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EXECUTIVE SUMMARY

Spontaneous evacuations of New York City and Washington, DC, following the 9/11
terrorist attacks in 2001 demonstrated the lack of preparation in U.S. cities for managing
the sudden influx of traffic into road transportation networks caused by a no-notice disaster.
While anticipated events such as hurricanes have long been the basis for evacuation
planning, there is now increasing interest in evacuation planning based on hypothetical
no-notice events. Advances in computing technologies have made it possible to simulate
urban transportation networks in great detail. These traffic simulation models can be used
to devise strategies for evacuation and emergency response in the event of a disaster.

This report describes the modeling, calibration, and validation of a VISSIM traffic simulation
model of downtown San José, California (VISSIM is an acronym for the German words
“Verkehr in Stadten —Simulation” which means traffic in cities simulation model). The model
is then used to test various scenarios to assess the effectiveness of evacuation strategies
for use in the event of a human caused or other no-notice disaster.

The modeled network required a large amount of data on network geometry, signal
timings, signal coordination schemes, and turning-movement volumes. Turning-movement
counts at intersections were used to assess the differences between observed and
simulated counts. For freeways, the simulation model was validated using actual travel
time information. Once the base network was validated, various scenarios were tested to
estimate vehicle-based evacuation time and travel time of emergency-response vehicles.

It was found that in the event of coordinated terrorist attacks simultaneously occurring at four
locations in the downtown San José area, evacuee traffic would cause severe bottlenecks.
To alleviate the downtown congestion and speed traffic onto the freeway, contraflow lanes
could be used on Montgomery Street (which becomes Bird Avenue). However, evacuations
could be complicated by the difficulty of establishing contraflow lanes following a no-notice
disaster, traffic accidents potentially resulting from the congestion, and failure to comply
with new traffic-control devices required to implement contraflow.

The simulations indicated that the optimal approach for achieving a rapid evacuation of
the downtown would be to reduce the number of vehicles on the road through public
transit ridership, leaving area roads less congested for emergency-response vehicles. In
a scenario in which 30% of the evacuees used transit at Diridon Station Transit Center,
travel times for the remaining evacuees as well as the first responders were minimized.
Other scenarios provided response strategies that could be used if the transit station were
affected by the attacks or road surfaces were impacted by damage or accidents.
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l. INTRODUCTION

This report describes the use of traffic simulation for developing an evacuation plan for a
downtown region and creating emergency vehicle routing for use in case of a no-notice
disaster. Traffic simulation can be used to augment or verify computer aided dispatch
(CAD) system route selections and routing based on global positioning system (GPS)
guidance. The report also describes a variety of decisions that had to be made in this
research, including the choice of simulation software and the modeling procedure.

Problem Statement

In times of crisis, failure to provide an effective emergency evacuation system for a
metropolitan area can result in a second catastrophe, stranded residents. Low-lying
hurricane-prone communities have developed evacuation plans that can be activated when
the National Weather Service gives warning of an impending storm. But although such
plans can be well publicized and practiced, their implementation may not be successful
because of circumstances requiring sudden changes in instructions to residents and
rerouting of traffic. In 1999, residents of North and South Carolina evacuated in advance of
Hurricane Floyd, only to be trapped on the freeway as the storm’s direction changed. The
emergency management community recognized the need for more effective emergency
evacuation strategies.

In 2005, 1.2 million people were successfully evacuated from the New Orleans metropolitan
area in advance of Hurricane Katrina with the use of a car-based contraflow network
plan, but 70,000 people stayed behind by choice or necessity and were stranded in the
unexpectedly flooded city. Before the storm, many Amtrak trains left New Orleans empty
because evacuation plans did not incorporate heavy rail. Mass-transit buses carried
people without cars to outlying shelters, but bus drivers were unwilling to return for more
passengers as the storm worsened. School buses, which were not included in evacuation
planning, became a lost opportunity (Cooper and Block, 2006).

During Hurricane Rita, the evacuation plan failed because excessive reliance on
automobiles resulted in traffic congestion and fuel shortages (Litman, 2005). Texas was
long considered to have the best evacuation plans in the nation, but after seeing people
stranded on their roofs in New Orleans, the residents of the metropolitan area surrounding
Houston took to their cars, even though they were not in the evacuation areas mapped
out in the plan. The unplanned-for evacuees used up the available gasoline and filled the
shelters before the planned evacuations occurred (Dale, Mayer, and Moss, 2008).

