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EXECUTIVE SUMMARY

As part of the Mineta Transportation Institute’s (MTI's) continuing research effort on high-
speed rail (HSR) security and safety, this report presents an analysis of information relating
to attacks, attempted attacks, and plots against HSR systems.

While terrorist attacks aimed at trains and buses have increased over the past several
decades, very few attacks have targeted HSR. To gain possible insights into the
consequences of successful terrorist attacks against HSR, this inquiry includes accidents
and other HSR incidents that have resulted in injuries, fatalities, or extensive asset damage.
The authors also reviewed security at selected HSR systems in Europe and Japan to
identify measures that could be applied to HSR systems currently under development in
the United States. These three lines of inquiry are used in this report to develop an overall
strategy for HSR security.

PART I—SECURITY PRINCIPLES AND MEASURES

Almost any discussion of security causes many HSR proponents to bristle. They worry
not only that mere mention of the issue will invite proposals for security regimes or heavy-
handed government edicts that will interfere with fast, convenient rail travel but that even
talking about terrorist threats might somehow undermine campaigns to win support for
new HSR systems.

However, The subject of security need not create adversaries, and the right time to initiate
a discussion is now, as new HSR systems are being designed and built. This report is
intended to inform that discussion by addressing the following questions:

1. Does HSR Merit More Security or Different Security Measures than Other
Passenger Rail?

HSR creates opportunities to improve security. Like airports, most railway stations were built
decades before security became a major concern and had to be modified and retrofitted
for security. HSR expansion in the United States will bring about the construction of new
stations, right-of-ways (ROWSs), and rolling stock and therefore represents an opportunity
to design and build in security at the beginning.

Some argue that HSR merits more security, for a number of reasons. They contend that
HSR is an iconic target, making it more attractive to terrorists than non-HSR. It is true that
visually and symbolically, HSR trains are much like the streamliners and famous named
passenger trains of the 1930s and 1940s. But new Metro lines are also modern in looks
and have an iconic quality. As high-speed trains become more common and operate simply
as faster commuter trains, their iconic premium will diminish.

It is also argued that derailed high-speed trains would result in more casualties. The data
show that HSR derailments can be disastrous, but the average number of casualties in the
data is driven by just two accidents and one case of sabotage.
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HSR trains carry an elite passenger load. True now, but this feature will diminish as HSR
becomes more common and serves growing numbers of ordinary commuters.

Finally, the construction of HSR systems could provoke opposition from some members
of local communities who might be tempted to take disruptive action. HSR systems may
face local opposition from those who may see them as threats to their local community. In
Europe, anarchists and malicious pranksters have disrupted HSR.

But HSR also has characteristics that make it less attractive to terrorists. Passenger
loads on HSR trains, per car and per train, are typically less than those on slower-speed
commuter or intercity trains, reducing the chances of replicating the high body counts
achieved in the worst terrorist attacks on such systems.

Reservations and advance ticket sales for HSR travel create opportunities for identity
checks. Unlike regional or commuter rail, HSR usually has all-reserved seating, which
requires making an advanced booking. However, this practice may not be followed where
HSR serves as commuter rail.

Exclusive HSR ROWSs, often fenced, hard roadbed, and seamless rail construction reduce
the vulnerability of the tracks to unauthorized intentional access and increase the chances
of detection of sabotage.

2. Is it Appropriate to Consider Reducing Security for Passenger Rail?

If the expansion of HSR offers an opportunity to examine security enhancements, it should
also be an occasion to have a sensible discussion about risk to all rail passengers—HSR
and non-HSR. Security should not become a ratchet where the current level becomes the
norm and can only be increased.

In the past 40 years, only one person in the United States died as a consequence of a
terrorist attack on a rail target—the 1995 derailment of the Sunset Limited. Nevertheless,
the long-term increase in the number and lethality of terrorist attacks on trains and buses
worldwide argues for continued security measures. Between 9/11 and December 31, 2012,
2,190 terrorist or serious criminal attacks were made against public surface transportation,
resulting in 4,304 fatalities. Of these attacks, 870 were against rail targets, resulting in
1,362 fatalities.

In addition to those attacks, 15 terrorist plots that we know about against rail passengers
either failed or were foiled by authorities. While most of these plots were interrupted in their
early planning stages, they were intended to Kill in quantity.

Just as it is hard to make the case that HSR requires more security than non-HSR, it is
difficult to argue that HSR requires less security. An argument can be made that some of
the security measures currently in place for all passenger rail are unnecessary, but that
is an argument about rail security in general, not about the differences between HSR and
non-HSR.
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3. What Threats Drive Security Concerns?

Security for passenger rail is driven by both actual and anticipated events:
» Improvised explosive devices (IEDs) detonated on board trains or at stations
» An active shooter or multiple shooters on board a train or at stations

» Attempts to derail trains by sabotaging the tracks with IEDs, using mechanical
means, or placing obstacles on the tracks

 Disruption of traffic by attacking cables or signaling systems, bomb threats, or other
means

4. What Can Be Learned from HSR Security in Europe and Japan?

Special security measures are in effect for the Eurostar trains that run between London
and Paris and Brussels. These measures initially reflected concerns about the terrorist
campaign being conducted by the Irish Republican Army (IRA), which was active in the
United Kingdom (UK) during the construction of the tunnel under the English Channel.
Preventing illegal immigration to the UK is also an important concern.

Terminals for the Eurostar have dedicated platforms, separated from the stations’ other
platforms. Eurostar passengers enter through a special entrance inside the station,
where luggage is x-rayed and passengers are screened. Passport control and customs
inspections are completed at the boarding station so that upon arrival, passengers merely
disembark.

Other high-speed trains are treated the same as ordinary passenger trains—there is no
passenger or luggage screening or other security checks, even for cross-border trains,
although random ticket or ID checks can occur on board some trains. Countries within the
Schengen space operate on the principle of free circulation and reflect the general attitude
that without new technologies that do not yet exist, any form of passenger screening would
delay travel times and, given current threat assessments, are unwarranted.

Passengers on some high-speed trains must have their ID confirmed, and their baggage
is scanned. Selected passengers may be subjected to a personal search. Spain also has
ticket controls at the platform entrance.

German authorities have not mandated passenger or luggage screening for HSR trains.
Germany has no dedicated high-speed corridors or platforms, so HSR is fully integrated
into the national rail system, making it virtually impossible to separate HSR from non-HSR
passengers. Germany relies primarily on surveillance, utilizing both uniformed guards and
closed-circuit television (CCTV) at train stations.

Following the terrorist bomb attacks on London’s tube in 2005, British officials carried out
trials to test the feasibility of mass passenger screening. They found that while riders were
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generally positive about the need for security, they were unwilling to accept major delays
or the loss of privacy that came with screening. Despite the continuing high terrorist threat
level, the Department of Transport concluded that airport-style screening of all rail and
underground passengers was not possible with the technology available.

European countries—in particular, the UK, France, and Germany—make extensive use
of CCTV. In addition, armed police are deployed at train and subway stations and on the
trains. New stations such as the station in Avignon, France, and the stations along the new
Meteor Metro line in Paris, are designed to facilitate surveillance. They have open spaces,
have no dim corners, and are well lit.

As for track security, HSR ROWSs are fenced along their entire length. Level crossings are
not permitted. Bridges over the lines have sensors to detect objects that fall or that may
be thrown onto the tracks. In the 1990s in France, early-morning sweeper trains were
dispatched before passenger traffic began.

There are no screening procedures for passengers boarding high-speed or other trains in
Japan. After the 1995 sarin attacks on Tokyo’s subways, CCTV surveillance was increased
and surveillance cameras were installed on board trains to keep passengers “feeling
secure.”

In sum, with the exception of the Eurostar and some longer-distance trains in Spain, there
are no separate security regimes for HSR trains in the European countries or in Japan.
HSR trains are generally integrated with non-HSR trains, precluding separate security
regimes.

Screening passengers and luggage, even on a random basis, as practiced on some rail
systems in the United States, generally has been rejected.

European authorities see the greatest vulnerability in the crowded metro and subway
stations and trains. European attitudes about the degree to which risk can be reduced
differ from those of Americans. Instead of passenger screening, European rail systems
rely on the presence of armed guards and extensive CCTV surveillance. Greater attention
is given to designing security into new stations than to passenger screening.

5. What Can Be Learned from Terrorist Attacks on HSR?

MTI's Database of Terrorist and Serious Criminal Attacks Against Public Surface
Transportation shows only 33 terrorist attacks on HSR targets, and there are some
interesting differences between attacks on HSR and those on non-HSR targets.

The percentage of non-HSR attacks involving bombs is higher than that of HSR attacks,
but the percentage of fatalities caused by bombs is lower. Track bombs designed to cause
derailments were far more frequent and far more lethal in HSR attacks than in non-HSR
attacks.
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The average fatalities per device (FPD) is higher for non-HSR targets (1.7) than for HSR
targets (1.1). Despite that, the FPD of track bombs used against HSR targets is higher
than that of track bombs used against non-HSR targets. The situation for passenger-
compartment bombs is dramatically reversed. The average FPD for these bombs
against non-HSR targets is almost three times that of bombs placed in HSR passenger
compartments.

The overall lethality rate of terrorist attacks on HSR targets, measured in fatalities per
attack, is significantly lower than that for attacks on non-HSR targets.

These poor results, from the terrorists’ perspective, suggest that HSR is not likely to be
the primary target of terrorists seeking high body counts. Terrorists bent upon slaughter
can more easily achieve their goal by attacking crowded subways and commuter trains,
as they have done.

The results of a successful derailment of an HSR train could theoretically match those
of a successful bombing of a crowded commuter train, but successful high-casualty
HSR derailments are rare. Only three of 11 attempted terrorist derailments of HSR trains
succeeded, and only one derailment caused by terrorists resulted in casualties of that
magnitude. (More details are provided in Part 1l of this Executive Summary.)

6. What Can Be Learned from Accidents Involving HSR?

Because of the fortunate paucity of attacks on HSR systems, our research was broadened
to include data from accidents involving HSR, which could provide additional information
about the possible consequences of potential future terrorist attacks and might also offer
insights into such attacks. Might terrorists, for example, try to exploit vulnerabilities revealed
by HSR accidents in an attempt to replicate them? Although this inquiry was not intended
to result in conclusions about safety itself, some conclusions emerged.

There has been, on average, one accident in every three operating years in the 12 countries
that have HSR and one fatal accident every 13 years—Iless than one fatality per operating
year.

The overall average is 2.4 fatalities per accident; the median is less than 1. And 101 of
the 167 fatalities occurred in a single accident in Germany, when a faulty wheel on a high-
speed train led to a disastrous derailment that hurled coaches into an abutment.

The most common accidents were collisions with vehicles at grade crossings—nine
incidents, two of which resulted in train derailments and a total of nine fatalities (seven in
the vehicles).

The most lethal events, on average, were the derailments. Of seven derailments, two
were disasters. The one in Germany and one in China that resulted in 40 fatalities account
for 91% of the fatalities. These two events, however, added to the two HSR derailments
caused by terrorists in Russia, one of which killed 27 people and injured 95 and the other
of which injured 60 people, may lead to terrorist perceptions that one way to achieve high
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body counts is by derailing high-speed trains. This is what Osama bin Laden may have
had in mind when he urged followers to derail passenger trains in the United States. (More
details on accidents are provided in Part Ill of this Executive Summary.)

7. Should HSR Passengers Go Through Security Screening?

Should all HSR passengers undergo screening like that of passengers boarding the
Eurostar, or should they board as other rail passengers do now?

There are a number of options for HSR security screening:

1. Anaviation-security model thatinvolves the rigorous screening of all HSR passengers
and their carry-on baggage for weapons and explosives.

2. An option that might be called “aviation security lite,” such as a Eurostar equivalent.
In such a model, 100% of HSR passengers would be screened but would undergo
a less-rigorous inspection.

3. Subjecting HSR passengers to the same measures as those currently used for some
non-HSR passengers. These include ID checks, explosives-detecting canines, and,
most important, “selective” passenger screening in which passengers are randomly
selected for voluntary screening.

4. Apurely theoretical but unlikely fourth option: The expansion of HSR systems in the
United States could be the occasion for a fundamental reassessment of risk, leading
to an overall reduction in all passenger rail security—for example, by eliminating
any attempts at passenger screening.

Imposing an aviation-security model on HSR passengers would be difficult and is
unnecessary. Very small quantities of explosives that can cause catastrophic airliner
crashes if smuggled on board cannot derail a train or cause catastrophic train crashes.
The same is true of firearms and other weapons. One can theoretically hijack a train, but
one cannot crash it into the side of a skyscraper. Weapons pose a danger to passengers
on board, but no more of a threat than that to persons at any other public venue.

Adopting 100% screening would have implications not only for passengers and screeners
but also for station design and construction, location of vendors at stations, even train
schedules. Screening must be carried out not only at a train’s initial departure point but
also at every stop along the entire route. This would require all boarding passengers to
pass through checkpoints at some point. It also would require the physical isolation of HSR
passengers from unscreened, non-HSR passengers.

All other entrants to the secure area would also have to be screened, and any security
breaches would have to be resolved before boarding is permitted. In a rail system, this
could cause delays along the entire route.
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Maintaining a separate security regime for HSR passengers would impede the integration
of HSR with other rail systems and transportation modes as well as the development of
HSR trains as commuter rail. Conversely, the smooth integration of HSR with regional,
commuter, and rail transit services in large terminals would make it more difficult to impose
a separate security regime for HSR passengers.

Imposing a robust passenger-screening regime would also undermine one of the major
attractions of HSR, its convenience: Trains run from city center to city center. There are
no commutes to and from airports. Passengers can easily bring their luggage on board.
There are no security delays. And HSR trains can provide convenient connections with
other modes of surface transportation without the need to change stations.

8. Would Increased Security for HSR Offer a Net Security Benefit to Public
Surface Transportation?

With finite resources, authorities are obliged to make decisions about the allocation
of security resources. Generally, such decisions address threat, vulnerability, and
consequences. One additional criterion is whether providing security for a specific target or
category of targets offers a net security benefit, that is, does it prevent terrorists from doing
something that they cannot do elsewhere with equal ease and similar consequences?

If the security measures have no effect other than obliging terrorists to select other public
spaces where they can expect to achieve the same results, there is no net security benefit.
For potential targets where the consequences of a successful attack could be catastrophic,
pushing terrorists to softer targets where the consequences are likely to be less provides
a net security benefit.

Unlike the situation in aviation, keeping weapons and bombs off HSR trains may do
little more than shift terrorist sights to ordinary trains and subways, which are already
well-established terrorist targets, or still other easily accessible targets outside of the
transportation sector. That may be good news for HSR passengers, but it offers virtually
no net security benefit to transportation users or society.

9. Where Should HSR Security Efforts Be Focused?

The data do not support the hypothesis that HSR passengers are in greater danger from
bombs smuggled on board high-speed trains than other passengers. Given the difficulty
of maintaining a separate security regime for HSR passengers (to say nothing about
sustaining the moral argument of treating HSR passengers as a special class), it may
make more sense to treat all rail passengers as a single class, allocating security resources
according to threat, not target category. This would mean putting the focus on the station
rather than the train.

Focusing on the station would match current security theory in Europe and Japan, where
HSR has become merely another component of an integrated passenger rail system.
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If there is an area where HSR merits special attention, it is along the ROW, where terrorists
have focused most of their action. Only through derailments can terrorists hope to achieve
the high body counts that have become a hallmark of contemporary terrorism. At the other
end of the spectrum, disruption of HSR traffic by placing fake devices or obstacles on the
tracks has become a mode of protest.

10. What are the Principles of an HSR Security Strategy?

+ HSR travel is safe. The most frequent sources of accidental casualties are
pedestrians on the tracks and accidents at grade crossings. Terrorists have attacked
HSR targets, but not with the frequency or lethality of their attacks on subways and
commuter trains.

» The construction of new HSR systems offers an opportunity to review rail security
for all connecting rail transportation systems—the goal is passenger security, not
just HSR passenger security.

» Preventing attacks is difficult but not the only goal of security. Facilitating emergency
response and rapid restoration of service should also be considered.

* Intelligence efforts have been critical in stopping terrorist plots, but they cannot foil
every attempt. Physical security measures offer some deterrent value. They can
discourage some of the less-competent attackers and complicate planning for the
higher-end terrorists.

* Since HSR will be connected to non-HSR systems and in many systems is
envisioned to function as high-speed commuter transit, separate, more-stringent
security regimes for HSR will be the exception.

* Any special security measures adopted for HSR trains should provide a net security
benefit, not merely displace the risk to non-HSR trains and passengers.

» Security measures may focus on the station rather than a particular component
of transportation in the station. New or renovated stations should be designed not
only to facilitate security but also to accommodate future security environments,
including temporary increases in security and developments in security technology.

» Security measures at stations and prior to boarding should anticipate heightened
security situations.

