasting increase in gasoline price could provide a stronger incentive to switch travel 
modes and result in a higher demand for public transit trips.

Recent studies have used different types of data—cross-sectional, time-series, and panel 
(as shown in Table 2)—resulting in some variation in estimated values of elasticity. Studies 
that analyze cross-sectional data for households from a particular area (e.g., Bomberg 
and Kockelman 2007) are certainly important to transit service planning in that area, but 
the findings of these studies are not generalizable to transit systems in other areas due 
to lack of external validity. Cross-sectional studies that estimate the average gasoline 
price elasticity of many areas at a point in time (Kain and Liu 1999; Taylor et al. 2000) are 
inadequate to examine short- and long-term impacts of gasoline price on transit ridership, 
while they allow for the control of many other variables that could affect transit ridership.
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As the effect of gasoline price change on ridership is inherently temporal, time-series 
data analysis has advantages over cross-sectional analysis in examining the effects. As 
previously mentioned, it is likely that results from a time-series analysis in a particular city 
or on a particular transit system may not be applicable to other cities and transit systems. 
Panel data analysis is advantageous, as it allows researchers to simultaneously take 
into account temporal and cross-sectional variation to obtain more robust, generalizable 
results over time (Greene 2012). Mattson (2008), however, conducts panel data analysis 
using yearly data for each transit agency, which does not allow examination of the long-
term effect of a gasoline price change on public transit ridership within 12 months. Since it 
is possible to detect the full effect of a change in the price of gasoline in less than a year 
(Yanmaz-Tuzel and Ozbay 2010), use of yearly data in the panel data analysis by Mattson 
can limit the usefulness of this study.

Blanchard (2009) conducted a panel data analysis to analyze short-term and long-term 
effects of the change in gasoline prices on ridership of commuter rail, heavy rail, light 
rail, and bus, using data from 218 U.S. cities to show that the elasticity for light rail is the 
highest. This study found that long-term elasticities were higher than short-term elasticities 
for almost all modes. This finding is consistent with assertions made by the earlier studies 
(Chen, Varley, Chen 2010).



M
ineta T

ransportation Institute

18
Literature R

eview

Table 3.	 Dependent and Independent Variables and Analytical Methods Used in Studies on the Gasoline Price 
Elasticity of Transit Ridership Using Time-series Data

Study Dependent Variable Independent Variables Empirical Specification and Strategy
Currie and 
Phung (2007)

Log of national (US) transit 
ridership 

Log of gas price, log of gas price interacted with dummies 
for 9/11 incident, the Iraq war and Hurricane Katrina, month 
dummies

Simple OLS, regressing log of dependent variable on log of 
independent variables

Haire and 
Machemehl 
(2007)

Change in ridership over 
two consecutive months

Price of gasoline Simple OLS, regressing level of dependent on level of 
independent variables

Maley and 
Weinberger 
(2009)

Monthly ridership Gas price, monthly dummies to control for seasonality Simple OLS, regressing level of dependent on independent 
variables

Lane (2010) Monthly unlinked 
passenger trips for bus, rail 
and rail and bus combined

Current gas price, one month lagged gas price, standard 
deviation of monthly gas price for each month, time trend, 
seasons such as fall, spring, summer, supply of transit 
variables such as vehicle revenue miles operated, vehicles 
operated in maximum service

Simple OLS, regressing level of dependent variable on level 
of independent variables

Mattson 
(2008)

Log of monthly ridership For time-series data analysis: 15 lags of gas price, yearly 
dummy. For panel data analysis: Size of labor force, 
unemployment level, transit service and fare, time trend 
interacted with dummy indicating transit system, and dummy 
variables indicating whether there have been events to 
create demand shocks for any specific transit system.

For time-series analysis: polynomial distribution lag model 
to analyze long term effect of gas prices on ridership. He 
used a log-log model where the lagged gas prices are also 
logged. Panel data analysis: Simple OLS, regressing log 
of ridership on log of independent variables, which did not 
include lagged gas prices. 

Yanmaz-
Tuzel and 
Ozbay (2010)

Monthly transit ridership 
(in thousands)

Total monthly employment in New Jersey and New York City 
(in thousands), average monthly gasoline prices, lagged 
monthly gasoline prices, average NJ transit fare, vehicle 
revenue hours in thousands, month dummies.

Simple OLS, regressing log of dependent variable on log of 
independent variables

Chen, Varley, 
and Chen 
(2010)

Number of New Jersey 
commuter rail trips to and 
from New York City

They control for lagged ridership, positive and negative 
changes in gasoline price and transit fare, labor force and 
service level measured as vehicle revenue miles and its 
fourth lag, seasonal dummies (captured using monthly 
dummies).

They regress change in transit ridership between period t 
and t-1 on change in ridership between period t-1 and t-2 
and change in gasoline price interacted with a dummy equal 
to 1 if the price change is non-negative and equal to 0 
otherwise; similarly, they control for negative changes in 
prices by interacting the price with a dummy equal to 1 if the 
price change is negative, and 0 otherwise. 



M
ineta T

ransportation Institute

19
Literature R

eview

Study Dependent Variable Independent Variables Empirical Specification and Strategy
Storchman 
(2001)

Number of trips for work, 
school, shopping, 
business, leisure, and 
holiday, by mode. Average 
distance travelled each trip 
purpose by mode.

In the equation where they estimate choice of mode of 
transport for each travel purpose, they control for 
demographic variables, income, and a dummy indicating 
German unification in 1991. In the estimation of distance 
travelled using public transport for each purpose they control 
for gas price, stock of public transport, income and transit 
fare, available public infrastructure (such as railroads or road 
network) and German unification. In the estimation of 
demand for passenger kilometers, they control for purpose 
of trip, distance travelled, seats per vehicle, average peak 
seat load factor during peak period and average speed 
during peak periods. 

He estimates a system of equations. Estimate how 
demography and German unification in 1991 affected 
number of trips taken for each of these travel purposes: 
work, school, shopping, business, leisure, holiday. Then 
estimate average distance of trip for each of the purposes 
listed above are affected by stock of cars, transportation 
prices, available railroads, or road network, and German 
unification. Then he estimates the public transit vehicle 
demand as a function of peak passenger kilometers, seats 
per vehicle, average peak seat load factor during peak 
period and average speed during peak periods. Then he 
estimates the cross-price elasticity for public transportation 
demand. 

Curie and 
Phung (2008)

Per capita validations 
(which is equivalent to per 
capita transit usage)

Gasoline price, interest rate, and monthly dummy 
variables to indicate seasonality

Simple OLS, regressing log of per capita transit usage on 
log of gasoline prices, absolute level of interest rate, and 
monthly time dummies

Stover and 
Bae (2011)

Unlinked revenue trips Gas price, transit fare, supply of transit, unemployment rate, 
size of labor force, season dummies 

Simple OLS, regressing log of ridership on log of 
independent variables

Nowak and 
Savage 
(2013)

Unlinked trips for CTA bus, 
count of passengers 
entering stations for CTA 
rail, number of ticket sales 
for Metra, number of 
boardings for Pace

Gas price, gas price interacted with dummy that is equal to 
one if gas price is more than $3, gas price interacted with 
dummy that is equal to one if gas price is more than $4, 
average daily transit bus miles, transit fare, unemployment 
rate, proportion of weekdays in month, dummy variable for 
leap year

Simple OLS, regressing log of ridership on log of 
independent variables

Blanchard 
(2009)

Ridership measured as 
unlinked passenger trips 
by mode: commuter rail, 
heavy rail, light rail, 
motorbus

Supply of transit, gasoline price, and lagged gasoline prices, 
monthly dummies, year dummies

Simple OLS, regressing log of ridership on log of current and 
past gas prices

Table 3, Continued
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DISCUSSION OF OMITTED VARIABLES

Several recent studies of time-series analysis (Chen, Varley, and Chen 2010; Currie and 
Phung 2007; Lane 2010; Maley and Weinberger 2009; Mattson 2008; Yanmaz-Tuzel 
and Ozbay 2010; Currie and Phung 2008), as shown in Table 3 may suffer from omitted 
variables bias. Omitted variable bias arises when studies do not comprehensively account 
for the effect of changes in external and internal factors on transit ridership in a regression 
analysis. With this bias, it is not possible to isolate how much the fluctuation in gasoline 
prices alone contributes to changes in ridership (i.e., measure the net effect of gasoline 
price changes on transit ridership).

Some studies listed in Table 3 simply analyze the change in transit ridership as a result of 
a change in the price of gasoline without controlling for factors either external or internal 
to transit agencies (Haire and Machemehl 2007; Maley and Weinberger 2009), while other 
studies control for external factors but not internal factors (Bomberg and Kockelman 2007). 
External factors refer to factors outside the control of transit agencies, such as the regional 
economy, demographic changes, changes in highway infrastructure, and availability of 
parking, while internal factors are those over which transit agencies have a certain degree 
of control, such as fare levels, service coverage, operating hours, frequency (or headway), 
and service. As Kain and Liu (1999) analyzed the factors that affect transit ridership by 
selectively controlling for some internal and external factors, their analysis could face the 
omitted variables bias because the factors controlled are not comprehensive and because 
they do not control for gasoline price.

Table 4 lists studies on gasoline price elasticity of transit ridership that have used cross- 
sectional data. Comparing the past studies on transit ridership in Table 3 and Table 4, 
Taylor et al. (2009) included the most comprehensive list of influential factors in its cross-
sectional regression analysis, investigating how each of the internal and external factors 
affects total urbanized area ridership and per capita ridership. The authors attempted to 
isolate the degree of change in ridership attributable to the fluctuation in gasoline prices 
alone, (i.e., the net effect of gasoline price changes on transit ridership) by controlling 
for a comprehensive list of variables that could also influence transit ridership. These 
variables included internal factors, such as fares, frequency of service, hours of service, 
on-time performance, service coverage, and quality of service, and external factors, such 
as measures of regional economic activity, population, population density, labor market, 
availability of parking in the CBD, and socioeconomic demographics of the population 
(age, income, vehicle ownership, etc.). Understanding the relative importance of these 
various factors and the interaction between them is very important since transit agencies 
could possibly control internal factors in order to achieve their goals and objectives while 
they cannot affect external factors (Taylor et al. 2009).

Although panel data analysis by Blanchard (2009) provides a methodological step in the 
right direction, the estimated values of the gasoline price elasticity obtained in this study 
are also likely to suffer from omitted variable bias. Blanchard did not attempt to include a 
set of dummy variables indicating city (i.e., city fixed effects). Such variables could have 
controlled for some of unobserved characteristics that do not vary over time but vary 
among geographic locations.
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In addition, given that transit ridership could be influenced by changes in the level of 
potential rider activities, such as schooling and touring, some studies employ dummy 
variables to represent quarters of the year (Lane 2010) or months (Blanchard 2009; Chen, 
Varley, and Chen 2010; Currie and Phung 2008; Maley and Weinberger 2009; Yanmaz-
Tuzel and Ozbay 2010) to account for seasonal or monthly variation in transit ridership, 
respectively. Since the use of monthly dummy variables allows variation over a shorter 
time period, it is considered a more general approach than the use of quarterly dummies. 
Unlike quarterly dummies, monthly dummies allow controls for factors that change on a 
monthly basis.
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Table 4.	 Dependent and Independent Variables and Analytical Methods Used in Studies on Gasoline Price Elasticity of 
Transit Ridership Using Cross-sectional Data

Study Dependent Variable Independent Variables Empirical Specification and Strategy
Bomberg and 
Kockelman 
(2007)

Shopping around for 
gas, overall driving, 
chaining activities, 
carpooling, transit 
use, and bicycle 
trips

Respondent’s transportation needs, demographic attributes such as age, 
gender, income, student or not, household size, number of vehicle per driver. 
Neighborhood/local characteristics such as local population, whether or not the 
area is residential, or commercial area, retail employment, service employment, 
total employment in the area, distance to CBD, bus stop density, zone density. 
Gas expenditure, fuel economy of all household vehicles, no. of non-work 
related trips, whether or not works from home, whether household has children 
going to school. 

They used ordered probit models to examine 
likelihood of respondents increasing trip 
chaining or reducing their driving, and taking 
public transit in response to the 2005 gas price 
spike

Kain and Liu 
(1999)

Log of ridership Standard Metropolitan Statistical Area employment, central city population, bus 
and rail miles supplied by the transit system in the area, real fares. 

Using simple OLS model, they regressed log of 
ridership on log of independent variables

Taylor, Miller, 
Iseki and Fink 
(2009)

Total urbanized area 
ridership, Per capita 
ridership

Geographic land area, total population, population density, regional dummy, 
median household income, ratio of unemployed to labor force, ratio of enrolled 
college students an total population, ratio of population in poverty to total 
population, ratio of immigrant population to total population, percent of votes 
cast for democratic party in 2000 presidential election, freeway lane miles, 
average gas price per gallon of gas, ratio of sum of non-transit and non-SOV 
commutes to all commutes, ratio of household with no vehicle to total 
household, total lane miles, daily vehicle miles travelled per capita. They also 
control for transit system characteristics, such as transit fares, headways/ 
service frequency. 

They used two-staged least squares 
estimation strategy and instrumented supply 
of transit, measured as total urbanized area 
transit service vehicle revenue hours with total 
population, percent voting Democrat in 2000 
presidential election
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ENDOGENEITY BETWEEN TRANSIT SERVICE SUPPLY AND RIDERSHIP

To analyze the effect on ridership of internal factors, such as transit service supply, it is 
necessary to recognize that the level of transit service supply is highly correlated with 
ridership. The level of transit consumption can significantly affect the supply of transit 
service, as transit agencies adjust the supply of transit service within financial constraints 
in response to ridership levels (Taylor et al. 2009). The provided level of transit service 
directly influences the consumption of transit trips. Where a portion of the high demand for 
trips is not accommodated by the existing level of service, greater supply of service in the 
form of higher service frequency or extended operating hours leads to higher ridership. At 
the same, transit ridership can influence the level of supply as transit agencies increase 
or decrease the supply in response to fluctuations in ridership as well as cost to provide 
service and available funding. In other words, while transit supply affects transit demand 
and ridership, transit demand and ridership simultaneously affect transit supply. This leads 
to the endogeneity bias. While conceptually straightforward, most studies do not account 
for this potential endogeneity bias that arises from the simultaneity between transit supply 
and demand/consumption. Although cross-sectional data analysis by Kain and Liu (1999) 
and time-series data analyses by Chen, Varley, and Chen (2010), Lane (2010), Mattson 
(2008), and Yanmaz-Tuzel and Ozbay (2010), included a variable for transit service supply 
to examine metro ridership, these analyses did not take into account the fact that transit 
supply is endogenous to transit ridership.

The dependent variable in a regression analysis—ridership—is not only influenced by the 
explanatory variables of service supply, it also may influence them. In this case, a more 
appropriate econometric framework is to simultaneously estimate ridership and transit 
service supply. This leads to approaches such as the two-stage least squares (2SLS) or 
simultaneous equation structure to cope with the potential biases in estimated coefficients 
in regression. The study by Taylor et al. (2009) is one that accounted for endogeneity 
between ridership and transit service supply by using total population and percentage of 
the population voting Democrat in the 2000 Presidential Election as instrumental variables 
(IVs) that predict an urban area’s level of transit supply—measured as total vehicle revenue 
hours (or in-service vehicle hours). They find that transit supply and external factors, such 
as the metropolitan economy, regional geography, population characteristics, and highway 
system characteristics, affect transit ridership.

In theory, as long as the instrumental variables are valid, this method enables the authors to 
obtain an unbiased estimate of the effect of supply on ridership. However, the IVs used by 
Taylor et al. (2009) may violate the assumption of exclusion restriction—one of the two key 
assumptions in the IVs estimation method—which requires at least one of the instruments, 
total population or percentage voting Democrat, to affect ridership only indirectly through 
their effects on transit supply but not transit ridership directly (Wooldridge 2002). In addition 
to the high likelihood that population directly affects transit ridership, it may be the case 
that those who vote for Democrats likely use public transit more (Florida 2013). This could 
be part of the reason that Democratic leaders may provide more funding for public transit, 
compared to Republican leaders. 
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SUMMARY OF LITERATURE REVIEW

To review, as demographic characteristics of transit riders and their trip characteristics can 
differ substantially by mode of transit, it is important to conduct an analysis of gasoline 
price elasticity of transit ridership by mode when data are available. Results from studies 
that focus on a particular transit system or a geographic area may not be transferable to 
other systems or locations due to the absence of external validity.

This literature review has found two studies—those by Blanchard (2009) and Mattson 
(2008)—that used panel data analysis. These studies allow researchers to simultaneously 
take into account temporal and regional variation to obtain more robust, generalizable 
results; however, they have their limitations. Mattson (2008) is not able to distinguish 
between short-term and long-term effects due to the use of annual data, and Blanchard 
(2009) omits some key variables from his analysis and does not account for the endogeneity 
of transit service supply with ridership. Most of the studies using time-series data do not 
control comprehensively for external and internal variables as Taylor et al. (2009) does. 
Although Taylor et al. (2009) controlled for a comprehensive set of factors, the instruments 
used in their study may not be valid.

In short, this literature review reveals several shortcomings in past studies that analyze the 
causal effect of a change in gasoline price on transit ridership.
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III.  ANALYTICAL METHODOLOGY

This study improves upon research methods used in past studies by addressing important 
econometric issues in estimating elasticity of transit ridership to gasoline prices.

This study uses the panel data analysis method, as it allows us to simultaneously take 
into account temporal and cross-sectional variation to obtain more robust, generalizable 
results than studies that use either cross-sectional or time-series data (Greene 2012). As 
the effect of gasoline price change on ridership is inherently temporal, time-series data 
analysis has advantages over cross-sectional analysis in examining temporal and lagged 
effects of changes in gasoline prices (i.e., a ridership increase with a time delay). However, 
results from a time-series analysis on a particular city or a particular transit system also 
lack generalizability due to issues of external validity and transferability. This is because 
transit services, the built environment, and sociodemographic characteristics of residents 
and workers could substantially vary from one city to another, and these conditions are 
difficult to capture with typical variables. Such conditions include travel distance, duration 
of each trip, level of accessibility to various socioeconomic opportunities, and the level of 
service coordination among multiple transit agencies. Results from this study are more 
generalizable compared to studies that focus specifically on one or a few U.S. cities. In 
addition, unlike studies that focused only on either one mode or the aggregate ridership, 
this study examines four modes—bus, commuter rail, light rail and heavy rail—as well as 
the aggregate of all modes.

The following sub-sections describe econometric specifications within the framework 
of panel data analysis that address potential biases due to omitted variables and lack 
of consideration for the endogeneity of transit service supply. Additional econometric 
specifications were also considered to examine lagged effects and the nonlinear nature of 
effects that gasoline prices may have on transit ridership. 

BASELINE SPECIFICATION

Equation (1) expresses a baseline specification in a series of analyses using panel data. It 
controls for a wide range of variables, including regional geography, metropolitan economy, 
population characteristics, highway system, and transit system characteristics.

 0
''M

it it
M M
it it i t y ity PR Xα δα β µ η κ ε+ + += + + + + 	 Equation (1)

where

 M
itR  denotes transit ridership in urbanized area (UA) i  at time t  for mode M (bus, light rail, 

heavy rail, commuter rail, and the aggregate).

 M
ity  denotes a vector of internal influential factors that include the levels of transit service 

supply measured as vehicle revenue hours (VRH), service frequency, and average fare 
for mode M, in UA i  at time t .

An apostrophe, (‘) in an equation represents the transpose of a vector.



Mineta Transportat ion Inst i tute

26
Analytical Methodology

 itP  denotes the price of gasoline in UA i  at time t .

 '
itX  is a vector of external influential factors that include total population, number of recent 

immigrants, federal highway miles, mean household income, unemployment rate, and 
percent of households with no vehicle in UA i  at time t .

 iµ  denotes UA level fixed effects.

 tη  denotes monthly fixed effects to represent seasonal variation in transit ridership.

 yκ  denotes yearly fixed effects.

 M
itε  denotes the stochastic error term corresponding to the regression for mode M.

 0α  denotes the intercept parameter.

α and β are vectors of slope parameters associated with vectors of internal and external 
influential factors respectively.

δ denotes the slope parameter associated with the price of gasoline. 

The baseline specification regresses the log of ridership (  M
itR ) on a set of multiple 

independent variables that include gasoline prices. While we examined many other 
variables, such as level of transit service supply, which is measured by vehicle revenue 
hours (VRH), and average fare, which is obtained by dividing total fare revenue by ridership, 
the actual set of variables varies by each model due to considerations for multicollinearity 
and a parsimonious specification. Many of these independent variables are in the natural 
logarithmic form of an original variable except for the unemployment rate and the proportion 
of households with no vehicle, which are percentages.

The baseline specification also includes area-level fixed effects (  iµ ) to control for unobserved 
time-invariant factors that affect transit ridership in each UA, monthly dummy variables (  tη ) 
to account for the seasonal variation in transit ridership, and yearly dummy variables (  yκ ) 
to account for macroeconomic effects that change from year to year and affect ridership 
of transit systems in all UAs in the same manner. This baseline specification assumes no 
endogeneity between transit service supply and ridership. Results from this specification 
will be compared to those obtained from the following specification that applies instrumental 
variables to address the potential endogeneity problem.

MODEL FOR INSTRUMENTAL VARIABLES METHOD

The instrumental variables estimation method is used to obtain an unbiased estimate 
of the effect of transit service supply on ridership with the presence of endogeneity 
between transit service supply and ridership. Equations (2) and (3) present the model 
specification that accounts for simultaneity in transit service supply and ridership.6 
Specifically, Equation (2) shows a specification of the first stage of the two-stage 
regression analysis in which a variable of transit service supply measured by VRH is 
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regressed on instrumental variables and other variables that are included in the second 
stage. Equation (3) represents the second stage in which transit ridership is estimated 
using the predicted value of VRH from Equation (2).

' ' '
1 1

M M M
it it it it it i t y ity Z P X y uα γ δ θ π µ η κ= + + + + + + + +

 	 Equation (2)

' '
0 ˆM M M M

it it it it it i t y itR y P X yα α δ β ω µ η κ ε= + + + + + + + +
 	 Equation (3)

where

 M
itR ,  itP ,  '

itX ,  iµ ,  tη ,  yκ ,  0α , β and δ are the same as defined in Equation (1).

 M
ity  denotes the supply of transit service measured as VRH for mode M in UA i  at time t .

 ˆM
ity  denotes the predicted value of transit supply from the first stage.

 M
ity  denotes the vector of variables of transit fare and service frequency for mode M in UA 

i  at time t .

𝛼𝛼1  denotes the intercept parameter in the first stage estimation (Equation 2).

α   denotes the slope parameter associated with the predicted value of transit supply.

𝑍𝑍𝑖𝑖𝑖𝑖′   denotes the vector of excluded instruments that affect only transit supply but does not 
affect ridership in UA i  at time t .

𝜋𝜋  denotes the vector of slope parameters associated with the vector of variables of transit 
fare and service frequency for mode M in UA i  at time t  in the first-stage estimation 
(Equation (2)).

ω denotes the vector of slope parameters associated the vector of variables of transit 
fare and service frequency for mode M in UA i  at time t  in the second stage estimation 
(Equation (3)).

θ denotes the vector of slope parameters associated with vectors of internal factors in the 
first stage estimation represented in Equation (2).

γ   denotes the vector of slope parameters associated with the vector of excluded instruments.

1δ   denotes the slope parameter associated with price of gasoline in the first stage estimation 
shown in Equation (2).

 M
itu  and  M

itε  denote the stochastic error terms corresponding to the first and second stages 
respectively.



Mineta Transportat ion Inst i tute

28
Analytical Methodology

The instrumental variables in Equation (2) are: (1) total number of employees, (2) total 
fleet measured as the total seating and standing capacity of transit vehicles, and (3) total 
funds available for transit agencies in each UA in a particular year, combining local, state 
and federal funds. For these three instrumental variables, two conditions—instrument 
relevance and instrument exogeneity—need to be met. The first condition, instrument 
relevance, requires that the covariance between the instruments and supply of transit 
service cannot be zero. In other words, the three instruments should significantly affect 
supply of transit services. The three instruments selected in this study meet the condition 
of instrument relevance because the three instruments are jointly statistically significant as 
demonstrated by the large F-statistics reported later in Table 9.

The second condition, instrument exogeneity, requires that the instruments cannot directly 
affect transit ridership, but do so only by affecting the supply of transit services. The three 
instruments selected in this study satisfy the condition of instrument exogeneity, as all 
of them directly affect the supply level of transit service. In other words, these variables 
determine how much service transit agencies can produce. In addition, it is unlikely that 
typical riders would even notice or pay attention to conditions of these three variables prior 
to their use of transit, and it is also unlikely that their decision whether to take transit is 
influenced by these factors. Therefore, these three excluded instruments do not directly 
affect ridership.