The aftermath of these two devastating hurricanes highlights the need for emergency-
evacuation planning efforts that integrate relevant transportation-planning agencies and
use available resources more efficiently. Texas’s post-Rita evacuation plan integrated
better public education, tow truck operators, gasoline delivery mechanisms, and shelter
planning (“Task Force on Hurricane Evacuation Issues,” 2006).

Not all disasters requiring evacuation come with warning. Creative pre-planning is
needed for evacuation in the event of a no-notice disaster. For example, hazardous
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materials accidents on rail lines and freeways may require the immediate evacuation of
nearby populations. Terrorist attacks have caused similar evacuation requirements. The
September 11, 2001, attacks destroyed portions of New York City’s subway system and
PATH stations that were part of the World Trade Center complex, caused the closure of
the tunnels to New Jersey, and required the use of ferries to augment available evacuation
capabilities. The attacks at the Pentagon forced the closure of the adjacent freeway in
Virginia, complicating the evacuation of Washington, DC, as the 14th Street Bridge was
closed. The uncoordinated release of federal employees led to gridlock on Washington’s
streets, as there was no time to establish contraflow or other traffic controls (Jenkins and
Edwards-Winslow, 2003).

Mass-transit centers have been the targets of several terrorist attacks in large urban areas
over the past decade. Large-scale coordinated attacks on mass-transit systems in Madrid
in 2004, London in 2005, and Moscow in 2010 showed both the vulnerability of the mass-
transit centers in these urban areas and their importance. The attacks demanded rapid
response by fire/rescue and emergency-medical-services personnel. While crowds were
running away from the scene of the disaster, the first responders had to get access to the
victims and then to the hospitals. A response plan for such events cannot be created in
detail in advance, but modeling may enable estimates to be made of the best routes and
the most efficient traffic-management strategies for generalized emergency planning.

Evacuation planning requires the integrated knowledge of traffic planners, emergency
managers, and first-responder agencies. Together they may pre-plan corridors for
evacuation of congested downtown areas, high-population areas, and high-occupancy
spaces such as convention centers and sports venues. Sophisticated computer software
has enabled the modeling of emergency evacuation plans for major disasters (Chiu and
Zheng, 2007). An efficient emergency response decision-support system can not only
save lives, it can coordinate multiple independent agencies. A streamlined, coordinated
decision process that utilizes real network routing information can greatly improve disaster
traffic management and minimize fatalities. This study provides a simulation-model-based
framework for assessing a variety of routing mechanisms to improve evacuations.

Evacuation planning is one of the most difficult elements of emergency response to
design and implement. Effective integration of routing strategies with a community’s
existing emergency-response resources requires coordination between traffic operations
and emergency management plans of multiple agencies and often multiple levels of
government. For example, streets located within a city may be maintained by the county
transportation department, in which case repair schedules and lane closures may not be
well coordinated. The interstate-system freeways run through cities but are maintained
by state departments of transportation and are patrolled by states’ highway patrol. While
a local mass-transit operator, which may itself be a special district, is often listed as a
resource within the logistics section of the emergency operations plan (EOP), it is seldom
part of the emergency planning effort. Bringing the crucial emergency-response entities—
emergency services, transportation, and transit—together to develop key data for use in
all aspects of evacuation planning would result in more practical, realistic, and effective
multiagency, multimodal traffic management and evacuation plans.
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Modeling and simulation of traffic flow can generate information sufficient to allow for
reproducing the flow of whole networks in real time (Shreckenberg, Neubert, and Wabhle,
2001). Transportation engineers can use traffic simulations to optimize traffic management
and evacuation systems and run feasibility tests to determine their practicality (Molaghasemi
and Abdel-Aty, 2003). Simulation models can also answer “what if” questions to aid system
designers in assessing the impact on existing systems of various alternatives that cannot
be field-tested. For example, traffic management schemes like contraflow on city streets or
the use of public transit can be tested to estimate their impacts on the speed and efficiency
of post-disaster traffic management. In addition, interactions of various traffic sectors can
be studied to improve first-responder access without the risks, costs, and complexity of
multiple evacuation drills.

A timely and effective response to a disaster can save lives but requires coordination
among multiple first responders, including ambulance crews, fire departments, and law
enforcement personnel.

The study reported here was undertaken to:

1. Develop a microscopic simulation model to evaluate the pre- and post-disaster
performance of a downtown street network.