» Security resources should be allocated to save lives, not protect one category of
trains or passengers.

* An aviation-security model of 100% passenger inspection does not appear feasible
with today’s technology.
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* Random screening for both HSR and non-HSR passengers is used increasingly
and appears generally acceptable.

* The apparent propensity of terrorists to attack the rails of HSR lines suggests that
rail security measures should be given close attention.

» Disruptions caused by objects on the tracks, false signals, and threats requiring
inspections and patrolling also should be considered in security planning.

» Given the importance of train control and signaling in HSR systems, cyber security
must also be given appropriate attention.

PART II—TERRORIST ATTACKS ON HIGH-SPEED RAIL

An empirical examination of the MTI Database of Attacks on Public Surface Transportation
between 1970 and 2012 reveals the following: (1) There were 33 attacks, in which 32
people were killed, against HSR targets, including trains, tracks and infrastructure; twenty-
four (72.7%) of these attacks involved 29 IEDs, improvised incendiary devices, or other
explosives, such as mines. Most of the devices were placed on a track or bridge, or in a
tunnel. One of them, a 7- to 8-kg (15- to 18-Ib) charge, caused the derailment of a high-
speed train in Russia, killing 27 people.

There are important differences between these attacks and the 1,510 devices used in
1,283 attacks against non-HSR targets, which include all passenger trains (intercity,
subway, etc.), stations, tracks, and other infrastructure.

First, while the percentage of non-HSR attacks involving devices is slightly higher than
for HSR attacks, they account for a much lower percentage of fatalities: 76.1% instead of
100%.

Second, comparing the percentage of devices placed on railway tracks, in tunnels, and on
bridges to the percentage of those placed in the passenger compartment of trains reveals
that track bombs account for 59% of all devices used against non-HSR targets and 76%
for HSR targets, while the percentage of devices placed in passenger compartments is
roughly the same.

Third, although the overall FPD for HSR attacks (1.1) is lower than that for non-HSR
attacks (1.7), the lethality of HSR track bombs is higher (1.2 vs. 0.9); this lethality is slightly
higher (9%) than the HSR average and much lower (47%) than the non-HSR average.
The situation is strikingly different for passenger-compartment devices. In HSR attacks the
FPD is 1.7, whereas it is 4.5 for non-HSR targets; while this is 54% higher than the HSR
overall average, the non-HSR FPD is 165% higher than the overall average.

Fourth, devices designed to cause derailments were used far more often in HSR attacks
(33%) than in non-HSR attacks (8.9%), and they were considerably more lethal (accounting
for 85% of the HSR fatalities, as opposed to 19%).
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Overall, the slightly lower lethality of HSR attacks relative to non-HSR attacks suggests
that HSR may not be the primary target of terrorists seeking high body counts. However,
they could detonate bombs in HSR stations or platforms or attempt HSR derailments,
although the rigid coupling of HSR trains makes a successful derailment more difficult to
achieve. In addition to focusing on stations, those charged with security should also focus
on tracks and supporting infrastructure (electrical supply, overhead wires), where devices
could be lethal, or the instruments of low-level attacks aimed at disrupting HSR systems.

PART [lI—HIGH-SPEED RAIL ACCIDENTS AND THEIR SECURITY
IMPLICATIONS

Safety incidents on 12 HSR systems in Western Europe, East Asia, and the United States
reveal vulnerabilities and provide insights into to the possible consequences of terrorist
attacks. Of 73 HSR safety incidents, 35 resulted in injury or death to passengers, crew, or
others. Seventeen resulted in one or more fatalities, for a total of 167 deaths. The two most
deadly accidents caused 84% of the fatalities (101 and 40 deaths).

Most of the accidents in HSR operations have involved obstructions on the ROW, with
vehicular grade crossings topping the list. The remaining incidents most often involved
equipment malfunctions attributed to flaws in the engineering and/or construction phases
of rolling stock or infrastructure. Over time, the HSR industry has introduced and/or refined
a wide array of safety features that have significantly reduced the number of injuries and
fatalities and the amount of damage, particularly in comparison with other passenger train
operations such as densely crowded commuter trains.

The design of an HSR trainset’s between-car connections plays the most significant role in
the severity of an incident. The more atrain, by design, stays linear and uprightin a collision
or derailment, the better the life-safety conditions. Steps to address crashworthiness have
also improved safety. In the United States, all revenue equipment must be built to comply
with Federal Railroad Administration (FRA) crashworthiness standards, which are typically
much more stringent than those in other countries.

Reducing the number of grade-crossings or completely eliminating them is the most
significant step HSR operators can take to reduce collision hazards. The potential for
vehicles, equipment, pedestrians and livestock to venture on to the ROW, outside of public
crossings, must also be addressed. Advancements in isolating HSR ROW and installing
systems to prevent and/or detect accidental or intentional intrusion not only reduce
accidents but also enhance security measures, particularly in areas of critical vulnerability.

The HSR safety record in Europe and Asia clearly reveals that high numbers of injuries
and deaths occur when HSR trains collide with other trains or massive objects and that
specific locations or design features of the infrastructure put rail passengers at greater risk
of catastrophic consequences should an incident occur. However, these vulnerabilities are
not unique to HSR. Intercity, commuter, and heavy rail all operate in the same or similar
environments. Formulating a strategy for securing HSR in the United States, separate and
apart from the rest of the passenger and even freight rail network, is not warranted solely
because of the greater speed of HSR trains.
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INTRODUCTION

As part of the Mineta Transportation Institute’s (MTI's) continuing research effort on high-
speed rail (HSR) security and safety, this report presents an analysis of information relating
to attacks, attempted attacks, and plots against HSR systems.

While terrorist attacks aimed at trains and buses have increased over the past several
decades, very few attacks have targeted HSR. To gain possible insights into the
consequences of successful terrorist attacks, this inquiry includes accidents and other
incidents that have resulted in injuries, fatalities, or extensive asset damage on HSR.
The consequences of major accidents might also affect terrorists’ perceptions and
decisionmaking.

The authors reviewed security at selected HSR systems in Europe and Japan to identify
measures that could be applied to HSR systems currently under development in the United
States.

These three lines of inquiry—data from accidents, terrorist attacks, and existing security
measures—are used in this report to develop an overall strategy for HSR security.

Objective of the Research
The objective of the research is not to dictate security regimes, but to:

+ Distill lessons from the history of accidents and terrorist attacks

* Review security measures at existing HSR systems

» Explore security-regime options

» Suggest principles for an overall security strategy
An Empirical Approach
The approach is empirical. The authors analyzed data on all attacks against HSR targets
recorded in the MTI Database of Terrorist and Serious Criminal Attacks Against Public
Surface Transportation, beginning in 1970. They also analyzed HSR accident data to
identify patterns in event types and outcomes, particularly lethality and injuries, damage,
and service disruption. They sought to ascertain which events produced outcomes that
would be attractive to a potential attacker and that terrorists might attempt to create or
initiate.
The accident analysis focused on incidents since 1966 that occurred in the United States,
Asia, and Europe. Since that year, HSR systems have expanded rapidly, especially in

Europe, which currently hosts HSR operations that are well established and analogous to
U.S. operations.
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What is High-Speed Rail?

High-speed rail is a malleable term. For the purpose of this inquiry, it comprises systems
with the following characteristics:

» Trains designed for sustained operation at or above 200 kph (125 mph)

» Trains that provide service between population centers or urbanized areas, with
limited interim stops

» Trainsthattypically use semi-permanently connected sets of power cars, locomotives,
and coaches of various configurations

* Rights-of-way (ROWS) that are grade-separated; that have limited, if any, level
crossings with roads or other railroads; and that have access barriers

» Trains that have dedicated-use ROWSs, particularly outside of terminals

+ Trains that most often use overhead, constantly tensioned catenary to supply power
to locomotives and power cars

» Systems that use some type of automatic train control (ATC) or positive train control
(PTC) with line-side and cab signals

Criteria for Incidents Analyzed

Accidents, attacks, attempted attacks, and plots that involved HSR operations or equipment
(either moving or stationary in a train station or in a storage or service yard) were defined
as HSR incidents, attacks, or attempted attacks.

Accidents, attacks, or threats involving tracks or ROWSs used exclusively by HSR trains
were deemed HSR events.

Attacks or attempted attacks against ROWs that host HSR service along with other
passenger and/or freight rail equipment/operations, unless their true intent or target choice
was specifically identified as a non-HSR asset, were also classified as HSR events.

Organization of the Report

The report has three chapters. Chapter | discusses security measures abroad and offers
security principles. Chapter Il reviews terrorist attacks on HSR and their implications for
security. Chapter Il reviews HSR accidents and their implications for HSR security. In
addition, Appendix A provides details of HSR incidents in Europe, Asia, and the United
States. Finally, Appendix B discusses current best security practices.
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|. SECURITY PRINCIPLES AND MEASURES

Almost any discussion of security causes many HSR proponents to bristle. They worry
not only that mere mention of the issue will invite proposals for security regimes or heavy-
handed government edicts that will interfere with fast, convenient rail travel but that even
talking about terrorist threats might somehow undermine campaigns to win support for
new HSR systems. In their view, no one who writes about security can be trusted to do
anything but cause trouble.

In fact, however, the subject of security need not create adversaries, and the right time to
initiate a discussion is now, as new HSR systems are being designed and built. This report
is intended to inform that discussion by addressing the following questions:

1. Does HSR merit more security or different security measures than other passenger
rail?

2. lIs it appropriate to consider reducing security for passenger rail?
3. What threats drive security concerns?

4. What can be learned from HSR security in Europe and Japan?
5. What can be learned from terrorist attacks on HSR?

6. What can be learned from accidents involving HSR?

7. Should HSR passengers go through security screening?

8. Would increased security for HSR provide a net security benefit to public surface
transportation?

9. Where should HSR security efforts be focused?
10. What are the principles of an HSR security strategy?

1. Does HSR Merit More Security or Different Security Measures than Other
Passenger Rail?

HSR creates opportunities to improve security. The history of rail security measures is
similar to that of airport security. Most airports were designed and built before airline security
became a major consideration. The system at airports today is the accumulation of four
decades of security measures. Likewise, most railway stations were built decades before
security became a major concern and had to be modified and retrofitted for security. For
example, blast-resistant trash containers and lockers have been installed, bollards have
been deployed, and structural changes have been made to prevent or reduce the effects of
large vehicle bombs. HSR expansion in the United States will bring about the construction
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of new stations, ROWSs, and rolling stock and therefore represents an opportunity to design
and build in security at the beginning.

The fundamental question is, Does HSR merit more security or different security measures
than those in place for non-HSR? Some argue that HSR merits more security, for a number
of reasons:

* HSR is an iconic target, making it more attractive to terrorists than non-HSR.
* HSR is faster, so derailed high-speed trains would result in more casualties.

* HSR typically serves a customer base comprising the country’s government and
business leaders.

* The construction of HSR systems could provoke opposition from some members of
local communities who might be tempted to take disruptive action.

Is HSR iconic? Visually and symbolically, HSR trains are much like the streamliners and
famous named passenger trains of the 1930s and 1940s. In Europe and Asia, HSR is
seen as iconic of both national identity and economic status—a symbol of technological
achievement and national progress. But new Metro lines, such as those in Washington,
Atlanta, Barcelona, and London (the Heathrow Express), are also modern in looks and
have an iconic quality. Furthermore, old stations, including New York’s Grand Central and
Penn Stations, London’s Victoria Station, and Melbourne’s Flinders Street Station, as well
as new ones like France’s Avignon Station, also have iconic value. As high-speed trains
become more common and operate simply as faster commuter trains, their iconic premium
will diminish.

HSR trains do go faster, but does higher velocity lead to greater casualties? Accident data
from HSR offer a mixed picture—derailments can be disastrous, but the average number of
casualties in the data is driven by just two incidents, one in Germany and one in China. And
the majority of casualties in these incidents resulted from the design of the infrastructure.
In Germany, the derailing train knocked out the supports for an overpass, and the falling
concrete crushed train cars. In China, derailing cars fell 50 feet from a viaduct. Other HSR
derailments suggest that the rigid coupling of HSR trains impedes rolling over or jackknifing,
two major causes of derailment casualties. In the realm of terrorism, one incident in Russia
drives perceptions. In November 2009, saboteurs detonated an explosive charge under
the Nevsky Express that was powerful enough to blow one of the coaches into the air.
Twenty-seven persons were killed, and 95 were injured.

The fact that the Nevsky Express was popular with Russian politicians and businessmen
may have contributed to its being selected as a target. In addition to the November 2009
attack, it was bombed in August 2007, with 60 people being injured. HSR trains often
do carry an elite passenger load. Similarly, high-end hotels are selected as targets by
terrorists for both their iconic value and the fact that they are gathering places for visiting
and local elite. Again, however, this feature will diminish as HSR becomes more common
and serves growing numbers of long-distance commuters.
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HSR construction projects may arouse new adversaries. Some HSR systems will face
local opposition from those who may see fenced ROWSs or roadbeds resting on multistory
berms to create easy underpasses for vehicular traffic as threats to their local community. In
Europe, anarchists and malicious pranksters have disrupted HSR. A few extremists could
carry out acts of sabotage during the HSR construction phase or subsequent operations.

These actions are likely to take the form of vandalism or low-level sabotage aimed at
causing delay and disruption rather than death and destruction. Historical examples include
objects placed on rails, grappling hooks that tear down catenary wires, and sabotage of
power lines to the system. The security approach in the case of such incidents must be
rapid response and restoration.

It can also be argued that HSR has characteristics that make it less attractive to terrorists.
Passenger loads on HSR trains, per car and per train, are typically less than those on
slower-speed commuter or intercity trains, reducing the chances of replicating the high
body counts achieved in the worst terrorist attacks on such systems.

Reservations and advance ticket sales for HSR travel create opportunities for identity
checks. Unlike regional or commuter rail, HSR usually has all-reserved seating, which
requires making an advanced booking. However, this practice may not be followed where
HSR serves as commuter rail.

Exclusive HSR ROWSs, often fenced, reduce the vulnerability of the tracks to unauthorized
intentional access and increase the chances of detection of sabotage. (Exclusive ROWS,
however, also may reduce train frequency, increasing exposure to sabotage.)

Hard roadbed and seamless rail construction make rail sabotage harder to conceal. Attacks
on the French TGV in 1995 and two attacks on the Nevsky Express suggest that the high
speed of the trains makes sabotage more difficult but not impossible.

2. Is it Appropriate to Consider Reducing Security for Passenger Rail?

This seems like a radical question, but if the expansion of HSR offers an opportunity
to examine security enhancements, it should also be an occasion to have a sensible
discussion about risk to all rail passengers—HSR and non-HSR. Security should not
become a ratchet where the current level becomes the norm and can only be increased.

Most security measures are aimed at deterring or preventing ordinary crime—pickpocketing,
drunk or unruly passengers, armed assaults or robberies in stations or on board trains,
people being pushed onto the tracks from platforms, suicides, turnstile-jumping, vandalism
and other forms of property destruction, routine bomb threats. These measures will
continue. Anticrime measures such as the visible presence of security personnel, closed-
circuit television (CCTV) coverage, suspicious-activity reporting, and stations designed to
eliminate dim corners and narrow passageways where crimes may occur may also have
some deterrent effect on terrorists.
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Our focus here is on measures specifically intended to deter, detect, or prevent acts of
terrorism—bombings, armed assault, arson, and attempts to derail trains or disrupt traffic.
Antiterrorism security measures include the presence of more-heavily armed security
personnel, explosives-detection canines, monitoring or detection systems for chemical
or radiological materials, identity checks, passenger screening, and luggage inspection.
These measures are associated with air travel, causing some to fear the imposition of
aviation-style security on surface transportation, or at least high-speed trains. This last
issue is discussed in detail under Question 7 below.

In the past 40 years, only one person in the United States died as a consequence of a
terrorist attack on a rail target—the 1995 derailment of the Sunset Limited. Nevertheless,
the long-term increase in the number and lethality of terrorist attacks on trains and buses
worldwide argues for continued antiterrorism security measures. Between 9/11 and
December 31, 2012, 2,190 terrorist or serious criminal attacks were made against public
surface transportation, resulting in 4,304 fatalities. Of these attacks, 870 were against rail
targets, resulting in 1,362 fatalities.

In addition to those attacks, 15 terrorist plots that we know about against rail passengers
either failed or were foiled by authorities. While most of these plots were interrupted in their
early planning stages, they were intended to kill in quantity.

Just before his death, Osama bin Laden was urging followers to carry out attacks on
rail targets in the United States. He envisioned derailing speeding passenger trains. U.S.
authorities uncovered five terrorist plots against rail targets, all of which were directed
against passengers on subways or commuter trains. After devastating terrorist attacks on
trains in Madrid in 2004, where 191 persons died, and London in 2005, where 52 persons
died, and at least eight failed or foiled terrorist plots directed against rail since 9/11, Europe
has increased the presence of armed security personnel and CCTV coverage.