Also in the analysis using the instrumental variables method, a log-log model is used, 
taking the natural logarithmic form of most of the independent variables in Equations (2) 
and (3) except the unemployment rate and the proportion of households with no vehicle, 
so that estimated coefficients can be interpreted as elasticity. 

MODEL FOR TESTING SHORT- AND LONG-TERM EFFECTS

Changes in gasoline prices may influence transit ridership, not immediately but with some 
time lag or possibly in the long-term. A finite distributed lag model is used to analyze whether 
there are lagged effects of changes in gasoline prices, as shown in Equation (4). This 
equation (4) is a modified version of Equation (1) and it includes monthly lagged variables 
of gasoline prices.

'
0 0 1 , 1 ,'M M M

it it it i t N i t N it i t y itR y P P P Xα α δ δ δ β µ η κ ε− −= + + + + + + + + +
 
 Equation (4)

	 where

	 ', , , , , , , ,M M
it it it i y oR y X µ η κ α α β   and  M

itε  are the same as defined in Equation (1).

	 , 1,it i tP P −   and ,i t NP −   denote the gasoline price in UA  i  at time t , t -1, and t -N, respectively.

	 0 1,δ δ   and Nδ   denote the coefficients associated with the gasoline price in UA i  at 
	 time t , t -1, and t -N, respectively.

In the models that analyze short- and long-term effects, specifications with different 
combinations of monthly lagged gasoline prices were tested to find a set of the variables 
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with statistically significant coefficients. As the lagged gasoline prices are included in a 
logarithmic form in the model, estimated coefficients are interpreted as elasticity. 

MODEL FOR TESTING NON-CONSTANT ELASTICITY

Boost effect and unequal elasticity in different price range

When gas prices exceeded $4 in 2008, popular media reported that people switched from 
driving to taking public transit. Similarly, Maley and Weinberger (2009) suggested that 
the gasoline price elasticity of transit ridership might be non-constant, including some 
boost effects at particular values of gasoline price. Following these, this study investigates 
whether there are any boost effects at gas prices of $2, $3, and $4 that result in an 
increase in transit ridership in addition to an increase represented by elasticity.

In addition, this study further investigates if the gas price elasticity of transit ridership 
varies for different ranges of gasoline prices. Equation (5) below shows a specification of 
regression analysis to examine: 1) boost effects at $2, $3, and $4 marks, and 2) different 
values of the gas price elasticity of transit ridership for the gasoline price ranges of less 
than $2, $2-$3, $3-$4, and greater than or equal to $4.

 	
Equation (5)

where

 M
itR ,  M

ity ,  '
itX ,  iµ ,  tη ,  yκ ,  0α , α and β are the same as defined in Equation (1).

2
itD   denotes a dummy variable that is equal to one when gasoline price is equal to or 

higher than $2 (≥ $2).

3
itD   denotes a dummy variable that is equal to one when gasoline price is equal to or 

higher than $3 (≥ $3)

4
itD   denotes a dummy variable that is equal to one when gasoline price is equal to or 

higher than $4 (≥ $4).

∂1, ∂2, and ∂3 denote estimated coefficients for gasoline price and the three dummy variables 
described above.

2
itP   denotes a variable that has a value of zero when gasoline price is lower than $2 and 

has a value of the natural logarithm of gasoline price minus the natural logarithm of 2 when 
gasoline price ≥ $2.

3
itP   denotes a variable that has a value of zero when gasoline price is lower than $3 and 

has a value of the natural logarithm of gasoline price minus the natural logarithm of 3 when 
gasoline price ≥ $3.
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4
itP   denotes a variable that has a value of zero when gasoline price is lower than $4 and 

has a value of the natural logarithm of gasoline price minus the natural logarithm of 4 when 
gasoline price ≥ $4.

δ1, δ2, δ3, and δ4 denote estimated coefficients for gasoline price and three dummy variables 
described above. 

By subtracting the natural logarithm of 2, 3, and 4 from the natural logarithm of gasoline 
price, estimated coefficients for 2

itD  , 3
itD  , and 4

itD   can be converted, using an exponential 
function (i.e. 𝑒𝑒𝑥𝑥 ). The resulting value minus 1 can be interpreted as a boost effect. For 
example, assuming the estimated coefficient of a dummy variable is 0.007528, a boost 
effect can be calculated as [𝑒𝑒0.007528  – 1 = 1.007556], which means it increases ridership 
by 0.7556 percent. 

METHODOLOGICAL APPROACHES SPECIFIC TO THIS STUDY

In summary, this study applies panel data analysis methods to obtain results that are 
more generalizable than those obtained from time-series analysis, taking into account the 
inherent temporal property of the effects of gasoline prices on transit ridership. This study 
also examines four different modes of transit in addition to the aggregate of these modes.

The panel data set analyzed in this study contains a more comprehensive set of internal and 
external factors that influence transit ridership in order to address the omitted variable bias 
in estimated coefficients, mirroring the cross-sectional data analysis by Taylor et al. (2009). 
When such a bias is present, it is not possible to isolate the net effect a change in gasoline 
price has on transit ridership. This study also examines a specification of instrumental 
variables regression method to address potential bias in the estimated coefficients due to 
the simultaneity issue between transit service supply and ridership. In addition, urbanized 
area dummy variables are included to control for some of the unobserved characteristics 
that do not vary over time but vary between geographic locations. Following several past 
studies, monthly dummy variables are included to account for the temporal variation in 
transit ridership related to factors that exhibit seasonal patterns, including schooling and 
touring. Finally, this study also examines the possibility of lagged and nonlinear effects of 
gasoline prices on ridership using panel data analysis. Nonlinear effects include the boost 
effect of $2, $3, and $4 price points and different values of elasticity in different ranges of 
gasoline price.
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The analysis in this study uses data on monthly average gasoline prices based on weekly 
prices of three different types of gasoline—regular, midgrade, and premium—collected 
from the U.S. Energy Information Administration from January 2002 to December 2011 
for ten urbanized areas (UAs) in the United States—namely Boston, Chicago, Cleveland, 
Denver, Houston, Los Angeles, Miami, New York, San Francisco and Seattle. Table 5 
shows these ten UAs and the proportion of the total number of observations from each UA.

Table 5.	 Distribution of Observations across Urbanized Areas by Mode

Urbanized Area
Proportion of Observations from Each UA in a Dataset for Each Mode (%)

Bus CR LR HR All Transit
Boston, MA 9.2 13.1 10.8 12.0 9.1
Chicago, IL 10.6 15.2 - 15.6 10.6
Cleveland, OH 9.2 - 10.8 13.5 9.1
Denver, CO 10.6 - 14.2 - 10.6
Houston, TX 10.6 - 11.4 - 10.6
Los Angeles, CA 10.6 15.2 12.7 15.6 10.6

Miami, FL 9.2 13.1 0.8 12.0 9.1
New York, NY 10.6 15.2 12.7 15.6 10.6
San Francisco, CA 10.6 15.2 14.2 15.6 10.6
Seattle, WA 9.2 13.1 12.3 - 9.1
Total Number of Observations 1,126 789 840 761 1,132

The analysis uses monthly data on unlinked passenger trips for bus, commuter rail, light 
rail, and heavy rail, collected from the National Transit Database (NTD) for the transit 
ridership variable. Unlinked passenger trips for the four different modes were also 
aggregated to generate the total transit ridership for each UA. Other variables used in the 
analysis include monthly data for vehicle revenue hours (VRH) and vehicle revenue miles 
(VRM) as the supply of transit services, average service frequency (VRM divided by route 
miles), total number of employees (number of full-time employees + 0.5 * number of part-
time employees), total fleet capacity (seating and standing capacity) by mode, and total 
available funds in thousands of dollars (sum of state, local and federal funds available to 
transit agencies). All of these variables were collected from the NTD and processed to 
obtain data for each of the ten UAs on an annual basis from 2002 to 2011. Demographic 
and socioeconomic variables, which were obtained from the American Community Survey 
(ACS) 1-year estimates between 2005 and 2011, include total population, number of recent 
immigrants, mean household income, unemployment rate, percent of households with no 
vehicle, number of workers that carpool, number of people in different age groups, number 
of people working in different industries, and college and graduate school enrollment in 
each UA. The analysis also uses annual data on federal highway miles from 2002 through 
2010 collected from the Highway Statistics Series prepared by the U.S. Department of 
Transportation Federal Highway Administration. 
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Table 6 shows the summary statistics of the variables used in this study’s analysis.

Table 6.	 Descriptive Statistics of Explanatory Variables Considered for 
Regression Analysis

Variables Used in Regression Mean Standard Deviation
Unlinked passenger trips: bus 25,494,332 29,98,5045
Unlinked passenger trips: commuter rail 4,651,073 6,944,772
Unlinked passenger trips: light rail 2,209,016 2,132,060
Unlinked passenger trips: heavy rail 34,233,693 67,177,982
Unlinked passenger trips: all modes combined 55,095,686 93,021,065
Average of regular midgrade and premium gasoline price 2.61 0.74
Bus fare 0.81 0.26
Commuter fare 3.54 1.18
Light rail fare 0.79 0.28
Heavy rail fare 1.08 0.64
Transit fare 0.94 0.28
Vehicle revenue hours: bus 598,822 579,093
Vehicle revenue hours: commuter rail 94,055 153,020
Vehicle revenue hours: light rail 24,324 22,571
Vehicle revenue hours: heavy rail 384,020 771,348
Vehicle revenue hours: all modes combined 956,911 1,335,703
Frequency of service: bus 975 290
Frequency of service: commuter rail 2,458 2,025
Frequency of service: light rail 6,173 3,184
Frequency of service: heavy rail 26,842 24,711
Frequency of service: all modes combined 1,536 1,001
Total standing+seating capacity for bus 201,780 200,463
Total standing+seating capacity for commuter rail 138,715 182,406
Total standing+seating capacity for light rail 21,033 21,588
Total standing+seating capacity for heavy rail 200,532 353,223
Total standing+seating capacity for all modes combined 455,390 659,999
Total number of employees 14,990 22,284
Total funds available to transit agencies (in thousands of dollars) 2,441 1,701
Total population 7,327,483 5,068,340
Foreign-born population - naturalized U.S. citizen 883,610 840,711
Federal highway miles (urban and rural) 284,425 142,052
Mean household income 79,854 11,387
Unemployment rate 8.11 2.31
Households with no vehicle 4.15 3.19

Figures 3-6 show the relationship between unlinked passenger trips—representing 
ridership of bus, commuter rail, light rail and heavy rail in Boston—and four different 
gasoline prices: regular, midgrade, premium, and the average of the three. Appendix B 
contains graphs for all of the UAs. It is important to note that not all UAs offer all modes of 
transit service. While buses are available in all ten UAs, commuter rail is not available in 
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Cleveland, Denver or Houston; light rail is not available in Chicago; and heavy rail is not 
available in Denver, Houston or Seattle.

 

Figure 3.	 Boston: Retail Gasoline Price and Unlinked Passenger Trips for Bus

 

Figure 4.	 Boston: Retail Gasoline Price and Unlinked Passenger Trips for 
Commuter Rail
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Figure 5.	 Boston: Retail Gasoline Price and Unlinked Passenger Trips for Light 
Rail

 

Figure 6.	 Boston: Retail Gasoline Price and Unlinked Passenger Trips for Heavy 
Rail
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Table 7 (a) through (e) show correlations between independent variables that were 
considered in regression specifications using data only from 2007.7 These correlations 
provide insight into the pairs of variables that could cause collinearity in the regression 
analysis. In Table 7 (a) through (e), a correlation greater than 0.7 is shown in bold type, 
while a correlation greater than 0.4 and smaller than 0.7 is shown in italic type. A threshold 
value of 0.7 is typically used as an indicator for when collinearity possibly begins to cause 
severe distortion of model estimation and subsequent prediction, while a value of 0.4 is a 
more restrictive, less commonly used indicator value (Dormann et al 2007).

For bus mode, VRH, frequency of service, total population, and naturalized citizen are 
highly correlated. In addition, transit fare has high correlation with percent of households 
with no vehicle. Percent of households with no vehicle and mean household income 
have a moderate level of correlation with several variables (Table 7). For commuter rail, 
total population is highly correlated with transit fare and VRH. Frequency of service has 
high correlation with VRH, as does total population and naturalized citizens. For light 
rail, the following pairs have high correlation: transit fare and federal highway miles, total 
population and naturalized citizens, naturalized citizens and mean household income, 
and unemployment rate and mean household income. Heavy rail shows a more complex 
pattern in pairs with high correlation. VRH, frequency of service, total population, and 
naturalized citizen are highly correlated. Frequency of service has high correlation with 
mean household income and percent of households with no vehicle. Unemployment rate 
has high correlation with naturalized citizen and mean household income. Lastly, VRH and 
percent of households with no vehicle also show high correlation. For all modes combined, 
VRH, frequency of service, total population, and naturalized citizen are highly correlated. 
Percent of households with no vehicle shows high correlation with VRH and frequency of 
service, and transit fare shows the same with frequency of service.

Taking into account this multicollinearity, the significance level of estimated coefficients, 
and the R-squared value, the following process was used to select a set of independent 
variables to create the most parsimonious model. Starting with a full specification model 
with all variables, the variable with the estimated coefficient that has the least statistical 
significance was removed to get a new set of variables for running another model. In some 
cases, due to multicollinearity among more than two variables, a few specifications were 
examined before choosing which variable to remove. By selecting a set of independent 
variables in this way, a more parsimonious model with a high R-squared value and no 
substantial collinearity was obtained for each mode and each specification.
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Table 7.	 Correlations using the 2007 Data
(a) Bus
Bus [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
Log of average of regular midgrade and premium gas price [1] 1.000
Log of fare [2] 0.037 1.000
Log of vehicle revenue hours [3] 0.231 0.490 1.000
Log of frequency of service [4] 0.264 0.365 0.896 1.000
Log of total population [5] 0.127 0.241 0.906 0.794 1.000
Log of naturalized citizen [6] 0.206 0.175 0.886 0.825 0.943 1.000
Log of federal highway miles [7] 0.074 -0.404 0.171 0.398 0.207 0.254 1.000
Log of mean household income [8] 0.251 0.265 0.576 0.442 0.513 0.593 -0.058 1.000
Unemployment rate [9] -0.098 -0.045 -0.176 -0.102 -0.069 -0.246 0.133 -0.587 1.000
Percent of households with no vehicle [10] -0.025 0.750 0.665 0.431 0.588 0.517 -0.191 0.406 -0.129 1.000

(b) Commuter Rail
Commuter Rail [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
Log of average of regular midgrade and premium gas price [1] 1.000
Log of fare [2] 0.034 1.000
Log of vehicle revenue hours [3] -0.119 0.622 1.000
Log of frequency of service [4] 0.004 0.504 0.908 1.000
Log of total population [5] -0.025 0.764 0.795 0.673 1.000
Log of naturalized citizen [6] 0.076 0.596 0.547 0.562 0.898 1.000
Log of federal highway miles [7] 0.339 0.177 -0.064 0.095 0.362 0.591 1.000
Log of mean household income [8] 0.180 0.440 0.362 0.626 0.137 0.160 0.112 1.000
Unemployment rate [9] -0.077 0.099 0.631 0.462 0.540 0.323 0.165 -0.222 1.000
Percent of households with no vehicle [10] -0.165 0.531 0.646 0.652 0.593 0.526 -0.110 0.317 -0.017 1.000
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(c) Light Rail
Light Rail [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
Log of average of regular midgrade and premium gas price [1] 1.000
Log of fare [2] 0.176 1.000
Log of vehicle revenue hours [3] 0.203 0.251 1.000
Log of frequency of service [4] 0.002 0.092 0.541 1.000
Log of total population [5] 0.130 -0.195 0.395 -0.042 1.000
Log of naturalized citizen [6] 0.224 -0.128 0.449 -0.026 0.969 1.000
Log of federal highway miles [7] 0.076 -0.717 -0.190 -0.415 0.195 0.245 1.000
Log of mean household income [8] 0.306 0.321 0.631 0.287 0.555 0.711 -0.048 1.000
Unemployment rate [9] -0.154 -0.236 -0.251 -0.576 -0.185 -0.313 0.113 -0.709 1.000

(d) Heavy Rail
Heavy Rail [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
Log of average of regular midgrade and premium gas price [1] 1.000
Log of fare [2] 0.249 1.000
Log of vehicle revenue hours [3] 0.015 0.368 1.000
Log of frequency of service [4] 0.053 0.263 0.950 1.000
Log of total population [5] 0.112 -0.098 0.702 0.837 1.000
Log of naturalized citizen [6] 0.205 0.089 0.612 0.807 0.918 1.000
Log of federal highway miles [7] 0.327 0.190 -0.119 -0.081 0.156 0.275 1.000
Log of mean household income [8] 0.245 0.666 0.676 0.723 0.574 0.661 0.021 1.000
Unemployment rate [9] -0.186 -0.325 -0.355 -0.575 -0.501 -0.744 0.073 -0.737 1.000
Percent of households with no vehicle [10] -0.111 0.012 0.770 0.773 0.599 0.502 -0.164 0.384 -0.286 1.000

Table 7, Continued
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(e) All Modes (Aggregate)
All Modes [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
Log of average of regular midgrade and premium gas price [1] 1.000

Log of fare [2] 0.190 1.000

Log of vehicle revenue hours [3] 0.190 0.599 1.000

Log of frequency of service [4] 0.167 0.724 0.951 1.000

Log of total population [5] 0.127 0.308 0.904 0.822 1.000

Log of naturalized citizen [6] 0.206 0.297 0.857 0.784 0.943 1.000

Log of federal highway miles [7] 0.074 -0.455 0.025 0.010 0.207 0.254 1.000

Log of mean household income [8] 0.251 0.658 0.626 0.640 0.513 0.593 -0.058 1.000

Unemployment rate [9] -0.098 -0.078 -0.135 -0.047 -0.069 -0.246 0.133 -0.587 1.000

Percent of households with no vehicle [10] -0.025 0.508 0.766 0.786 0.588 0.517 -0.191 0.406 -0.129 1.000

Table 7, Continued
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V.  ANALYSIS RESULTS

This section presents results from a series of panel data regression analyses. It begins 
with the baseline specification models. Then, using the instrumental variables models, it 
examines whether the simultaneity issue between transit service supply and ridership has 
any significant effect on estimated coefficients for gasoline prices. As the instrumental 
variables models showed no indication of significant biases in the estimated coefficients 
of gasoline prices, models that examine short- and long-term effects and non-constant 
elasticity were specified based on the baseline specifications.

In the following discussion, most of estimated coefficients from regression are interpreted 
directly as elasticity. When the natural logarithm of values of both an explanatory variable 
and a dependent variable are taken, an estimated coefficient can be interpreted as 
elasticity. For example, the estimated coefficient for gasoline prices shows an elasticity 
of 0.061, which indicates a 0.61 percent increase in ridership in response to an increase 
in gasoline prices by 10 percent (or 6.1 percent increase in ridership in response to an 
increase in gasoline prices by 100 percent). There are a few exceptions to this, including 
independent variables expressed in terms of percentages, such as unemployment rate 
and the percentage of households with no vehicle, and dummy variables that have either 
a value of 0 or 1. Interpretation of estimated coefficients for these variables is provided in 
a different way.

New York City is known to account for approximately 40 percent of the nation’s fixed-
route transit trips.8 It also comprises a significantly different transit environment than other 
regions of the United States. Since a significant difference was observed in the analysis 
for heavy rail with or without the New York urbanized area (UA), results from both cases 
are reported and discussed.9 

BASELINE SPECIFICATION MODEL RESULTS

Table 8 shows the estimated coefficients, standard errors (in parentheses), and significance 
levels (indicated by asterisks *, **, or ***) obtained from the six different models of the 
baseline specification: three models for bus, commuter rail, and light rail; two models for 
heavy rail, with or without the New York UA; and one model for all the four modes combined 
(the aggregate). Estimated coefficients that are statistically significant at a significance 
level of 0.10 or higher are shown in bold. Table 8 also shows the number of observations; 
R-squared; number of urbanized areas; and inclusion of monthly, yearly, and urbanized 
area dummy variables for each model. The values of R-squared range from 0.431 for the 
model of heavy rail with the New York UA to 0.844 for the model of light rail.
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Table 8.	 Results from the Baseline Specification Model

Variables
(1) (2) (3) (4-1) (4-2) (5)

Bus CR LR HR w/o NY HR w/ NY Transit
Log of monthly gasoline price 0.0611*** 0.0547 0.0330 -0.0217 -0.0276 0.0494**

(0.0219) (0.0387) (0.0507) (0.0436) (0.0400) (0.0205)
Log of fare -0.230*** -0.372*** -0.124*** -0.284*** -0.210*** -0.340***

(0.0207) (0.0616) (0.0348) (0.0324) (0.0280) (0.0240)
Log of vehicle revenue hours 0.263*** 0.283*** 0.786*** 0.305*** 0.00449 0.166***

(0.0258) (0.0197) (0.0221) (0.0366) (0.00815) (0.0157)
Log of frequency of service 0.115*** 0.0998***

(0.0167) (0.0273)
Log of total population 0.996*** 4.168*** -1.422*** -0.671* 1.412***

(0.152) (0.427) (0.404) (0.388) (0.141)
Log of federal highway miles 0.0702*** -0.133*** -0.0471** -0.0397* 0.000188 0.0572***

(0.0100) (0.0192) (0.0210) (0.0212) (0.0204) (0.00922)
Log of mean household income 2.896***

(0.390)
Unemployment rate (%) 0.0341*** 0.0442*** 0.0454*** 0.0304*** 0.0385***

(0.00425) (0.0104) (0.00978) (0.00882) (0.00396)
Households with no vehicle (%) -0.0304*** -0.0541**

(0.0103) (0.0262)

Constant -4.247* -85.34*** 5.955*** 34.16*** 25.97*** -8.310***
(2.339) (6.105) (0.314) (6.225) (6.110) (2.189)

Seasonal effects (month dummies) Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Urbanized area fixed effects Yes Yes Yes Yes Yes Yes
Observations 1,126 789 840 669 789 1,132
R-squared 0.518 0.630 0.844 0.485 0.431 0.53
Number of urbanized areas 10 7 9 6 7 10

Note: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
Key to Variables: Bus = Unlinked passenger trips: bus; CR = Unlinked passenger trips: commuter rail; LR = Unlinked passenger trips: light rail; HR = Unlinked passenger 
trips: heavy rail; Transit = Unlinked passenger trips: All modes combined. The statistically significant coefficients are in bold. 
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The estimated elasticity of bus ridership to gasoline prices is 0.061 and is statistically 
significant at the 0.01 significance level. This indicates that a 10 (or 100) percent increase 
in the price of gasoline leads to 0.61 (or 6.1) percent increase in bus ridership. Checking the 
elasticity by mode, the aggregate ridership elasticity is 0.049 and is statistically significant 
at the 0.05 significance level. While the estimated elasticity is positive, as expected, these 
values are slightly lower than those found in previous studies that ranged from 0.10 to 0.30 
(Litman 2004; Haire and Machemehl 2007; Currie and Phung 2008; Chen, Varley, and 
Chen, 2010). However, the elasticity for three other modes is not statistically significant.

These results indicate that an increase in gasoline prices has a positive impact on bus 
ridership and the aggregate ridership; people are more likely to take public transit—
especially buses—in order to cope with the increased expense of traveling by private 
automobile due to higher gasoline prices. The results also indicate that bus riders are 
more sensitive to a change in gasoline prices. In a usual context, this could be explained 
by a relatively lower income level of bus riders, which leads to higher price sensitivity. 
However, the analysis in this study that uses aggregate data for UAs does not detect this 
effect of individual income levels on price sensitivity well. It is unlikely that commuter rail, 
light rail and heavy rail show a clear change in ridership due to the change in gasoline 
prices. However, an analysis of elasticity in different ranges of gasoline prices shows 
slightly different results, as discussed later in this chapter.

The three internal factors—fare, vehicle revenue miles (VRH), and frequency of service—
generally have expected effects on transit ridership. The estimated elasticity of ridership to 
fare is negative for all modes, as well as the aggregate, as expected, ranging from -0.372 
for commuter rail to -0.124 for light rail. A negative sign indicates that an increase in fare 
leads to a decrease in ridership (or a decrease in fare leading to an increase in ridership). 
While elasticity for bus and heavy rail lines is in the middle range, the elasticity for the 
aggregate shows a relatively large absolute value of elasticity, -0.340. The estimated 
elasticity values, except for light rail, are consistent with those reported in past studies 
ranging from -0.20 to -0.90 for the short-term effects (Litman 2004; Chen, Varley, and 
Chen 2010).