2. Find traffic bottlenecks that would impede evacuating private vehicle traffic and
emergency vehicle entry.

3. Develop a simulation-based framework for evaluating routing strategies for
dispatching emergency-response vehicles into the disaster area and evacuating
the general public given existing transportation network conditions.

4. Demonstrate rerouting strategies for vehicles in the event of network link closures.

The street network modeled in the study is in downtown San José, California. Diridon
Station Transit Center in San José is very close to the HP Pavilion, which is home to
the San José Sharks, rock concerts, and major public and corporate events. With this
location as the focal point of the study, disaster scenarios were created to demonstrate
potential sources of routing demands. The information garnered from the microscopic
traffic simulation is used to develop an integration of routing strategies within the existing
emergency-response framework.

The San José Downtown Area

The study area consists of approximately three square miles around downtown San José.
The disaster scenario, which is described in more detail in the next section, includes
the HP Pavilion and Diridon Station Transit Center. Interstate 280 (I-280) serves as an
important thoroughfare in the freeway network, carrying more than 15,000 vehicles during
the evening peak hour. Highway 87 is another important route into the downtown area,
carrying more than 6,000 vehicles during the evening peak hour.
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5 Introduction

Diridon Station Transit Center is the central transit hub and passenger rail depot linking
Silicon Valley to the rest of California. In addition, it is expected to become a future stop
on the BART extension to Silicon Valley in 2018 and the California high-speed rail system.
The study area is outlined in Figure 1.

i - Fale 02 . 3 {471 2

Figure 1. Study Area Map

DISASTER SCENARIO

The base case disaster scenario is a series of coordinated bombings in downtown San
José on a Friday afternoon. The bombings all occur in high-occupancy buildings, including
HP Pavilion, the federal Internal Revenue System (IRS) building, the State of California
office building, and the San José Convention Center, during the afternoon peak traffic
hour at 4:00 pm. The locations are shown in Figure 2. HP Pavilion is hosting a business
seminar, “How to Make $10K a Month from Home,” a sold-out event, with 19,100 attendees
on site. All 1,800 on-site parking slots were sold as part of VIP tickets, and adjacent city
and privately owned parking lots are full. Adjacent lots are located on Santa Clara Street at
Delmas, Santa Clara Street at Cabhill, and Autumn Street north of Julian. The lot on Santa
Clara Street has exit potential onto Santa Clara both eastbound and westbound, while the
Santa Clara Street at Cahill lot exits onto Autumn and then Santa Clara in either direction,
or Montgomery southbound, with the first cross street being Park Avenue.

The first bombing was a truck bomb in the HP Pavilion parking lot adjacent to the loading
dock on Montgomery Street. A smaller device was detonated on the floor of the arena in
the middle of the seating area. At the State of California building (located at 100 Paseo de
San Antonio), another truck bomb detonated while it was parked on the Third Street side of
the building in a no-parking zone along the west side of the street. Next, at the IRS building
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(located on S. Market Street), a truck laden with explosives, parked on the west side of
Market Street in a loading zone, detonated. The final bombing occurred at the Convention
Center (located on Almaden Boulevard), where another truck bomb exploded while it was
parked on the exhibit-area loading ramp adjacent to the exhibit-hall door.

Various response strategies were tested to determine which one yielded the most efficient
way to evacuate people and allow the emergency-response vehicles to travel from the
disaster areas to hospitals. The response scenarios have a majority of network features
in common, including signal timing and traffic volumes. All of the alternative response
scenarios, as well as the base case scenario, include a 5-minute simulation warm-up,
followed by a 60-minute simulation time, and a 5-minute “clearing period” for the remaining
cars to reach their destinations. In addition, only emergency vehicles (such as ambulances
and fire vehicles) traveling on 1-280 northbound (NB) or southbound (SB) can exit into the
downtown area. These vehicles were defined as a separate vehicle class in the model.
On 1-280 NB, the closed off-ramps were from 4th Street to Bird Avenue, while on 1-280
SB, the exits closed were from Bird Avenue to E. Virginia Street. Highway 87 NB and SB
were completely closed to all vehicular traffic except for emergency vehicles to prevent
further gridlock on city streets, as well as to potentially provide emergency vehicles a
quicker, more efficient route to access the bombing locations. In addition, to accommodate
the large number of vehicles expected to exit the parking lot across from the San José
Convention Center, a new intersection was added at Woz Way and Almaden Boulevard.
Another intersection was coded into the network at San Pedro and Santa Clara Streets for
the expected mass exodus of cars from locations around the bombed IRS building.