Just as it is hard to make the case that HSR requires more security than non-HSR, it is
difficult to argue that HSR requires less security. An argument can be made that some of
the security measures currently in place for all passenger rail are unnecessary, but that
is an argument about rail security in general, not about the differences between HSR and
non-HSR.

These circumstances make it difficult to argue for adopting a level of security for HSR that
is lower than that for non-HSR or for lowering the overall level of security for all passenger
rail systems. That does not prelude appropriate future reductions.

3. What Threats Drive Security Concerns?

Security for passenger rail is driven by both actual and anticipated events. Several
scenarios cause concern:

* Improvised explosive devices (IEDs) detonated on board trains or at stations. The
Madrid and London attacks and the 2006 bombing of a Mumbai commuter train,

Mineta Transportation Institute



Security Principles and Measures 17

which killed 207 people, are examples. Several of the terrorist plots interrupted in
the United States envisioned the use of IEDs.

» An active shooter or multiple shooters on board a train or at stations. In 1993, six
people were killed by a deranged gunman on board a Long Island commuter train,
and in 2008, two terrorists opened fire on passengers at Mumbai’s Central Rail
Terminal, killing 56 people.

» Attempts to derail trains by sabotaging the tracks with IEDs, using mechanical
means, or placing obstacles on the tracks. This is what Osama bin Laden had in
mind. The worst such case was the 2009 derailment of the Nevsky Express, in
which 27 people died.

 Disruption of traffic by attacking cables or signaling systems, bomb threats, or other
means.

4. What Can Be Learned from HSR Security in Europe and Japan?

There are no international or regional standards of security for rail systems, either HSR or
non-HSR. National operators of HSR systems impose their own security measures. The
European Union (EU) sees a need for harmonization of security practices but is not close
to regulation. The approach is likely to remain one of best practices selected by authorities
and operators to meet local needs.

Industry organizations such as the International Union of Public Transport (UIPT) and the
International Union of Railways (UIC) are in the process of reviewing security for passenger
rail, but they are not likely to issue standards. The UITP is cataloging best practices for all
passenger rail systems.

HSR Security in Europe

Special security measures are in effect for the Eurostar, the high-speed trains that run
between London and Paris and Brussels. These measures preceded 9/11 and initially
reflected concerns about the terrorist campaign being conducted by the Irish Republican
Army (IRA), which was active in the United Kingdom (UK) during the construction of the
tunnel under the English Channel.

While security of the train and tunnel were priority concerns, preventing illegal immigration
to the UK is also an important concern, and the Eurostar crosses the France-UK border.
The UK is not a member of the Schengen Agreement, which allows free circulation across
borders within the Schengen space, and is determined to prevent illegal immigration from
countries on the continent.

The French terminal for the Eurostar, the Gare du Nord, has dedicated platforms for it.
These are separated from the station’s other platforms by glass walls and high metallic
fences. Eurostar passengers enter through a special entrance inside the station, where
luggage is x-rayed and passengers are screened. The screening is much like pre-9/11
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airport security: Passengers do not have to remove their shoes, may carry unlimited
guantities of liquids and gels, and do not pass through body scanners.

Passport control and customs inspections, both French and British, are completed at the
boarding station so that upon arrival, passengers merely disembark. It is recommended
that passengers arrive at the station 45 minutes before scheduled departure to complete
these procedures.

Similar measures are in effect at the Gare du Midi in Brussels, the other Eurostar terminus
on the continent, and at St. Pancras Station in London, the British terminus. Tickets can
be purchased at these stations before departure, but this does not guarantee a reserved
seat on the train desired. That requires advance booking.

The Eurostar is unique in that it is the only HSR train in Europe to have special security
measures. All other high-speed trains are treated the same as other passenger trains—
there is no passenger or luggage screening or other security checks, even for cross-border
trains, although random ticket or ID checks can occur on board some trains. Countries
within the Schengen space operate on the principle of free circulation and reflect the general
attitude that without new technologies that currently do not exist, any form of passenger
screening would onerously delay travel times and, given current threat assessments, are
unwarranted.

The emphasis in European HSR is on convenience. In France, passengers on HSR (TGV)
trains have to check in only two minutes before departure. On other trains, passengers
merely need to be on board before the doors close.

Some HSR trains in Spain have security measures. Passengers on long-distance high-
speed trains must have their ID confirmed, and their baggage is scanned. Selected
passengers may be subjected to a personal search. Spain also has ticket controls at the
platform entrance. Still, passengers may arrive only minutes before departure without fear
of missing the train. Both armed police and private security guards patrol regional and
commuter trains in Spain.

German authorities have not mandated passenger or luggage screening for HSR trains.
Germany has no dedicated high-speed corridors or platforms, so HSR is fully integrated
into the national rail system, making it virtually impossible to separate HSR from non-HSR
passengers. German authorities also point out that the high-volume metro systems, not
the longer-distance trains, cause the greatest security concern. Germany relies primarily
on surveillance, utilizing both uniformed guards and CCTV at train stations.

Following the terrorist bomb attacks on London’s tube in 2005, officials at the British
Department of Transport carried out trials to test the feasibility of mass passenger screening.
They found that while riders were generally positive about the need for security, they were
unwilling to accept major delays or the loss of privacy that came with screening. Despite
the continuing high terrorist threat level, the Department of Transport concluded in 2008
that airport-style screening of all rail and underground passengers was not possible with
the technology then available.
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In 2012, Britain’s Home Office initiated a search for new and emerging technologies capable
of rapidly screening large numbers of passengers. If such technologies were available, they
could be deployed at major train and tube stations, with no special regime for HSR trains
other than the existing measures in place to protect the Eurostar. The technology would
be used to detect explosives, guns, and knives being carried by passengers themselves
or in their bags. However, the Home Office indicated that the screening must be achieved
without imposing any delay. Technologies to detect chemical and biological substances
are also being sought.

New stations such as the station in Avignon, France, and the stations along the new Meteor
Metro line in Paris, are designed to facilitate surveillance. They have open spaces, have
no dim corners, and are well lit. European countries—in particular, the UK, France, and
Germany—make extensive use of CCTV. Armed police are deployed at train and subway
stations and on the trains.

As for track security, HSR ROWs are fenced along their entire length. Level crossings are
not permitted. Bridges over the lines have sensors to detect objects that fall or that may
be thrown onto the tracks. In the 1990s in France, early-morning sweeper trains were
dispatched before passenger traffic began.

HSR Security in Japan

There are no screening procedures for passengers boarding high-speed or other trains in
Japan. After the 1995 sarin attacks on Tokyo’s subways, CCTV surveillance was increased
and surveillance cameras were installed on board trains to keep passengers “feeling
secure.”

Summary

There are no international standards for HSR trains, although common standards for rail
security are being discussed in the EU. With the exception of the Eurostar and longer-
distance trains in Spain, there are no separate security regimes for HSR trains in the
European countries reviewed for this study or in Japan. HSR trains are generally integrated
with non-HSR trains, precluding separate security regimes.

Screening passengers and luggage, even on a random basis, as practiced on some rail
systems in the United States, has been rejected in Europe, despite the attacks in Madrid
and London and other terrorist plots that have been uncovered. There is no passenger
screening in Japan.

The absence of security delays is viewed as a major attraction of rail travel. European
authorities see the greatest vulnerability in the crowded metro and subway stations and
trains. Despite a higher terrorist threat level, European attitudes about the degree to which
risk can be reduced differ from those of Americans. Instead of passenger screening,
European rail systems rely on the presence of armed guards and extensive CCTV
surveillance. Greater attention is given to designing security into new stations than to
passenger screening.
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5. What Can Be Learned from Terrorist Attacks on HSR?

According to the MTI Database of Attacks on Surface Transportation, through 2012, 33
terrorist attacks had been made on HSR targets, which include HSR trains and the tracks
and other infrastructure they use, all but one in Europe.

Although European countries have suffered terrorist campaigns, including deadly attacks
on passenger rail targets, for the most part, terrorism in Europe has not matched the
volume or high lethality of terrorist attacks in India, Pakistan, or Israel. The exception is
Russia, where terrorist attacks have resulted in large numbers of fatalities; a total of 32
persons in Russia have been killed in terrorist attacks on HSR.

Twenty-four of the 33 attacks (72.7%) involved bombs, but only three of the 29 IEDs, other
bombs, or improvised incendiary devices (l1IDs)! used in these 24 attacks were carried
on board and placed in passenger compartments. One of these resulted in five fatalities.
Twenty-two (75.9%) of the bombs were placed on a track, a bridge, or near a tunnel. One
of them, a 7- to 8-kg (15- to 18-Ib) charge, caused the derailment of the Nevsky Express.
None of the other attacks resulted in fatalities.

There are some interesting differences between terrorist attacks on HSR and those on
non-HSR targets. The non-HSR targets in this analysis included passenger trains (subway
trains, intercity or commuter trains, etc.), train stations, tracks, and other infrastructure to
ensure an accurate comparison with HSR attacks.2

The percentage of non-HSR attacks involving bombs is higher than that of HSR attacks,
but the percentage of fatalities caused by bombs is lower. A total of 1,283 attacks against
non-HSR targets killed 3,277 people. Of these attacks, 1,090 (85%) involved a total of
1,510 bombs (compared with 72.7% for HSR targets). Attacks involving bombs killed
2,495 people, or 76.1% of the total. By comparison, all of the fatalities in HSR attacks
were caused by bombs.

We compared the largest category of bomb attacks placed in the passenger compartment
recorded in the MTI database (“Concealed or Placed in Passenger Compartment,
Unspecified,” which we refer to as passenger-compartment bombs), with the placement
of bombs in or on railway tracks, tunnels, or bridges (which we refer to as track bombs).

The percentage of track bombs in non-HSR attacks was 58.9% (890 out of 1,510 devices);
in HSR attacks, the percentage was much higher, 75.9% (22 out of 29 devices). By
comparison, the percentage of passenger-compartment bombs was roughly the same:
11.5% (173 out of 1,510 devices) for non-HSR attacks and 10.3% (3 out of 29 devices) for
HSR attacks.

Track bombs designed to cause derailments were far more frequent and far more lethal
in HSR attacks than in non-HSR attacks. Eight (33.3%) of the 24 bomb attacks against
HSR targets were designed to cause derailments, and they resulted in 27 (84.4%) of the

1 In this report, the term bomb refers collectively to IEDs, 1IDs, mines, dynamite, and other explosives.
2 While attacks have been made against the outside and inside areas of non-HSR stations, there have
been none—so far —against stations in HSR transportation.
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32 fatalities. By comparison, only 97 (8.9%) of the 1,090 bomb attacks against non-HSR
targets were designed to cause derailments, and they caused only 475 (19.0%) of the
2,495 fatalities.

Finally, there are considerable differences between the numbers and lethality of track
bombs and passenger-compartment bombs for HSR and non-HSR targets. The numbers
of fatalities per device (FPD) are shown in Table 1.

Table 1. Fatalities Per Device in HSR and Non-HSR Bomb Attacks

Category All HSR Attacks All Non-HSR Attacks
All Bomb Attacks

Total # of Devices in Bomb Attacks 29 1,510

Overal Fatalities Per Device (FPD) 1.1 FPD 1.7 FPD
Bombs on Tracks

# of Track Bombs (% of All HSR or Non-HSR Bombs) 22 (75.9%) 890 (58.9%)

FPD of All HSR/Non-HSR Track Bombs 1.2 FPD 0.9 FPD
Greater/Less than Overall FPD 0.1 FPD higher (9.1%) 0.8 FPD lower (47.1%)
Bombs in Passenger Compartment

#/% of All Passenger Compartment Bombs 3 (10.3%) 173 (11.5%)

FPD of All Passenger Compartment Bombs 1.7 FPD 4.5 FPD
Greater/Less than Overall FPD 0.6 FPD higher (54.5%) 2.8 FPD higher (164.7% higher)

The average FPD is higher for non-HSR targets (1.7) than for HSR targets (1.1). Despite
that, the FPD of track bombs used against HSR targets is actually higher (1.2) than that
of track bombs used against non-HSR targets (0.9) and is higher for HSR targets (9.1%)
than the overall average; for non-HSR targets, it is 47.1% lower.

The situation for passenger-compartment bombs is reversed, and dramatically. The
average FPD for these bombs against HSR targets is 1.7, whereas against non-HSR
targets, it is 4.5. The FPD for passenger-compartment bombs was 54.5% higher than the
overall average for HSR attacks, but the comparable increase for non-HSR attacks was
164.7%.

The overall lethality rate of terrorist attacks on HSR targets, measured in fatalities per
attack and FPD, is significantly lower than that for attacks on non-HSR targets. There were
only 1.0 fatalities per attack on HSR targets, including the deadly derailment in Russia,
and only 0.15 fatalities per attack, excluding the Russian derailment; the comparable FPD
values are 1.1 and 0.17. For non-HSR targets, there were 2.6 fatalities per attack and 1.7
FPD.

These poor results, from the terrorists’ perspective, suggest that HSR is not likely to be
the primary target of terrorists seeking high body counts. Terrorists bent upon slaughter
can more easily achieve their goal by attacking crowded subways and commuter trains,
as they have done, although they could try to benefit from the iconic value of HSR by
detonating bombs in HSR stations or on HSR platforms. (In some cases, densely packed
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passengers may absorb some of the effects of a bomb blast, reducing the total number of
casualties.)

The results of a successful derailment of an HSR train could theoretically match those of
a successful bombing of a crowded commuter train, but as indicated previously, because
of the rigid coupling of HSR trainsets, high-casualty HSR derailments are rare. Only two
accidental HSR derailments and one derailment caused by terrorists have resulted in
casualties of that magnitude. Only three of 11 attempted terrorist derailments of HSR trains
succeeded. This suggests that security measures should focus on tracks and stations.
And, as shown above, track bombs used against HSR targets are more lethal in absolute
and relative terms than those used against non-HSR targets, and derailment attempts
against HSR trains have so far been far more lethal than those against non-HSR trains.

Officials charged with security should not focus exclusively on Madrid and Nevsky
Express spectaculars and ignore lower-level threats. The latter are more likely to come
from anarchists, local opponents of HSR construction, even pranksters, whose actions are
likely to be aimed not at causing casualties but at blocking HSR projects and disrupting
operations. |IEDs or fake IEDs, 1IDs, and arson attempts and threats may support extortion
attempts.

The most likely targets are tracks and supporting infrastructure (electrical supply, overhead
wires, and obstacles on tracks). Prevention is difficult. Rail systems will need contingency
planning and resiliency leading to rapid restoration of service.

6. What Can Be Learned from Accidents Involving HSR?

Because of the fortunate paucity of attacks on HSR systems, our research was broadened
to include data from accidents involving HSR, which could provide additional information
about the possible consequences of potential future terrorist attacks and might also offer
insights into such attacks. Might terrorists, for example, try to exploit vulnerabilities revealed
by HSR accidents in an attempt to replicate them? This inquiry was not intended to result
in conclusions about safety itself. Nevertheless, some conclusions emerged.

We examined available accident data for HSR systems in 12 countries. Those data may
not be complete, but they capture the major incidents.

We identified a total of 73 accidents, which resulted in 167 fatalities. While any death
is tragic, these numbers indicate that HSR is safe. There has been, on average, one
accident in every three operating years in the 12 countries and one fatal accident every 13
years—Iless than one fatality per operating year.

Seventeen of the 73 accidents resulted in fatalities. These include three suicides and seven
motorists or automobile passengers struck at grade crossings. (Data on pedestrians killed
on the tracks were unavailable.) In addition, there was one case of a passenger falling or
jumping from a train.
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The overall average is 2.4 fatalities per accident; the median is less than 1. And 101 of
the 167 fatalities occurred in a single accident in Germany, when a faulty wheel on a high-
speed train led to a disastrous derailment that hurled coaches into an abutment.

The most common accidents were collisions with vehicles at grade crossings—nine
incidents, two of which resulted in train derailments and a total of nine fatalities (seven in
the vehicles).

The most lethal events, on average, were the derailments. Of seven derailments, two
were disasters. The one in Germany and one in China that resulted in 40 fatalities account
for 91% of the fatalities. These two events, however, added to the two HSR derailments
caused by terrorists in Russia, one of which killed 27 people and injured 95 and the other
of which injured 60 people, may lead to terrorist perceptions that one way to achieve high
body counts is by derailing high-speed trains. This is what Osama bin Laden may have
had in mind when he urged followers to derail passenger trains in the United States.

7. Should HSR Passengers Go Through Security Screening?

Passenger screening is the most controversial aspect of security. Should all HSR
passengers undergo screening like that of passengers boarding the Eurostar, or should
they board as other rail passengers do now?

There are a number of options for HSR security screening.

1. An aviation-security model that involves the rigorous screening of all HSR
passengers and their carry-on baggage for weapons and explosives.