The higher elasticity of commuter rail may be because of a combination of a distance-
based fare and relatively longer travel distances for this mode, which could result in a 
fare increase for each traveler, compared to a fare increase in other modes. For heavy 
rail, elasticity is higher for the model without the New York UA than with the New York UA, 
implying that the effect of heavy rail fare on ridership is relatively lower in the New York UA, 
taking into account the level of transit ridership. A large number of people in New York ride 
transit because they may not have access to private automobiles and/or because transit 
service is less costly and more convenient than driving, regardless of the level of gasoline 
prices. In addition, the estimated elasticity values from this baseline specification model 
show that ridership for all modes is more sensitive to transit fares than gasoline price. This 
might be because people have much more resistance against and more sensitivity to a 
change in transit fare, which is almost always an increase and more lumpy than a change 
in gasoline prices. 
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The positive signs of estimated elasticity for VRH indicate that an increase in the supply of 
transit service leads to an increase in ridership for all modes except heavy rail when including 
the New York UA. The value of elasticity for VRH ranges from 0.263 for bus to 0.786 for light 
rail, showing relatively greater effects of VRH on ridership than gasoline prices as expected. 
These estimated elasticity values are in line with those found in the literature, ranging from 
0.3 to 1.14 (Litman 2004; Taylor et al. 2009, Chen, Varley, and Chen 2010). It is surprising to 
find that estimated elasticity was not statistically significant for heavy rail when including the 
New York UA. It may be because the New York transit system is accommodating people’s 
trips well and an increase in VRH may not necessarily increase ridership. This increase may, 
however, reduce the level of crowding, increase service hours, and lead to improvements in 
the overall service quality from transit users’ perspective.

The higher the service frequency, the higher transit ridership for bus and light rail is. This 
positive relationship between service frequency and ridership is expected. However, 
estimated elasticity values for the other modes were found statistically insignificant. A 
detailed examination of the data reveals little variance in the service frequency variable 
especially for commuter rail, which may explain the statistical insignificance.

The rest of the variables that remained in the baseline specification models are external 
factors that transit agencies do not have any control over. As other studies indicated, 
some of the estimated elasticity values of these variables are statistically significant 
and have a very substantial effect on ridership for some modes. Total population in an 
urbanized area has a positive effect on ridership for bus, commuter rail, and the aggregate, 
as expected. The larger the total population in the UA, the higher the transit ridership. 
Estimated elasticity is 0.996 for bus, 4.168 for commuter rail, and 1.412 for the aggregate. 
The effect of a population increase on commuter rail ridership is very significant in terms 
of the magnitude of effect as well as statistical significance. However, elasticity of total 
population for light rail was statistically insignificant, and those for heavy rail have negative 
signs (-1.422 and -0.671). Higher population is also related to a lower level of heavy rail 
ridership. These mixed results of the effect of population on transit ridership by mode 
are difficult to interpret. This may be caused by the population variable in the model that 
includes all of the population in the entire urbanized area, not only in the areas that are well 
served by service of each mode.

Federal highway miles in the UA has a positive elasticity value of 0.070 for bus ridership, 
but has a negative effect on ridership for commuter rail, light rail, and heavy rail (-0.133, 
-0.047, and -0.039 respectively). Overall, the effect of highway miles increase on bus 
ridership seems to dominate, as federal highway miles have a positive effect on aggregate 
transit ridership as indicated by the positive elasticity of 0.057.

The positive effect on bus ridership may be explained by bus service provided through 
highways that can be an effective way to increase ridership. In addition, the higher highway 
miles might mean less overall congestion, faster bus service, and shorter bus travel time— 
controlling for the amount and frequency of bus service, resulting in higher ridership. 
However, more travel speed on the road network works against rail services, resulting in 
less competitiveness for rail transit modes against driving modes. In addition, as the higher 
presence of highway miles implies a higher likelihood of traveling by automobile, it is fairly 
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understandable to have a negative effect on rail ridership. The higher elasticity value for 
commuter rail may be explained by long-distance commuting trips, for which commuter rail 
could be more easily substituted by driving modes, especially when commuter rail lines 
run parallel to highways. Examining the values of elasticity for the two heavy rail models, 
the estimated elasticity for federal highway miles was found statistically insignificant in the 
model with the New York UA. This indicates that in the New York UA, federal highway miles 
doesn’t affect heavy rail ridership. 

Partly because of multicollinearity, mean household income only got into the model for 
commuter rail and has a positive elasticity of 2.896, indicating that the higher the mean 
household income in the UA, the higher the commuter rail ridership. This makes sense 
as commuter rail typically provides service to commuters in higher income groups from 
relatively affluent suburbs who travel to downtown and charges fares more in proportion 
with travel distance than other transit modes.

Unemployment rate was used in the most models as a statistically significant variable 
with a consistently positive effect on ridership, ranging from 0.030 for heavy rail with New 
York UA to 0.045 for heavy rail without New York UA. The only model that did not use 
unemployment rate was for commuter rail. In general, when the unemployment rate is 
high, it increases transit ridership. This positive correlation between unemployment rate 
and transit ridership is stronger than the negative effect that this variable has on the number 
of activities and trips as a regional economic indicator.

Note that the estimated coefficients for this unemployment rate and the following percent 
of households with no car are interpreted in a way that is different from the other variables, 
since these variables are measured as percentages. For example, the coefficient of 
the employment rate for bus, 0.034, indicates that an increase in the percentage-wise 
unemployment rate by 10 percent (e.g., 8 percent to 8.8 percent) results in an increase in 
bus ridership by 0.34 percent.

Lastly, the estimated coefficient for percent of households with no car was included and 
found statistically significant for only two models—for bus (-0.030) and light rail (-0.054). 
The reason that this variable did not appear in the models of the other modes is due to 
multicollinearity. In spite of testing various specifications, the negative sign for the estimated 
coefficients was found and is counterintuitive; the higher the percentage of households 
with no car is, the lower transit ridership is for bus and light rail, although one would expect 
people of no-car households to take public transportation more than their counterparts and 
increase transit ridership.

While the baseline specification models provide the results described and discussed 
above, estimated coefficients for explanatory variables—especially VRH—could be biased 
by the endogeneity problem, potentially arising from the simultaneity issue between transit 
service supply and ridership. The next section describes and discusses results obtained 
using instrumental variables model that can address this potential problem. 
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INSTRUMENTAL VARIABLES MODEL RESULTS

One of the requirements for valid instruments is that explanatory variables are statistically 
significant in predicting a dependent variable in the first stage of the IV model. The dependent 
variable from the first stage is used as an instrumental variable in the second stage. Table 
9 shows the estimated coefficients of the variables—total number of employees, total fleet, 
and total fund available to transit agencies all in logarithmic form—in the first stage of the 
IV model that regresses log of vehicle revenue hours (VRH) on all of these three variables 
and all the variables included in the baseline specification for each mode.



M
ineta T

ransportation Institute

45
A

nalysis R
esults

Table 9.	 Results from the First Stage of the Instrumental Variables Model

Variables
(1) (2) (3) (4-1) (4-2) (5)

Bus CR LR HR w/o NY HR w/ NY Transit
Log of total number of employees -0.0776*** -0.0354 0.0639 -0.541*** -0.379 -0.00508

(full-time+part-time/2) (0.0191) (0.194) (0.0451) (0.107) (0.427) (0.0317)
Log of total fleet 0.552*** -0.0565*** 0.443*** 3.449*** 6.587*** 0.499***

(seating+standing capacity) (0.0296) (0.0154) (0.0159) (0.403) (1.555) (0.0530)
Log of total fund available to transit agencies 0.0547*** -0.0286 0.0939*** 0.146*** 0.700*** 0.0352**

(0.00988) (0.0538) (0.0243) (0.0304) (0.121) (0.0162)
Seasonal effects (month dummies) Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Urbanized area fixed effects Yes Yes Yes Yes Yes Yes
Observations 1,126 777 840 669 789 1,132
R-squared 0.529 0.581 0.829 0.434 0.347 0.300
Number of Urbanized Areas 10 7 9 6 7 10
F-stat 123.56 4.93 278.67 47.82 20.27 31.34
P-value 0.000 0.0022 0.000 0.000 0.000 0.000 

Note: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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In order to test the hypothesis that the coefficients of these three variables are jointly 
zero, whether or not F-statistics for the hypothesis are greater than the critical value was 
examined (F-test). The values of the F-statistics and associated P-values in Table 9 show 
that the set of three excluded instruments significantly affect VRH for all modes. Estimated 
coefficients show that the total funds availability variable significantly increases VRH of 
bus, light rail, heavy rail, and the aggregate transit. The number of employees affects VRH 
negatively with statistical significance only for bus and heavy rail without the New York 
UA. Seating and standing capacity affect VRH of bus, light rail, heavy rail, and aggregate 
transit positively, while it has a negative effect for commuter rail.

Table 10 shows the results from the second stage of the IV model, in which the estimated 
coefficient of VRH is expected to be unbiased. Most of the estimated coefficients in Table 
10 are similar to those obtained from the baseline specification models.
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Table 10.	 Results from the Second Stage of the Instrumental Variables Model

Variables
(1) (2) (3) (4-1) (4-2) (5)

Bus CR LR HR w/o NY HR w/ NY Transit
Log of monthly gasoline price 0.0617*** 0.0640 0.0253 -0.0393 -0.0303 0.0573**

(0.0223) (0.0428) (0.0516) (0.0530) (0.0454) (0.0262)
Log of fare -0.220*** -0.444*** -0.141*** -0.261*** -0.193*** -0.319***

(0.0212) (0.0940) (0.0355) (0.0418) (0.0319) (0.0308)
Log of vehicle revenue hours 0.407*** 0.0625 0.901*** -0.0185 0.0247 0.577***

(0.0519) (0.152) (0.0314) (0.100) (0.0201) (0.0712)
Log of frequency of service 0.0772*** 0.0130

(0.0207) (0.0324)
Log of total population 0.811*** 6.730*** -0.475 -0.542 0.845***

(0.164) (1.735) (0.550) (0.422) (0.202)
Log of federal highway miles 0.0670*** -0.116*** -0.0675*** 0.00797 -0.00115 0.0202

(0.0102) (0.0240) (0.0217) (0.0271) (0.0219) (0.0133)
Log of mean household income 1.441

(1.082)
Unemployment rate (%) 0.0331*** 0.0343*** 0.0253** 0.0305*** 0.0280***

(0.00433) (0.0108) (0.0121) (0.00941) (0.00533)
Households with no vehicle (%) -0.0396*** -0.0931***

(0.0109) (0.0277)

Constant -2.874 -107.5*** 6.107*** 22.0*** 23.6*** -4.301
(2.411) (15.37) (0.321) (8.280) (6.76) (2.867)

Seasonal effects (month dummies) Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Urbanized area fixed effects Yes Yes Yes Yes Yes Yes
Observations 1,126 777 840 549 669 1,132
R-squared 0.504 0.662 0.839 0.423 0.487 0.237
Number of urbanized areas 10 7 9 5 6 10

Note: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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The values of R-squared range from 0.237 for the model of the aggregate transit to 0.839 
for the model of light rail. The aggregate transit model shows a much lower R-squared 
value, part of which is explained by the statistical insignificance of federal highway miles 
and the constant that are statistically significant in the baseline model. The models for the 
other modes have a comparable R-squared value between the baseline and IV models.

In this IV model, the estimated elasticity for gasoline prices is almost identical to the value 
previously estimated in the baseline specification models—0.061 for bus and 0.057 for the 
aggregate—while the one for commuter rail, light rail and heavy rail is found statistically 
insignificant. The values of fare elasticity in Table 10 are also very similar, both in terms 
of statistical significance and magnitude, to those found in the baseline specification 
models. However, the estimated elasticity values of VRH in the IV models (Table 10) are 
quite different from the baseline specification models in Table 8. The elasticity of VRH of 
commuter rail and heavy rail both with and without the New York UA is not statistically 
significant in the parsimonious IV model, while it is significant for all modes except for 
heavy rail including the New York UA in the baseline model.

As expected, the elasticity values of VRH for the three modes—bus, light rail, and the 
aggregate transit—are statistically significant in both the baseline and IV models but are 
quite different; the elasticity is generally higher in the IV model (0.407, 0.901, and 0.577) 
(Table 10) than in the baseline model (0.263, 0.786, and 0.166) (Table 8). These results 
indicate that the baseline model underestimates the effect of service supply of these modes 
by not accounting for the endogeneity of VRH. The estimated value of service supply 
elasticity was statistically insignificant for commuter rail and heavy rail in the IV models.

The estimated coefficients for service frequency show mixed effects on ridership depending 
on modes. Frequency of service has a positive and statistically significant impact on bus 
ridership; the estimated elasticity is slightly smaller in the IV model (0.077) than in the 
parsimonious baseline model (0.115). In contrast, statistically insignificant elasticity of 
service frequency was found for light rail in the IV model, while it was significant previously.

The effect of population on bus, commuter rail, and aggregate transit ridership remains 
statistically significant, but not for heavy rail. The estimated elasticity of population is lower 
for bus and the aggregate, but higher for commuter rail in the IV model than in the baseline 
model, implying the possibility that the elasticity of population in the baseline model could 
be biased.10

The elasticity for federal highway miles in the UA estimated in the IV model is lower for 
bus but higher for commuter rail and light rail than in the baseline model. However, the 
estimated elasticity was found statistically insignificant for both heavy rail cases with or 
without the New York UA. Although the mean income of households was included for 
commuter rail, following the result in the baseline model, its estimated coefficient was 
found statistically insignificant in the IV model.

For all modes but commuter rail, unemployment rate gives positive, statistically significant 
estimates of elasticity, which are consistent with results obtained in the baseline model. 
The worse the regional economy, the more people take public transit. This effect seems 
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more substantial than the effect to reduce the overall trips, including transit trips, resulting 
from a bad economy. The percent of households with no vehicle shows a statistically 
significant negative coefficient only for bus (-0.039) and light rail (-0.093) in the IV model.

The results from the baseline specification models and from the IV models are very 
similar; if a variable has a positive effect on ridership in parsimonious baseline, it also has 
a positive effect in the parsimonious IV model (or vice versa). For this reason, the baseline 
specifications are used in the analysis of short- and long-term (lagged) effects of changes 
in gasoline prices and non-constant elasticity of gasoline price in the following sections.

SHORT- AND LONG-TERM (LAGGED) EFFECTS OF GASOLINE PRICES

In the analysis of potential short- and long-term (lagged) effects of gasoline prices on 
transit ridership, the results from the most parsimonious models are presented in Table 11, 
while many different combinations of lagged gasoline price variables, as well as control 
variables, were tested.

The values of R-squared range from 0.47 for the model of heavy rail with the New York UA, 
to 0.855 for the model of light rail. Compared to the results of the baseline specification 
models in Table 8, these R-squared values are comparable or even higher for the models 
of commuter rail, light rail, and the aggregate transit, and indicate the larger portion of 
variance is explained by the set of independent variables included in the models with the 
lagged gasoline prices, although the number of observations decreases due to the use 
of lagged variables. For example, the R-squared is 0.855 in the light rail model with the 
13-month lagged gasoline price, compared to 0.844 in the baseline specification model, 
while the number of observations is 746, compared to 840.
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Table 11.	 Results from the Model Estimating Short- and Long-term (Lagged) Effects

Variables
(1) (2) (3) (4-1) (4-2) (5)

Bus CR LR HR w/o NY HR w/ NY Transit
Log of current monthly gasoline price (GP) 0.0569***

(0.0206)
Log of the 1-month lag GP (t-1) 0.0839***

(0.0267)
Log of the 2-month lag GP (t-2) 0.106*

(0.0547)
Log of the 13-month lag GP (t-13) 0.116* 0.0943* 0.0899* 0.0486*

(0.0594) (0.0543) (0.0497) (0.0250)
Log of fare -0.230*** -0.344*** -0.0874** -0.291*** -0.238*** -0.328***

(0.0207) (0.0621) (0.0374) (0.0345) (0.0303) (0.0243)
Log of vehicle revenue hours 0.261*** 0.272*** 0.747*** 0.358*** 0.173*** 0.418***

(0.0259) (0.0198) (0.0219) (0.0387) (0.0304) (0.0275)
Log of frequency of service 0.118*** 0.144***

(0.0172) (0.0278)
Log of total population 1.009*** 4.084*** -0.728* 0.809***

(0.152) (0.424) (0.430) (0.151)
Log of federal highway miles 0.0699*** -0.131*** -0.0393* 0.0371***

(0.0100) (0.0189) (0.0216) (0.00904)
Log of mean household income 2.770***

(0.386)
Unemployment rate (%) 0.0339*** 0.0453*** 0.0416*** 0.0351*** 0.0290***

(0.00426) (0.0105) (0.0100) (0.00879) (0.00387)
Households with no vehicle (%) -0.0298***

(0.0103)

Constant -4.437* -82.57*** 4.987*** 11.21*** 24.84*** -2.066
(2.344) (6.042) (0.213) (0.468) (6.739) (2.279)
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Variables
(1) (2) (3) (4-1) (4-2) (5)

Bus CR LR HR w/o NY HR w/ NY Transit
Seasonal effects (month dummies) Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Urbanized area fixed effects Yes Yes Yes Yes Yes Yes

Observations 1,122 775 746 591 698 1,002
R-squared 0.517 0.705 0.855 0.470 0.417 0.582
Number of urbanized areas 10 7 8 6 7 10

Note: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table 11, Continued
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Different variables of gasoline prices were found statistically significant among the different 
modes (Table 11). The models for bus, commuter rail, and aggregate transit show the 
exactly same set of the control variables as the baseline specification model and estimated 
coefficients for the control variables were very similar (Table 8). However, the bus model 
shows that the 1-month lag variable of gasoline price replaced the current price variable. 
As lagged variables have high correlation to each other—for example, correlation of 0.96 
between the 1-month lag variable of gasoline price and the current price variable in the 
entire sample set—two variables are not included in one model (Table 12). The higher 
elasticity of the 1-month lag variable indicates a time lag in changing travel modes selected 
by bus riders.
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Table 12.	 Correlations between Current and Lagged Gasoline Price Variables
Current Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 Lag 9 Lag 10 Lag 11 Lag 12 Lag 13

Current 1.000 - - - - - - - - - - - - -
Lag 1 0.959 1.000 - - - - - - - - - - - -
Lag 2 0.880 0.959 1.000 - - - - - - - - - - -
Lag 3 0.804 0.882 0.959 1.000 - - - - - - - - - -
Lag 4 0.742 0.807 0.883 0.960 1.000 - - - - - - - - -
Lag 5 0.689 0.745 0.809 0.885 0.961 1.000 - - - - - - - -
Lag 6 0.654 0.692 0.747 0.811 0.887 0.962 1.000 - - - - - - -
Lag 7 0.639 0.656 0.694 0.749 0.815 0.889 0.962 1.000 - - - - - -
Lag 8 0.642 0.642 0.658 0.697 0.754 0.818 0.891 0.963 1.000 - - - - -
Lag 9 0.658 0.645 0.645 0.663 0.702 0.758 0.820 0.892 0.963 1.000 - - - -
Lag 10 0.679 0.662 0.649 0.650 0.668 0.707 0.761 0.823 0.894 0.964 1.000 - - -
Lag 11 0.693 0.685 0.668 0.656 0.657 0.675 0.712 0.766 0.826 0.896 0.964 1.000 - -
Lag 12 0.690 0.698 0.691 0.675 0.664 0.665 0.681 0.718 0.770 0.829 0.896 0.965 1.000 -
Lag 13 0.680 0.695 0.704 0.697 0.682 0.671 0.671 0.687 0.723 0.774 0.831 0.899 0.966 1.000

Note: The entire sample data set is used.
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The light rail model shows that the 2-month lag variable of gasoline prices is statistically 
significant at the level of 0.1. While it is weaker evidence, the estimated elasticity value 
of 0.106 indicates that a change in travel mode among current and potential commuter 
riders takes about two months after gasoline prices change. The longer time lag in a travel 
mode change of commuter rail riders, compared to bus riders, may be explained by certain 
characteristics of trips taken in these two modes. Commuter rail trips are usually taken for 
a long-distance commute from suburbs to a central business district. Although the financial 
impact of gasoline price increase can be more substantial for such long-distance trips, 
people may need more time to find an alternative mode of travel or to make arrangements 
for a private car or carpooling.

The aggregated transit model shows the current gasoline price variable is statistically 
significant at the level of 0.01, which is consistent with the baseline specification model, 
and that the 13-month lag variable is statistically significant at a level of 0.1. The estimated 
coefficient of the current gasoline price is 0.057 and is close to the value of 0.049 found in 
the baseline specification model. While the correlation between the 13-month lag variable 
of gasoline price and the current price variable is 0.680 (Table 12), these two variables 
were included in this model. These two elasticity values indicate that the aggregate transit 
ridership increases shortly after an increase in gasoline prices and then 13 months later. 
It is also possible that the 13-month lag effect could be contributed by residual that is not 
picked up by the month dummy variables (Chen, Varley, and Chen, 2010). Combining the 
two estimated coefficients of gasoline price variables, the total long-term elasticity is 0.105 
for the aggregate transit model.

While the set of control variables is different for the models with lag variables and the 
baseline specification models for light rail and heavy rail, estimated coefficients for these 
control variables are not far off from the ones in the baseline specification models. These 
light rail and heavy rail models also found the 13-month lag variable has an estimated 
elasticity of 0.116, 0.094, and 0.089, for light rail, heavy rail without the New York UA, 
and heavy rail including the New York UA, respectively. As these elasticity estimates 
are statistically significant at the level of 0.1, they are not as strong as other estimates 
significant at the levels of 0.05 or 0.01, however, they suggest, for example, that a 10 
percent increase in gasoline ridership will increase ridership by 1.16 percent, 0.94 percent, 
and 0.89 percent for light rail, heavy rail without the New York UA, and heavy rail with the 
New York UA, respectively.

As expected, elasticity is positive regardless of the length of time for which the effect of 
gasoline prices on transit ridership is measured. The estimated elasticity for aggregate 
transit, 0.057 in the short-term and 0.105 in the long-term, are relatively smaller than the 
estimates found in previous studies that range from 0.10 to 0.30 (Litman 2004; Haire and 
Machemehl 2007; Currie and Phung 2008; Chen, Varley, and Chen, 2010).