Emergency vehicles from the three fire stations most likely to be assigned to immediate
rescue needed the fastest, most direct route into the disaster areas, while ambulances
would need the fastest routes from the bombing locations to the hospitals. For this study,
three hospitals and three fire stations were identified as responders within the critical first
hour. No hospitals are located within the study area, so Google Maps was used to find the
travel time to the point where the path to the hospital began in the coded network. The
Google Maps travel time was added to the simulation time to estimate the total travel time
from the disaster area to the hospital. The hospitals and fire stations are shown in Figures
19 and 20 in Chapter IV.
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Figure 2. Bomblng Locatlons

Report Organization

Chapter Il presents a literature review of computer modeling for traffic management, which
provides information about state-of-the-art traffic simulations that have been conducted for
various purposes, including emergency evacuation and routing-strategy evaluation. It also
discusses the basis for ultimately choosing VISSIM to develop the microsimulation model.

Chapter 1l presents a detailed discussion of the model development and coding. Data
collection and network coding in preparation for calibration and validation are shown, and
the process of calibration and validation is explained.

Chapter IV describes four disaster-response scenarios and presents summaries of
simulation results from those scenarios.

Chapter V presents the conclusions of the study and offers suggestions for future research.
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lI. TRAFFIC SIMULATION: DISCUSSION AND LITERATURE
REVIEW

This chapter provides details of traffic-simulation applications and the potential advantages
and disadvantages of microsimulation. It also reviews prior studies related to simulation-
model application for emergency-response scenarios.

TRAFFIC SIMULATION

Traffic simulation has been defined as a “numeric technique for conducting experiments
on a digital computer, which may include stochastic characteristics, be microscopic or
macroscopic in nature, and involve mathematical models that describe the behavior of the
transportation system over extended periods of real time” (Molaghasemi and Abdel-Aty,
2003). Technological advances have made traffic simulation models a feasible option for
addressing traffic management problems. Traffic simulation packages offer a wide range of
practical traffic analysis tools, ranging from evaluation of alternative roadway treatments,
evacuation studies, and safety analyses through the simulation of traffic accidents. Modern
simulation models are based on random vehicular movements, which makes them suitable
for modeling human driving behavior and enables animated vehicles to be viewed on a
two- or three-dimensional graphic representation of a network.

Traffic simulation can be used to treat algorithms used in mathematical and logical modeling
that are infeasible or complicated, to represent systems in detail. Also, congestion effects
on roadways can be monitored through vehicle animation, which presents the system
characteristics in minute detail.

SIMULATION-MODEL CHOICES

Traffic simulation models can be broadly classified as microscopic (high-fidelity),
mesoscopic (mixed-fidelity), or macroscopic (low-fidelity). Numerous microscopic traffic
simulation models are currently being used to study transportation network operations.
These models typically offer the greatest flexibility and result in more-accurate estimations
of measures of performance than other models. The real world is represented more
practically in microscopic simulation models, because they can simulate vehicle-to-vehicle
interaction and provide continuous profiles of vehicle locations and speed (Molaghasemi
and Abdel-Aty, 2003). Given parameters such as travel demand, they can evaluate the
dynamic evolution of congested traffic and performance measures of alternative traffic
management strategies in response to traffic congestion. However, the size of the network
simulated must be smaller than that possible with macroscopic planning models, because
of the comparatively high number of required inputs, calibration and validation efforts, and
computing power needed for microscopic models (Rousseau et al., 2007).

Macroscopic models are appropriate for regional or large-scale studies. They are typically
used by transportation planners and demand modelers. Planners use a systematic process
to translate land use, household and employment characteristics, and transportation supply
into predictions of current and future travel patterns and demand through mathematical
formulation and simplification. Cars are aggregated, and measurements of flow, density,
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and average speed are then measured. These models are less accurate than their
microscopic-simulation counterparts, but they are faster and require fewer variables for
network coding. Networks developed by macroscopic modeling provide a static view of
transportation systems that is appropriate for long-term planning (Molaghasemi and Abdel-
Aty, 2003).

Mesoscopic models have both microscopic and macroscopic characteristics. They simulate
groups of vehicles or platoons and use aggregated microscopic-model results. Mesoscopic
models can be classified as either stochastic or deterministic. Stochastic models include
probability distributions, which offer the option to model uncertainty or randomness.
Deterministic models perform the same way for a given set of initial conditions, i.e., they
do not include any randomness.