2. An option that might be called “aviation security lite,” such as a Eurostar equivalent.
In such a model, 100% of HSR passengers would be screened but would undergo
a less-rigorous inspection. They would pass through a metal detector, and carry-
on luggage would be x-rayed, but they would not have to remove shoes, belts,
or jackets—roughly the equivalent of the Transportation Security Administration’s
(TSA's) PreCheck regime, recently introduced at some U.S. airports, where trusted
travelers are permitted to pass through a lighter security inspection. (It should
be noted that since the amount of explosives that can cause a catastrophic loss
of a train is significantly greater than the amount that can bring down an airliner,
satisfactory detection rates could be achieved with far greater throughput.)

3. Subjecting HSR passengers to the same measures as those currently used for
some non-HSR passengers. These include ID checks, explosives-detecting
canines, and, most important, “selective” passenger screening in which passengers
are randomly selected for voluntary screening, giving authorities using uniformed
and undercover officers the chance to observe passengers who attempt to avoid
screening rather than just objecting to it.

4. A purely theoretical but unlikely fourth option: The expansion of HSR systems
in the United States could be the occasion for a fundamental reassessment of
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risk, leading to an overall reduction in all passenger rail security—for example, by
eliminating any attempts at passenger screening.

Screening 100% of passengers seems unnecessary, impractical, and inadvisable. Imposing
an aviation-security model on HSR passengers would be difficult and is unnecessary. Any
passenger-screening model must start with what needs to be prevented.

Very small quantities of explosives that can cause catastrophic airliner crashes if smuggled
on board cannot derail a train or cause catastrophic train crashes. Passenger screening
for rail would involve looking for significantly larger quantities, thus facilitating the search.
(The exact quantities are still a topic of research.)

The same is true of firearms and other weapons. One can theoretically hijack a train but
cannot crash it into the side of a skyscraper. (TSA has recently relaxed its restrictions on
small knives and certain other objects.) Weapons pose a danger to passengers on board,
but no more of a threat than that to persons at any other public venue. Rail systems now
prohibit passengers from carrying certain items on board, including weapons. (It is not
certain how these rules apply in states in the United States where carrying concealed
weapons is authorized.)

Adopting 100% screening would have implications not only for passengers and screeners
but also for station design and construction, location of vendors at stations, even train
schedules.

Screening must be carried out not only at a train’s initial departure point but also at every
stop along the entire route. This would require all boarding passengers to pass through
checkpoints single file at some point. It also would require the physical isolation of HSR
passengers from unscreened, non-HSR passengers—a separate platform for HSR
boarding would have to remain a sterile area. Station design would have to provide for this.

Since stops at stations along routes are brief, passengers would have to be screened in
advance and held in a secure area, then allowed to board quickly, or stop times would
have to be lengthened—Iast-minute boarding would become impractical.

All other entrants to the secure area would also have to be screened, and any security
breeches would have to be resolved before boarding is permitted. In a rail system, this
could cause delays along the entire route. In the case of a security breach, either the train
would have to leave the affected station without boarding passengers, leaving them to find
space on the next train, or the entire system would come to a halt.

Maintaining a separate security regime for HSR passengers would impede its integration
with other rail systems and transportation modes as well as the development of HSR trains
as commuter rail. Conversely, the smooth integration of HSR with regional, commuter, and
rail transit services in large terminals would make it more difficult to impose a separate
security regime for HSR passengers. Instead of treating HSR passengers as a special
category for security, it may be preferable to look at the security of the entire station.
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Security screening theoretically may be practical for longer-distance, point-to-point travel
with no or very few intermediate stops (e.g., London to Paris on the Eurostar), but it would
be difficult to impose on high-speed commuter trains with multiple stops (such as the U.S.
Acela trains).

Imposing a robust passenger-screening regime would also undermine one of the major
attractions of HSR, its convenience:

» Trains run from city center to city center. There are no lengthy commutes to and
from airports.

» Passengers can easily bring their luggage on board.

» There are no security delays. Passengers can arrive at a train station closer to
departure time.

» There are no or few onerous security measures (e.g., N0 passenger screening).
Passengers can keep their shoes and jackets on—a contentious issue in the United
States.

» Roomier coaches provide the ability to walk around.

« HSR trains can provide convenient connections with other modes of surface
transportation, including local trains and subways, without changing stations.

8. Would Increased Security for HSR Offer a Net Security Benefit to Public
Surface Transportation?

Terrorists always have an advantage. Unlike armies, they do not have to attack specific
targets of military value within a limited time frame. Unlike ordinary criminals, they do not
have to go where the money is. Terrorists can attack anything, anywhere, any time.

With finite resources, governments cannot protect everything, everywhere, all the time.
Authorities are obliged to make decisions about the allocation of security resources.
Generally, such decisions take into account the threat—the capabilities, intentions, and
past actions of the likely terrorist adversaries; vulnerability—the targets that fall within the
range of the terrorists’ capabilities; and consequences—what could happen if a terrorist
attack is successful.

One additional criterion is whether providing security for a specific target or category of
targets offers a net security benefit, that is, does it prevent terrorists from doing something
that they cannot do elsewhere with equal ease and consequences?

Itis especially difficult to obtain a net security benefit by protecting public places—shopping
malls, tourist sites, or crowded public squares, for example. Protecting public places is
difficult and costly. If the security measures have no effect other than obliging terrorists to
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select other public spaces where they can expect to achieve the same results, there is no
net security benefit.

Security works in that terrorists generally avoid well-defended targets. Security, however,
does not prevent determined terrorists from carrying out an attack. It more often merely
displaces the planned attack to a less-protected target.

Thisis another fundamental difference between terrorism and ordinary crime. Pickpocketing,
robberies, assaults, vandalism, and disorderly behavior are ordinary crimes that occur at
transportation hubs and on board trains. Perpetrators are numerous, but they have little
determination. Ordinary crimes can be reduced through environmental design. Terrorists
are comparatively rare, but they are more determined. Committed to action, they are not
so easily deterred. Denied one target, they will often find another.

For potential targets where the consequences of a successful attack could be catastrophic,
it is worthwhile to push terrorists to softer targets where the consequences are likely to be
less. The reduction in potential consequences provides a net security benefit.

Aviation security and public surface transportation security illustrate the point. Terrorists
remain obsessed with attacking airliners, where successful sabotage can cause hundreds
of fatalities, while successful hijackings, as the 9/11 attacks demonstrated, can result in
thousands of deaths and hundreds of billions of dollars in destruction and the resulting
loss of business. Therefore, keeping explosives and other weapons off aircraft offers a net
security benefit.

Terrorists also attack trains and buses, but the number of fatalities in the bloodiest attacks
has been around 200 (191 in the 2004 Madrid attack and 207 in the 2006 Mumbai attack)—
clearly lower than the numbers in the worst attacks on aviation. The same differences
show up when the average or median numbers of casualties are compared.

This is not to say that terrorists, unable to blow up airplanes, blow up trains instead. There
is not a direct tradeoff. Unable to get at airliners, terrorists have sometimes attacked
airports. Buses and trains have become killing fields, reflecting terrorists’ determination
to kill in quantity and willingness to kill indiscriminately. If body count is the terrorists’
paramount objective, trains and buses make excellent targets. They are easily accessible
public places offering crowds of people in confined spaces.

Unlike the situation in aviation, keeping weapons and bombs off HSR trains may do
little more than shift terrorist sights to ordinary trains and subways, which are already
well-established terrorist targets, or still other easily accessible targets outside of the
transportation sector. That may be good news for HSR passengers, but it offers virtually
no net security benefit to transportation users or society. Tighter security for HSR, if it only
displaces risk to non-HSR, provides no net security benefit.

History, ownership, jurisdictions, and politics cause us to compartmentalize targets,
seeing them as isolated entities. Some compartmentalization is necessary—it is difficult to
evaluate tradeoffs between increasing rail security and reducing infant deaths or buying a
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new Navy warship. But viewing passenger rail transportation as a security domain makes
sense. There is less certainty about treating HSR as a separate domain within it.

9. Where Should HSR Security Efforts Be Focused?

The historical record of attacks against HSR targets is sparse; some of the 33 attacks
were related to a single campaign aimed at disruption—not enough for confident statistical
analysis. Nonetheless, the data that do exist do not support the hypothesis that HSR
passengers are in greater danger from bombs smuggled on board high-speed trains than
other passengers. Indeed, the record suggests that HSR may be less of a target. Given
the difficulty of maintaining a separate security regime for HSR passengers (to say nothing
about sustaining the moral argument of treating HSR passengers as a special class), it
may make more sense to treat all rail passengers as a single class, allocating security
resources according to threat, not target category. This would mean putting the focus on
the station rather than the train.

Focusing on the station would match current security theory in Europe and Japan, where
HSR has become merely another component of an integrated passenger rail system.
Stations are designed to discourage ordinary crime; to provide some level of deterrence
to terrorists by facilitating surveillance and domain awareness; and to mitigate the
consequences of terrorist bombings by eliminating or strengthening places where bombs
could be easily hidden, such as lockers and trash bins, and by creating large open spaces
where blast effects would be more easily vented. Stations in newer systems, including
Washington DC’s Metro and the Meteor line in Paris, reflect some of these new design
features.

Stations are also where regimes of selective passenger screening could be implemented
and directed at HSR passengers as well as non-HSR passengers. Selective screening
is one of the options mentioned above. Random passenger screening can be expanded
to screen more passengers and can be easily reduced in accordance with the threat; the
specific search protocols can also be adjusted.

If there is an area where HSR merits special attention, it is along the ROW. This is where
terrorists have focused most of their action, planting bombs or using mechanical means to
cause derailments or to simply disrupt traffic. Only through derailments can terrorists hope
to achieve the high body counts that have become a hallmark of contemporary terrorism.
At the other end of the spectrum, disruption of HSR traffic by planting fake devices or
simply placing obstacles has become a mode of protest.

Surveillance along long lines is always a challenge. Tamper-detection systems are part
of the rails themselves. Sweeper trains or their miniature equivalents can precede HSR
traffic to ensure that the line is safe. Even small drones could be programmed to provide
aerial surveillance of tracks and power lines.
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10. What are the Principles of an HSR Security Strategy?

» Our analysis of accidents and terrorist attacks indicates that HSR travel is very safe.
The most frequent sources of casualties are pedestrians on the tracks and accidents
at grade crossings. These can be reduced. Terrorists have attacked HSR targets,
but not with the frequency or lethality of their attacks on subways and commuter
trains.

* The construction of new HSR systems should be viewed as an opportunity to review
rail security for all connecting rail transportation systems—the goal is passenger
security, not just HSR passenger security. Appendix B describes current best
security practices.

* Preventing attacks is difficult, but it is not the only goal of security. Facilitating
emergency response and rapid restoration of service should also be considered
security goals.

» A review of failed and foiled terrorist plots suggests that intelligence efforts have
been critical in stopping terrorist plots, but intelligence efforts alone clearly cannot foil
every terrorist attempt. Physical security measures offer some deterrent value and
can undeniably stop some of the less-competent attackers. They also complicate
planning for the higher-end terrorists, which, in turn, may increase their exposure to
intelligence efforts.

* Since HSR will be connected to non-HSR systems, and in many systems is
envisioned to function as high-speed commuter transit, separate, more-stringent
security regimes for HSR will be the exception, if they exist at all, rather than the
rule, and will be limited to longer-distance point-to-point trains.

* Any special security measures adopted exclusively for HSR trains should provide a
net security benefit, not merely displace the risk to non-HSR trains and passengers.
This will be hard to achieve.

» Security measures may focus on the station rather than a particular component of
transportation in the station. New or renovated stations should be designed and
constructed not only to facilitate security in general but also to accommodate future
security environments, including temporary increases in security resulting from
developments in security technology, to the extent that these can be forecast—for
example, improvements in “stand-off” explosives detection.

» Security measures at stations and prior to boarding should anticipate heightened
security situations, including the need to selectively screen more passengers. The
measures should be just as easy to lower.

» Security resources should be allocated to save lives, not protect one category of
trains or passengers.
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An aviation-security model of 100% passenger inspection does not appear feasible
with today’s available technology.

Random screening for both HSR and non-HSR passengers is used increasingly and
appears generally acceptable. It also can be increased and decreased, depending
on the threat environment.

The apparent propensity of terrorists to attack the rails of HSR lines, hoping to
cause disastrous derailments, suggests that rail security measures should be given
close attention.

While security measures are understandably driven by the bloodiest incidents,
disruptions caused by objects on the tracks, false signals (red flares), and threats
(accompanied by real or hoax devices to establish credibility) requiring inspections
and patrolling also should be considered in security planning.

Given the importance of train control and signaling in HSR systems, cyber security
must also be given appropriate attention.
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IIl. TERRORIST ATTACKS ON HIGH-SPEED RAIL

All but one of the 33 attacks on HSR systems recorded in the MTI Database of Terrorist
and Serious Criminal Attacks on Public Surface Transportation occurred in countries where
HSR is most highly developed—32 in Europe and one in Japan (see Table 2). However, the
countries that account for the greatest number of terrorist attacks on surface transportation
are India and Pakistan. Of course, this is too tiny a universe to allow statistical analysis.
Nonetheless, the data suggest some patterns.

Table 2. HSR Attacks, by Country

Avg Median Avg Median

Country # Attacks % of Total Fatalities Injuries FPA FPA IPA IPA
Germany 10 30.3% 0 0 0.0 0.0 0.0 0.0
France 9 27.3% 5 37 0.6 0.0 4.1 0.0
Spain 6 18.2% 0 0 0.0 0.0 0.0 0.0
Russian Federation 3 9.1% 27 155 9.0 0.0 51.7 0.0
United Kingdom 2 6.1% 0 1 0.0 0.0 0.5 0.0
Switzerland 1 3.0% 0 0 0.0 0.0 0.0 0.0
Japan 1 3.0% 0 0 0.0 0.0 0.0 0.0
Italy 1 3.0% 0 0 0.0 0.0 0.0 0.0
TOTALS AND AVERAGES 33 100.0% 32 193 1.0 0.0 5.8 0.0

Table 3 shows that 19 of the 33 attacks targeted high-speed trains; nine targeted the
railway tracks, but this is a bit misleading, since 11 of the 19 attacks were attempts to deralil
the trains by sabotaging the rails. The nine attacks listed in Table 3 as targeting the railway
tracks were not clearly intended to derail a train; they may have been intended simply to
cause damage or disrupt service.

Table 3. HSR Attacks, by Target

Avg Median Avg Median

0 o o
Target # Attacks % of Total Fatalities Injuries FPA FPA IPA IPA
Train, Passenger 19 57.6% 32 193 1.7 0.0 10.2 0.0
(Intercity of Commuter)

Railway Tracks 9 27.3% 0 0 0.0 0.0 0.0 0.0
Train Service Facility or 2 6.1% 0 0 0.0 0.0 0.0 0.0
Equipment

Railway Signals or Comm. 2 6.1% 0 0 0.0 0.0 0.0 0.0
System

Railway Tunnel 1 3.0% 0 0 0.0 0.0 0.0 0.0
TOTALS AND AVERAGES 33 100.0% 32 193 1.0 0.0 5.8 0.0

This becomes clearer in Tables 4 and 5. As shown in Table 4, a total of 11 attacks were
aimed at causing a derailment using an IED or mechanical means. Nine other attempts
involved bombs or IEDs; seven involved 1IDs; three involved arson. Table 5 provides a
breakdown of derailment attempts.
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Table 4. HSR Attacks, by Attack Method

Attack Method # Attacks % of Total Fatalities Injuries g WEelEm e el

FPA FPA IPA IPA
IED, Unspecified 9 27.3% 5 37 0.6 0.0 4.1 0.0
IID (Improvised Incendiary 7 21.2% 0 0 0.0 0.0 0.0 0.0
Device)
Derailment, Confirmed Track 7 21.2% 27 155 3.9 0.0 22.1 0.0
Bomb - IED, Unspecified
Sabotage, Other 3 9.1% 0 0 0.0 0.0 0.0 0.0
Arson 3 9.1% 0 0 0.0 0.0 0.0 0.0
Derailment, Suspected Track 1 3.0% 0 0 0.0 0.0 0.0 0.0
Bomb - IED, Unspecified
Derailment, Suspected 1 3.0% 0 0 0.0 1.0 0.0 0.0
Bolts/Tracks Removed
Derailment, Other or Unknown 1 3.0% 0 0 0.0 0.0 0.0 0.0
Derailment, Confirmed 1 3.0% 0 1 0.0 0.0 1.0 0.0
Bolts/Tracks Removed
TOTALS AND AVERAGES 33 100.0% 32 193 1.0 0.0 5.8 0.0

Table 5. HSR Attacks, by Derailment Method

Avg Median Avg Median

. 0 . .
Derailment Attack Method # Attacks % of Total Fatalities Injuries EPA FPA IPA IPA
Derailment, Confirmed Track 7 63.6% 27 155 3.9 0.0 22.1 0.0
Bomb - IED, Unspecified

Derailment, Suspected Track 1 9.1% 0 0 0.0 0.0 0.0 0.0
Bomb - IED, Unspecified

Derailment, Suspected 1 9.1% 0 0 0.0 1.0 0.0 0.0
Bolts/Tracks Removed

Derailment, Confirmed 1 9.1% 0 1 0.0 0.0 1.0 0.0
Bolts/Tracks Removed

Derailment, Other or Unknown 1 9.1% 0 0 0.0 0.0 0.0 0.0
TOTALS AND AVERAGES 11 100.0% 27 156 25 0.0 14.2 0.0

Only one of the attacks aimed at derailment resulted in fatalities as well as injuries; however,
it accounted for the majority of the fatalities suffered in all the HSR attacks, and two more
caused injuries. It appears that 10 of all the 33 attacks (and possibly a couple more) were
intended to cause casualties, while 19 clearly were not. No judgment can be made in two
cases.