ANALYSIS OF NON-CONSTANT ELASTICITIES

Table 13 shows results from the models that examine non-constant elasticity, that is, 
threshold boost effects of particular gasoline price values ($2, $3, and $4) and different 
elasticity values for different ranges of gasoline prices. As discussed in Section 3, various 
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specifications were examined using dummy variables to indicate gasoline prices higher 
than $2, $3, and $4, and their respective interaction terms with the gasoline price variable. 
However, only the variables shown in Table 13 were found statistically significant and 
remained in the final specifications; The figures for “Dummy for gas price > $3 (D$3)” 
represent effects of gasoline prices that exceed $3, and those for “[Log of GP – Log of 
$3]*D$3” and “[Log of GP – Log of $4]*D$4” indicate interactive terms that examine a 
different elasticity value for gasoline prices equal to $3 or higher and to $4 or higher, 
respectively. The values of R-squared range from 0.440 for the model of heavy rail with the 
New York UA to 0.844 for the model of light rail. These R-squared values are very similar to 
the values obtained in the baseline model, while the commuter rail model now has a higher 
value of 0.718, compared to 0.630 in the baseline specification model.
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Table 13.	 Results from the Non-constant Elasticity Model

Variables
(1) (2) (3) (4-1) (4-2) (5)

Bus CR LR HR w/o NY HR w/ NY Transit
Log of monthly gasoline price 0.0282 -0.0950* 0.0166 -0.170*** -0.146*** 0.00970
(Log of GP) (0.0252) (0.0510) (0.0515) (0.0561) (0.0519) (0.0235)
Dummy for gas price>$3 (D$3) 0.0415*** 0.0539*** 0.0439***

(0.0147) (0.0171) (0.0158)
[Log of GP-Log of $3]*D$3 0.146*** 0.308*** 0.239** 0.189* 0.177***

(0.0552) (0.0974) (0.109) (0.101) (0.0512)
[Log of GP-Log of $4]*D$4 0.920*

(0.532)
Log of fare -0.228*** -0.353*** -0.124*** -0.283*** -0.217*** -0.340***

(0.0206) (0.0610) (0.0347) (0.0321) (0.0277) (0.0239)
Log of vehicle revenue hours 0.263*** 0.294*** 0.788*** 0.299*** 0.165***

(0.0258) (0.0196) -0.0221 (0.0353) (0.0157)
Log of frequency of service 0.112*** 0.100***

(0.0167) (0.0273)
Log of total population 1.021*** 4.013*** -1.610*** -0.756** 1.446***

(0.151) (0.424) (0.402) (0.383) (0.140)
Log of federal highway miles 0.0718*** -0.119*** -0.0464** 0.0588***

(0.0100) (0.0192) (0.0210) (0.00919)
Log of mean household income 2.900***

(0.385)
Unemployment rate (%) 0.0337*** 0.0462*** 0.0514*** 0.0300*** 0.0378***

(0.00425) (0.0104) (0.00948) (0.00842) (0.00394)
Households with no vehicle (%) -0.0302*** -0.0537**

(0.0103) (0.0262)

Constant -4.617** -82.78*** 5.943*** 36.69*** 27.41*** -8.835***
(2.337) (6.052) (0.314) (6.202) (6.064) (2.184)
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Variables
(1) (2) (3) (4-1) (4-2) (5)

Bus CR LR HR w/o NY HR w/ NY Transit
Seasonal effects (month dummies) Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Urbanized area fixed effects Yes Yes Yes Yes Yes Yes

Observations 1,126 789 840 669 789 1,132
R-squared 0.521 0.718 0.844 0.495 0.440 0.535
Number of urbanized area 10 7 9 6 7 10

Note: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table 13, Continued
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Table 13 indicates, estimated coefficients for monthly gasoline prices are statistically 
significant for commuter rail and heavy rail with or without including the New York UA, 
but not for bus, light rail, and the aggregate models. The same two rail modes show 
statistical significance for estimated coefficients for the dummy variable for gasoline prices 
exceeding $3 with a positive sign. This variable was excluded from the models for bus, 
light rail, and the aggregate, due to statistical insignificance that indicates no boost effect 
for these three modes.11 Estimated coefficients for gasoline prices exceeding $3 ([Log of 
GP – Log of $3]*D$3) are statistically significant with a positive sign for all cases except 
light rail. Finally, an estimated coefficient for gasoline prices exceeding $4 ([Log of GP – 
Log of $4]*D$4) is statistically significant with a positive sign for light rail. The substantial 
increase in the R-squared value obtained for the non-constant elasticity model for light rail 
represents an increase in the variance of ridership explained by the four variables related 
to gasoline prices, compared to the earlier result in the baseline specification model that 
shows statistical insignificance for the gasoline price variable. The sign and magnitude of 
other control variables are similar to what was found in the baseline specification models 
for all the modes, except federal highway miles, which was excluded in the model of heavy 
rail without the New York UA, as it became statistically insignificant.

Because of the inclusion of dummy variables and interactive terms of gasoline prices, 
the interpretation of estimated coefficients is more complex than it is for the baseline 
specification models. Table 14 summarizes non-constant effects of gasoline prices on 
transit ridership for three different levels of gasoline price increase—5, 10, and 20 percent. 
Estimated coefficients for the gasoline price variable (Log of GP) is included to measure 
total effects regardless of statistical significance, as it is conventionally done. In addition, 
estimated coefficients for threshold effects of gasoline prices of $3 (D$3), as well as different 
elasticity values in different price ranges of gasoline, are incorporated in the calculation 
of a percent increase in ridership, as in the case when a gasoline price increases from 
either $2.90 or $3.90. For example, “crossing the $3 mark from $2.90” under a 10 percent 
gasoline price increase means an increase from $2.90 to $3.19. The magnitude of effect 
varies depending on the gasoline price before and after a change.12

Table 14.	 Non-constant Effects of Gasoline Prices

Variables
(1) (2) (3) (4-1) (4-2) (5)

Bus CR LR HR w/o NY HR w/ NY Transit
% Increase in Ridership

5% increase in Gasoline Prices
Within the GP range below $3 0.14% -0.46% 0.08% -0.83% -0.71% 0.05%

Crossing the $3 mark (from $2.90) 0.36% 4.23% 5.04% 4.04% 0.31%

Within the GP range $3-$4 0.85% 1.04% 0.34% 0.21% 0.92%

Crossing the $4 mark (from $3.90) 2.27%

Within the GP range over $4 4.68%

10% increase in Gasoline Prices

Within the GP range below $3 0.27% -0.90% 0.16% -1.61% -1.38% 0.09%

Crossing the $3 mark (from $2.90) 1.17% 5.27% 6.15% 4.85% 1.19%
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Variables
(1) (2) (3) (4-1) (4-2) (5)

Bus CR LR HR w/o NY HR w/ NY Transit
% Increase in Ridership

Within the GP range $3-$4 1.67% 2.05% 0.66% 0.41% 1.80%

Crossing the $4 mark (from $3.90) 6.82%

Within the GP range over $4 9.34%

20% increase in Gasoline Prices

Within the GP range below $3 0.52% -1.72% 0.30% -3.05% -2.63% 0.18%

Crossing the $3 mark (from $2.90) 2.72% 8.25% 6.79% 5.24% 2.84%

Within the GP range $3-$4 3.23% 3.96% 1.27% 0.79% 3.46%

Crossing the $4 mark (from $3.90) 15.89%

Within the GP range over $4 18.62%

As shown in Table 14, the total effect varies mainly by: (a) different ranges of gasoline prices 
and (b) whether or not either the $3 or $4 mark is crossed by a gasoline price increase. In 
the following paragraphs, the effects of gasoline prices increase are discussed, taking a 
case of an increase by 10 percent in the middle of Table 14.

For bus and the aggregate transit, the effects of gasoline prices below $3 are positive 
but very small, with an elasticity value of 0.028 and 0.009. These values are translated 
into a ridership increase by 0.27 percent and 0.09 percent, respectively, in response to a 
gasoline price increase by 10 percent. The magnitude of the effect of a percent increase 
in gasoline price becomes larger when gasoline prices are higher to start with. When a 
gasoline price increases, crossing the $3 mark, the percent increase in ridership goes up 
to 1.17 and 1.19. Moreover, the effect increases further to 1.67 and 1.80 when gasoline 
prices exceed $3. These elasticity values for gasoline prices above $3—0.167 and 0.180—
are substantially higher than the values found in the baseline model: 0.06 and 0.05. These 
results also indicate higher price sensitivity for transit users for gasoline prices above $3, 
and even the possibility that substantial changes in travelers’ mode choice occur mostly 
when the price of gasoline is above $3 per gallon. 

Commuter and heavy rails show a change in elasticity below and above $3, as is the case 
for bus and the aggregate, but elasticity is found to be negative, indicating a reduction 
in ridership (-0.90, -1.61, and -1.38 percent for commuter rail and heavy rail, with or 
without the NY UA, respectively, in response to a 10 percent increase in gasoline prices). 
By contrast, elasticity values become positive for gasoline prices over $3, indicating a 
ridership increase by 2.05, 0.66, and 0.41 percent, respectively. In addition, both commuter 
and heavy rails show a substantial positive boost effect of crossing the $3 mark (0.0415, 
0.0539, and 0.439 in Table 13), which is included in the calculation of non-constant effects 
in Table 14—5.27, 6.15, and 4.85 percent,

Light rail presents a different case, as the elasticity remains the same in the gasoline price 
range under $4 but substantially increases above $4, indicating a 9.34 percent increase in 

Table 14, Continued
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ridership in response to a 10 percent increase in gasoline prices over $4. When gasoline 
prices increase from $3.90 to $4.29 (10 percent), the effect is a 6.82 percent increase in 
ridership.

Thus, the effects of gasoline prices on ridership are found to be higher for all modes 
when gasoline prices are higher than $4 for light rail or $3 for the other modes. The 
magnitude of these effects is more substantial in the higher range of gasoline prices for 
all modes, compared to what was found in the baseline case. In particular, light rail shows 
a very high elasticity value for gasoline prices over $4, while other modes show more 
modest change in their elasticity for gasoline prices over $3. This may be due to different 
demographics of riders and their trip characteristics by modes and will require a more 
detailed disaggregated analysis of individual travelers’ mode choices. Logically, thinking 
of the relationship between gasoline prices and transit ridership, it is difficult to explain any 
of the negative effects found in the results.
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VI.  SUMMARY OF RESULTS, DISCUSSION,  
AND CONCLUSION

This study examined the net effects of gasoline prices on transit ridership by mode—bus, 
light rail, heavy rail, and commuter rail—and total ridership of these four modes combined—
for the ten selected U.S. urbanized areas. The summary of elasticity of transit ridership to 
gasoline prices as well as other effects was estimated in the panel data regression analysis 
using four different specification models as shown in Table 15. Elasticity of gasoline prices 
on transit ridership is interpreted in the following manner: When an estimated elasticity 
value is 0.061, an increase in gasoline prices by 10 (or 100) percent is associated with a 
0.61 (or 6.1) percent increase in ridership in response.
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Table 15.	 Summary of Estimated Elasticity by Mode by Model

Model No. Model Name Variables Motor Bus
Commuter 

Rail Light Rail
Heavy Rail 

w/o NY
Heavy Rail 

w/ NY
Aggregate 

Transit
I Baseline Monthly gasoline price 0.061 n/s n/s n/s n/s 0.049
II Instrumental variables (IV) 

model
Monthly gasoline price 0.062 n/s n/s n/s n/s 0.057

III Short- and Long-term effects 
model

Monthly gasoline price n/s n/s n/s n/s n/s 0.057
1-month lag gasoline price 0.084 n/s n/s n/s n/s n/s
2-month lag gasoline price n/s 0.106 n/s n/s n/s n/s
13-month lag gasoline price n/s n/s 0.116 0.094 0.090 0.049
Cumulative effect of gas price 0.084 0.106 0.116 0.094 0.090 0.106

IV Non-constant elasticity model Elasticity below $3 n/s -0.095 n/s -0.170 -0.146 n/s
Elasticity between $3-$4 0.174 0.213 0.069 0.043 0.187
Elasticity over $4 0.937

Note: n/s indicates that an estimated coefficient is statistically insignificant at the 0.10 significance level.
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Although there was a concern that the problem with endogeneity between transit service 
supply and ridership may cause biases in estimated coefficients of gasoline prices, the 
baseline and instrumental variables (IV) models (Models I and II in Table 15) produced 
very similar results for the estimated elasticity values. In contrast, different specifications 
that examine short- and long-term effects (Model III) and non-constant elasticity (Model IV) 
showed interesting results that were not captured by the first two models, which assumed 
one elasticity value across the entire range of gasoline prices. Table 15 also shows a large 
variance of gasoline price elasticity and other effects on transit ridership among the four 
different modes and the aggregate of these four modes.

To help interpret the results obtained in this study, Table 16 shows the effects on transit 
ridership in response to a 10 percent increase of gasoline price.
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Table 16.	 Summary of the Effects on Transit Ridership in Response to a Gasoline Price Increase by 10 Percent by Mode 
by Model

Model No. Model Name Variables
Motor 
Bus

Commuter 
Rail

Light 
Rail

Heavy Rail 
w/o NY

Heavy Rail 
w/ NY

Aggregate 
Transit

I Baseline Monthly gasoline price 0.61% - - - - 0.49%
II Instrumental variables (IV) 

model
Monthly gasoline price 0.62% - - - - 0.57%

III Short- and Long-term effects 
model

Monthly gasoline price - - - - - 0.57%
1-month lag gasoline price 0.84% - - - - -
2-month lag gasoline price - 1.06% - - - -
13-month lag gasoline price - - 1.16% 0.94% 0.90% 0.49%
Cumulative effect of gas price 0.84% 1.06% 1.16% 0.94% 0.90% 1.06%

IV Non-constant elasticity model Within the GP range below $3 - -0.90% - -1.61% -1.38% -
Crossing the $3 mark (from $2.90) 1.17% 5.27% - 6.15% 4.85% 1.19%
Within the GP range $3-$4 1.67% 2.05% - 0.66% 0.41% 1.80%
Crossing the $4 mark (from $3.90) 1.67% 2.05% 6.82% 0.66% 0.41% 1.80%
Within the GP range over $4 1.67% 2.05% 9.34% 0.66% 0.41% 1.80%
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The elasticity of bus ridership to gasoline prices was found consistently positive across 
all models. The baseline specification and IV models showed very close elasticity 
values—0.061 and 0.062, respectively—indicating a 0.61 to 0.62 percent increase in 
ridership in response to a 10 percent increase in the current gasoline prices. The short- 
and long-term effects model implies that a one-month lagged effect of gasoline prices 
can be more substantial, with a 0.84 percent increase at the same level of gasoline price 
change a month earlier. While the estimated elasticity is statistically insignificant for 
gasoline prices lower than $3, it increases to 0.174 for gasoline prices over $3. A change 
in gasoline prices at a higher price—above $3—has a more substantial impact on the 
mode choice of current and potential bus users. The study did not find any threshold boost 
effects of gasoline prices at the $2, $3, and $4 marks for the bus mode.

When elasticity is assumed to be constant across all gasoline prices in the baseline and 
models, the analysis did not find statistical evidence of non-zero elasticity for all three rail 
modes—commuter rail, light rail, and heavy rail. The results in the first two models for 
commuter rail are consistent with the conclusions in studies by Litman (2004) and Hanly 
and Dargay (1999), with the explanation that commute trips are generally less sensitive 
to a change in travel cost, including gasoline price and transit fare. However, the other 
two models found estimated elasticity with statistical significance. An elasticity value of 
0.106 for the two-month lag indicates a longer delay effect of gasoline prices on current 
and potential commuter rail riders. The non-constant elasticity model for commuter rail 
showed negative elasticity for gasoline prices below $3 (-0.095) and positive elasticity for 
prices over $3 (0.213). A negative elasticity value was also found for heavy rail for gasoline 
prices below $3. It is not clear what leads to negative elasticity, which indicates that an 
increase in gasoline prices leads to a decline in transit ridership or a decline in gasoline 
prices leads to an increase in transit ridership. At the same time, commuter rail also shows 
more substantial effects in the long term and for higher gasoline prices, as is the case with 
the bus mode. The higher elasticity may be because potential commuter rail riders may 
stay on a current driving mode in the short term after a gasoline price hike and in the lower 
range of gasoline price but are affected significantly by the effects of gasoline prices in the 
long term and when over $3. Although it is much less in magnitude compared to commuter 
rail, light and heavy rails also show higher elasticity with a positive sign for higher gasoline 
prices. Boost effects were found at the $3 mark for commuter and heavy rails but not for 
other modes. The elasticity values of the 13-month lag for light and heavy rail modes mean 
a longer delay of the effect of gasoline prices on their ridership. These much-delayed 
effects on light and heavy rail are difficult to explain, while Chen, Varley, and Chen (2010) 
state that these may be due to picking up the residual seasonal effects.

Bus is the dominant mode of transit in eight of the studied urbanized areas out of ten. 
Buses carry a different proportion of riders in these areas, from 53 percent in Chicago to 
82 percent in Los Angeles (in January 2012), while heavy rail has the highest ridership 
among all modes in Boston and New York. Perhaps because of this dominance of bus 
modes in these eight UAs, elasticity for the aggregate transit ridership is similar to the 
value for the bus mode.

This study showed that long-term elasticity is higher than short-term elasticity, while the 
length of delay varies by mode. This is an expected result since there are usually more 
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travel options that can potentially change in the long term that were previously fixed in the 
short term. The finding in this study that short- and long-term elasticity values are close for 
bus and commuter rail modes means that few additional constraints for switching travel 
modes can be removed, even in the long term. In contrast, the elasticity in the long term 
for other rail modes may have to do with the median travel distance of riders—on average 
they are not as short as bus trips and not as long as commuter rail trips—which also leads 
to medium-level financial impacts of a gasoline price increase. These impacts, combined 
with a financial advantage for light and heavy rail, many of which use a flat fare system, 
may be felt by travelers only in the long term.

In this study, the estimated short-term elasticity values using only current gasoline prices 
were found statistically insignificant for light and heavy rail modes. An explanation for this 
lack of statistical significance requires a careful analysis of the demographics of local riders, 
what types of trips they are taking, and how they are served by each of the two transit 
modes. Cross elasticity of transit ridership to gasoline prices implies that a traveler has 
the option to switch between a driving mode and a transit mode when the financial impact 
of driving increases due to higher gasoline prices. Such a traveler is not characterized 
simply by a low income and/or a lack of vehicle access. Since a bus system generally has 
greater service coverage and travel time that is substantially longer than driving, many 
people that have access to bus service may prefer driving a car when they can afford it. 
It is also relatively easy to switch back to a bus. A commuter service, while it has limited 
service coverage, has a very distinct group of customers—commuters that tend to travel 
relatively long distances to major job centers, including downtowns. With some of these 
commuter services, users may switch to commuter rail when fuel costs increase due to 
the financial burden of long-distance driving. In contrast, light rail and heavy rail systems 
offer more limited service coverage than a bus system, but they serve more diverse types 
of travelers and trips than commuter rail. Thus, an analysis of light rail and heavy rail likely 
requires a much finer geographic unit of analysis within an urbanized area, carefully taking 
into account the alignment of rail lines. 

The finding that elasticity values are larger for higher gasoline prices for all modes is 
consistent with the finding in the study by Chen et al. (2010). This is probably because 
there are more people at the margin of choosing either driving or transit as gasoline prices 
increase, reflecting the fact that the current dominant travel mode is driving, even in major 
U.S. urbanized areas. This finding implies that a further increase to gasoline prices from 
currently high prices, compared to increases to the lower prices of the past, will have more 
substantial negative impacts on travel budgets and that the elasticity of ridership to gasoline 
prices will likely become even higher if gasoline prices continue to increase in future.

One question that arises here is whether the reason for a gasoline price increase—e.g., 
a market price increase vs. a fuel tax increase—affects the value of elasticity of transit 
ridership. There is probably a large difference in sentiment among the public toward these 
two different causes because public opinion can influence policy decisions for a fuel tax 
increase. It is difficult, however, to assume that an economic effect of gasoline prices 
varies by such differences, as it is likely that people are concerned about an increase in 
gasoline prices because of its impact on their travel behavior, not because of the reasons 
for the increase. Results from this study are indicative of what is to be expected for transit 



Mineta Transportat ion Inst i tute

67
Summary of Results, Discussion, and Conclusion 

ridership resulting from a fuel tax increase. The same discussion applies also to a tax 
on carbon dioxide, which would increase taxes on gasoline, as the public may become 
increasingly concerned with climate change in the future.

One additional finding in this study is that the magnitude of elasticity to transit fare was 
generally found larger than that of elasticity to gasoline prices. This indicates higher price 
sensitivity to transit fare among transit riders. This is also consistent with the findings from 
past studies (Litman 2004; Chen, Varley, and Chen 2010). The explanation may be that 
the elasticity of transit ridership to transit fare is more direct than elasticity to gasoline 
prices, which is a cross elasticity.

The values of elasticity of transit ridership to gasoline prices estimated in this study are 
generally lower than those of past studies, perhaps because half of the ten urbanized 
areas studied (Boston, Chicago, Cleveland, New York, and San Francisco) have a higher 
proportion of zero-car households than the national average (US Census Bureau 2010-
2012). (By contrast, Denver, Houston, Los Angeles, Miami, and Seattle have a lower-than-
average proportion.) These zero-vehicle households represent a relatively large number 
of (a) transit-dependent individuals who are less price-sensitive than discretionary riders 
or (b) individuals who choose not to own a private car and therefore are unlikely to change 
travel mode.

This study developed elasticities of transit ridership to gasoline prices that are more 
generalizable, by analyzing data for the ten selected urbanized areas. The obtained results 
indicate that transit agencies should consider preparing capacity management plans 
and increasing the supply of transit services to prepare for a likely ridership increase—
particularly for bus, commuter rail, and light rail modes, for which a 10 percent increase in 
gasoline prices can cause a 1.7, 2.1, and 9.3 percent increase in ridership, respectively, 
when gasoline prices go over $3 or $4 per gallon. In addition, the boost effect at the $3 
mark is so substantial for commuter rail and heavy rail, a gasoline prices increase crossing 
$3 requires special attention. The response time should be somewhat short for the bus and 
commuter rail modes, compared to light and heavy rail modes, according to the findings in 
this study. For light and heavy rail modes, it is likely that the impacts of gasoline prices on 
ridership occur more slowly, giving transit agencies more time to respond.

Taking into account the global political economy, in which politics and foreign affairs 
influence the market for oil, along with the geographically uneven distribution of fossil 
fuels, it is not likely that gasoline prices in the U.S. will fall below $3 in the future. Although 
the percent of ridership increases may appear small, they can have substantial negative 
impacts on transit operation and management if a ridership increase is concentrated 
during the peak periods, when service levels are at or near the maximum supply capacity 
for transit agencies. A ridership increase in the peak period requires a substantial increase 
in service supply and facility capacity, which in turn requires transit agencies to increase 
service inputs, such as capital and labor. For example, the Washington Metropolitan Area 
Transit Authority (WMATA) has been experiencing overcrowding during peak periods and 
is, in turn, increasing train frequency and expanding the capacity of transfer stations for 
heavy rail service. On the other hand, it should be noted that a ridership increase may 
also improve cost effectiveness during off-peak periods by increasing the ratio of riders to 
vehicle capacity.
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While transit managers may be concerned that a reduction in gasoline prices may lower 
transit ridership in future, the study by Chen et al. (2010) showed a relatively lower 
sensitivity of transit ridership to a decrease in gasoline price; a decrease in gasoline prices 
does not discourage transit use as much as an increase to gasoline prices encourages it.

This study chose a panel data analysis method over a disaggregate analysis method 
for numerous reasons: (1) it is very difficult to obtain a large, comprehensive data set 
for a disaggregate model over time—before and after a fuel price change, and (2) 
elasticity measures a change that is inherently temporal. At the same time, as discussed 
above, the urbanized areas used in this study may have been too large of a geographic 
unit of analysis, taking into account the relatively smaller service coverage area of rail 
service, compared to an entire urbanized area. Therefore, the use of such a geographic 
unit for socioeconomic characteristics variables may potentially improve the quality 
of control variables. Furthermore, compared to an aggregate analysis, a disaggregate 
(discrete choice) analysis has advantages in that it can possibly incorporate details of 
socioeconomic characteristics and life conditions of individual travelers or households 
and trip characteristics, as well as other variables of aggregated levels that could be 
similar across travelers and trips. While it will require substantial resources and effort, 
it is important to collect data that contain a sufficient number of transit trips over time to 
examine the elasticity of transit ridership, which is inherently a question about a change in 
people’s travel mode choice over time. 
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This annotated bibliography is a compilation of selected readings that provide the background 
for the report. Each article provides a brief summary of the issue examined in the study, 
methodology used, and findings, along with comments from the authors of this report.

The length of each review depends on the length and breadth of the article and its relevance 
to our report. A quick reference to the articles appears is presented in Tables 17, 18 and 
19, for the articles. Studies of cross-sectional analysis are reviewed first, studies of time-
series analysis second, and then studies of panel data analysis. The reviews appear in the 
same order as in the tables. 



M
ineta T

ransportation Institute

70
A

ppendix A
: A

nnotated B
ibliography

Table 17.	 List of Location, Year, and Data Sources Used in Studies on the Gasoline Price Elasticity of Transit Ridership
Study Location Year Data source

Bomberg and 
Kockelman 
(2007)

Austin, Texas February and April 2006 Data on fuel economy of respondent’s vehicle from US Department of Energy 
and the US Environmental Protection Agency. Using GIS software, they match 
geocodes for repondents’ home location to neighborhoods and obtain data on 
neighborhood characteristics such as density of bus stops, euclidean distance 
to the CBD, total zonal density measured as the ratio of total number of jobs and 
households per unit of area. Data on accessibility Indices (AIs) from the Gupta et 
al (2004) paper. 

Kain and Liu 
(1999)

San Diego, CA; Houston, TX 1980, 1990 Demographic data from US Census of Population, 1980, 1990, data on bus and 
rail miles and fares from transit agencies Metro and Metropolitan Transit 
Development Board. 

Taylor, Miller, 
Iseki and Fink 
(2009)

265 US urbanized areas 2000 National Transit Database (NTD) for ridership and transit related data. 2000 US 
Census for data on demographic and other factors external to transit agencies 
that affect ridership.