Depending on the scope of investigation, different levels of detail are necessary for modeling
infrastructure and vehicles. The model that is ultimately chosen for a particular project
should provide the appropriate functionality, i.e., arterial, freeway, or integrated (Rousseau
et al., 2007). For simulations of large road networks, macroscopic flow models are the
common choice, while microscopic models are more often used for studying traffic flow in
smaller areas but in greater detail (Fellendorf and Vortisch, 2001). The appropriate model
choice is essential to the success of a simulation experiment. The choice is essentially
a tradeoff between the accuracy and precision of the model and the development costs,
data needs, and time required to execute the simulation (Rousseau et al., 2007).
SIMULATION STEPS
Experience and awareness of how a simulation model operates are necessary to achieve
good results. The technique suggested by Lieberman and Rathi (1999) consists of the
following steps:

1. Recognize and establish the scope of the problem.

2. Describe the goal of the study.

3. Find alternative methods to resolve the problem.

4. Explore the available simulation models.

5. Fine-tune the model.

6. Execute the model.

7. Check the integrity of the model.

8. Analyze the model output.

Before starting any study, itis necessary to recognize and establish the scope of the problem.
In a transportation study, this includes specifying the traffic environment (characterized by
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level of service and highway geometrics, for example), the boundary of the study area, and
the control environment.

After describing the goal of the study (e.g., predicting travel demand, picking the least
intrusive alignment for a new highway), one must pick the variables that measure
effectiveness (travel time, travel volume) and choose how specific the study needs to be,
the time line, the budget, and the predicted precision and constancy.

After the goals of the study are established, the next step is to determine the way to obtain the
sought-after results. A comprehensive literature review needs to be performed to compare
how similar studies were conducted and to learn what problems were encountered and how
they were overcome. Mathematical and simulation modeling methods should be surveyed
and their advantages and disadvantages compared according to fundamental theories,
simplicity, price, computing specifications, assistance available, quality of animation, and
the transparency of their documentation. After comparing different types of simulations,
the need for a simulation should be checked—in some cases, a mathematical model
can solve the problem, and a time-intensive simulation is not needed. When simulation
modeling is deemed necessary, the most desirable model that meets the needs of the
problem must be selected.

The next action is to collect the data required for the simulation model (including the
signal timing plan, overhead photographs, vehicle composition, roadway schematics, and
various traffic data such as the average annual daily traffic). A small section of the study
area should then be tested to calibrate the model. Calibration entails tuning the factors of
the simulations (such as perception time, headway allocations, and traffic-control-device
locations) with various scenarios. The simulation model should be evaluated against real
data and possibly with the widely accepted Highway Capacity Manual.

Using simulation models can be thought of as performing an extensive statistical experiment.
Initially, a model needs to be implemented to start up its database. That is required to
make the data correctly characterize the starting state of the traffic setting. Analyzing the
results is the most crucial step. With the complexity of all the progression occurring in the
real-world traffic setting, the researcher needs to:

» Make certain that all parts of the model proficiently represent the vital processes.

» Confirm that the input data that were required for the calibration are free from
typographical or other errors.

+ Verify that the output from the simulation trials is acceptable.
» Ensure that the statistical analysis lacks any flaws.

» Scan for any “bugs” in the model and the demeanor of the algorithms utilized.
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Detailed inspection of animation is vital, because it shows the data and observations from
the body of the traffic setting. Animation is the dominant tool for interpreting the simulation
output. It shows the source and consequence relationship and checks for unusual results.

The technique described above was used to develop the simulation model for the downtown
San José area.

ADVANTAGES AND DISADVANTAGES OF TRAFFIC SIMULATION

The continuing increase in computer processing power and improvements in the graphical
user interface (GUI) for simulation packages have enabled the development of very
practical traffic analysis tools. They allow traffic engineers and planners to artificially analyze
alternative roadway treatments, test new roadway designs, perform safety analyses
through incident recreation, and view dynamic emergency evacuation procedures.

Sisiopiku et al. (2004) provided a brief summary of many traffic simulation models that
are being successfully used to evaluate both microscopic and macroscopic network
operations. CORSIM is a microscopic simulation model developed for the Federal
Highway Administration (FHWA), used mainly in modeling urban traffic conditions. VISSIM
is a microscopic simulation model created by PTV Vision for modeling complex dynamic
systems, such as the interaction among pedestrians, public transit, and vehicles. Integrated
Traffic Simulator (INTRAS) is a microscopic simulation model that has been used for
incident analyses and to simulate traffic on freeways, ramps, and adjoining streets.