Table 5 shows that bombs were the terrorists’ preferred way to derail a train, but of the
11 attempts, only one succeeded in causing fatalities (the 2009 derailment of the Nevsky
Express). This was the second attempt on the same route. In 2007, terrorists derailed the
Nevsky Express by detonating a bomb just before a bridge. The bomb exploded under the
locomotive, knocking it off the tracks, but the train stayed on the roadbed thanks to the
flange rails on the bridge. No one died in the 2007 attack, but 60 people were injured. In
2009, the attackers used a much larger explosive charge which hurled a coach into the air,
derailing the cars that followed.
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Table 6 looks specifically at the 24 bomb attacks. Fifteen were aimed at high-speed trains,
eight at railway tracks or tunnels.

Table 6. HSR Bomb Attacks, by Target

Avg Median Avg Median

0 o L
Target # Attacks % of Total Fatalities Injuries FPD FPD IPD IPD
Train, Passenger 15 62.5% 32 192 21 0.0 12.8 0.0
(Intercity or Commuter)

Railway Tracks 7 29.2% 0 0 0.0 0.0 0.0 0.0
Railway Tunnel 1 4.2% 0 0 0.0 0.0 0.0 0.0
Railway Signals or Comm. 1 4.2% 0 0 0.0 0.0 0.0 0.0
System

TOTALS AND AVERAGES 24 100.0% 32 192 11 0.0 6.6 0.0

As Table 7 shows, the 24 attacks involved 29 devices. Significantly, 23 were placed on the
tracks or near a train or other target. Only three were placed in the passenger compartment.

Table 7. HSR Bomb Attacks, by Device Delivery Method

Method of Deliver # % of Avg Median Avg Median Avg Median Avg Median
y Devices Total FPD FPD IPD IPD FPDE FPDE |IPDE IPDE

Placed on Railroad Track or 22 75.9% 1.2 0.0 7.1 0.0 3.9 0.0 221 0.0

Bridge, or Near a Train

Concealed/Placed in Pax 3 10.3% 1.7 0.0 12.3 0.0 1.7 0.0 12.3 10.0

Compartment, Unspecified

or Other

Unknown 3 10.3% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0

Placed Near Train, Bus or 1 3.4% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.0

Other Target, Unspecified
TOTALS AND AVERAGES 29 100.0% 1.1 0.0 6.6 0.0 2.7 0.0 16.0 0.0

The outcomes of the bombing attempts are shown in Table 8. Twelve of the 29 devices
detonated on target. At least five malfunctioned in some way; 11 others were discovered
and rendered safe.

Table 8. HSR Bomb Attacks, by Outcome

Outcome # Devices % of Total Fatalities Injuries g WetEm 9 Rl

FPD FPD IPD IPD
Detonated or Released 12 41.4% 32 192 2.7 0.0 16.0 0.0
on Target
EOD Successful, 11 37.9% 0 0 0.0 0.0 0.0 0.0
Rendered Safe
Detonated Early or Away from 3 10.3% 0 0 0.0 0.0 0.0 0.0
Target, or Malfunctioned
Failed to Detonate or Release 2 6.9% 0 0 0.0 0.0 0.0 0.0
Unknown 1 3.4% 0 0 0.0 0.0 0.0 0.0
TOTALS AND AVERAGES 29 100.0% 32 192 0.2 0.0 1.3 0.0
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lll. HIGH-SPEED RAIL ACCIDENTS AND THEIR SECURITY
IMPLICATIONS

One of the long-standing theories of transportation safety is that the speed at which a
vehicle is traveling is directly associated with the severity of injuries and property damage
resulting from an accident. The evolution of HSR directly challenges this assumption.
HSR systems throughout Europe and Asia have been working over the past 50 years to
continually improve safety and increase speed.

We reviewed HSR safety incidents, primarily in Western Europe and East Asia, to identify
vulnerabilities and gather insights into the possible consequences of terrorist attacks against
HSR systems. Our information sources include investigations conducted by government
agencies, such as the National Transportation Safety Board (NTSB) in the United States;
operating railroads in European and Asian countries; trade and public media reports;
railroad press releases; technical reports; and Internet-based forums. Unfortunately, the
majority of countries operating HSR systems do not make official accident reports publicly
available. This presented some obstacles to collecting or verifying specific data on train
speeds, passengers on board, and numbers of injuries or fatalities.

However, our primary challenge was in delineating which incidents involved HSR services
and equipment and which did not. More often than not, reports regarding derailments,
collisions, or other incidents on “high-speed trains” concerned commuter or intercity trains
moving well under 100 mph and designed with top speeds of less than 120 mph. The
moniker “high-speed” is sometimes used regardless of whether the service meets any
of the industry’s HSR definitions. In many cases, the label is applied to describe a new
service that is merely significantly faster than prior service on a particular corridor.

According to the International Union for Railways (UIC), which defines HSR as lines
or sections with operating velocities greater than 155 mph, HSR systems are currently
operating in 13 countries in Europe and Asia, and one is operating in the United States.
Another six countries have new systems in the construction phase or on the drawing board
(see Table 9).

Table 9. Miles of High-Speed Lines in the World

Country In Operation Under Construction Planned

Europe
France 1,265 470 1,496
Germany 829 266 347
Italy 574 0 245
The Netherlands 75 0 0
Poland 0 0 442
Portugal 0 0 625
Russia 0 0 404
Spain 1,332 1,043 1,058
Sweden 0 0 466
Switzerland 22 45 0
United Kingdom 70 0 127

Asia
China 3,979 2,632 1,803
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Country In Operation Under Construction Planned
Taiwan 214 0 0
India 0 0 1,496
Japan 1,655 263 347
Saudi Arabia 0 342 245
South Korea 256 116 0
Turkey 278 471 442

United States
Northeast Corridor 149 0
LA—Sacramento 0 0 559

Note: As of July 1, 2012, lines or sections in which operating velocity was greater than 150 mph.
Source: UIC High Speed Department.

Europe

Belgium: Thalys
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Figure 1. Thalys Route Map

Thalys is a joint service offered by the Belgian, French, and Dutch railways. The system
is centered in Brussels, with three primary lines radiating outward (Figure 1). Two of the
lines, one to Paris and one to Amsterdam, are also shared by the Eurostar service, and
the third extends into Cologne, Germany. A fourth line extends northwest from Brussels to
the city of Ostend, on the North Sea. A separate line leaves the Paris-Brussels line near
the France-Belgium border, traveling through the cities of Mons, Charleroi, and Namur
before joining the Brussels-Cologne line in Liege, essentially providing a southern bypass
around Brussels. Service extensions now also include routes to Dusseldorf and Essen
from Cologne and a line to Avignon and Marseille, south of Paris. Trains between Paris and
Brussels, Brussels and Aachen, and Antwerp and Amsterdam use a variety of dedicated
HSR lines. The remaining service runs primarily on conventional tracks.
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Thalys uses two types of trainsets: PBA and PBKA. The PBA sets can operate under
standard French voltages, also used in the Netherlands, as well as the 3-kv DC supplies used
in Belgium and Italy. They include a power car on each end, with prime movers, engineer’s
cabs, and no passenger seating; and eight cars with a capacity of 377 passengers. They
have a maximum operating speed 185 mph and are pressure-sealed to reduce passenger
discomfort when entering and exiting tunnels. The PBKA sets are similar to the PBA sets in
length, number of cars and seats, and operating speeds but use different power cars. Both
the PBA and PBKA sets are single-level and use articulated coaches that share bogies or
wheelsets between each coach and independent bogies on the power cars, allowing them
to separate from the rest of the train without jacks or lifts.

Finland: VR Pendolino

The state-owned VR (Figure 2) is responsible for managing the passenger and freight
rail services in Finland. In 2010, the railway network infrastructure maintenance and
construction functions were divested into the Finnish Transport Agency. Although the term
Pendolino is a brand name of Fiat (later, Alstom) for a line or “family” of tilting trains, it is
also the service brand used by the VG Group for their high-speed services. The service
uses Pendolino (VR Class Sm3) trainsets built by Rautaruukki-Transtech between 2000
and 2006. The trains are capable of 140 mph service, although existing lines have limited
their typical operation to less than 120 mph.
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Figure 2. VR Pendolino Route Map

In 2006, the first segment of 140 mph track was opened between Kerava and Lahti. Its
18 trainsets are all configured in the same fashion: 18 cars, including two end coaches
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with engineer’s cabs that are in either the leading or trailing position and a total passenger
capacity of 309. Domestic service is currently offered on five separate routes radiating
from Helsinki, with two to 10 trains per day, depending on the route.

A new HSR service was introduced in 2010 as a joint venture between the VR Group
and the Russian Railways (RZhD) under the name Karelian Trains Ltd. The new service,
using Alstom Pendolino Smé6 trains, is branded Allegro and has reduced train travel time
between Helsinki, Finland, and St. Petersburg, Russia, from 5.5 hours to 3 hours. The
seven-car trainsets have a capacity of 377 passengers.

France: TGV

France’s TGV (train a grande vitesse) started its HSR service between Paris and Lyon in
1981. The TGV HSR network operated by Société Nationale des Chemins de fer Frangais
(SNCF) now consists of eight lines, all radiating from Paris, and extends into Belgium,
Luxembourg, Germany, Switzerland, Spain, and Italy (Figure 3). In addition to operating
the country’s 20,000-mile rail network, SNCF has become a multinational powerhouse in
railroad consulting, construction, and operation. In 1997, an EU directive forced SNCF
to divest ownership of the rail infrastructure to a separate, government-owned entity,
Réseau Ferré de France. SNCF and its partner Alstom have successfully exported the
TGV technology to HSR operations in Spain, Taiwan, South Korea, and Belgium.
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Figure 3. TGV Route Map
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TGV runs high-speed trains on two types of lines: LGV and Lines Classiques. LGV lines
were designed and built specifically for dedicated use by high-speed trainsets. They have
no level road crossings, and they have ROW fences and barriers that significantly reduce
or prevent trespassing by vehicles, humans, and animals, all of which can significantly
damage and/or derail trainsets and lead to injuries and fatalities.

Lines Classiques are mixed-use systems that run freight, intercity, and HSR service.
Further differences between LGV and Lines Classiques include:

» Track curvature: LGV lines are constructed with larger-radii curves and longer
approaches into the curves, allowing for higher-speed operations without increased
centripetal force.

» Track cant: The cant or super-elevation of a track is the horizontal angle or slope
of a track through a curve. The cant is kept to a minimum on Lines Classiques,
whereas on LGV lines, the cant is maximized to allow for better track adhesion and
train equilibrium.

» Track gauge: The gauge tolerances on LGV lines are significantly lower, and design
standards are much more precise.

» Track components: LGV lines, like most other dedicated HSR lines throughout the
world, are built with more cross-ties, or sleepers, per mile than traditional lines.
These ties are made of reinforced concrete, either solid or monobloc or bibloc (two
smaller concrete ties that sit directly under the rail), connected by a steel reinforcing
bar. The rail is fastened, not spiked, to the ties with a variety of clips and often has
a rubber or other material pad separating it from the tie to absorb and dampen
vibration and noise while reducing friction wear.

» Track bed: The underlayment of LGV track structure is typically ballast, like that of
most other railroads, but the bed of ballast is much deeper.

» Switches: LGV lines in France and many other HSR systems use swingnose or
movable frog switches that allow for safe crossovers up to 100 mph.

« Catenary: All HSR overhead electrification must be built to maintain greater
mechanical tension than other catenary applications on commuter rail or rail transit
systems.

+ Signaling: On LGV lines and other systems throughout the world that achieve and
exceed 200 mph continuous operations, traditional wayside signals are not usable.

TGV currently uses eight types of trainsets running at maximum speeds of 170 mph to
200 mph, depending on the trainset design and operating line. While the trainsets range
in length and seating capacity (from roughly 350 to 750 passengers), all share a common
design trait: In addition to a power car at each end of the train, all of the intermediate cars
“share” a truck or bogie at each end. Although this design makes separating trainsets for
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service or other reasons extremely difficult, it has been credited with keeping the trainsets
vertical and linear in several incidents, including the December 1992 derailment of a train
travelling 182 mph when the track gave way because of a large sinkhole.

There have been 17 TGV HSR accidents (both LGV and Lines Classiques) since service
began. Of these, 11 (65%) involved collisions at grade crossings. After its first HSR grade-
crossing collision, in September 1988, TGV improved the crash-protection safety features
of its trainsets, significantly reducing injuries and deaths caused by collisions.

Germany: ICE

The West German National Railway, Deutsche Bundesbahn, began testing an experimental
high-speed train developed by a Siemens Corporation—led consortium in 1984. The first
InterCityExpress (ICE) service was launched in 1991 between Hamburg and Munich.
Service to Bremen and Nuremburg began a year later (Figure 4). In 1994, a few years
after the reunification of Germany, the assets and operations of Deutsche Bundesbahn
and Deutsche Reichsbahn, the former East German national railway, were merged into
Deutsche Bahn AG (DBAG). DBAG is a private, publicly traded multinational corporation
divided into four separate operating entities: DB Bahn, which provides passenger rail
service in Germany; DB Netze, which is responsible for the nation’s rail infrastructure and
operations; DB Schenker, a freight rail and logistics operation; and Arriva, which provides
contract passenger rail services in the UK.
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Figure 4. ICE Route Map
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DB Bahn is further broken into three business units: DB Stadtverkehr, which operates
multiple bus companies and provides commuter rail service in Hamburg and Berlin; DB
Fernverkehr, the provider of all high-speed and non-HSR intercity passenger service,
including ICE, in Germany; and DB Regio, which provides non-HSR short- and medium-
distance service.

ICE rolling stock includes 259 trainsets in five variants: ICE 1, ICE 2, ICE 3, ICE T, and
ICE TD (diesel powered), all manufactured by Siemens or Siemens-led partnerships. The
most current iteration, ICE 3, is an eight-passenger-car, two-power-car configuration, with
a capacity of approximately 450 passengers and sustained speeds of 200 mph. Except in
the 186 mph, 107-mile corridor from Nuremburg to Ingolstadt, halfway to Munich, most ICE
trains are limited to 170 mph or slower operations. Unlike SNCF and JR Group, DBAG has
implemented almost all ICE services on existing rail lines that continue to serve freight rail
and slower-speed intercity and commuter rail operations. This shared-corridor relationship
has been the catalyst for DBAG and its vendors to aggressively develop and refine the
technology for tilting trains, allowing for higher-speed operations on curves, with negligible
super-elevation.

ICE is the most multinational HSR operation in the world, providing service throughout
Germany and across the borders of France, Belgium, Switzerland, Austria, Denmark,
and the Netherlands. Similar to TGV, ICE technology—primarily trainset designs and
configurations—has been exported to Spanish HSR operator RENFE, to China for the
Beijing-to-Tianjin HSR service, and to Russia for the St. Petersburg-to-Moscow Sapsan
service that is replacing the Nevsky Express.

Italy: Trenitalia
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Figure 5. Trenitalia Route Map
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Like those of other EU countries, Italy’s railroad network and operations were reorganized
at the turn of this century as a result of EU deregulation and directives. The Rete Ferroviaria
Italiana (RFI), a subsidiary of Ferrovie dello Stato (FS), owns and operates the Italian
railway network infrastructure, providing signaling, train control, and maintenance. FS is
an Italian-owned government company responsible for all of the country’s rail operations
and infrastructure. Another subsidiary of FS is Trenitalia, the primary operator of all freight
and passenger train service, including HSR, in the country (Figure 5). In 2012 Trenitalia
began to face new competition from Nuovo Trasporto Viaggiatori (NTV).

Trenitalia began offering HSR service between Rome and Milan in 1989. It currently offers
HSR service on two primary corridors: Turin to Venice via Milan, and Milan to Salerno
via Bologna, Florence, Rome, and Naples. Depending on the trainset series and length/
configuration, Trenitalia HSR trains can run at maximum speeds of between 155 mph and
210 mph and can carry between 390 and 570 passengers.