Currie and 
Phung (2007)

US 1998-2005 American Public Transport Association

Haire, 
Machemehl 
(2007)

5 US cities: Atlanta, Dallas, 
Los Angeles, San Francisco, and 
Washington DC

1999-2006 American Public Transport Association

Maley and 
Weinberger 
(2009)

Philadelphia January 2001-June 2008 Gas price data from Phillygasprices.com, and ridership data from SEPTA reports

Lane (2010) 9 US metropolitan areas: 
Boston; Chicago; Cleveland; Denver; 
Houston; LA; Miami; San Francisco; 
Seattle

January 2002/ June 
2003-April 2008

Ridership data from(NTD) 2008. Gas price data from Energy Information 
Administration of US Department of Energy, 2008

Mattson (2008) Urban and rural areas in upper Mid-
west and mountain states: Duluth, 
MN; St. Cloud, MN; Rochester, MN; 
Sioux Falss, SD, Fargo, ND, Billings, 
MT, Grand Forks, ND; Missoula, 
MT; Great Falls, MT; Rapid City, SD; 
Cheyenne, WY; Logan, UT. 

For time-series analysis 
they use monthly data for 
January 1999- 
December 2006. For panel 
data analysis they use 
annual data from 1997-
2006. 

Aggregate national ridership data from American Public Transportation 
Association (APTA), gas price data from EIA. Obtained data on demand for and 
supply of transit from National Transit Database for panel analysis. 

Yanmaz-Tuzel 
and Ozbay 
(2010)

Northern New Jersey, with one line 
running between Atlantic City and 
Philadelphia. 

1980 to 2008 Data on NJ transit ridership from NJ Transit Market Analysis and Pricing 
Department, data on annual unemployment rate from Bureau of labor statistics
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Study Location Year Data source
Chen, Varley, 
and Chen 
(2010)

New Jersey and New York City January 1996-February 
2009

New Jersey Transit provided data on monthly commuter rail trips. Data on Vehicle 
revenue miles from National Transit Database. Population data from US Census. 
Employment and size of labor force data from Bureau of Labor Statistics. Monthly 
gas price data from EIA was adjusted for inflation using CPI collected from BLS. 

Storchman 
(2001)

Germany, public transportation in 
urban areas of Germany

1980-1995 Yearly statistical handbook from German Ministry of transportation

Curie and 
Phung (2008)

Melbourne, Brisbane, and Adelaide 
in Australia

Melbourne (Jan. 02-Dec. 
05), Brisbane (July 04-
Nov. 06), Adelaide (Jan. 
02-Nov. 06).

Gas price data from Australian Automobile Association, Interest data from 
Reserve bank of Australia. Transit usage data from Brisbane, Melbourne and 
Adelaide transit authority. 

Stover and Bae 
(2011)

11 counties in Washington state January 2004-November 
2008

Monthly ridership data from NTD, and gas price, unemployment and labor force 
data obtained from Bureau of Labor Statistics

Nowak and 
Savage (2013)

Chicago metropolitan area January 1999 and 
December 2010

Ridership data from regional transportation asset management systems, gas price 
data from American Automobile Association-Chicago Motor Club, and 
unemployment data from Bureau of Labor Statistics

Blanchard 
(2009)

218 US cities 2002-2008 Monthly data on transit ridership and transit supply measured as vehicle revenue 
miles obtained from NTD. Gasoline price data from US EIA adjusted for inflation 
using GDP implicit price deflators. Data on vehicle miles traveled gathered from 
Federal Highway Administration. 

Table 18.	 List of Mode, Type of Data, and Aggregation Level Used in Studies on Gasoline Price Elasticity of Transit 
Ridership

Study Type of data Mode Level of Aggregation

Bomberg and 
Kockelman (2007)

Cross-section Bicycle, driving, and transit Individual household 

Kain and Liu (1999) Cross-section Bus Metro service area in Houston, and MTS service area in San Diego
Taylor, Miller, Iseki 
and Fink (2009)

Cross-section Total level of transit service provided by all transit 
agencies in an urbanized area

Urbanized area level 

Currie and Phung 
(2007)

Time series Bus, light rail, heavy rail, total for all modes 
combined

By mode for all of US

Haire and Machemehl 
(2007)

Time series Bus, light rail, heavy rail, commuter rail By mode for each of 5 US cities

Table 17, Continued
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Study Type of data Mode Level of Aggregation
Maley and 
Weinberger (2009)

Time series Rail provided by Regional Rail Division of SEPTA. 
Bus service, nine light rail or street car route 
service and two subway route service provided by 
City Transit Division of SEPTA.

By mode

Lane (2010)  Time series Bus, rail, bus and rail combined For nine cities combined, monthly data analysis by mode: bus, rail, 
and bus and rail combined. For each of 9 cities separately he 
analyzed monthly data by mode: bus, rail and bus and rail combined. 

Mattson (2008) Both time-series 
data, and panel data 
were used

Bus For time-series analysis he divided monthly data from upper Mid-
west and mountain states into 4 groups of metropolitan areas based 
on population size. Four groups are above 2 million population, 500 
thousand to 2 million, 100 thousand to 500 thousand, and below 
100 thousand. For panel analysis, he used annual ridership data for 
each transit system.

Yanmaz-Tuzel and 
Ozbay (2010)

Time series Overall New Jersey transit ridership Monthly data for all modes combined in New Jersey

Chen, Varley, and 
Chen (2010)

Time series New Jersey commuter rail Monthly data on New Jersey commuter rail ridership

Storchman (2001) Time series All urban public transportation: bus, tram and 
underground

He ran the regressions at the mode of transport level for a given 
purpose of travel for example, work, leisure etc. using annual data

Curie and Phung 
(2008)

Time series Rail, Australian bus rapid transit) BRT, and bus Using monthly data they ran regressions for each city separately 
after aggregating transit usage for all modes. They also ran city wide 
regression disaggregating at the rail, bus and bus rapid transit level. 

Stover and Bae 
(2011)

Time series, panel 
data

Aggregate transit ridership Regress aggregate ridership for each county separately

Nowak and Savage 
(2013)

Time-series City heavy rail, city bus and suburban bus and 
suburban rail

Regress ridership for each model separately

Blanchard (2009) Panel data Commuter rail, heavy rail, light rail and bus Regress separately for each mode: motorbus, light rail, heavy rail, 
commuter rail using monthly data for 218 cities

Table 18, Continued
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Table 19.	 List of Dependent and Independent Variables and Empirical Estimation Methods Used in Studies on Gasoline 
Price Elasticity of Transit Ridership

Study Dependent Variable Independent Variables  Empirical specification and Strategy
Bomberg and 
Kockelman 
(2007)

Shopping around for 
gas, overall driving, 
chaining activities, 
carpooling, transit use, 
and bicycle trips. 

Respondent’s transportation needs, demographic attributes 
such as age, gender, income, student or not, household 
size, number of vehicle per driver. Neighborhood/local 
characteristics such as local population, whether or not the 
area is residential, or commercial area, retail employment, 
service employment, total employment in the area, distance 
to CBD, bus stop density, zone density. Gas expenditure, 
fuel economy of all hh vehicles, no. of non-work-related trips, 
whether or not works from home, whether household has 
children going to school. 

They used ordered probit models to examine likelihood of 
respondents increasing trip chaining or reducing their driving, 
in response to the 2005 gas price spike. While they use binary 
logit models for driving slower and driving at steadier speeds. 

Kain and Liu 
(1999)

Log of ridership SMSA employment, central city population, bus and rail miles 
supplied by the transit system in the area, real fares

Using simple OLS model, they regressed log of ridership on log 
of independent variables

Taylor, Miller, 
Iseki and Fink 
(2009)

Total urbanized area 
ridership, Per capita 
ridership

Geographic land area, total population, population density, 
regional dummy, median household income, ratio of 
unemployed to labor force, ratio of enrolled college students 
an total population, ratio of population in poverty to total 
population, ratio of immigrant population to total population, 
percent of votes cast for democratic party in 2000 
presidential election, freeway lane miles, average gas price 
per gallon of gas, ratio of sum of non-transit and non-SOV 
commutes to all commutes, ratio of household with no 
vehicle to total household, total lane miles, Daily vehicle 
miles travelled per capita. They also control for transit system 
characteristics, such as transit fares, headways/service 
frequency. 

They used two staged least squares estimation strategy and 
instrumented supply of transit, measured as total urbanized 
area transit service vehicle revenue hours with total population, 
percent voting Democrat in 2000 presidential election.

Currie and 
Phung (2007)

Log of national (US) 
transit ridership 

Log of gas price, log of gas price interacted with dummies 
for 9/11 incident, the Iraq war and Hurricane Katrina, month 
dummies

Simple OLS based log-log model

Haire and 
Machemehl 
(2007)

Change in ridership 
over two consecutive 
months

Price of gasoline Simple OLS, using level of dependent and independent 
variable

Maley and 
Weinberger 
(2009)

Monthly ridership Gas price, monthly dummies to control for seasonality They used simple ordinary least squares estimation model to 
regress gas price and monthly dummies on ridership 
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Study Dependent Variable Independent Variables  Empirical specification and Strategy
Lane (2010) Monthly unlinked 

passenger trips for all 
rail and bus modes, 
Monthly Unlinked 
passenger trips for bus, 
Monthly Unlinked 
passenger trips for rail 

Current gas price, one month lagged gas price, standard 
deviation of monthly gas price for each month, time trend, 
seasons such as fall, spring, summer, supply of transit 
variables such as vehicle revenue miles operated, vehicles 
operated in maximum service

Level of dependent variables on level of independent variables 
using simple OLS

Mattson 
(2008)

Log of monthly ridership For time-series analysis, he controlled for 15 lags of gas 
price data along with yearly dummy to control for time trend. 
For the panel regression he controlled for size of labor force 
and unemployment level, quantity of service provided, fare 
for that transit, time trend interacted with dummy indicating 
transit system, and dummy variables indicating whether there 
have been events to create demand shocks for any specific 
transit system.

For time-series analysis: polynomial distribution lag model to 
analyze long term effect of gas prices on ridership. He used 
a log-log model where the lagged gas prices are also logged. 
For the panel data analysis, used simple OLS model to regress 
log of ridership on log of independent variables, which did not 
include lagged gas prices. 

Yanmaz-
Tuzel and 
Ozbay (2010)

Monthly transit ridership 
(in thousands)

Total monthly employment in New Jersey and New York City 
(in thousands), average monthly gasoline prices, lagged 
monthly gasoline prices, average NJ transit fare, vehicle 
revenue hours in thousands, month dummies

They use a log-log model to estimate the gas price elasticities 
from the coefficient of gasoline price, and lagged gasoline price. 
Using the log-log model they estimate correlations between 
employment level and ridership.

Chen, Varley, 
and Chen 
(2010)

Number of New Jersey 
commuter rail trips to 
and from New York City

They control for lagged ridership, positive and negative 
changes in gasoline price and transit fare, labor force and 
service level measured as vehicle revenue miles and its 
fourth lag, seasonal dummies (captured using monthly 
dummies)

They regress change in transit ridership between period t 
and t-1 on change in ridership between period t-1 and t-2 and 
change in gasoline price interacted with a dummy equal to 1 if 
the price change is non-negative and equal to 0 otherwise, 
similarly they control for negative changes in prices by 
interacting the price with a dummy equal to 1 if the price change 
is negative and 0 otherwise. They adopt the same strategy to 
analyze the differential effects of positive or negative change 
in transit fare. ARFIMA (auto-regressive fractionally integrated 
moving average) to answer what factors affect transit ridership, 
and what are the short-term and long-term effects of various 
factors on transit ridership. They use AR(1) model to examine if 
there is asymmetry in transit ridership in response to rises and 
falls in gasoline price and transit fare. 

Table 19, Continued
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Study Dependent Variable Independent Variables  Empirical specification and Strategy
Storchman 
(2001)

Number of trips for 
work, school, shopping, 
business, leisure, and 
holiday, by mode. 
Average distance 
travelled each trip 
purpose by mode.

In the equation where they estimate choice of mode of 
transport for each travel purpose, they control for 
demographic variables, income, and a dummy indicating 
German unification in 1991. In the estimation of distance 
travelled using public transport for each purpose they control 
for gas price, stock of public transport, income and transit 
fare, available public infrastructure (such as railroads or 
road network) and German unification. In the estimation of 
demand for passenger kilometers, they control for purpose of 
trip, distance travelled, seats per vehicle, average peak seat 
load factor during peak period and average speed during 
peak periods. 

He estimates a system of equations. Estimate how demography 
and german unification in 1991 affected number of trips taken 
for each of these travel purposes: work, school, shopping, 
business, leisure, holiday. Then estimate average distance 
of trip for each of the purposes listed above are affected by 
stock of cars, transportation prices, available railroads, or road 
network, and German unification. Then he estimates the public 
transit vehicle demand as a function of peak passenger 
kilometers, seats per vehicle, average peak seat load factor 
during peak period and average speed during peak periods. 
Then he estimates the cross-price elasticity for public 
transportation demand. Then using the gas price elasticities 
from these regressions, he simulates/calculates the effect of 
gasoline on revenue collection from taxes on gasoline and also 
revenue change of public transport sector. 

Curie and 
Phung (2008)

Per capita validations 
(which is equivalent 
to per capita transit 
usage)

Gasoline price, interest rate, and monthly dummy variables 
to indicate seasonality

Using a simple OLS model, they regress a log of per capita 
transit usage on log of gasoline prices, absolute level of interest 
rate, and monthly time dummies

Stover and 
Bae (2011)

Unlinked revenue trips Gas price, transit fare, supply of transit, unemployment rate, 
size of labor force, season dummies 

Simple OLS, regressing log of ridership on log of independent 
variables

Nowak and 
Savage 
(2013)

Unlinked trips for CTA 
bus, count of 
passengers entering 
stations for CTA rail, 
number of ticket sales 
for Metra, number of 
boardings for Pace

Gas price, gas price interacted with dummy that is equal to 
one if gas price is more than $3, gas price interacted with 
dummy that is equal to one if gas price is more than $4, 
average daily transit bus miles, transit fare, unemployment 
rate, proportion of weekdays in month, dummy variable for 
leap year

Simple OLS, regressing log of ridership on log of independent 
variables

Blanchard 
(2009)

Ridership measured 
as unlinked passenger 
trips by mode: 
commuter rail, heavy 
rail, light rail, motorbus. 

Supply of transit, gasoline price, and lagged gasoline prices, 
monthly dummies, year dummies

Simple OLS based log-log model to calculate the immediate 
elasticities and also used log of past gas prices to analyze long 
term effects of gasoline prices on ridership

Yanmaz-
Tuzel and 
Ozbay (2010)

Monthly transit ridership 
(in thousands)

Total monthly employment in New Jersey and New York City 
(in thousands), average monthly gasoline prices, lagged 
monthly gasoline prices, average NJ transit fare, vehicle 
revenue hours in thousands, month dummies

They use a log-log model to estimate the gas price elasticities 
from the coefficient of gasoline price, and lagged gasoline price. 
Using the log-log model they estimate correlations between 
employment level and ridership.

Table 19, Continued
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Bomberg, Matthew, and Kara M Kockelman, “Traveler Response to the 2005 Gas Price 
Spike.” Proceedings of the 86th Annual Meeting of the Transportation Research Board, 
Washington DC (2007).

Bomberg and Kockelman (2007) analyzed the effect of a severe spike in gas prices 
that transpired in 2005. Using a survey of over 500 residents in Austin, Texas and 
ordered probit and binary logit models, this study analyzed the effect of a gas price 
hike on the change in people’s propensity to shop around for gas, drive automobile, 
chain activities, carpool, use public transit, and ride bicycles. In analyzing the effect, 
this study accounted for socioeconomic and demographic attributes of the respondent, 
as well as neighborhood/local characteristics, such as distance to the central business 
district (CBD), bus stop density, geographic zone density, etc. This study found that, 
all else being equal, individuals are most likely to increase trip chaining in response to 
the price spike if they live in or near the CBD, and also that higher income households 
are less likely to reduce driving in response to a gas price spike. This study analyzed 
data from a specific region, Austin, Texas, with specific metropolitan characteristics. 
Therefore, the results are based on data from a region that may not be comparable to 
other metropolitan or urban regions and, so, cannot be generalized to other areas with 
different socioeconomic, geographic, and neighborhood characteristics. 

Kain, John F., and Zvi Liu, “Secrets of success: assessing the large increases in transit 
ridership achieved by Houston and San Diego transit providers.” Transportation 
Research A, 33 (1999): 601–624.

This is one of the earlier studies that analyzed factors affecting transit ridership in 
the U.S. Kain and Liu analyzed the effect of various factors on bus ridership in the 
Metropolitan Transit System (MTS) in San Diego, CA, and Metro in Houston, TX 
between 1980 and 1990. Their analysis compared how changes in ridership were 
affected by factors outside the control of the transit providers (i.e., service area 
characteristics) : Standard Metropolitan Statistical Area (SMSA) employment and 
central city population. The study also examined factors within the control of the 
transit agencies: bus and rail miles supplied by each system and real fares. They found 
that large service increases and fare reductions, as well as population growth and 
metropolitan employment, tended to increase ridership. This study suffers from 
omitted variable bias, as it does not control for gasoline prices. Changes in the price 
of gasoline can potentially affect ridership, and transit agencies may respond by 
changing their supply of bus services. The omitted variable—the price of gasoline—
is correlated with bus ridership and bus supply and, therefore, biases the estimated 
coefficient for bus supply. Similarly, a gasoline price change can often alter the cost of 
supplying bus services, as many buses use gasoline for fuel, a factor that can prompt 
transit agencies to change their bus fares. Therefore, gasoline price is correlated with 
bus fare and ridership, which causes the estimated coefficient of bus fare to be biased.

In addition to omitted variable bias, the authors do not address the problem of 
simultaneity between supply and demand: Supply of buses affects demand for bus 
ridership because increased (or decreased) bus supply can improve (or worsen) 
the convenience of traveling by bus by altering frequency and duration of service, 
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influencing riders to adjust demand accordingly. Bus ridership demand can also impact 
supply, therefore bus supply is endogenous. The authors treat the supply of buses as 
exogenou, and do not account for this endogeneity, causing the estimated coefficient 
of bus supply to be biased. 

Taylor, Brian D., Douglas Miller, Hiroyuki Iseki, and Camille Fink, “Nature and/or Nurture? 
Analyzing the determinants of transit Ridership across US Urbanized Areas.” 
Transportation Research Part A, 43, (2009): 60-77.

Taylor et al. (2009) offers an improvement over Kain and Liu (1999), as it analyzes 
factors affecting transit demand using transit ridership data from the National 
Transit Database (NTD). This allows measurement of the impact of a wider array of 
factors affecting transit ridership in a larger sample of geographic regions. Taylor et al. 
(2009) conducted the most comprehensive cross-sectional study to date of 265 U.S. 
urbanized areas in the year 2000 to investigate how factors controlled by transit 
agencies (internal factors) and factors outside the control of transit agencies (external 
factors) affect total urbanized area ridership and per capita ridership. They were able 
to isolate how much change in ridership is attributable to the fluctuation in gasoline 
prices alone (net effect of gasoline price changes on transit ridership) by controlling for 
a variety of other variables that also influence transit ridership. These included such 
internal factors as fares, frequency of service, hours of service, on-time performance, 
service coverage and quality of service. They also controlled for external factors that 
included measures of regional economic activity, population, population density, labor 
market size, availability of parking in the CBD, and socioeconomic demographics of 
the population (age, income, vehicle ownership, etc.).

The study recognized that transit supply (availability of service in terms of area 
coverage and hours of operation ) affects transit demand, but transit demand (due to 
an increase in gasoline prices, for example) simultaneously influences transit supply, 
making supply endogenous due to this simultaneity. To account for the endogeneity 
of supply, Taylor et al. (2009) instrumented for transit supply, measured here as 
total urbanized area transit service vehicle revenue hours, with total population and 
the percent voting Democrat in 2000 presidential election. This was an important 
improvement over past studies, which failed to account for endogeneity of transit 
supply. In addition, Taylor et al. (2009) distinguish between the effects of internal 
factors on transit ridership from the effects of external factors, allowing them to obtain 
an unbiased estimate of the effect of supply on ridership. They found that transit supply 
and external factors, such as metropolitan economy, regional geography, population 
characteristics, and automobile highway system characteristics affect total urbanized 
area ridership and per capita transit ridership.

Note that despite the strength of this paper, the authors cannot distinguish between 
the effects of the price of gasoline on each individual mode, as they aggregated 
all modes of transit ridership over urbanized regions. This type of cross-sectional 
analysis cannot distinguish between short-term and long-term impacts of gasoline 
prices on transit ridership, nor can it indicate whether gasoline price elasticity of 
ridership varies when there is an increase, as opposed to a decrease, in gasoline 
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prices. Studies that span longer time horizons, such as those using time-series data 
to capture variability in prices, are more suited for such analysis.

Currie, Graham, and Justin Phung, “Transit ridership, auto gas prices, and world events: 
New drivers of change?” Transportation Research Record: Journal of the Transportation 
Research Board 1992 (-1), (2007): 3-10.

Curie and Phung (2007) analyzed the elasticity of U.S. transit ridership with respect 
to gas prices. The authors conducted a time-series data analysis using the monthly 
U.S. national transit ridership data from the American Public Transportation Association 
(APTA)—in total and by mode—between 1998 and 2005, with special attention to three 
“world events”: September 11, 2001, the most recent Iraq War, and Hurricane Katrina. 
This study regressed the log of ridership relative to the log of gas price, and the log of 
gas price interacted with dummy variables, for these three events. The results show 
a variation in gas price elasticity of transit ridership by mode: light rail ridership has 
the highest elasticity, with values ranging from 0.27 to 0.38, heavy rail follows with an 
elasticity of 0.17 to 0.19, and bus ridership shows a very low elasticity of 0.04 to 0.08. 
The authors speculate that higher shares of “choice” riders (i.e., those who own, or 
could easily own, an automobile) choosing to use light rail could explain high gas price 
elasticity values for light rail. This study does not control for a full range of explanatory 
variables, such as demographic characteristics that affect ridership, an issue that needs 
to be addressed to improve the statistical performance of the modeling. 

Haire, Ashley, and Randy Machemehl, “Impact of rising fuel prices on US transit ridership.” 
Transportation Research Record: Journal of the Transportation Research Board 1992, 
no. 1 (2007): 11-19.

Haire and Machemehl (2007) investigated the effect of changes in the price of gasoline 
on changes in ridership for four different modes of transit—bus, light rail, heavy rail, 
and commuter rail—in five U.S. cities (Atlanta, Dallas, Los Angeles, San Francisco, 
and Washington DC), using the APTA monthly ridership data between 1999 and 2006. 
Based on the ratio of the percent change in ridership to percent change in price of 
gasoline, they obtained cross elasticity estimates by mode that are quite different 
from the results from Currie and Phung’s study. Haire and Machemehl show the 
lowest elasticity for light rail (0.07), followed by heavy rail (0.26), commuter rail (0.27), 
and bus (0.24). This analysis did not account for any external or internal factors that 
affect ridership, such as demographic and regional characteristics and supply of 
transit services. These results indicate that the use of different analysis methods 
and data, in terms of both geographic location and scale, yield different estimates of 
elasticity. In addition, cross-price elasticity of gasoline with respect to ridership varies 
depending on whether data are analyzed for the entire transit system or by mode. 

Maley, Donald W., and Rachel Weinberger, “Rising Gas Prices and Transit Ridership Case 
Study of Philadelphia.” Transportation Research Record, Journal of the Transportation 
Research Board 2139, no. 1 (2009): 183-188.
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Using weekly data between January 2001 and June 2008 for the SEPTA rail and 
bus transit system in Philadelphia, Maley and Weinberger (2009) analyzed the 
correlation between gas prices and transit ridership, accounting for seasonal 
differences. The authors performed a set of regressions by transit mode—bus and rail—
to analyze the effect of gas price. They controlled for the month, using dummy variables to 
account for seasonal variation in ridership. They found a positive effect of gas price on 
ridership for both modes. Maley and Weinberger obtained an elasticity estimate of 
0.12 for bus and of 0.22 for rail. In another set of regressions, they added a squared 
term for gasoline price along with gas price and monthly dummies, which produced 
a better R-squared, but they did not explain the theoretical basis for addition of the 
squared term. The study by Maley and Weinberger is too simplistic to fully examine 
the net effect, as it only isolates the correlation between gas price and ridership by 
controlling for seasonal effects but does not control for other external and internal 
factors, such as demographic, economic, and regional characteristics; transit fare; or 
transit service supply. Not controlling for other external and internal factors can lead 
to omitted variable bias in the estimated coefficients in the regression model. Another 
limitation of this paper is the use of data from only one city—its findings may not be 
generalized due to lack of external validity.