While current simulation models can easily incorporate relevant data, there are still many
variables that cannot be modeled (Algers et al., 1996). For example, simulation models
are unable to mimic congestion. The majority use simplistic car following and lane-shifting
algorithms to simulate vehicle motion, which may not realistically replicate driver behavior.
Also, with climate change receiving increasingly greater attention, there has been an
emphasis onincluding emission generation in simulation models. But automobile emissions
are difficult to model realistically, and obtaining current emissions data to validate findings
may be difficult.

Benefits and shortcomings of simulation modeling are summarized in Table 1, from the
Highway Capacity Manual, which contains concepts, guidelines, and procedures for
computing the capacity and quality of service of various roadway facilities.
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Table 1.

Benefits and Shortcomings of Simulation Modeling

Simulation Modeling Benefits

Simulation Modeling Shortcomings

Can adjust demand over space and time

Can model peculiar arrival and service trends that do not
match more conventional mathematics

Can move unserved queued traffic from one time to another

Can experiment with untested scenarios that do not
presently occur in real life

Can examine the system in condensed, stretched, or actual

time

Can perform possibly dangerous experiments without danger

to the researchers

Distributions can be tested off-line without using an online
trial-and-error approach

Can be the last-resort method of analysis
Can deal with interrelated queuing processes

Can give time and space sequences with statistical inform-
ation, including means and variances

Can analyze how variation can affect the operation of a
system

Can replicate base conditions for equitable comparisons of
improvement alternatives

Output may not be able to be duplicated for each
model trial

A less demanding method of solving the problem
may exist, e.g., a mathematical model

Extensive input parameters and data are required,
which may be challenging to find or unattainable

Many steps need to be completed to check a model’s
credibility; if those steps are ignored, the model
might not be accurate

Users of the simulation model may not understand
the model’'s assumptions or limitations

Creating a simulation model requires an understand-
ing of statistics, traffic-flow theory, and computer
programming

Researchers using the model may not know what the
model embodies

Simulation models are not user friendly; they often
lack guides and may need special computers

Source: Transportation Research Board, 2000, Chapter 31.

USING SIMULATION TO CREATE EMERGENCY PREPAREDNESS PLANS

Evacuation Modeling for Natural Disasters

Traffic simulation has been used to analyze emergency evacuation conditions for vulnerable
coastal areas in the southeastern United States. When Hurricane Floyd struck in 1999,
evacuations of North and South Carolina resulted in highly congested arterial highways,
and as a result, several states created lane reversal plans (contraflow lanes) for interstate
and/or divided highways along evacuation routes. To test the plans’ effectiveness, a major
research study funded by the North Carolina Department of Transportation used simulation
modeling to determine performance measures. It was ultimately determined that the lane
reversals provided considerable capacity increases for traffic attempting to exit via 1-40 in
North Carolina (Tagliaferri, 2005). The contraflow transition is shown in Figure 3.
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Figure 3. Schematic of Contraflow Transition for 1-40 in North Carolina
Source: Tagliaferri, 2005.

Theodoulou (2003) used CORSIM 5.0 simulation model results to evaluate the effectiveness
of a contraflow segment on westbound [-10 out of New Orleans and found that the use
of contraflow lanes could increase the traffic flow significantly; alternative plans that were
developed also resulted in effective roadway usage.

Evacuation Modeling for Human Caused Disasters

More relevant to this research is evacuation preparedness for urban areas that can
be affected by human caused disasters. Two studies have applied microscopic traffic
simulation to assess effective, post-disaster routing of emergency vehicles for human
caused disasters. Elmitiny, Ramasamy, and Radwan (2007) simulated strategies for
evacuating a transit station to help LYNX bus service in the Orlando, FL, metropolitan
region evaluate its evacuation plans. Mollaghasemi and Abdel-Aty (2003) analyzed the
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highway network around Orlando International Airport to identify the most effective routing
strategies for emergency vehicles.