Spain: RENFE

Spain hasthe second largest network of HSR lines inthe world (Figure 6). In 1941, its railways
were nationalized, forming Red Nacional de los Ferrocarriles Espafioles (RENFE). Since
2005, when an EU directive mandated the separation of track ownership from operations,
the country’s rail infrastructure has been under Administrador de Infrestructuras Ferroviarias
(ADIF), which is responsible for the management, maintenance, and construction functions
associated with RENFE, including high-speed-passenger and conventional, mixed-use
lines.

RENFE handles Spain’s rail activities in four divisions: commuter and medium-distance
high-speed and conventional passenger trains; long-distance high-speed and conventional
passenger trains; freight service; and rolling stock acquisition and maintenance. Long-
distance HSR service is offered under the brand name Alta Velocidad Espafola (AVE),
which runs service on four primary dedicated HSR lines radiating from AVE’s operational
hub in Madrid. HSR trains reaching 185 mph operate out to Barcelona, Valladolid, Seville,
and Valencia. Medium-range, dedicated HSR network service is provided under the name
AVANT on portions of the longer lines or on short extensions or branches. Connecting or
extending past the primary and secondary cities on the HSR network is the ALIVIA service.
This operation uses high-speed trainsets, capable of 140 mph to 160 mph, running long-
distance service on dedicated HSR lines and conventional, mixed-use lines. A fourth
and much smaller brand of service is Euromed, which runs south from Barcelona, along
the Mediterranean coast, to Valencia and Alicante. The Euromed operation utilizes six
trainsets, derived from TGV Atlantique and Reseau designs, and travels predominantly on
conventional lines.
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As in most countries, the differences between newly constructed, often-dedicated HSR lines
and conventional, possibly mixed-traffic routes are in the design and construction of the
overhead catenary, grade separations, and the elevation and construction of track tangents
and curves. RENFE currently utilizes 12 different trainset designs and configurations from
up to six separate manufacturers or consortiums. Operating speeds in the fleet range from
140 mph to 217 mph, and capacities range from 300 to 400 passengers. The configurations
differ in length, from four cars to 13 cars (11 coaches plus two power cars), with some sets
utilizing power cars, while others are electrical multiple units (EMUSs) with engineer’s cabs
in end cars.

Sweden: SJ-2000

Bergslagernas Jarnvagar and other, smaller private railroads in Sweden, some dating back
to the 19th century, were nationalized in 1948, forming the Royal Railway Board, which in
turn became the Swedish State Railways, also known as Statens Jarnvagar (SJ) (Figure
7). The country’s railroad infrastructure was transferred to the Swedish Rail Administration
in 1998, and the remaining operations and assets were divided up into seven separate
government-held companies. A “new” SJ corporation was formed in 2000 from the public
transport division of its predecessor and is how the primary passenger-train operator in
Sweden. The Swedish Rail Administration was merged into a larger government agency
in 2009, along with the road and maritime administrations, to form the Swedish Transport
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Administration, which now owns and maintains all state-owned roads and railroads and is
responsible for planning in all modes of transportation.
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Figure 7. SJ-2000 Route Map

Operating at the low end of the HSR spectrum, with a top speed of 130 mph, the SJ-2000
high-speed train (previously and more commonly known as the X-2000) was launched
in 1990. From the beginning, the X-2000 was a unique operation in several ways. It was
the first HSR train—as opposed to older steam- and diesel-powered intercity trains—to
offer only first-class service. Second-class service was introduced in 1995. The external
design of the X-2000 harked back to the early days of streamlined passenger rail service,
incorporating fluted or ribbed stainless-steel sides on the power cars and the coaches.
Unlike Japan and France, Sweden chose not to build any new HSR infrastructure and runs
X-2000 on an existing rail system, continually shared with lower-speed passenger and
freight trains. Owing to this decision, SJ has invested considerable time and resources into
train-tilting technology and steerable trucks, or bogies.

The configuration of the X-2000 trainsets is also unique among HSR rolling stock. HSR
trainsets typically have a power car at each end, with unpowered coaches in between, or
are EMU designs, with either power-collection pantographs and/or powered axles with
traction motors on all or several cars in a set. The typical X-2000 consists of a single power
car, four unpowered coaches, and an unpowered coach with an engineer’s cab at the
rear. This design allows SJ to add cars, up to a maximum of 16, to a trainset, providing a
maximum capacity of 1,600 passengers. While in form and function the X-2000 is an HSR
trainset, operationally it is an electric-locomotive-hauled passenger train. The X-2000’s
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steerable, or “soft,” bogies adjust automatically on curves, with axles that pivot laterally
with the frame, allowing the train to reach speeds 40% greater than conventional rolling
stock without increasing stresses on the track or the wheel/rail interface. Tilting technology
also permits the train to operate at higher speeds on less-super-elevated curves while
maintaining passenger comfort, by shifting the train’s center of gravity and reducing the
lateral forces pulling it to the outside of a curve.

Like other HSR equipment, the X-2000 uses an automatic train control system that provides
information to the engineer up to 2.5 miles in advance of his location. If the information is
not acknowledged or appropriately replied to, the train brakes are applied automatically.
The train also uses three independent braking systems: an electric regenerative brake for
speed adjustments; air-operated disc brakes for normal, or “hard,” braking; and a magnetic
track brake for use in emergencies. Using the air-operated brakes, the train will take 1.1
miles to stop when moving at 125 mph. Applying the magnetic track brake when moving at
the same speed will stop the train in 0.75 mile.

United Kingdom: Eurostar

There are two primary routes in the Eurostar system: London to Brussels and London
to Paris. Seasonal service is offered south of Paris to Avignon and Bourg-Saint-Maurice
(Figure 8). Every Eurostar train operates out of St. Pancras Station in London, through the
Channel Tunnel, to Lille in northern France. At Lille, trains head either south to Paris or
other seasonal destinations or northeast to Brussels.
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Figure 8. Eurostar Route Map

Eurostar’'s most iconic feature and prime safety and security challenge is the Channel
Tunnel. Opened in 1994, the tunnel provided the first-ever surface-transportation
connection between the UK and the rest of Europe. Eurotunnel S.A., a publicly traded
company that was formed to design, build, and operate the tunnel, brings in revenue by
charging Eurostar and other, non-HSR operators fees for using the tunnel. Stretching 31.4
miles from Folkstone in the UK to Coquelles in France, the tunnel includes two 24-foot-
diameter running tunnels and a 16-foot-diameter service tunnel. The service tunnel, located
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between the two running tunnels, is kept at a higher pressure to prevent smoke or fumes
from entering (similar to stairwells in high-rise buildings) and is connected to the two other
tunnels by passageways located every 1,230 feet from portal to portal. The tunnel also
includes two large caverns, one 7.5 miles from the French shore line and the other 4 miles
south of Shakespeare CIiff in the UK. These two caverns house crossovers between the
north and south running tunnels, allowing trains to bypass sections that are closed due to
emergencies or routine maintenance.

Eurostar uses only one type of trainset, built by Alstom, which also built the TGV fleet of
trainsets. It has 20 cars and 750 seats and comprises two power cars with no passenger
seating and 18 coaches. The trains can operate at 185 mph. The major difference
between the Eurostar and TGV trainsets is a smaller cross-section due to tighter right-of-
way clearances in the UK. For safety reasons, the Eurostar trains comprise two half-sets.
The contiguous ends of coaches 9 and 10 do not share a wheel set or bogie, unlike the
articulated connections between the other 16 coaches. The connection between coaches
9 and 10 uses a Scharfenberg coupler, which allows relatively quick disconnection in the
event of an emergency. While articulation has proven to reduce the possibility of jackknifing
cars during a derailment or collision, it also eliminates the possibility of operating anything
less than a full trainset once it leaves a service yard. The coupler at the center of the train
gives Eurostar crews the ability to move passengers to another section of the train in the
event of a fire, derailment, collision, or security threat; split the train in half, and move the
nonaffected set with the passengers away from the source of danger.

Eurostar trains also operate with two qualified engineers. On each run, the engineer
occupies the cab of the lead power car and the Chef du Train, or conductor, occupies the
rear-power car cab. If the engineer is injured or killed in an incident, the conductor can
uncouple the two halves of the train and operate the back half in reverse, away from the
incident scene. This arrangement also helps address hours-of-service issues, since the
two individuals switch roles once a train reaches a terminal and reverses direction.

Power is sent to the train’s traction motors, located on the four axles of each power car, as
well as the unshared bogies on the first and last coaches of the train. Depending on the
route, Eurostar trains use four or five signal systems on a single run. These range from
warning systems based on 60-year-old technology to the TVM system used on TGV’s LGV
lines.

In the past 16 years, there have been four instances in which Eurostar trains have
stalled in the tunnel, stranding large numbers of passengers for an extended period of
time. While no injuries were sustained in these events, long delays could lead to hostile
situations between passengers or passengers and crew, as well as dangerous situations
for individuals with medical and/or medication needs.
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Asia
China: Chinese High-Speed Railway

Although the Chinese Ministry of Railways (MOR) did not begin construction of its first
HSR line until 1998, China is now home to the world’s largest HSR network. The first
line, from Beijing to Tianjin, opened a week before the 2008 Olympics; a little more than
four years later, the country had 5,809 miles of high-speed lines with trains traveling 186
mph (Figure 9). The network includes eight primary routes: four north/south lines and
four running east and west, concentrating service in the population centers in the eastern
portion of the country.

Figure 9. Chinese High-Speed Railway Route Map

A key part of China’s HSR plans focuses on developing the domestic intellectual and
manufacturing capacity to design and construct HSR trains and infrastructure components.
The first bids solicited by the MOR called for a “technology transfer,” enabling China’s
railroad-sector manufacturers to evolve toward majority, if not complete, domestic
production of all HSR-related equipment. Alstom, Bombardier, and Kawasaki were
awarded parts of an order for 200 trainsets that required them to establish a joint venture
with a Chinese company to allow for this technology transfer. A year later, the Siemens
Corporation negotiated a deal with MOR and entered into a joint venture to deliver 60
trainsets based on the ICE 3 trains. These partnerships succeeded in meeting China’s
initial demand for HSR trainsets and jump-starting domestic production. However, claims
of patent theft by Kawasaki raised industry concerns over the long-term benefits of such
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arrangements. The Chinese manufacturers involved in the joint ventures are now working
to export their technology to fledgling HSR operations in Europe, South America, North
America, and Asia.

The MOR has developed a domestic signal/train control system based on learning from
the European train control system and other foreign practices combined with Chinese
technological advancements. The Chinese train control system (CTCS) is segregated into
five levels. The first two, CTCS-0 and CTCS-1, use track circuits to identify occupied track
and set wayside and cab signals appropriately. CTCS-2 is used in 125 to 155 mph territory
and incorporates more-advanced track circuit detection and communication technology with
automatic-train-protection (ATP) features that initiate proper braking procedures similar to
automatic train control systems in Europe and North America. CTCS-3 incorporates wireless
wayside-to-train communications similar to TGV’s system on its LGV lines. CTCS-3 is
used on routes where speeds can reach 186 to 217 mph. Like the TGV LGV, operations at
this speed cannot rely on wayside signals because of reaction time and must incorporate
wireless signaling, communication, and train control features, including fail-safe features that
can compensate for human error, slow reaction times, and longer stopping distances. The
highest level, CTCS-4, is in the research and development phase for implementation in 200
mph and higher-speed operations.

The Chinese HSR network has implemented uniqgue ROW and track construction methods
throughout the system. Much of the ROW, particularly through the more densely populated
suburban and urban areas, is built on concrete viaducts. More than 85% of the two-track
line between Beijing and Tianjin on the Beijing-Shanghai route is elevated on viaducts.
While this is a more expensive design, it is also a much faster approach to building a rapidly
growing network of HSR trains. All of the new dedicated HSR lines are built using slab or
ballastless track. Slab track, which is also being increasingly used in Japan, incorporates
fixed concrete panels that have pads on which the rail rests directly and receivers for
rail clips. This eliminates the need for ties or sleepers. Much like prefabricated concrete
bridges, the slabs are fastened together to form a continuous ROW on which the rails are
laid. The slabs are the full width of the track and incorporate channels and ports for proper
drainage.

Unlike traditional track, which uses ties with equal or larger spaces in between them,
placed on ballast, ballastless track uses ties placed adjacent to each other, with no spacing,
on a slab. The initial construction cost of both slab and ballastless track is significantly
higher than that of traditional ballast track designs using concrete, wood, or resin ties, but
the maintenance costs over the life of the track are much lower. Advocates of slab and/
or ballastless track also claim that it provides a smoother ride and greater safety, since
defects are less likely to occur and easier to identify.

Japan: Shinkansen

In the wake of World War I, Japanese National Railways (JNR) was organized to redevelop
and operate a national rail network. One of JNR’s early goals was to design and construct
high-speed, or “bullet,” passenger trains linking the country’s major cities. In 1964, Shinkansen
became the world’s first HSR system, stretching 340 miles between Tokyo and Shin-Osaka
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and running trains at maximum speeds of 130 mph. Shinkansen quickly became an icon
of national pride and continued to thrive despite the dissolution of JNR due to financial
troubles and the division of its assets and operations among seven separate private-sector
companies collectively known as the Japan Railways Group (JR Group).

Today, the Shinkansen network includes more than 1,600 route miles (Figure 10) and
operates approximately 900 trains per day at speeds between 150 and 190 mph. It is
owned and operated by five private companies of the JR Group: JR Kyushu, JR West,
JR Central, JR Hokkaido, and the largest, by far, in terms of system size and passenger
volume, JR East. These companies utilize 20 different styles and configurations of overhead
electrically powered trainsets with power cars at each end. Capacities per trainset range
from approximately 380 passengers on six- and seven-car sets to 1,200 passengers on
12-car bilevel trainsets and more than 1,300 on 16-car sets.
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Figure 10. Shinkansen Route Map
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Throughout its history, Shinkansen has maintained an exemplary safety record, with only
four in-service fatalities, three of which involved persons intentionally jumping from the train
to commit suicide. The fourth fatality, in December 1995, was the result of a passenger
being caught in the train door.

South Korea: Korean Train eXpress (KTX)

Korail, South Korea’s national rail carrier for all levels of freight and passenger service,
introduced Korean Train eXpress (KTX) HSR service in April 2004. The Gyeongbu line runs
from Seoul to Busan, and the Honam line runs from a junction with Gyeongbu in Osong
to Mokpo. Even though HSR trainsets began operating on both lines on the first day of
service, the Gyeongbu line was not completed as a dedicated HSR line until November
2010 (Figure 11). Dedicated HSR expansions to the Honam line are scheduled to be
completed in 2014 and 2017. Until then, KTX service will operate with HSR equipment on
a combination of completed HSR lines and conventional lines.

Figure 11. Korean Train eXpress Route Map
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KTX uses the KTX-I trainset, derived from the TGV Reseau. It consists of two power cars
and 18 articulated cars, with a capacity of 935 passengers and a top speed of 190 mph.
The KTX-I was initially built in France by Alstom but is now produced by Rotem in South
Korea. A shorter version called the KTX-II was developed for routes with fewer riders.
Consisting of only eight articulated cars and two power cars, the KTX-Il has a capacity of
363 passengers and a top speed of 190 mph. A year after its introduction in 2010, Korail
asked the manufacturer, Hyundai-Rotem, to take all 19 sets back following a series of 15
malfunctions and train shutdowns, along with the discovery of structural cracks.

United States: Northeast Corridor — Amtrak Acela

Figure 12. Amtrak Acela Route Map

Grade separations, overhead electrification, some super-elevated curves, advanced
signaling systems, and the elimination of all but 11 grade crossings have brought Amtrak’s
Northeast Corridor (NEC) up to respectable HSR corridor standards (Figure 12). Although
Acela trains, Amtrak’'s HSR brand, can reach speeds of 150 mph, track and catenary
designs limit much of the operation to 90 to 110 mph. From New Haven south through
New York to Washington, DC, the system still has the rigid suspension architecture first
developed by its predecessor railroads. If this catenary system is upgraded, the Acela will
be able to realize increased speeds on parts of the line, but the curvature of some track
and the omnipresent commuter trains sharing the route will always be an obstacle to
achieving the speeds the trainsets are capable of.

Because of unique and stringent crashworthiness standards in the United States, proven
off-the-shelf trainsets such as the ICE, TGV, or Shinkansen could not be considered for
Acela service. Amtrak selected a consortium bid from Bombardier and Alstom in 1996 with
a provision that the sets be manufactured in the United States. Using existing facilities,
Bombardier built the power cars in Plattsburg, New York, and the coaches were built in
Montpelier, Vermont.