Despite its flaws, the paper adds value to the literature on transit ridership, as it 
mentions (in the conclusion) an interesting feature regarding the ridership elasticity 
to gas price that can be explored in future research. The authors posit that there may 
be a threshold effect at the $3 level of gasoline price and suggest examining the 
possibility of different elasticity values at different price levels. The implication is that 
the most commonly used simple log-log regression model, which assumes a constant 
elasticity regardless of the value of ridership or gasoline price, should be modified to 
capture this difference in elasticity. This suggestion is similar to the hypotheses posed 
in studies by Chen, Varley, and Chen (2010) and Maley and Weinberger (2009), which 
suspect that the elasticity for gas price increases may vary from the elasticity for gas 
price decreases. 

Lane, Bradley W., “The Relationship Between Recent Gasoline Price Fluctuations and 
Transit Ridership in Major U.S. Cities.” Journal of Transport Geography, Vol. 18, No. 
2, (2010): 214–225.

Lane (2010) analyzed the effect of the price and price variability of gasoline on 
transit ridership. This study conducted time-series data analysis using monthly data 
on transit ridership from NTD over the period June 2002 through April 2008 for nine 
U.S. metropolitan areas: Boston, Chicago, Cleveland, Denver, Houston, Los Angeles, 
Miami, San Francisco, and Seattle. Transit ridership for both bus and rail modes, 
as well as the total ridership for both modes combined, was analyzed for each city, 
resulting in twenty seven regression equations in total. Independent variables 
included the current gasoline price; the one-month-lagged gasoline price; the 
standard deviation of monthly gasoline price; year dummy variables; seasonal effects 
in fall, spring, and summer;13 and transit supply variables measured in terms of vehicle 
revenue miles operated and vehicles operated in maximum service. Lane found that 
for most cities, the gasoline price variation (standard deviation of gasoline price) had 
no significant effect on either bus or rail ridership.
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This study also found that in some cities gasoline price had a positive effect on bus 
ridership but no statistically significant effect on rail ridership, while in a few other 
cities it had a positive effect on rail ridership but no effect on bus ridership. Note 
that this large diversity of results for different cities may be due to the fact that the 
socioeconomic and demographic characteristics of transit users and residents of 
these cities are different; hence, the purpose of public transit trips may be so different 
that the elasticity of gasoline price to systemwide ridership varies significantly due to 
a variation of elasticity by trip purpose. Lane did not control for income, employment, 
and other important socioeconomic factors that can change over time and influence 
decisions about mode choice. Moreover, as with most studies in the literature, this 
study does not consider endogeneity of transit service supply to ridership. Also, note 
that given the NTD data used, the author could have conducted panel data analysis, 
as NTD has data for some cities over multiple periods of time. By using a fixed 
effects model with panel data, it would have been possible to control for time- 
invariant, unobserved factors that affect ridership and thus fix the omitted variable bias to 
some extent. The use of panel data analysis methods may address potential problems 
associated with statistical insignificance for many estimated coefficients in the city-
level regressions in the study. 

Mattson, Jeremy, “Effects of Rising Gas Prices on Bus Ridership for Small Urban and 
Rural Transit Systems.” Small Urban and Rural Transit Center, Upper Great Plains 
Transportation Institute, North Dakota State University, (2008).

Mattson (2008) analyzed the effect of gasoline prices on bus ridership. Using rider-
ship data from APTA, Mattson conducted multiple analyses of bus ridership using 
time-series and panel data for twelve urban and rural areas in the Upper Midwest 
and Mountain States: Duluth, MN; St. Cloud, MN; Rochester, MN; Sioux Falls, SD; 
Fargo, ND; Billings, MT; Grand Forks, ND; Missoula, MT; Great Falls, MT; Rapid 
City, SD; Cheyenne, WY; and Logan, UT. For time-series analysis, the author used 
monthly data for the period January 1999 through December 2006 for four groups of 
metropolitan areas: those with a population of more than two million, 500,000 to 2 
million, 100,000 to 500,000, and less than 100,000. For each group of metropolitan 
areas he used a polynomial distribution lag model to regress the log of monthly rider-
ship on the log of 15 lags of gas price along with month and year dummy variables to 
analyze the long-term effects of gas price on ridership. This study uses month dummy 
variables to control for seasonality and dummy variables indicating year to account 
for trends in ridership demand in all areas. It found that coefficients for gas price up 
to the seventh lag were statistically significant. Because time-series data analysis of 
this study did not control for all socioeconomic and demographic variables, or any 
variables indicating supply of transit, it is likely that the results suffer from omitted 
variables bias.

As the effect of gas price change on ridership is inherently temporal, there are 
advantages to using longitudinal data to examine it; however, at the same time, 
results from a time-series analysis on a few particular transit systems may not be 
generalizable. Panel data analysis proves to be advantageous, allowing the researcher 
to simultaneously take into account temporal and regional variation to obtain more 
robust, generalizable results.
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Using data from 1997-2006, Mattson conducted panel data analysis for which he 
aggregated the data to make yearly data for each transit agency. The author used 
both linear and double log functional form models of regression. The double log 
regression model included variables for the price of gasoline, labor force participation, 
unemployment, the quantity of transit service provided, and transit fares. Additional 
controls included year dummy variables interacted with dummy variables for transit 
systems, as well as dummy variables for events that created demand shocks for any 
specific transit system. The analysis also included fixed effects to take into account 
unobserved, time-invariant factors that can affect demand for transit. For example, 
the variable population density, a measure of urban sprawl (which is not controlled 
for and is likely to affect supply and demand for bus services), changes very slowly 
over time and can be considered time-invariant in this analysis because it spans nine 
years. However, the fixed effects model is still unable to account for the endogeneity 
bias that arises because supply affects demand and is simultaneously affected by it. 
Another shortcoming of this study is that it uses annual data for panel data analysis, 
and many previous analyses indicated that the full effect of a change in gas price is 
observed within one year (Yanmaz-Tuzel and Ozbay, 2010; Mattson, 2008).

Thus, the use of annual ridership data does not allow researchers to analyze how 
long-lasting the effect of gasoline price on public transit ridership is within 12 months. 
Mattson analyzed only bus ridership; hence, the results may not be generalizable to 
other modes in these areas, as people use each mode for different purposes. For this 
reason, the gas price elasticity may vary by mode. 

Yanmaz-Tuzel, Ozlem and Kaan Ozbay, “Impacts of Gasoline Prices on New Jersey Transit 
Ridership.” Transportation Research Record: Journal of Transportation Research 
Board, 2144, no. 1 (2010): 52-61.

Yanmaz-Tuzel and Ozbay (2010) analyze monthly transit ridership data for all modes 
in Northern New Jersey over the period 1980 to 2008, controlling for some of the 
same external and internal factors that were accounted for by Taylor et al. (2009). 
Yanmaz-Tuzel and Ozbay used a log-log model to examine how transit ridership is 
affected by total monthly employment in New Jersey and New York City, average 
monthly gasoline prices, lagged monthly gasoline prices, average New Jersey transit 
fare, and vehicle hours, while controlling for month dummy variables. The second lag 
and third lag of gasoline price have statistically significant cross-price elasticities to 
ridership in the range of 0.15 to 0.23 and 0.03 to 0.20 respectively. This indicates that 
travelers consider the trend in gasoline price before making a decision to switch their 
mode of travel, and there is a time lag between the change in the gasoline price and its 
effect on transit demand. Careful analysis in the future should control for long lags of 
gasoline price when analyzing gasoline price elasticity. However, this study is not 
without its flaws; external validity is an issue in this study, as it analyzed ridership 
using data from only one region. In addition, this study did not analyze the effects 
of economic factors on ridership over this study period. Controlling for a few supply 
variables is an improvement over earlier studies; however, the authors do not 
account for the fact that supply of transit is endogenous. The authors did not use the 
instrumental variables method to instrument for the supply of transit.
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Chen, Cynthia, Don Varley, and Jason Chen, “What Affects Transit Ridership? A Dynamic 
Analysis involving Multiple Factors, Lags, And Asymmetric Behaviour.” Urban Studies, 
Vol. 48, No. 9, July (2010): 1893-1908.

Chen, Varley, and Chen (2010) also analyzed monthly data for New Jersey commuter 
rail ridership14 over the period 1996 to 2009 to examine whether gasoline price 
elasticity of ridership differs for a gasoline price increase vs. a gasoline price 
decrease. In addition, this study examines whether transit fare elasticity to ridership 
differs depending on whether a change in transit fare is an increase or decrease. The 
authors of this study created an interaction term between the change in gasoline price 
for the same two consecutive months and a dummy variable that indicates either an 
increase or decrease in gasoline price, and then regressed the change in ridership 
between two consecutive months on this interaction term. They adopted the same 
strategy to analyze whether the transit fare elasticity to ridership differs between an 
increase and a decrease in transit fare. They controlled for size of labor force, transit 
service supply, and seasonal effects (captured using month dummy variables). This 
study found that the gasoline price elasticity for a rise in gasoline price differs from the 
gasoline price elasticity for a fall in gasoline price. Similarly, the authors found this to 
be the case with transit fare. This study investigated an interesting feature related to 
gasoline price elasticity and transit fare elasticity of ridership; however, the analysis 
is flawed because it controls for the effect of transit supply on metro ridership but not 
for the fact that transit supply is endogenous. External validity also remains an issue. 

Storchmann, Karl, “The impact of fuel taxes on public transport––an empirical assessment 
for Germany.” Transport Policy 8 (1), (2001): 19–28.

Storchmann (2001) analyzed the effect of gasoline taxes in Germany that caused 
an increase in gasoline price using time-series data from 1980 to 1995. This study 
analyzed travel by different modes for different purposes. In addition, it analyzed 
how the fuel tax affected passenger kilometers (measured as the product of number 
of trips and distance traveled) by different modes of transport and for different 
purposes. The author used a system of equations and analyzed how demography and 
German unification in 1991 affected the number of trips taken and the average travel 
distance for each of the following six travel purposes: work, school, shopping, 
business, leisure, and holiday. In the estimation of the public transit demand as a 
function of various internal factors, such as peak passenger kilometers, seats per 
vehicle, average peak seat load factor during peak period and average speed during 
peak period, Storchmann (2001) found that cross-price elasticity of transit demand 
varies by purpose of trip, with 0.202 for work-related trips, 0.121 for school trips, 
0.045 for leisure trips, 0.031 for shopping trips, and 0.016 for holiday trips. Thus, a 
large amount of variation in U.S. transit ridership elasticity with respect to the price of 
gasoline found in earlier studies may be explained by the residents’ purposes for 
using public transit, but this kind of information has been typically omitted in 
regression analysis due to limited data availability. The analysis in this study showed 
that an increase in gasoline price resulting from a fuel tax increase had a positive 
impact on peak-hour transit use but not on transit use for leisure or during off-peak 
hours. The higher marginal cost of providing transit service during peak hours, which 
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resulted from increased peak-hour demand, led to the seemingly counterintuitive 
prediction that higher fuel taxes could ultimately increase the transit system’s budget 
deficit. 

Currie, Graham, and Justin Phung, “Understanding Links Between Transit Ridership and 
Auto Gas Prices—US and Australian Evidence.” Paper presented at the Transportation 
Research Board 87th Annual Meeting, Washington, DC, January 13-17, 2008.

Currie and Phung (2008) analyzed transit ridership for rail and bus alone and for 
all modes combined in Melbourne, Brisbane, and Adelaide, Australia. Using monthly 
time-series data with per capita transit usage as the dependent variable, this study 
analyzed the effect of gas price and home mortgage interest rates on transit ridership, 
controlling for seasonal effects but not for transit service supply. The authors found 
the gas price elasticity of ridership of all modes combined to be 0.22 in Melbourne, 
0.22 in Adelaide, and 0.14 Brisbane. For Melbourne, the authors analyzed information 
on whether the tickets were used for long-distance travel or short-distance travel and 
found that the elasticity is higher for longer distance travel. This suggests that gas price 
elasticity of ridership varies by trip length. This study is subject to omitted variables 
bias, as it does not control for factors pertaining to transit supply, socioeconomics, or 
demographics. As this study analyzed transit ridership for each city independently, 
the results from data for one city may not be comparable to results from another city 
because the cities have different characteristics. Consequently, the results suffer from 
external validity.

Stover, Victor W., and C. H. Christine Bae, “Impact of Gasoline Prices on Transit Ridership 
in Washington State.” Transportation Research Record, Vol. 2217, (2011): 11-18.

The authors analyzed gasoline price elasticity of aggregate transit ridership for transit 
agencies in 11 counties in Washington State from January 2004 to November 2008 
using a time-series estimation method. This time-series estimation is useful in 
providing evidence of the effect of gasoline price changes on transit ridership for 
transit agencies in these specific counties. To estimate the more general effect—
the average effect of gasoline price change on ridership—the authors used a panel 
estimation technique for these counties over the same time frame for aggregate 
transit ridership.

Using a log-log model, the paper estimates the effect of gasoline prices on aggregate 
transit and controls for internal factors—fare and supply measured as vehicle 
revenue hours—and external factors—population and unemployment rate. It also 
controls for seasonal variation using season dummies instead of month dummies, 
which accounts for seasonal variation in ridership demand. The authors estimated a 
static model—i.e., the contemporaneous effect of gasoline price and transit fare change 
on transit ridership—which is a shortcoming of the paper. Given the nature of the 
data used (time-series and panel), it would have been possible to estimate long-term 
effects. A shortcoming is that the paper does not present the estimates obtained from 
panel data analysis. In the time-series analysis, the authors find that population has a 
positive effect on ridership, which is as expected. In addition, they find a positive effect 
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of unemployment rate on ridership, which they explain may be due to the difficulty 
of maintaining a vehicle without a source of income. In turn, this makes riding public 
transit more favorable for the unemployed.

Although this paper controls for both external and internal factors, it only controls 
for a subset of external and internal factors that affect ridership and omits some key 
variables that are likely to affect ridership, for example, frequency of transit service, 
household income, or the quantity or quality of local highways. The analysis in this 
paper may be useful for guiding transit agencies in Washington State but may be not 
generalized, as the data is from only one state.

Nowak, William P., and Ian Savage, “The cross elasticity between gasoline prices and 
transit use: Evidence from Chicago.” Transit Policy, 29, (2013): 38-45.

This paper analyzed the cross-price elasticity between the price of gasoline and 
transit ridership in the Chicago metropolitan area using monthly data from January 
1999 to December 2010 for city and suburban buses, city heavy rail, and suburban 
commuter rail. A log-log model was used to examine whether the cross-price elasticity 
of transit ridership is different among the gasoline price ranges of under $3, between 
$3 and $3.99, and over $4. To take seasonal variation into account the authors 12th 
differenced the data (i.e., subtracted from the log of each variable for each month the 
value of the log of that variable in that same month from the previous year). They also 
controlled for transit fare, unemployment rate, proportion of weekdays in the month, and 
a dummy variable indicating a leap-year February. They found evidence suggesting 
that elasticities are different for different ranges of gasoline price. They found that 
the unemployment rate has a negative effect on ridership, while transit supply has a 
positive effect. With their model, transit fare has a mixed effect on ridership for the 
different modes. For example, it has a positive significant effect for city bus, but for the 
other modes the effect is negative.

Blanchard, Christopher. The Impact of Rising Gasoline Prices on US Public Transit 
Ridership, Masters Thesis, Duke University; (2009).

Blanchard (2009) analyzed the impact of increasing fuel prices on public transit 
ridership in the United States. This study used panel data on ridership (measured as 
unlinked passenger trips) on four transit modes—commuter rail, heavy rail, light rail, 
and bus—from 218 U.S. cities between 2002 and 2008. The simple OLS regression 
models included variables for the log of transit supply, log of current price of gasoline 
and lagged prices of gasoline, monthly dummy variables, and year dummy variables. 
Current gasoline price and lagged gasoline prices were used to analyze, respectively, 
instantaneous and long-run effects of the change in gasoline price. Elasticity was 
found to be the highest for light rail, with a peak of 0.507 in Dallas, while ranging from 
-0.103 to 0.507 for other cities. Other modes had similar results, with ranges from 
-0.012 to 0.213 for commuter rail, to 0.137 to 0.377 for heavy rail, and 0.047 to 0.121 
for bus. The counterintuitive negative elasticity estimates for commuter and light rail 
may indicate a bias in the estimate due to the omission of important factors pertaining 
to regional geography, the metropolitan economy, population characteristics, transit 
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characteristics, and highway system characteristics that can change over time and 
affect ridership. The study does not include dummy variables for each city (i.e., 
fixed effects for cities), which could have controlled for some of the time-invariant, 
otherwise unobserved characteristics.

Blanchard’s study (2009) also shows variation in elasticity by city population size. For 
example, the estimated elasticity for bus services was 0.09 for cities with a population 
greater than 2 million and 0.08 for cities with a population between 0.5 and 2 million. 
The variation in cross-price elasticity by mode and by city size may also be explained 
by the share of captive riders, availability of alternative modes, and high parking 
costs in the CBD. In particular, Blanchard, as well as Maley and Weinberger (2009), 
explains that higher elasticity for commuter trains is related to its service of relatively 
long-distance trips, a mode shift that would lead to higher gasoline cost savings. 
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APPENDIX B: RETAIL GASOLINE PRICE AND UNLINKED 
PASSENGER TRIPS FOR BUS

In this appendix, four sets of graphs present the relationship between gasoline prices and 
ridership of bus, commuter rail, light rail, heavy rail, and all of these models combined, for 
ten UAs. Specifically, the graphs show the relationship of unlinked passenger trips (i.e., 
ridership) with three different gasoline prices—regular, midgrade, and premium—as well 
as the average of these three prices (labeled “all”) on ridership.

It is important to note that all UAs do not have all modes of transit service. The first set of 
graphs shows the relationship between gasoline prices and bus ridership for ten UAs. The 
second set shows the relationship between gasoline prices and commuter rail in seven 
UAs. The third and fourth sets show the same for light rail in nine UAs and for heavy rail 
in seven UAs, respectively.

These graphs show that there is no clear pattern in the relationship between transit ridership 
and gasoline prices alone. Therefore, regression analysis that accounts for impact of other 
factors on ridership is necessary.

Figure 7.	 Retail Gasoline Price and Unlinked Passenger Trips for Bus: Ten Other 
Urbanized Areas
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Figure 7 (Continued)
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Figure 7 (Continued)
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Figure 7 (Continued)
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Figure 7 (Continued)
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Figure 8.	 Retail Gasoline Price and Unlinked Passenger Trips for Commuter Rail: 
Six Other Urbanized Areas
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Figure 8 (Continued)
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Figure 8 (Continued)
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Figure 9.	 Retail Gasoline Price and Unlinked Passenger Trips for Light Rail: 
Eight Other Urbanized Areas
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Figure 9 (Continued)
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Figure 9 (Continued)
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Figure 9 (Continued)

 

 



Mineta Transportat ion Inst i tute

98
Appendix B: Retail Gasoline Price and Unlinked Passenger Trips for Bus

Figure 10.	 Retail Gasoline Price and Unlinked Passenger Trips for Heavy Rail: 
Six Other Urbanized Areas
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Figure 10 (Continued)
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Figure 10 (Continued)
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APPENDIX C: CORRELATION USING DATA FROM ALL YEARS

While Chapter IV provided correlation of the independent variables that were considered 
for regression specifications using the data only from 2007, this appendix provides 
correlations using the pooled data set of all years from 2002 to 2010. In the following 
tables, correlation greater than 0.7 is shown in bold type, and correlation greater than 0.4 
and smaller than 0.7 is shown in italic type. A threshold value of 0.7 is typically used as 
an indicator for the point at which collinearity possibly begins to cause severe distortion of 
model estimation and subsequent prediction, while a value of 0.4 is a more restrictive less 
commonly used indicator value (Dormann et al. 2007). Overall, there is little difference in 
correlation values between the pooled data sets and the 2007 data set. Among pairs of 
variables that have a correlation value larger than 0.4 in both data sets, a difference in 
correlation values larger than 0.1 occurs in only three pairs for bus (VRH and frequency 
of service, frequency of service and total population, fare and percent household with no 
vehicles), only one pair for commuter rail (fare and naturalized citizens), and only one pair 
for all modes combined (fare and frequency of service).
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Table 20.	 Correlations using All-Year Data
(a) Bus
Commuter Rail [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
Log of average of regular midgrade and premium gas price [1] 1.000

Log of fare [2] 0.221 1.000

Log of vehicle revenue hours [3] -0.050 0.575 1.000

Log of frequency of service [4] 0.045 0.444 0.890 1.000

Log of total population [5] -0.064 0.789 0.775 0.600 1.000

Log of naturalized citizen [6] 0.002 0.698 0.524 0.489 0.898 1.000

Log of federal highway miles [7] -0.103 0.181 -0.073 0.005 0.307 0.496 1.000

Log of mean household income [8] 0.323 0.411 0.357 0.591 0.117 0.125 0.029 1.000

Unemployment rate [9] 0.266 0.191 0.093 0.151 0.098 0.145 -0.077 -0.044 1.000

Percent of households with no vehicle [10] -0.052 0.510 0.646 0.640 0.603 0.546 -0.084 0.313 -0.062 1.000

(b) Commuter Rail
Commuter Rail [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
Log of average of regular midgrade and premium gas price [1] 1.000

Log of fare [2] 0.221 1.000

Log of vehicle revenue hours [3] -0.050 0.575 1.000

Log of frequency of service [4] 0.045 0.444 0.890 1.000

Log of total population [5] -0.064 0.789 0.775 0.600 1.000

Log of naturalized citizen [6] 0.002 0.698 0.524 0.489 0.898 1.000

Log of federal highway miles [7] -0.103 0.181 -0.073 0.005 0.307 0.496 1.000

Log of mean household income [8] 0.323 0.411 0.357 0.591 0.117 0.125 0.029 1.000

Unemployment rate [9] 0.266 0.191 0.093 0.151 0.098 0.145 -0.077 -0.044 1.000

Percent of households with no vehicle [10] -0.052 0.510 0.646 0.640 0.603 0.546 -0.084 0.313 -0.062 1.000
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(c) Light Rail
Light Rail [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
Log of average of regular midgrade and premium gas price [1] 1.000

Log of fare [2] 0.273 1.000

Log of vehicle revenue hours [3] 0.160 0.256 1.000

Log of frequency of service [4] -0.009 -0.037 0.577 1.000

Log of total population [5] 0.060 -0.037 0.357 -0.033 1.000

Log of naturalized citizen [6] 0.089 -0.071 0.436 -0.013 0.965 1.000

Log of federal highway miles [7] -0.075 -0.369 -0.068 -0.210 0.197 0.252 1.000

Log of mean household income [8] 0.349 0.323 0.700 0.227 0.496 0.629 -0.026 1.000

Unemployment rate [9] 0.237 0.194 0.037 -0.180 0.022 0.010 -0.098 -0.099 1.000

Percent of households with no vehicle [10] 0.006 0.262 0.173 -0.293 0.676 0.595 -0.115 0.378 0.018 1.000

(d) Heavy Rail
Heavy Rail [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
Log of average of regular midgrade and premium gas price [1] 1.000

Log of fare [2] 0.239 1.000

Log of vehicle revenue hours [3] 0.021 0.379 1.000

Log of frequency of service [4] 0.000 0.287 0.903 1.000

Log of total population [5] -0.016 -0.094 0.643 0.810 1.000

Log of naturalized citizen [6] 0.043 0.097 0.570 0.795 0.920 1.000

Log of federal highway miles [7] -0.138 0.082 -0.067 -0.047 0.134 0.224 1.000

Log of mean household income [8] 0.257 0.629 0.638 0.718 0.511 0.603 -0.006 1.000

Unemployment rate [9] 0.268 0.121 -0.177 -0.269 -0.170 -0.169 -0.176 -0.208 1.000

Percent of households with no vehicle [10] -0.040 0.097 0.681 0.694 0.587 0.493 -0.141 0.367 -0.148 1.000

Table 20, Continued
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(e) All Modes (Aggregate)
All Modes [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
Log of average of regular midgrade and premium gas price [1] 1.000

Log of fare [2] 0.384 1.000

Log of vehicle revenue hours [3] 0.074 0.540 1.000

Log of frequency of service [4] 0.072 0.622 0.903 1.000

Log of total population [5] 0.054 0.317 0.902 0.786 1.000

Log of naturalized citizen [6] 0.104 0.307 0.857 0.765 0.944 1.000

Log of federal highway miles [7] -0.168 -0.358 0.071 0.075 0.185 0.227 1.000

Log of mean household income [8] 0.334 0.603 0.588 0.576 0.448 0.511 -0.091 1.000

Unemployment rate [9] 0.232 0.316 -0.028 0.006 0.040 0.046 -0.106 -0.128 1.000

Percent of households with no vehicle [10] 0.022 0.532 0.742 0.728 0.596 0.525 -0.145 0.389 -0.048 1.000

Table 20, Continued
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APPENDIX D: MORE PARSIMONIOUS INSTRUMENTAL 
VARIABLES (IV) SPECIFICATIONS

An analysis of the more parsimonious specifications was conducted for all modes except 
bus by dropping variables that turned out to be statistically insignificant. In these models, 
the following variables were dropped from the specifications shown in Section 5: frequency 
of service for light rail, total population for both heavy rail cases, federal highway miles for 
both heavy rail cases and aggregate transit, mean household income for commuter rail, 
and unemployment rate for heavy rail without the New York UA. The following tables show 
results from the first and second stages of the more parsimonious Instrumental Variables 
specifications. Estimated coefficients for gasoline prices were very similar between these 
results and the results shown in Section 5.



M
ineta T

ransportation Institute

106
A

ppendix D
: M

ore P
arsim

onious Instrum
ental Variables (IV

) S
pecifications

Table 21.	 Results from the First Stage of the Instrumental Variables Model

Variables
(1) (2) (3) (4-1) (4-2) (5)

Bus CR LR HR w/o NY HR w/ NY Transit

Log of total number of employees -0.0776*** -0.0701 0.158*** -0.445*** -0.233 -0.0150
(full time+part-time/2) (0.0191) (0.205) (0.0557) (0.110) (0.426) (0.0321)
Log of total fleet 0.552*** -0.0708*** 0.514*** 3.050*** 6.440*** 0.494***
(seating+standing capacity) (0.0296) (0.0162) (0.0192) (0.417) (1.516) (0.0537)
Log of total fund available to 0.0547*** -0.177*** 0.179*** 0.174*** 0.701*** 0.0340**
transit agencies (0.00988) (0.0541) (0.0296) (0.0313) (0.123) (0.0165)

Seasonal effects (month dummies) Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Urbanized area fixed effects Yes Yes Yes Yes Yes Yes

Observations 1,126 777 892 669 789 1,132
R-squared 0.529 0.533 0.715 0.444 0.346 0.280
Number of Urbanized Areas 10 7 9 6 7 10

F-stat 123.56 7.63 278.25 41.7 21.61 29.56
P-value 0.000 0 0.000 0.000 0.000 0.000 

Note: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 22.	 Results from the Second Stage of the Most Parsimonious Instrumental Variables Model

Variables

(1) (2) (3) (4-1) (4-2) (5)

Bus CR LR HR w/o NY HR w/ NY V. Transit

Log of monthly gasoline price 0.0617*** 0.0689 0.0225 -0.0485 -0.0259 0.0577**
(0.0223) (0.0462) (0.0498) (0.0597) (0.0457) (0.0255)

Log of fare -0.220*** -0.494*** -0.156*** -0.236*** -0.180*** -0.323***
(0.0212) (0.0919) (0.0351) (0.0432) (0.0324) (0.0301)

Log of vehicle revenue hours 0.407*** -0.0581 0.933*** -0.284*** 0.0349 0.559***
(0.0519) (0.125) (0.0247) (0.0862) (0.0235) (0.0705)

Log of frequency of service 0.0772***
(0.0207)

Log of total population 0.811*** 8.287*** 0.867***
(0.164) (1.178) (0.198)

Log of federal highway miles 0.0670*** -0.0977*** -0.0865***
(0.0102) (0.0215) (0.0213)

Log of mean household income

Unemployment rate (%) 0.0331*** 0.0222** 0.0315*** 0.0287***
(0.00433) (0.0102) (0.00929) (0.00522)

Households with no vehicle (%) -0.0396*** -0.111***
(0.0109) (0.0258)

Constant -2.874 -114.9*** 6.33*** 17.65*** 14.93*** -4.18
(2.411) (17.7) (0.292) (0.919) (0.254) (2.803)

Seasonal effects (month dummies) Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Urbanized area fixed effects Yes Yes Yes Yes Yes Yes

Observations 1,126 777 892 549 669 1,132
R-squared 0.504 0.594 0.829 0.264 0.408 0.259
Number of urbanized areas 10 7 9 5 6 10

Note: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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APPENDIX E: IMPACT OF GASOLINE PRICES AND OTHER 
FACTORS� ON TRANSIT RIDERSHIP IN FIVE TRANSIT 

SYSTEMS: A TIME-SERIES ANALYSIS

PURPOSE OF STUDY

As a complimentary study of the panel data analysis, this part of the study uses time-series 
analysis to examine the elasticity of ridership with respect to gasoline price and the effects of 
particular “events” that took place specifically in areas of five selected transit systems, while 
controlling for seasonal changes on transit ridership as well as other main influential factors. 

SELECTION OF TRANSIT SYSTEMS, DATA, AND DATA SOURCES

Some factors that could influence transit ridership, such as policy and operation changes 
and events, are not available in the NTD, so the research team directly contacted 68 
agencies in the 10 urbanized areas covered by the panel data analysis. Of these, only five 
agencies provided the comprehensive information the team was seeking; thus, this time-
series study focuses on those five transit systems. They include Broward County Transit 
Division, FL; Fort Wayne Citilink, IN; Los Angeles Metrolink, CA; Orange County Transit 
Authority, CA; and South Florida Regional Transportation Authority, FL (Table 23).

The requested information included the addition or loss of a major employer in a 
service coverage area for each transit agency; factors and conditions external to transit 
agencies reconfiguration of route structure; significant increase or decrease in fare costs; 
major transportation infrastructure development (new park and rides, transfer facilities, 
interchanges); series of high-profile attacks on, or murders of, transit users; rapid growth of 
the student population at a major university or college; major events (expos, inaugurations, 
large festivals); an especially cold, snowy winter or hot summer; natural disasters 
(earthquakes, hurricanes, etc.); strikes by employees; introduction of new transfer policy; 
a merger of transit systems; and changes in policy (e.g., universities negotiating free rides 
for students).

The specific events that took place in each of the five transit systems are shown in Table 23.

Table 23.	 Information of Events and Mode of Service for the Five Transit Systems

Transit System State NTD ID
Mode of 
Service Event Date

Fort Wayne Citilink IN 5044 Motor bus •	 Downtown Citiloop service started 2004
•	 Snow emergency 02/2007
•	 CampusLink offered a free shuttle service 

between university campuses
2009

Orange County 
Transit Authority

CA 9036 Motor bus •	 Operated 91 express lanes 2003

Broward County FL 4029 Motor bus •	 N/A N/A



Mineta Transportat ion Inst i tute

109
Appendix E: Impact of Gasoline Prices and Other Factors

Transit System State NTD ID
Mode of 
Service Event Date

Los Angeles 
Metrolink

CA 9154 Motor bus 
and rail 
(heavy and 
light)

•	 91 line opened 2002
•	 MTA strike 09/2002 – 

10/2002
•	 MTA strike 10/2003 – 

11/2003
South Florida 
Regional 
Transportation 
Authority

FL 4077 Commuter 
rail

•	 New transfer fees for passengers 10/2011

As discussed in the literature review, many factors have been shown to influence transit 
ridership, including pricing, passenger demand, transit network, and seasonal effects. In 
this part of the study, monthly transit ridership by mode is used as a dependent variable, 
while a selected number of explanatory variables are examined as control variables, 
following the longitudinal analysis approach used in the study by Stover and Bae (2009). 
Explanatory variables included 1) transit agency operating and financial information 
collected from the NTD; 2) monthly gasoline prices; 3) aggregated transit ridership of an 
urbanized area combining all modes available; and 4) agency-specific factors, such as 
event variables. Table 24 provides a detailed description of variables that were examined 
in the time-series analysis. 

Table 24.	 Description of Variables for Time-series Analysis
Variable Type Time Frame Description Source
Time Monthly Time variable that indicates the time series Self-created
Ridership Monthly Number of passengers served by a specific transport 

mode provided by a transit agency
NTD

Gasoline price Monthly Average of regular gasoline price in the area of a 
transit agency

U.S. energy information 
administration

Fare revenue Annual Total fare revenue of a specific transport mode 
provided by a transit agency

NTD

Number of vehicles 
in maximum 
operation (voms)

Monthly Vehicles operated in annual maximum service of a 
specific transport mode provided a transit agency with 
do and pt combined 

NTD

Vehicle revenue 
hours (vrh)

Monthly Vehicles revenue hours of a specific transport mode 
provided a transit agency with do and pt combined 

NTD

Vehicle revenue 
miles (vrm)

Monthly Vehicles revenue miles of a specific transport mode 
provided a transit agency with do and pt combined 

NTD

Fleet Annual Total number of fleets of a specific transport mode 
provided a transit agency with standing and seating 
capacities combined

NTD

Route miles (rm) Annual Total route miles NTD
Bus fare Annual Detailed information of bus fare Transit agencies
Average fare Annual Total fare revenue divided by number of passenger 

trips
Self-created from NTD

Labor size Monthly Size of labor force for each area of the transit 
agencies

Bureau of labor 
statistics

Table 23, Continued
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Variable Type Time Frame Description Source
Unemployment rate Monthly Unemployment rate of labor force for each area of the 

transit agencies
Bureau of labor 
statistics

Monthly dummies Monthly Dummy variables created for months of February to 
December (January is set as the base)

Self-created

Event dummies Monthly Event variables created for each major event that was 
hypothesized to affect a transport service provided by 
a transit agency

Self-created

Post event Monthly Post event effects of corresponding event variables Self-created

While average fare is a variable obtained by dividing annual fare revenue by annual 
ridership for each mode, fare is information obtained directly from transit agencies. The 
bus fare was recorded annually. Adult fare, student fare, and senior fare information was 
collected, and only adult fare was incorporated in the model estimation. An event dummy 
variable is a dummy variable that has a value of 0 before the event and a value of 1 
after the event, representing an effect of a specific event on ridership that remains over 
time. A post-event variable is generated for the time-series analysis, using the function 
in Equation E-1, which starts with 0 and gradually increases to the value of 1 in twelve 
months starting from the month of an event. If an estimated coefficient of this post-event 
variable has a similar value with an opposite sign to a coefficient of an event dummy, a 
combination of these two represent that the event has an effect on ridership initially, but 
the effect gradually disappears over 12 months.

	 Post event variable	 = 0 	 if time < Month_event
		  = a*(1–e(-(time-Month_event)*(1/12)*(ln(a)-ln(a-1)))
				    if Month_event ≤ time ≤ (Month_event + 12)	
									         (Equation E-1)
	 where
	 time is a time variable in the unit of month
	 Month_event is the month when the event occurs
	 a is a coefficient, which is set as 1.1 in this study.

In addition, prior to the regression analysis, all variables except time, monthly dummies, 
event dummies, and post-event variables, were converted to a log form. 

STUDY PROCEDURES

Several tests were performed before running the time-series analysis for each mode-agency-
specific regression model. For each model, 1) multicollinearity, 2) heteroskedasticity, 3) 
serial correlation (autocorrelation), 4) auto-regressive (or lag) selection, and 5) unit root 
were examined.

Multicollinearity was checked using pairwise correlation between explanatory variables. 
Highly correlated explanatory variables were not simultaneously included in the same 
model. In all cases, vehicle revenue hours (VRH) and vehicle revenue miles (VRM) are 
highly correlated, and only VRH was included in the final specification. Heteroskedasticity 

Table 24, Continued
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was checked to see if the error terms have constant variance. When heteroskedasticity is 
found, it is suggested to use robust regression to obtain more accurate estimates of standard 
errors, which affects statistical significance of estimated coefficients. Serial Correlation is 
the correlation between a variable and its previous values. In other words, autocorrelation 
between values of a dependent variable with and without a lag or lags was examined using 
visual inspection, a Durbin-Watson test, and a Lagrange Multiplier test (Durbin’s alternative 
test in this study). If the Durbin-Watson d-statistic has a value smaller than a critical value, 
it indicates serial correlation in a dependent variable. A significant Lagrange Multiplier test 
result is desired to reject the null hypothesis that there is no serial correlation. If serial 
correlation is detected, it is necessary to select the number of auto-regressive (or lag) 
variables of the dependent variable as a way of dealing with serial correlation of the error 
terms. Too many lags could increase the error in the forecasts, while too few could leave 
out relevant information. Three information criteria are commonly used to help determine 
a proper number of lags, and they are: Schwarz’s Bayesian information criterion (SBIC), 
Akaike’s information criterion (AIC), and the Hannan and Quinn information criterion (HQIC). 
These information criteria are reported by the command ‘varsoc’ in Stata. Specifically, AIC 
tends to be more accurate with monthly data, HQIC works better for quarterly data on 
samples over 120, and SBIC works fine with any sample size for quarterly data. A Fuller 
test is commonly used to test for stationarity. If unit root is detected, one way to deal with 
stochastic trends (unit root) is by taking the first difference of the variables.

Analysis Results of Time-series Analysis

The model estimation proceeded by subsequently adding/removing explanatory variables 
based on the R-square and coefficient significance. Variables of interest—gasoline price 
and event variables—were retained regardless of their statistical significance to examine 
the statistical significance of their effects on ridership. Monthly dummy variables are treated 
as control variables as long as they are not highly correlated with any other explanatory 
variables. If there was no clear time trend detected, time variable was then excluded 
from the model specifications. In the following regression specifications, the terms AR(1) 
represents the 1st order autocorrelation), the AR(2) represents the 2nd order autocorrelation 
in the results tables, and so on.

Results of time-series analysis for all transit agencies are displayed in Table 25. The final 
models are agency-mode specific and take the following form:

Fort Wayne Citilink (NTDID: 5044) MB

ln(mbridership)
= 𝛽𝛽0 + 𝛽𝛽1ln(gasprice) + 𝛽𝛽2time + 𝛾𝛾1newsev1 + 𝛾𝛾2postnewsev1 + 𝛾𝛾3newsev2
+ 𝛾𝛾4postnewsev2 + 𝛾𝛾5weather + 𝛾𝛾6postweather + 𝛽𝛽3ln(vrh) + 𝛽𝛽4ln(averagefare)
+ 𝛽𝛽5ln(busfare) + 𝛽𝛽6ln(rm) + 𝛾𝛾7feb + 𝛾𝛾8mar + 𝛾𝛾9dec + 𝑢𝑢 + 𝑎𝑎 
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Orange County Transit Authority (NTDID: 9036) MB

ln(mbridership)
= 𝛽𝛽0 + 𝛽𝛽1ln(gasprice) + 𝛾𝛾1newsev1 + 𝛾𝛾2postnewsev1 + 𝛽𝛽2ln(vrh)
+ 𝛽𝛽3ln(averagefare) + 𝛽𝛽4(unemprate) + 𝛾𝛾3sep + 𝛾𝛾4oct + 𝛾𝛾5dec + 𝑢𝑢 + 𝑎𝑎 

Broward County (NTDID: 4029) MB

ln(mbridership)
= 𝛽𝛽0 + 𝛽𝛽1ln(gasprice) + 𝛽𝛽2time + 𝛽𝛽3ln(vrh) + 𝛽𝛽4ln(averagefare) + 𝛽𝛽5ln(laborsize)
+ 𝛽𝛽6ln(rm) + 𝛽𝛽7ln(voms) + 𝛾𝛾1mar + 𝑢𝑢 + 𝑎𝑎 

Los Angeles Metrolink (NTDID: 9154) MB and Rail

ln(mbridership)
= 𝛽𝛽0 + 𝛽𝛽1ln(gasprice) + 𝛽𝛽2time + 𝛾𝛾1strike1 + 𝛾𝛾2poststrike1 + 𝛾𝛾3strike2
+ 𝛾𝛾4poststrike2 + 𝛽𝛽3ln(vrh) + 𝛽𝛽4ln(averagefare) + 𝛽𝛽5ln(laborforce) + 𝛽𝛽6ln(rm)
+ 𝛾𝛾5may + 𝛾𝛾6jun + 𝛾𝛾7dec + 𝑢𝑢 + 𝑎𝑎 

ln(railridership)
= 𝛽𝛽0 + 𝛽𝛽1ln(gasprice) + 𝛽𝛽2time + 𝛾𝛾1strike1 + 𝛾𝛾2poststrike1 + 𝛾𝛾3strike2
+ 𝛾𝛾4poststrike2 + 𝛽𝛽3ln(averagefare) + 𝛽𝛽3ln(vrm) + 𝛽𝛽5ln(laborforce) + 𝛾𝛾5oct
+ 𝛾𝛾6nov + 𝛾𝛾7dec + 𝑢𝑢 + 𝑎𝑎 

South Florida Regional Transportation Authority (NTDID: 4077) CR

ln(crridership) = 𝛽𝛽0 + 𝛽𝛽1ln(gasprice) + 𝛽𝛽2time + 𝛾𝛾1newsev1 + 𝛽𝛽3ln(vrh) + 𝛽𝛽4ln(averagefare)
+ 𝛽𝛽5ln(unemprate) + 𝛽𝛽6ln(fleet) + 𝛾𝛾2dec + 𝑢𝑢 + 𝑎𝑎 

where

u = unobserved factors,

a = unobserved factors that are constant over time

Table 25 reports multiple results for motor bus and rail services of Los Angeles Metrolink 
(9154) and commuter rail service of South Florida Regional Transportation Authority 
(4077), depending on the number of auto-regressive variables examined.

The Durbin-Watson d-statistic of all models reported is below 2, indicating autocorrelation. 
In addition, the Durbin’s alternative test results of those models are all significant, and the 
null hypothesis of no serial correlation is rejected.
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Table 25.	 Time-series Results of All Transit Agencies

Variables
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

5044 MB 9036 MB 4029 MB 9154 MB 9154 MB 9154 Rail 9154 Rail 4077 CR 4077 CR 4077 CR
Regular gasoline price 0.0675*** 0.0744*** 0.0523*** 0.1023*** 0.0948*** -0.0062 -0.0093 -0.0470** -0.0480** -0.0446**

(0.0119) (0.0097) (0.0163) (0.0195) (0.0194) (0.0340) (0.0343) (0.0229) (0.0225) (0.0221)
Time 0.0046*** 0.0050*** 0.0008*** 0.0008*** 0.0041*** 0.0039*** 0.0013*** 0.0013*** 0.0012***

0.0004 (0.0004) (0.0003) (0.0003) (0.0005) (0.0006) (0.0004) (0.0004) (0.0004)
Event Variables
New Service 1 Dummy 0.0364*** -0.0332*** -0.0370* -0.0346* -0.0303*

(0.0063) (0.0070) (0.0187) (0.0185) (0.0182)
Post New Service 1 
Dummy

-0.0221* 0.0146***

(0.0126) (0.0085)
New Service 2 Dummy -0.1004***

(0.0137)
Post New Service 2 
Dummy

-0.1118***

(0.0141)
Weather Dummy -0.0863***

(0.0178)
Post Weather Dummy 0.0094

(0.0086)
Strike 1 Dummy 0.0150 0.0106 -0.0726*** -0.0660**

(0.0221) (0.0222) (0.0238) (0.0257)
Post Strike 1 Dummy -0.0665** -0.0695** 0.0182 0.0165

(0.0272) (0.0268) (0.0202) (0.0197)
Strike 2 Dummy -0.0177 0.0109 -0.0932* -0.0646

(0.0340) (0.0369) (0.0528) (0.0546)
Post Strike 2 Dummy -0.0183 -0.0471 0.1250** 0.0953

(0.0379) (0.0408) (0.0593) (0.0605)
Autoregressive 
Variables
AR(1) -4.36e-07*** 0.0659*** 0.0541** 0.0482 0.0720** 0.0350 0.0243
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Variables
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

5044 MB 9036 MB 4029 MB 9154 MB 9154 MB 9154 Rail 9154 Rail 4077 CR 4077 CR 4077 CR
(1.46e-07) (0.0246) (0.0264) (0.0648) (0.0306) (0.0345) (0.0341)

AR(2) -3.04e-7** 0.0121 0.0664** 0.0297
(1.51e-07) (0.0209) (0.0317) (0.0348)

AR(3) -2.50e-07* -0.0651* 0.0706**
(1.47e-07) (0.0336) (0.0318)

AR(4) -5.48e-07***
(1.46e-07)

AR(5) -4.25e-07**
(1.94e-07)

Control Variables
Vehicles Revenue 
Hours 

0.0683* 0.6832*** 0.2591*** 0.6344*** 0.6662*** -0.1120*** -0.1093*** -0.1077***

(0.0345) (0.0395) (0.0872) (0.0566) (0.0577) (0.0109) (0.0109) (0.0107)
Average Fare -0.8552*** -0.4234*** -0.5729*** -0.4459*** -0.4175*** -0.4999*** -0.4882*** -0.9689*** -0.9606*** -0.9632***

(0.0342) (0.0228) (0.0472) (0.0415) (0.0424) (0.0703) (0.0729) (0.0327) (0.0324) (0.0319)
Vehicles Revenue Miles 0.4625*** 0.4844***

(0.1026) (0.1080)
Unemployment Rate  -0.0387***  0.0637*** 0.0629*** 0.0642***

 (0.0090)  (0.0143) (0.0142) (0.0142)
Labor Size   -1.4899*** 2.3088*** 2.1480*** 2.8985*** 2.7921***

  (0.2571) (0.4391) (0.4449) (0.7110) (0.7311)
Bus Fare 0.5183***  

(0.0491)  
Route Miles 0.7637***  -0.0832*** 0.4168*** 0.3952***

(0.2141)  (0.0171) (0.0659) (0.0653)
Number of Fleets 1.1407*** 1.1104*** 1.0834***

(0.0717) (0.0737) (0.0755)
Vehicles Operated at 
Maximum Speed

  0.2669***

Table 25, Continued
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Variables
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

5044 MB 9036 MB 4029 MB 9154 MB 9154 MB 9154 Rail 9154 Rail 4077 CR 4077 CR 4077 CR
  (0.0791)

Feb 0.0156***   
(0.0046)   

Mar 0.0140**  0.0247***
(0.0047)  (0.0064)

May 0.0205** 0.0191*
(0.0099) (0.0097)

June 0.0202** 0.0175*
(0.0100) (0.0097)

Sep  0.0283***  
 (0.0049)  

Oct  0.0120*  -0.0485*** -0.0499***
 (0.0066)  (0.0178) (0.0170)

Nov -0.0868*** -0.0830***
(0.0170) (0.0167)

Dec -0.0079 -0.0432***  -0.0403*** -0.0365*** -0.0880*** -0.0802*** 0.0192* 0.0138 0.0168
(0.0088) (0.0073)  (0.0100) (0.0100) (0.0175) (0.0183) (0.0111) (0.0116) (0.0110)

Intercept 8.5542*** 8.0525*** 32.4268*** -29.3705*** -28.1184*** -34.5905*** -34.0292*** 10.5134*** 10.2241*** 10.0265***
(1.2166) (0.4435) (3.3584) (6.8070) (6.7751) (10.7568) (10.7684) (0.4181) (0.4319) (0.4341)

Observations 114 116 103 119 118 119 118 102 102 102
R-squared 0.9896 0.9795 0.8986 0.9653 0.9671 0.9560 0.9564 0.9778 0.9784 0.9794

Note: Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1

Table 25, Continued
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DISCUSSION OF TIME-SERIES ANALYSIS RESULTS

Results for variables of interest are discussed first and then results for control variables 
are briefly discussed. Estimated coefficients for motor bus services provided by the four 
agencies that offer bus services were found to be positive, ranging from 0.0523 to 0.1023 
(Table 25). A closer inspection of the magnitude of coefficients suggest that bus ridership 
in Los Angeles was more strongly influenced by gasoline price compared to other study 
areas. However, coefficients for rail services were either statistically insignificant (Los 
Angeles Metrolink) or negative (South Florida Regional Transportation Authority). These 
results collectively indicate a large variance that potentially exists in the elasticity of transit 
ridership to gasoline price among different transit modes and systems.

The time variable was statistically significant with a positive sign except for one model. 
Although this result implies that ridership would increase in future, controlling for the supply 
level of transit service and fare level, this is probably not the case.

Table 25 shows mixed results for the effects of event-related variables. For the motor bus 
service of Fort Wayne Citilink (5044), estimated coefficients indicate that the introduction 
of the downtown Citiloop service in 2004 had a positive boost effect on overall ridership 
(0.0364), about 60 percent of which may have dissipated in a year (0.0221). The free 
shuttle service between university campuses that started in 2009 shows a negative 
effect on the overall ridership based on the estimated coefficients. In addition, the snow 
emergency in February 2007 also had a negative effect, which remained even after 
twelve months. Orange County Transit Authority’s (9036) new bus operation on the State 
Route-91 express lanes shows a small negative impact, controlling for other variables. The 
estimated coefficients for variables for the first strike in 2002 indicates that the strike had a 
negative effect on ridership for both bus and rail of Los Angeles Metrolink (9154) and that 
this negative effect for bus had some time lag to show its full effect. In addition, while the 
second strike also had a negative effect for rail, ridership recovered after twelve months, 
as indicated by a positive estimated coefficient for the post-strike 2 dummy. An estimated 
coefficient of a dummy variable for the new service shows a decrease in ridership for rail 
service provided by the South Florida Regional Transportation Authority (4077), controlling 
for other variables.