The trainset configuration is similar to earlier TGV designs such as the Atlantique and
Thalys. It has two power cars, one at each end, and six cars—a first-class coach, a café
car, and four business-class coaches. Like the TGV sets, it is semi-permanently coupled
and does not use articulated cars sharing bogies/trucks. It also borrowed the traction
system, regenerative braking, bogie/truck structure, disc brakes (three rather than four
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per axle), and crash-absorption technology from later-generation TGVs. After the adoption
of Tier Il crash standards by the U.S. Federal Railroad Administration (FRA) in 1999, the
car design had to be modified so that the vestibules could effectively act as crash-energy-
management or crumble zones in a derailment or collision. This meant that low-level steps
and trap doors had to be eliminated from the plans, not only limiting use of the system to
service on high-level-platform stations but also complicating evacuation procedures out
on the line. Foldable evacuation ladders were installed at each exit on the trains to help
alleviate this problem.

Borrowing only the concept from the X-2000, the Acela trainsets incorporated tilting
technology from Bombardier’'s 1980 design for the Light-Rapid-Comfortable (LRC) trains
used by VIA Rail in Canada. This allowed for faster speeds on curves that were not super-
elevated by shifting and lowering the center of gravity and reducing passenger discomfort
with lateral G-forces.

The trainsets also included other “firsts” on North American passenger trains: The power
cars were equipped with emergency evacuation hatches in the engineer-cab roofs, and
standpipe connections were installed on both sides to allow firefighters to flood the engine
compartment without having to perform interior firefighting operations in the unit. Each car
of the train was also designed with a “cut spot” in the roof. This area is free of any electrical
conduit, structural members, or other obstacles and is clearly marked. It provides a clear
spot through which rescue personnel could cut their way if a car is rolled over or has
material blocking window or door access.

In its 12 years of operation, Amtrak Acela service has had a number of tragic pedestrian
accidents. Seventeen trespassers have either committed suicide or been killed accidently
when walking along or across NEC tracks. Two Amtrak or contractor employees have also
been killed and two seriously injured while working on the ROW. Since 2010, following a
much-needed infusion of capital funds, Amtrak has been aggressively working on installing
fencing and other barriers on the entire NEC route in the hopes of restricting or deterring
trespassing. It has also eliminated trees, brush and extraneous infrastructure immediately
adjacent to the rail line, giving engineers a broader view and better reaction time.

HSR Safety Incidents

Of the 12 systems profiled here, ten have experienced one or more serious incidents
resulting in fatalities. Half of the incidents involved only one fatality, four of which were
suicides. Table 10 provides a breakdown of HSR incidents involving fatalities, by type of
incident.
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Table 10. HSR Incidents Involving Fatalities

HSR Passenger/

Type of Incident # of Incidents Crew Fatalities Other Fatalities Total Fatalities
Grade Crossing Collision 5 2 7 9
Equipment Issue 3 110 0 110
Collision with HSR train 1 40 0 40
Collision with other than a HSR train 4 2 2 4
Suicide 4 4 0 4
Total 17 158 9 167

Most incidents involving HSR service and equipment, aside from grade-crossing collisions
on shared corridors, have been attributed to engineering failures in the design and/or
construction of the rolling stock or ROW. Most HSR systems have been designed to include
one or more fail-safe features to compensate for operational human error. Table 11 provides
a breakdown of incidents by system, primarily incidents involving injuries or fatalities to on-
board crew and/or passengers and/or significant damage to rolling stock or the infrastructure.
Pedestrian incidents involving employees, passengers, or trespassers are, for the most
part, not included. While almost always fatal and tragic, not only for the victim but also for
the engineer and crew, the victim’s family and friends, and emergency responders, these
incidents rarely cause much damage to the rolling stock or track or cause physical injuries
to passengers or crew on board. Pedestrian incidents included in the report are those that
involved HSR operations or equipment, regardless of whether it was moving, in a station, or
in a storage or service.

Table 11. HSR Incidents, by System

HSR System O\:Jetjrr:ti%fn Inc?doefnts Inﬁj?ifes Fattlci)tfies ﬁ]\;s:z\ﬁ F/:tlae.lrizgéi/
Incident Incident
Shinkansen 49 10 0 4 0.0 0.4
ICE 22 17 164 102 9.6 6.0
TGV 32 17 134 4 7.9 0.2
Eurostar 19 6 14 1 2.3 0.2
Thalys 17 2 6 1 3.0 0.5
RENFE 22 1 142 2 142.0 2.0
Trenitalia 25 4 56 9 14.0 2.3
SJ-2000 24 9 19 1 2.1 0.1
VR Pendolino 2 0 0 0.0 0.0
Korean Train eXpress 1 1 0 1.0 0.0
Acela 13 3 0 3 0.0 1.0
Chinese High-Speed Railway 15 1 210 40 210.0 40.0
Total 254 73 746 167 10.2 2.3

Appendix A presents a detailed listing of each incident, including the date; line; equipment;
train speed; a description; follow-up actions, if any; injuries; and fatalities. It is important
to note that more than half of the incidents (38 of the 73), including the world’s fastest
derailment, did not result in any injuries or deaths.
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The world’s fastest derailment occurred in December 1992, when a 10-car TGV train
traveling at 182 mph on the Paris-Lille LGV Nord line crossed what appeared to be a 10-
foot by 20-foot mud puddle. The mud puddle turned out to unsupported track, traversing
what was actually a 23-foot-long, 5-foot-deep sinkhole. The engineer felt a small bump
and applied the brake. The last four coaches and the trailing power car derailed. Despite
the back half of the train derailing, the trainset remained upright and in line with the track.
Accident investigators attributed this to the design of the shared bogies in the trainset and
the trainset’s relative stiffness. Of the 200 passengers on board, one was slightly injured
and one was treated for shock.

The average injuries per incident and average fatalities per incident are actually driven by
nine events that resulted in more than 20 injuries and between 0 and 101 deaths. Those
nine events are described below.

THE NINE MOST SERIOUS HSR INCIDENTS
1. ICE — June 1998

On June 3, 1998, an ICE 1 train traveling at 125 mph derailed near the town of Eschede,
in northern Germany. Like many incidents, particularly those with tragic outcomes, the
“Eschede disaster” was preceded by a series events that, if altered, could have either
prevented the accident and/or significantly reduced the magnitude of the tragedy.

Inthe late 1990s, DBAG discovered that the single-cast, solid-steel wheels on the ICE 1 trainsets
were wearing unevenly, becoming “unround” over time. This process caused vibrations that
were being transmitted into the car bodies of the train. The ICE 2 and later-generation sets
included pneumatic suspensions, which prevented the vibration problems inherent in the steel-
spring bogie suspensions of the ICE 1 trainsets. All ICE 1 trainsets were retrofitted with new
Bochum 84 wheels that had cast steel centers mounted onto an axle with bearings. A
rubber ring upon which another cast steel tire was mounted was placed around the cast
steel center. The rubber between the two cast-steel components of the wheel was intended
to be a vibration absorber, yielding a smoother ride. While the wheels initially served their
purpose at all speeds of operation, the design induced significant and unexpected fatigue,
ultimately causing cracks in the outer steel tire. These cracks were very difficult to detect
because they occurred on the inner part of the wheel, where the steel tire met the rubber
insert.

About 3.5 miles before the ICE 1 accident site, a steel tire on the third axle of the first
passenger car behind the lead power car cracked apart, and a substantial piece punctured
the floor of the car. A passenger quickly alerted the conductor, who was in the third coach,
but the conductor did not have the power under DB rules to stop the train until he visually
inspected the problem. In the one minute it took for the passenger to make notification and
the conductor to return to the affected car, the train traveled a little over 2 miles. At that
moment, it went through a crossover switch near a highway overpass, and the remains of
the wheel were caught in the flange guide rail of the switch. The impact derailed the axle
of the cracked wheel and ripped the guide rail from the crossties, pushing it into a vertical
position, where it punctured the floor of the car and lifted the bogie off the rails. This was
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the first time the engineer had any indication of a problem. He reported he felt a “pull” on
the back of the train and looked back to see the derailment unfolding.

As the train went through the second crossover switch, the derailed bogies caused the
switch points to realign. This sent the trailing bogie of car three onto a parallel track, and
the body of the car hit the concrete piers of the 300-ton roadway bridge as it passed
underneath. The 120 mph impact destroyed the bridge supports, completely collapsing
the structure. As the trainset derailed and separated, emergency brakes on each car were
automatically activated.

The lead power car stayed on the rails and came to a stop two miles down the line from
the accident site. The first three coaches derailed but remained upright and came to a stop
about 100 feet beyond the bridge. Coach four was moving fast enough to go under and
clear the bridge before it collapsed. Car four was separated from the first three, derailed,
and rolled over into trees along the ROW. Adding to the tragedy of the accident, two DB
employees working along the ROW were crushed and killed by the car as it rolled over.

The fifth coach was actually severed by the collapsed bridge. The front half traveled about
300 feet past the bridge, while the rear half was crushed under the weight of the overpass.
Car six was directly under the bridge at the time of the collapse and was completely
flattened. Cars seven through 11 were all destroyed under or up against the remains of
the bridge. The twelfth and final car of the train did not impact the bridge but was partially
crushed by the rear power car, which, itself, received minimal damage. The train had a
capacity of 743 passengers but was carrying only 287 at the time of the accident. The
aftermath of the incident is shown in Figure 13.

A week after the incident, the final death toll reached 101, including the two DB employees
who were working along the ROW. Eighty-eight passengers and crew were also injured in
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the incident. The official accident report as well as research reports that analyzed available
data on the incident concluded that the root cause was a catastrophic failure of a wheel
tire. The application of the wheel technology was questioned and openly criticized prior to
the incident, and some officials felt that the testing of the materials prior to the installation
was inadequate.

The severity of the incident was exacerbated by the environment in which the wheel failure
occurred and by the procedural reactions of the passengers and crew. Had the wheel
failed along a section of ROW that did not include crossover switches (turnouts), the train
would most likely have remained linear and upright. The location of the highway bridge pier
between the tracks was the most significant contributing cause, since it not only presented
an obstruction for the derailed cars but led to the failure and collapse of the bridge, which
directly caused most of the fatalities, injuries, and damage.

DB company policies prohibited the conductor or any other train crew member from applying
the train’s emergency brakes until a visual inspection of the situation was performed. This
delay provided the time for the accident chain to play out and the derailed train to collide
with the bridge pier. The passenger who first noticed the broken guardrail puncturing the
floor of the carriage was apparently also not informed through announcements or safety
cards to apply the brakes in the event of an emergency.

As in any transportation incident of this magnitude, lessons are learned, policies are
changed, and practices from engineering to operations are evaluated and modified. DB
assessed a number of its procedures, including the testing and inspection of materials, track
components, and rolling stock, as well as response directives for crew and passengers.
Many other HSR operators and non-HSR passenger rail systems around the world also
analyzed the pre- and post-incident factors of the Eschede incident and modified their
policies and practices.

In the United States, officials from the Federal Highway Administration and several state
departments of transportation are investigating ways to design and build new highway
overpasses that cross rail lines, rivers, and other roads to eliminate mid-span piers located
in the flow of traffic. This will improve safety and eliminate potential obstructions that could
cause or escalate accidents. Other countries are conducting similar efforts to create safer
crossings, as well as specifically relocating rail crossovers, where possible, away from
existing bridge piers or other potential ROW obstructions.

DB and other railroad operators in Europe also began to look at how the design and
construction of rolling stock contributed to the amount and severity of injuries and fatalities
and hampered egress and access efforts by passengers and emergency responders.
In the United States, railroads began to improve responder training and develop new
standards for passenger-car construction, including the design, labeling, and operation of
emergency-exit windows and doors.
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2. Chinese High-Speed Railway — July 2011

Worries about the haste with which China is building its HSR system peaked in July 2011,
when one high-speed train carrying 558 people plowed into the back of another train
carrying 1,072 people on a viaduct near Wenzhou in southeastern China. Forty people
were killed and more than 200 were injured, 12 of whom remained in critical condition for
several days following the collision.

A severe thunder and lightning storm had caused signal problems that evening, and train
engineers were being directed by control-center dispatchers to proceed with caution at
speeds below 12 mph if they came across red signals. This procedure was intended to
allow any engineer to safely stop the train if any other trains or obstructions were seen
on the tracks ahead. The engineer of the lead train proceeded as directed, but the ATP
feature shut down his train after he passed a red signal. At that point, the compromised
track-detection circuitry failed to identify the train in the block and established a green
signal for the train behind it.

After seven minutes of trying to override the ATP system, the lead-train engineer was able
to restart his train. Unfortunately, the train behind it had a green signal, so it was never
directed to switch to visual running procedure and went past the signal at normal operating
speed. Shortly after exiting a tunnel, the trailing train quickly came upon the lead train,
which was just starting to move, and slammed into the rear end of it at 62 mph.

The last car of the lead train (a coach car with an engineer’s cab) and the next three cars
derailed and were knocked off the viaduct by the collision. Three of the cars fell 50 feet to
the ground below, and one car ended up vertically—one end was on the ground and the
other was leaning against the top of the viaduct. The lead coach/engineer’s-cab car and
the first car of the other train also derailed but remained on the viaduct. The first car was
demolished by the impact, and the second car rode up on top of it. Although unconfirmed,
it is speculated that most of the deceased were in the lead train cars that fell off the viaduct
and the first car of the trailing train. Neither trainset design used articulated cars/bogies,
but except for the six cars that derailed, the remainder of both trains stayed upright and
linear with the track, the vast majority staying on the track. The aftermath of the collision
is shown in Figure 14.
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Figure 14. The Aftermath of the Wenzhou Collision

While there were many questions regarding the immediate and long-term responses of
the MOR and other Chinese government agencies and officials to the incident, the most
troubling issue was the fact that rescue operations were ordered to stop less than 24
hours after the collision. The cars that fell off the viaduct were broken up on-site by heavy
machinery and buried prior to any investigative actions. MOR claimed that the cars were
quickly scrapped and buried to keep sensitive national technology from falling into the
wrong hands. Others speculated that the claims by Kawasaki and other smaller component
manufacturers regarding patent theft were the driving factor.

The lack of credible information regarding the incident or the post-incident response and
investigations makes it difficult to identify lessons learned. The apparent cause seems to
have been a poorly designed and/or inadequately tested and evaluated signal- and train
control system that failed and did not communicate the presence of a train within a block
to other trains in the area. In addition, similar to the ICE Eschede disaster, the severity of
the incident was exacerbated by the environment in which the equipment failure occurred.
The greatest number of fatalities and the most injuries and damage were caused by the
car falling off the viaduct.
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3. RENFE — March 2002

The only significant incident on RENFE’s entire HSR network occurred in March 2002
in Torredembarra, about 50 miles southeast of Barcelona. A Euromed train traveling
at about 65 mph through the station to Barcelona collided with a commuter train. The
commuter train had left the platform and was crossing over onto another track when it was
struck by the Euromed traveling in the same direction. The commuter train was carrying
approximately 350 passengers, and 290 were on the Euromed train. Two people were
killed in the collision; which trains they were on is unclear. In addition, 142 people were
injured, some of them seriously. Many were trapped in the wreckage, requiring extensive
extrication efforts by the local emergency services. While there are no available data on
how many injuries occurred on each train, eyewitness accounts referenced in several
media stories stated that the majority were on the Euromed train. The aftermath of the
incident is shown in Figure 15.

RENFE promised an immediate investigation into the cause of the accident. Unfortunately,
other than the obvious cause—two trains on the same track at the same time—no further
information from RENFE or the Spanish government was available. Spain is one of several
countries that do not release information on rail-accident investigations.

4. Trenitalia — January 1997

The most tragic incident involving Trenitalia HSR service occurred in January 1997, when
a train left the rails about 30 minutes into its run from Milan to Rome. As it rounded a
curve at approximately 120 mph, the lead car of the train derailed and ran into a catenary
support pole. What was originally attributed to excessive speed or a foreign object on the
tracks was determined, following an investigation, to be caused by a ruptured universal
joint connecting the traction motors to the wheels. Eight people were killed in the accident:
two engineers, three railroad police officers, a restaurant-car worker, and two passengers.
The nine-car train, which had a capacity of 480, was carrying only 150 passengers at that
point in the trip. Twenty-nine people were hospitalized with injuries, and many more were
treated for less-serious injuries.
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5. TGV — September 1988

The first major accident on the TGV happened in September 1988 at a grade crossing
in Voiron, when a 10-car train running from Grenoble to Paris hit a heavy-duty flatbed
truck carrying a 100-ton electrical load at 68 mph. The truck, which was not permitted
to use the crossing, became stranded or stuck on the tracks at the crossing. The lead
power car derailed, and debris from the truck and its load ripped open the first coach,
killing one passenger and injuring 60 others. The impact also killed the engineer, and the
collision became a seminal event in the crashworthiness design and testing process of
future rolling stock. New versions included improved crash protection for the engineer and
crash-energy-absorption zones in the power cars and the front of the first trailing coaches.