For motor bus and rail services of Los Angeles Metrolink and commuter rail service of South 
Florida Regional Transportation Authority, the auto-regressive variables of ridership were 
found to have an estimated coefficient with a positive sign, ranging from 0.0541 to 0.0720. 
The magnitude of these coefficients is in the same order of those of gasoline prices. Orange 
County Transit Authority also has a positive auto-regressive variable of one lag, but the one 
with three lags has a negative sign. Although auto-regressive variables of up to five lags 
were included in the model for Fort Wayne Citilink (5044), estimated coefficients were very 
small and marginal compared to other statistically significant coefficients in the model.

Among the control variables, there is a large variance in a set of explanatory variables 
that remained in the final specification. Average fare was the only variable that was found 
statistically significant in all specifications, and it has a negative effect on ridership as 
expected. Its largest impact was on ridership of rail service provided by the South Florida 
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Transportation Authority. The elasticity for the rail service by this agency was approximately 
-0.96, compared to elasticities in the range of -0.8552 to -0.4175 for the other cases.

One of the service supply variables—vehicle revenue hours (VRH) and vehicle revenue 
miles (VRM)—was found statistically significant in all specifications, as expected. While 
VRH was a better fit for motor bus services and commuter rail services, VRM was selected 
for Los Angeles Metrolink rail service. These service supply variables were found to be 
positively correlated with ridership except for commuter rail of the South Florida Regional 
Transportation Authority. Elasticity of ridership to VRH varies from -0.1120 to 0.6832. Its 
positive relationship with bus ridership and its larger magnitude of influence than the other 
variables are reasonable; the more service provided, the higher the ridership. Surprisingly, 
VRH had a negative coefficient in the case of rail ridership of South Florida Regional 
Transportation Authority even after controlling for average fare, employment rate, number 
of fleets, and a December month dummy.

In all models except motor bus service of Fort Wayne Citilink, one of the two regional 
economic variables (i.e. unemployment rate and labor size) entered in the models. However, 
signs of estimated coefficients of these two variables are not consistent across the model 
specifications. Additional bus fare information obtained directly from transit agencies did 
not increase the goodness of fit in most cases, being insignificant except for the bus service 
provided by Fort Wayne Citilink. Average fare showed a negative impact on bus ridership, 
whereas bus fare had positive effect. Some of the monthly dummy variables, with January 
as a base month, remained in the final specifications. Overall, February, March, May, 
June, September, and October had higher bus ridership than January, while December 
had the lowest bus ridership. July and August had the same level of ridership as January, 
possibly because of lower student ridership during the summer.

The reason for the mixed results obtained in the longitudinal analysis in this section could 
be that the service changes included in the analysis were assumed to affect the overall 
ridershipbut in fact may have affected only part of the transit system, with other factors 
having a larger effect. The possibility of some econometric problems in this part of analysis 
is another concern.
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ABBREVIATIONS AND ACRONYMS

ACS  American Community Survey
APTA  American Public Transportation Association
CR  Commuter rail
HR  Heavy rail
IV  Instrumental variables
LR  Light rail
NTD  National Transit Database
NY  New York
N/S (n/s)  Not statistically significant
VMT  Vehicle miles traveled
VRH  Vehicle revenue hours
VRM  Vehicle revenue miles
UA  Urbanized areas
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ENDNOTES

1.	 Gasoline price elasticity of transit ridership can be expressed by the equation: e= 
(dR⁄R)/(dP⁄P) where R and P represent transit ridership and the price of gasoline, 
respectively. dx represents a change in a variable x.

2.	 Please refer to Appendix A - Table 17.

3.	 Bus transit users are less likely to own or have a vehicle available for their trip than 
are fixed-guideway riders (APTA 2007). Low-income households are more likely to be 
carless or have inadequate access to private vehicle trips (Pucher and Renne 2003). 

4.	 Please also refer to Appendix A – Table 18.

5.	 Please also refer to Appendix A – Table 19.

6.	 Note here that our analysis follows Taylor et al. (2009) by accounting for endogeneity 
of the supply of services, measured as vehicle revenue hours.

7.	 Appendix C provides correlations using the pooled data set of all years from 2002 to 
2010. Overall, there is not much difference in correlation values between the pooled 
data sets and the 2007 data set. See Appendix C for more detail.

8.	 U.S. Department of Transportation Federal Transit Administration, National Transit 
Database. Ridership of fixed-route (non-demand response) transit in two New York 
urbanized areas—New York-Newark, NY-NJ-CT and New York, NY-Northeastern 
NJ—was 3.78 billion, while the national total was 10.25 billion.

9.	 The analysis was conducted on two data sets with or without New York for all modes. 
Only the analysis for heavy rail showed significant differences in estimated coefficients. 

10.	 An analysis of the more parsimonious specifications was conducted for all modes 
except bus by dropping variables that turned out to be statistically insignificant. Results 
are shown in Appendix D. Estimated coefficients for gasoline prices were very similar 
between these two sets of models.

11.	 For commuter rail, a specification without D$3 shows very similar results in estimated 
coefficients, with a slightly higher coefficient for the interactive term of [Log of GP – 
Log of $3]*D$3, 0.320, and a statistically insignificant coefficient for monthly gasoline 
price: -0.032.

12.	 With a threshold boost effect at the $3 mark and/or a change in elasticity crossing the 
$3 (or $4) mark, the total effect of gasoline price (GS) increase on transit ridership 
(R) can be calculated by the following equation. 1 and 2 indicate before and after an 
increase in gasoline prices: 

(R2 / R1) = (GS2 / GS1)^(estimated coefficient for “Log of GP”)
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* (GS2 / 3)^(estimated coefficient for “[Log of GP – Log of $3]*D$3)
* exp(estimated coefficient of D$3)

When no threshold boost effect is found, an estimated coefficient of D$3 is zero, 
and the last term becomes one. A percent increase in ridership can be obtained by 
subtracting one from (R2/R1) and multiplying by 100. 

13.	 Transit demand is known to be lower in the summer relative to other seasons because 
students do not have to use public transit to attend school, college or university. The 
transit demand is likely to be lower in the summer in areas with a high percentage 
of students, while it may not vary much in areas with a low percentage of students 
residing locally. Therefore, Lane (2010) controlled for seasonal effects using dummies 
for different seasons. However, other studies included monthly dummies. Monthly 
dummies can capture the effect of factors that affect ridership on a monthly basis and 
thus provide greater variation than dummies for seasons. Monthly dummies are also 
able to account for seasonal effects; therefore, it is better to use monthly dummies. 

14.	 The authors used data on the number of linked trips for New Jersey commuter rail 
(used to commute to and from NYC), unlike most other studies that use unlinked trip 
data. 



Mineta Transportat ion Inst i tute

121

BIBLIOGRAPHY

(Also see Annotated Bibliography in Appendix A.)

American Public Transportation Association (APTA): A Profile of Public Transportation 
Passenger Demographics and Travel Characteristics Reported in On-Board 
Surveys. Washington, DC, May 2007.

American Public Transportation Agency (APTA), “Public Transportation Protects 
Americans From Gas Price Volatility.” (Policy Development and Research Paper, 
May 2012).

Beresteanu, Arie, and Shanjun Li, “Gasoline Prices, Government Support and the 
Demand for Hybrid Vehicles in the U.S.” International Economic Review, Volume 
52, Issue 1 (2011): 161–182.

Blanchard, Christopher. The Impact of Rising Gasoline Prices on US Public Transit 
Ridership, Masters Thesis, Duke University; (2009).

Bomberg, Matthew, and Kara M Kockelman, “Traveler Response to the 2005 Gas Price 
Spike.” Proceedings of the 86th Annual Meeting of the Transportation Research 
Board, Washington DC (2007).

Busse, Meghan R., Christopher R. Knittel, and Florian Zettelmeyer, “Pain at the Pump: 
The Differential Effect of Gasoline Prices on New and Used Automobile Markets.” 
NBER Working Paper No. 15590 (2007).

Chen, Cynthia, Don Varley, and Jason Chen, “What Affects Transit Ridership? A Dynamic 
Analysis involving Multiple Factors, Lags, And Asymmetric Behaviour.” Urban 
Studies, Vol. 48, No. 9, July (2010): 1893-1908.

Chu, Xuehao. An Assessment of Public Transportation Markets Using NHTS Data. 
Prepared for Florida Department of Transportation. March 2012.

Cooper, Michael, “Transit Use Hit Five-decade High in 2008 as Gas Price Rose.” New 
York Times, March 9, (2009). http://www.nytimes.com/2009/03/09/us/09transit.
html (accessed July 17, 2014).

Currie, Graham, and Justin Phung, “Understanding Links Between Transit Ridership 
and Auto Gas Prices—US and Australian Evidence.” Paper presented at the 
Transportation Research Board 87th Annual Meeting, Washington, DC, January 
13-17, 2008.

Currie, Graham, and Justin Phung, “Transit ridership, auto gas prices, and world 
events: New drivers of change?” Transportation Research Record: Journal of the 
Transportation Research Board 1992 (-1), (2007): 3-10.

http://www.nytimes.com/2009/03/09/us/09transit.html
http://www.nytimes.com/2009/03/09/us/09transit.html


Mineta Transportat ion Inst i tute

122
Bibliography

Dormann, Carsten F., Jane Elith, Sven Bacher, Carsten Buchmann, Gudrun Carl, Gabriel 
Carré, Jaime R. García Marquéz et al. “Collinearity: a review of methods to deal 
with it and a simulation study evaluating their performance.”Ecography 36, no. 1 
(2013): 027-046.

 Florida, Richard, “What Is It Exactly That Makes Big Cities Vote Democratic?” Feb 19, 
2013, http://www.theatlanticcities.com/politics/2013/02/what-makes-some-cities-
vote-democratic/4598/ (accessed July 08, 2014).

Greene, William H., Econometric Analysis. 7th Edition, Upper Saddle River, N.J: Prentice 
Hall, 2012.

Haire, Ashley, and Randy Machemehl, “Impact of rising fuel prices on US transit 
ridership.” Transportation Research Record: Journal of the Transportation 
Research Board 1992, no. 1 (2007): 11-19.

Kain, John F., and Zvi Liu, “Secrets of success: assessing the large increases in transit 
ridership achieved by Houston and San Diego transit providers.” Transportation 
Research A, 33 (1999): 601–624.

Keyes, Dale L., “Energy for travel: The influence of urban development patterns.” 
Transportation Research 16A, 1, (1982): 65-70. 

Korkki, Phyllis, “When gas prices lead to roads less traveled.” New York Times, June 15, 
2008. http://www.nytimes.com/2008/06/15/business/15count.html?_r=0 (accessed 
July 17, 2014).

Lane, Bradley W., “The Relationship Between Recent Gasoline Price Fluctuations and 
Transit Ridership in Major U.S. Cities.” Journal of Transport Geography, Vol. 18, 
No. 2, (2010): 214–225.

Li, Shanjun, Christopher Timmins, and Roger Von Haefen, “How Do Gasoline Prices 
Affect Fleet Fuel Economy?” American Economic Journal: Economic Policy 1, 
(2009): 113–37.

Litman, Todd, “Transit price elasticities and cross-elasticities.” Journal of Public 
Transportation, 7(2), (2004): 37-58.

Linn, Shanjun, and Thomas Klier, “Gasoline Prices and the Demand for New Vehicles: 
Evidence from Monthly Sales Data.” American Economic Journal: Economic 
Policy 2, no. 3 (2010): 134-153.

Maley, Donald W., and Rachel Weinberger, “Rising Gas Prices and Transit Ridership 
Case Study of Philadelphia.” Transportation Research Record, Journal of the 
Transportation Research Board 2139, no. 1 (2009): 183-188.

http://www.theatlanticcities.com/politics/2013/02/what-makes-some-cities-vote-democratic/4598/
http://www.theatlanticcities.com/politics/2013/02/what-makes-some-cities-vote-democratic/4598/
http://www.nytimes.com/2008/06/15/business/15count.html?_r=0


Mineta Transportat ion Inst i tute

123
Bibliography

Mattson, Jeremy, “Effects of Rising Gas Prices on Bus Ridership for Small Urban and 
Rural Transit Systems.” Small Urban and Rural Transit Center, Upper Great Plains 
Transportation Institute, North Dakota State University, (2008).

Nowak, William P., and Ian Savage, “The cross elasticity between gasoline prices and 
transit use: Evidence from Chicago.” Transit Policy, 29, (2013): 38-45.

Pucher, John and John Renne. “Rural Mobility and Mode Choice: Evidence from the 
2001 National Household Transportation Survey,” Transportation, 32.3 (2005): 
165-186.

Pucher, John and John Renne. “Socioeconomics of Urban Travel: Evidence from the 
2001 NHTS,” Transportation Quarterly, Vol. 57. No. 3 (2003): 49-77.

Storchmann, Karl, “The impact of fuel taxes on public transport––an empirical 
assessment for Germany.” Transport Policy 8 (1), (2001): 19–28.

Stover, Victor W., and C. H. Christine Bae, “Impact of Gasoline Prices on Transit 
Ridership in Washington State.” Transportation Research Record, Vol. 2217, 
(2011): 11-18.

Taylor, Brian D., Douglas Miller, Hiroyuki Iseki, and Camille Fink, “Nature and/or Nurture? 
Analyzing the determinants of transit Ridership across US Urbanized Areas.” 
Transportation Research Part A, 43, (2009): 60-77.

U.S. Census Bureau, 2010-2012 American Community Survey 3-Year Estimates.

Wooldridge, Jeffrey W., Econometric Analysis of Cross Section and Panel Data, Second 
Edition, MIT Press, 2010.

Yanmaz-Tuzel, Ozlem and Kaan Ozbay, “Impacts of Gasoline Prices on New Jersey 
Transit Ridership.” Transportation Research Record: Journal of Transportation 
Research Board, 2144, no. 1 (2010): 52-61.



Mineta Transportat ion Inst i tute

124

ABOUT THE AUTHORS

HIROYUKI ISEKI, PhD

Dr. Iseki is an Assistant Professor of Urban Studies and Planning and a research faculty at 
the National Center for Smart Growth Research and Education of University of Maryland, 
College Park. His research and teaching interest includes transportation economics and 
finance, public transit planning and management, travel behavior analysis and modeling, 
sustainable transportation, regional transportation planning, and applications of GISs to 
research and practice in public policy and planning. He earned an MA and a PhD. in 
Urban Planning from University of California, Los Angeles. For more information, see 
http://www.arch.umd.edu/ursp/faculty/hiroyuki-iseki and http://www.smartgrowth.umd.edu/
hiseki.html.

RUBABA ALI

Rubaba Ali is a PhD candidate at the department of Agricultural and Resource Economics 
at the University of Maryland, College Park. Her research interests include impact of 
transport infrastructure on agricultural and non-agricultural sectors and overall welfare in 
developing countries. She conducts research on energy and transport-related issues in 
developing and developed countries. She received master’s degrees in Economics and 
Agricultural and Resource Economics from the University of Maryland, and undergraduate 
degrees in Mathematics and Economics from Bard College.



Mineta Transportat ion Inst i tute

125

PEER REVIEW

San José State University, of the California State University system, and the MTI Board of 
Trustees have agreed upon a peer review process required for all research published by 
MTI. The purpose of the review process is to ensure that the results presented are based 
upon a professionally acceptable research protocol.

Research projects begin with the approval of a scope of work by the sponsoring entities, 
with in-process reviews by the MTI Research Director and the Research Associated Policy 
Oversight Committee (RAPOC). Review of the draft research product is conducted by the 
Research Committee of the Board of Trustees and may include invited critiques from other 
professionals in the subject field. The review is based on the professional propriety of the 
research methodology.



The Norman Y. Mineta International Institute for Surface Transportation Policy Studies was established by Congress in the 
Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA). The Institute’s Board of Trustees revised the name to Mineta 
Transportation Institute (MTI) in 1996. Reauthorized in 1998, MTI was selected by the U.S. Department of Transportation 
through a competitive process in 2002 as a national “Center of Excellence.” The Institute is funded by Congress through the 
United States Department of Transportation’s Research and Innovative Technology Administration, the California Legislature 
through the Department of Transportation (Caltrans), and by private grants and donations. 

The Institute receives oversight from an internationally respected Board of Trustees whose members represent all major surface 
transportation modes. MTI’s focus on policy and management resulted from a Board assessment of the industry’s unmet needs 
and led directly to the choice of the San José State University College of Business as the Institute’s home. The Board provides 
policy direction, assists with needs assessment, and connects the Institute and its programs with the international transportation 
community.

MTI’s transportation policy work is centered on three primary responsibilities:

MINETA TRANSPORTATION INSTITUTE

Research 
MTI works to provide policy-oriented research for all levels of 
government and the private sector to foster the development 
of optimum surface transportation systems. Research areas in-
clude: transportation security; planning and policy development;  
interrelationships among transportation, land use, and the 
environment; transportation finance; and collaborative labor-
management relations. Certified Research Associates conduct 
the research. Certification requires an advanced degree, gener-
ally a Ph.D., a record of academic publications, and profession-
al references. Research projects culminate in a peer-reviewed 
publication, available both in hardcopy and on TransWeb, 
the MTI website (http://transweb.sjsu.edu). 

Education  
The educational goal of the Institute is to provide graduate-lev-
el education to students seeking a career in the development 
and operation of surface transportation programs. MTI, through 
San José State University, offers an AACSB-accredited Master of 
Science in Transportation Management and a graduate Certifi-
cate in Transportation Management that serve to prepare the na-
tion’s transportation managers for the 21st century. The master’s 
degree is the highest conferred by the California State Uni-
versity system. With the active assistance of the California

Department of Transportation, MTI delivers its classes over 
a state-of-the-art videoconference network throughout 
the state of California and via webcasting beyond, allowing 
working transportation professionals to pursue an advanced 
degree regardless of their location. To meet the needs of 
employers seeking a diverse workforce, MTI’s education 
program promotes enrollment to under-represented groups. 

Information and Technology Transfer 
MTI promotes the availability of completed research to 
professional organizations and journals and works to 
integrate the research findings into the graduate education 
program. In addition to publishing the studies, the Institute 
also sponsors symposia to disseminate research results 
to transportation professionals and encourages Research
Associates to present their findings at conferences. The 
World in Motion, MTI’s quarterly newsletter, covers 
innovation in the Institute’s research and education pro-
grams. MTI’s extensive collection of transportation-related 
publications is integrated into San José State University’s 
world-class Martin Luther King, Jr. Library. 

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the information presented
herein. This document is disseminated under the sponsorship of the U.S. Department of Transportation, University Transportation Centers 
Program and the California Department of Transportation, in the interest of information exchange. This report does not necessarily
reflect the official views or policies of the U.S. government, State of California, or the Mineta Transportation Institute, who assume no liability 
for the contents or use thereof. This report does not constitute a standard specification, design standard, or regulation.

DISCLAIMER

MTI FOUNDER 
Hon. Norman Y. Mineta

MTI BOARD OF TRUSTEES
Thomas Barron (TE 2015)
Executive Vice President
Strategic Initiatives
Parsons Group

Joseph Boardman (Ex-Officio)
Chief Executive Officer
Amtrak

Donald Camph (TE 2016)
President
Aldaron, Inc.

Anne Canby (TE 2014)
Director
OneRail Coalition

Grace Crunican (TE 2016)
General Manager
Bay Area Rapid Transit District

William Dorey (TE 2014)
Board of Directors
Granite Construction, Inc.

Malcolm Dougherty (Ex-Officio)
Director
California Department of 
Transportation

Mortimer Downey* (TE 2015)
Senior Advisor
Parsons Brinckerhoff

Rose Guilbault (TE 2014)
Board Member
Peninsula Corridor Joint Powers 
Board (Caltrain)

Ed Hamberger (Ex-Officio) 
President/CEO
Association of American Railroads

Steve Heminger (TE 2015) 
Executive Director
Metropolitan Transportation 
Commission

Diane Woodend Jones (TE 2016) 
Principal and Chair of Board
Lea+Elliot, Inc.

Will Kempton (TE 2016) 
Executive Director
Transportation California

Jean-Pierre Loubinoux (Ex-Officio) 
Director General
International Union of Railways 
(UIC)

Michael Melaniphy (Ex-Officio) 
President & CEO
American Public Transportation 
Association (APTA)

Jeff Morales (TE 2016)
CEO
California High-Speed Rail Authority

David Steele, PhD (Ex-Officio) 
Dean, College of Business
San José State University

Beverley Swaim-Staley (TE 2016) 
President
Union Station Redevelopment 
Corporation

Michael Townes* (TE 2014)
Senior Vice President
National Transit Services Leader
CDM Smith

Bud Wright (Ex-Officio)
Executive Director
American Association of State 
Highway and Transportation Officials 
(AASHTO)

Edward Wytkind (Ex-Officio)
President
Transportation Trades Dept.,  
AFL-CIO

(TE) = Term Expiration or Ex-Officio
* = Past Chair, Board of Trustee

Asha Weinstein Agrawal, PhD
Urban and Regional Planning 
San José State University

Jan Botha, PhD
Civil & Environmental Engineering 
San José State University

Katherine Kao Cushing, PhD
Enviromental Science 
San José State University 

Dave Czerwinski, PhD
Marketing and Decision Science 
San José State University

Frances Edwards, PhD
Political Science 
San José State University

Taeho Park, PhD
Organization and Management 
San José State University

Diana Wu
Martin Luther King, Jr. Library 
San José State University

Founder, Honorable Norman 
Mineta (Ex-Officio)
Secretary (ret.), US Department of 
Transportation
Vice Chair
Hill & Knowlton, Inc.

Honorary Chair, Honorable Bill 
Shuster (Ex-Officio)
Chair
House Transportation and 
Infrastructure Committee
United States House of 
Representatives

Honorary Co-Chair, Honorable 
Nick Rahall (Ex-Officio)
Vice Chair
House Transportation and 
Infrastructure Committee
United States House of 
Representatives

Chair, Stephanie Pinson 
(TE 2015)
President/COO
Gilbert Tweed Associates, Inc.

Vice Chair, Nuria Fernandez 
(TE 2014)
General Manager/CEO
Valley Transportation  
Authority

Executive Director, 
Karen Philbrick, PhD
Mineta Transportation Institute
San José State University

Directors
Karen Philbrick, PhD
Executive Director

Hon. Rod Diridon, Sr.
Emeritus Executive Director

Peter Haas, PhD
Education Director

Donna Maurillo
Communications Director 

Brian Michael Jenkins
National Transportation Safety and 
Security Center  

Asha Weinstein Agrawal, PhD
National Transportation Finance Center

Research Associates Policy Oversight Committee



Net Effects of Gasoline Price 
Changes on Transit Ridership 
in U.S. Urban Areas

MTI Report 12-19

Funded by U.S. Department of 
Transportation and California 
Department of Transportation

M
T

I


	MTI Report 12-19

	Table of Contents

	Executive Summary
	Introduction
	Literature Review
	Effects of Geographic Location and Scale on Gasoline Price Elasticity
	Variation in Gasoline Price Elasticity by Transit Mode
	Variation in Gasoline Price Elasticity by Trip Characteristic
	Non-constant Elasticity of Gasoline Price
	Lagged Effects of Gasoline Price Changes
	Discussion of Omitted Variables
	Endogeneity between Transit Service Supply and Ridership
	Summary of Literature Review

	Analytical Methodology
	Baseline Specification
	Model for Instrumental Variables Method
	Model for Testing Short- and Long-term Effects
	Model for Testing Non-constant Elasticity
	Methodological Approaches Specific to this Study

	Data and Data Sources
	Analysis Results
	Baseline Specification Model Results
	Instrumental Variables Model Results
	Short- and Long-term (Lagged) Effects of Gasoline Prices
	Analysis of Non-constant Elasticities

	Summary of Results, Discussion,
and Conclusion
	Appendix A: Annotated Bibliography
	Appendix B: Retail Gasoline Price and Unlinked Passenger Trips for Bus
	Appendix C: Correlation Using Data from All Years
	Appendix D: More Parsimonious Instrumental Variables (IV) Specifications
	Appendix E: Impact of Gasoline Prices and Other Factors
on Transit Ridership in Five Transit Systems: A Time-series Analysis
	Purpose of Study
	Selection of Transit Systems, Data, and Data Sources
	Study Procedures
	Discussion of Time-series Analysis Results

	Abbreviations and Acronyms
	Endnotes
	Bibliography
	About the Authors
	Peer Review