6. Trenitalia — March 1998

In March 1998, an HSR train collided with a regional passenger train in Castello, near
Florence, and derailed as it was tilted on a curve. Information on the incident, which is
listed in the EU rail-accident-investigation database, is very limited. At the time of the
incident, the cause was thought to be a signal failure. Twenty-seven people were injured
in the accident, and one person on the regional train was killed.

7. TGV — December 2007

In December 2007, a truck driver was killed when a trainset traveling from Paris to Geneva
hit his truck at 62 mph and derailed. The truck was stuck in the grade crossing when it could
not pass beneath the overhead catenary. The truck driver had left the cab but was killed by
the impact before he could safely leave the ROW. The engineer suffered serious injuries,
and conflicting reports from international news services identified 24 to 34 minor injuries
to passengers on the train. The other 150 or 160 passengers were safely evacuated. The
damage to the lead power car was extensive enough for SNCF to scrap the unit.

8. ICE — April 2006

In Thun, Switzerland, an engineer hostling two light locomotives was unfamiliar with the
revised layout of the terminal and did not see a shunting signal directing him to stop.
Passing the signal immediately activated his locomotive’s emergency brakes, but at that
point the lead engine was fouling the track of an approaching ICE 1 trainset, activating that
train’s emergency brakes as well. The brake application slowed the ICE train from 45 mph
to 35 mph by the time of the head-on collision, but the ICE engineer and 30 passengers
on-board suffered minor injuries. The engineer of the light locomotives safely jumped from
the units before the collision. All of the involved equipment suffered major damage and
required extensive rebuilding.

9. TGV — December 1992
In December 1992, a 10-car trainset travelling from Annecy to Paris derailed as it passed

through Macon-Loche station at 168 mph. Aflat wheel, resulting from a previous emergency
stop, caused one of the trainset’s bogies to come off the rail while going through a switch
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at the entrance to the station. The train stayed upright and linear, and no one on board was
injured. The derailed wheel, moving at high speeds, launched a lot of ballast (stone) in the
station, injuring 27 passengers who were waiting on the platform for another train. This was
the first incident to occur on one of the LGV (dedicated high-speed) lines.

Safety Improvements
Minimizing the Impact of Derailments

Analysis of the incident data revealed that the most frequent cause of accidents in HSR
operations has been foreign (non-railroad) obstructions on the ROW, with vehicular grade
crossings topping the list. The remaining causes were most often related to equipment
malfunctions attributed to flaws in the engineering and/or construction phases of developing
rolling stock or infrastructure. As mentioned earlier, the design of a trainset’'s connections
between cars plays the most significant role in the severity of an incident. In short, the more
a train—by design—stays linear and upright in a collision or derailment, the better the life-
safety conditions.

Since the day when the first steel wheel rolled down a steel rail, railroaders and engineering
experts have been trying to figure out how to improve efficiency by reducing wheel-on-rail
friction. One early, out-of-the-box approach was to reduce the number of wheels/axles under
each car of the train while still supporting and distributing the weight of the cars’ live load.
Some early steam-powered streamlined trains and first-generation internal-combustion
trainsets used partial or complete articulation. By having two carriages or passenger-car
bodies share a wheelset, the total number of wheels per train could be reduced, thereby
reducing the overall amount of wheel-on-rail friction.

Second-generation HSR trainsets have reintroduced this concept. An unintended
consequence of articulation, demonstrated in several incidents at various speeds, is that
the trains stay linear and upright. Since the cars do not accordion (fold onto one another),
telescope into one another, or roll over, the number and severity of traumatic injuries are
significantly reduced in derailments and collisions.

Even trainsets that do not share wheelsets or bogies but employ semi-permanent
connections rather than knuckle-type couplers are more apt to stay upright and linear in an
incident. Aside from the Eschede accident and the Wenzhou collision, where infrastructure
design played a critical role, trainsets in almost every other HSR derailment, collision, or
terrorist attack have stayed upright and in line. The vast majority of commuter and intercity
passenger trains (which use knuckle-type couplers) that have been involved in a derailment
or collision in the past several decades have had multiple cars (and locomotives in several
cases) leaving the tracks and ending up in various states of destruction.

A modern case of unintended engineering consequences is that of the Shinkansen Series
200 trainset involved in a 2004 Joetsu derailment, where 11 of the train’s 40 axles derailed
during an earthquake. The Series 200 truck, or wheelset, had a component inside the
wheel span that protruded downward and inadvertently pinched the rail between it and the
inside rail surface. This feature was credited with playing a significant role in maintaining
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the train’s position and posture in the derailment. Aside from the trailing power car, which
deviated into a drainage trough in the slab track and slightly lifted after the rails completely
broke at a joint, the train remained upright and in line.

Following this incident, which resulted in no injuries or fatalities, JR East conducted a
series of tests on possible rolling-stock and ROW improvements that were intentionally
designed to prevent catastrophic derailments, specifically in the event of an earthquake.
JR East’s research and analysis included a systemwide damage assessment and an
assessment specifically focused on the events that occurred in the derailment and yielded
two very important conclusions. First, damage to structures (track) and the settlement of
structures were both negligible and were not considered to be a cause of the derailment.
Second, based on the results of simulations (modeling), the incident was attributed to the
railcars oscillating below the center of gravity after receiving large seismic waves, resulting
in a rocking derailment.

This comprehensive research effort spawned four concepts for further reducing the impact
of seismic activity. The first, which was introduced in 2006, was the development and
installation of a railcar guide mechanism. The L-shaped guide is cast as a single unit and
mounted with four bolts to the underside of the axle (journal) box. The purpose of the
guide is to significantly limit the lateral deviation of the wheelsets in the trackway during a
derailment. By being kept in line with the track, the train will be less prone to significantly
damage the ROW; strike tunnel walls; fall off bridges or viaducts (even though guardrails
are also currently used in these environments); or foul adjacent tracks. This measure,
which could ultimately prevent collisions, was developed, tested, and shown to be effective
in slab-track environments. A separate railcar guide is being developed by JR Central for
ballasted-track environments.

The next two concepts focused on increasing the probability of maintaining a track’s
integrity. First, the glued insulated joint (1J) used to connect rail sections was improved,
possibly to create expansion joints in the rails. An IJ broke in the Joetsu derailment,
leading to the significant deviation of the trailing power car from the track. A new glued IJ
was developed and introduced in 2007 that prevents the rail from breaking even when it
is subjected to the impact from derailed wheels outfitted with the L-shaped railcar guide.
The second improvement was the development of a rail anti-toppling device. This concept
was developed for slab-track applications and uses large, inverted L-shaped brackets to
grasp the foot of the rail and hold it in place despite the lateral forces placed on it during a
derailment. A ballasted-track version of the anti-toppling device is also under development
by JR Central.

The fourth outcome of the research focused on shortening the time required to apply
emergency brakes when overhead power is cut off. The original system included a feature
that shut down power in the overhead catenary in the event of an earthquake and an
on-board device that applied a train’s emergency brakes when this power shutoff was
detected. The research yielded a new power-detection device that significantly (relative to
the situation) shortens the time between power cutoff and emergency-brake application.
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While the integrity of the viaduct in the Joetsu derailment was not compromised by the
earthquake, many other Shinkansen line bridge and viaduct piers and abutments suffered
significant damage. In response, JR East developed processes to measurably improve
structural strength, including the installation of reinforcing steel plates around piers and
columns.

Reducing Damage from Collisions

The concept of crashworthiness was reevaluated following the September 1988 crash of a
TGV trainset into a low-boy trailer carrying a large piece of equipment at a grade crossing.
The train did not derail, but the engineer perished in the collision. Much of the impact
was absorbed in the engineer’s cab, which completely collapsed on impact. The incident
investigation also revealed that about 10% of the crash energy had been absorbed in
deformations of the first trailer. While this incident occurred when the train was moving
at only 65 mph, it was concluded that energy-absorption patterns, particularly in the first
trailer, in higher-speed incidents could result in serious injuries to crew and passengers.

The first step taken to address crashworthiness was improving the integrity of the
engineer’'s cab. While the improvements were modeled and tested prior to installation
to ensure the desired results, the proof has been unfortunately demonstrated on several
Lines Classiques grade-crossing collisions since then, with various-sized trucks and loads,
where the engineers have suffered injuries but survived.

The coupling between the power car and trailers was also reviewed in the post-incident
research. While the TGV system still employs screw-link couplers and buffers, the buffers
have been modified to include fuses that activate under crash loads, effectively folding the
buffer and absorbing energy. Improvements were also made to the car ends to prevent the
power car from climbing onto the first trailer car. The Scharfenberg couplers in the power-
car noses were redesigned to collapse in multiple-unit operations when placed under
sudden loads characteristic of collisions. This will allow two facing power cars to make firm
contact and, it is hoped, prevent telescoping.

Other European and Asian efforts to analyze crashworthiness and rolling-stock integrity
and strength focus on the balance between a safe carriage and the use of the lightest
possible materials to maximize weight reduction. Some ICE- and TGV-based trainsets,
while not derailing, have experienced sizable car-body gashes or more significant failures
in collisions, increasing the risk of serious injuries to passengers and crew. In the United
States, all revenue equipment must be built to comply with FRA crashworthiness standards,
which are typically much more stringent than those in other countries. While this makes it
impossible for Amtrak or other U.S. passenger-rail systems to buy off-the-shelf trainsets
from European or Asian suppliers, it ultimately makes the carriage-car bodies stronger and
more resilient and thus safer in derailments and collisions.

Right-of-Way Protection

TGV and other systems have made advancements in isolating their ROWs, particularly on
LGV lines, and installing systems to identify intrusions. All LGV lines are grade-separated
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and fenced off, restricting access by pedestrians and animals. Sensors have also been
installed on overhead bridges and tunnels to detect falling objects and other accidental or
intentional perimeter breaches. The sensors communicate an alarm to control centers and
trains, notifying them of an intrusion. Procedures dictate measures to be taken during such
alarms to avoid collisions and allow for investigations of the situation without completely
shutting down service in most cases. These steps to prevent and/or detect accidental or
intentional intrusion on the ROW not only reduce accidents but also enhance security
measures, particularly in areas of critical vulnerability.

Outside the TGV LGV environment and the China HSR ROW, which were designed and
built as grade-separated systems, grade-crossing reduction or complete elimination is the
most significant step HSR operators can take to reduce collision hazards. But, as seen
on several systems, the potential for vehicles, equipment, pedestrians, and livestock to
venture onto the ROW, outside of public crossings, must also be addressed.

Train Control/Signaling/Communications

Train control and signaling technology continues to evolve, particularly as train speeds
increase, rendering human reaction times to line-of-sight, wayside block signals far too
slow to prevent incidents. As seen in the Wenzhou collision, however, one of the most
important characteristics of any system is the need to have a fail-safe mode in the event
of power disruptions or failures or other system malfunctions.

Signal and train control systems need to be not only more reliable and resilient, but fail-safe
in sabotage situations as well. In one case, the theft of copper wire from a system caused
a malfunction and resulted in a collision—fortunately, only a slow-speed collision. Such
design flaws could be exploited for more-sinister acts than material theft. Short service
disruptions, no matter how frequent, are always preferable to the alternatives when a
system fails to stop operations.

Conclusion

The advent and growth of passenger HSR has introduced and/or refined a wide array of
safety features, only some of which have been discussed in this report. Incidents such
as collisions and derailments have consistently demonstrated the vast array of inherent
characteristics and design features that significantly reduce the number of injuries and
fatalities, as well as damage, particularly in comparison with other passenger-train
operations such as densely crowded commuter trains.

The lessons learned from the exemplary HSR safety record thus far should form the
foundation for future developments in infrastructure design, equipment, and system
technology, as well as operational practices and procedures. Extrapolating the lessons
learned from safety inquiries should lead security planners to focus on reducing
vulnerabilities.

The record of incidents in Europe and Asia clearly reveals that high numbers of injuries
and deaths occur when HSR trains collide with other trains or massive objects, and that
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specific locations or design features along the infrastructure put rail passengers at greater
risk of catastrophic consequences in the event of an incident.

Particularly vulnerable areas include:
» Grade crossings that offer easy access to terrorists wanting to derail trains

» Stretches of track with compromised visibility (e.g., adjacent to tunnels or significant
curves)

* HSR stations with high volumes of other rail traffic

+ Signaling and communications systems that could be subject to cyber attacks
* Elevated viaducts

* Tunnels

» Sections of ROW adjacent to major structures (e.g., overpasses) that could be
comprised

These vulnerabilities are not unique to HSR. Intercity, commuter, and heavy-rail trains all
operate in the same or similar environments. In the past 50 years, high-speed passenger
rail has proven that faster trains can not only be as safe as traditional trains, but in many
cases, they can be safer. This is a benefit not only to HSR systems but to all passenger-
rail operators, particularly those who learn from and borrow from HSR experiences, and
ultimately the countries and communities they serve. The HSR safety record in Europe
and Asia clearly indicates that formulating a strategy for securing HSR in the United States
separate and apart from the rest of the passenger, and even freight-rail, network is not
warranted solely because the trains go faster. The United States simply has the opportunity
to apply lessons learned to the design and construction of a new system.
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APPENDIX B:
A CATALOG OF BEST SECURITY PRACTICES

While transportation security clearly has improved since 9/11, the basic inventory of
security measures and best practices has changed little since 2001, although there have
been improvements and refinements in security measures.

Best Practices: The Latest Developments

Threat analysis is better informed by computerized databases that provide details
and statistical analysis of past terrorist incidents.

Random passenger-screening regimes have been introduced in some large urban
rail systems (e.g., New York, Boston, Los Angeles, AMTRAK).

Improved CCTV is in place, utilizing more-sophisticated software that can, for
example, alert authorities to suspicious movement or stationary items.

Vapor-wake-detection canines are being used that are effective for dealing with
moving groups of people rather than single individuals or objects.

Explosives detection is constantly being improved, with slow progress toward
remote, or “standoff,” detection.

Behavioral detection techniques have been implemented and are being improved,
although they remain controversial.

Suspicious-activity reports are being systematized.
The public is being enlisted in surveillance efforts.

Security is now a criterion in train and coach design and construction.

Best Practices: Intelligence and Threat Analysis

Periodic meetings with federal, state, and local authorities covering stations and
ROWs.

Analysis of local crime patterns.

Enlistment of vendors in stations, along with merchants, parking attendants, and
other surrounding stations, in awareness programs.

Enlistment of passengers in “see something, say something” programs facilitated
through mobile phones.
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Best Practices: Stations
» Designed to have open rather than confined spaces, no narrow corridors.
» Designed to accommodate temporary increases in security.
» Good visibility for surveillance, including CCTV cameras.
» Good lighting, no dimly lit corners.

» Target hardening to withstand blasts and prevent catastrophic damage from external,
large vehicle-borne bombs.

* No highly combustible materials or sources of toxic fumes or shrapnel.

* No hiding or hidden spaces.

* Reversible fans for the evacuation of contaminated air or smoke.

» Transparent elevators and, where possible, walls.

» Effective CCTV coverage with good resolution, linked with analytic software.

* Bomb-resistant, well-placed trash containers utilizing transparent trash bags,
frequently emptied.

* Removal of storage lockers or their separation to safer portions of the station.
» Designed to be easy to maintain and well maintained.

» Adequate emergency exits.

» Designated evacuation routes.

* Facilitated emergency response.

+ Safe sites within the station for cases where evacuation is unfeasible.

* Visible staff and security presence.

» Explosives-detection canine patrols.

* Chemical- and radioactive-substances detection systems.

« Staff trained in emergency procedures (dealing with suspicious objects, active
shooters, etc.).

Mineta Transportation Institute



Appendix B: A Catalog of Best Security Practices o1

Station staff and rail personnel visibly badged.

Vendors vetted.

Best Practices: Track Protection

Infrastructure and ROW design to minimize the potential for catastrophic
consequences such as cars plunging off viaducts or HSR incidents compromising
other structures. (Extra guardrails enabled the Nevsky Express in 2007 to transit a
bridge before derailing despite the bombing of the rails, instead of the cars falling
off the bridge.)

Seamless rails.

Solid roadbeds.

Tamper-detection systems on rails.

ROWs fenced, alarmed, and patrolled.

Signaling systems protected against cyber intrusions.

ROW search protocols in place.

CCTV coverage of critical sections (bridges, tunnels, etc.).

Sweep trains that precede daily traffic.

Rail staff and employees trained to recognize suspicious activity and objects.

Best Practices: Passenger Security

ID checks.

Passenger-screening protocols in place, vetted and tested for constitutionality,
legality, public tolerance (in place in AMTRAK and some commuter rail systems in
the United States).

Explosives-detection regimes for selected passengers (explored in U.S. pilot
projects).

Metal detectors and luggage x-ray (currently used only for Eurostar).
Explosives-detection canines on platforms and trains.

CCTV on coaches to discourage ordinary crime and provide investigative leads if
an incident occurs.
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* Random armed security (visible and undercover) presence in stations and on trains.

* Riders enlisted in “see something, say something” campaigns.
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