Evaluation of Routing Strategies

Haghani, Hu, and Tian (2003) created an integer programming model to conduct a
simulation experiment in routing emergency medical service using a dynamic shortest-
path algorithm. Through a series of mathematical tests to verify the model’s validity and
sensitivity to changes in various parameters, it was ultimately determined that the model
provided advantages in real-time emergency vehicle dispatching. Through a dynamic
network, individual nodes were treated as moving vehicles, which provided a twofold
benefit: the emergency-response capability was improved, and dynamic travel time helped
to optimize emergency response time for severe incidents (see Figure 4).

Response Time Before and After Optimization
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Figure 4. Response Time Before and After Optimization
Source: Haghani, Hu, and Tian, 2003.

Pal, Graettinger, and Triche (2002) used ArcView Geographic Information Systems (GIS)
and Oak Ridge Evacuation Model System (OREMS) 2.5 to develop evacuation models for
two counties along the Alabama Gulf Coast, which is particularly vulnerable to hurricanes.
Arcview GIS was used to organize input data from roadway links to population data
in preparation for entry into OREMS. Using a system of nodes and links, the resulting
simulation showed that complete evacuation of Baldwin and Mobile Counties would take
approximately 21 hours and 8 hours, respectively. This information, along with a progressive
evaluation of the percentage of the population evacuated, is displayed in Figure 5.
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Figure 5. Simulation Model Output for Mobile County
Source: Pal, Graettinger, and Triche, 2002.

Chiu and Zheng (2006) developed a general mathematical evacuation model using
linear programming that provided a comprehensive treatment of the simultaneous,
multidimensional decisions on multipriority group mobilization during emergency
evacuation. The proposed network transformation from a node-to-node basis to a cell-
transmission technique permitted complex multidimensional mobilization to be determined
in the most efficient way. Chiu and Zheng also acknowledged the model’s limitations and
noted that future research would be needed to improve its capability.

CONCLUSIONS

While previous studies are thorough and helpful in their own way, they lack the effective
integration of routing strategies (for emergency vehicles and/or evacuees) within a
community’s overall emergency-response framework. The regional traffic model developed
by Sisiopiku et al. (2004) is also limited in its ability to simulate real-time emergencies and
does not model vehicular behavior at the microscopic level. The present study attempts to
provide a clear framework for integrating the routing strategies within the overall response
plan for a community.

On the basis of information gained in the detailed review of the literature, the VISSIM
microscopic modeling tool was selected because of its strengths as a stochastic
microscopic, time-step, behavior-based program developed to model urban traffic and
transit operations. VISSIM can analyze traffic as well as transit operations under constraints
such as lane configuration, traffic composition, and traffic signals, thus making it a useful
tool for evaluating alternatives.

This study also captures the real dynamics of emergency routing decisions that could
be easily applied to other locations. While precise routing strategies may not be directly
transferrable to other transit centers, the approach presented here can be used to identify
optimal routing strategies for emergency situations elsewhere in the United States.
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lIl. NETWORK MODELING

The network modeled was that on the afternoon peak hour on a weekday, the worst-case
scenario (for traffic) following multiple terrorist bombings throughout the downtown area
that would induce a wide-scale response and add to the already congested freeway and
highway networks. This chapter describes the details of data collection, network modeling,
and validation.

DATA COLLECTION

To provide a basis for calibration of the simulation model, data for downtown surface
streets were obtained from the San José Transportation Department (SJDOT), and
freeway counter data for 1-280 and counts for Highway 87 were obtained from the Caltrans
Performance Measurement System (PeMS). A regional Cube Voyager model from SJDOT
provided approximate, directional traffic volumes throughout the entire network. After the
traffic data were obtained and a calibration base was established, a traffic model had to be
created that would accurately simulate driving conditions encountered in the base case,
including the links or roads necessary to travel on, traffic signals, stop signs, yield control,
reduced-speed areas, and desired-speed decisions.

The driving behavior parameters that VISSIM offers were then implemented to calibrate

the simulation to match reality as closely as possible. The final network is summarized in
Table 2.

Table 2. Final Network Summary

Number of links 974
Signalized Intersections 45
Vehicle Inputs 70

MODEL BUILDING

To recreate the network’s geometry, a network coded with Cube Voyager was imported.
Cube Voyager is used to model a wide variety of regional-level planning policies and
improvements. Although it is a macroscopic model that is appropriate primarily for
forecasting personal trips, its use was initially thought to be a viable option. PTV Vision
has developed a macroscopic planning model called VISUM, so the Cube Voyager model
was imported into VISUM to be lightly edited and then exported into VISSIM.

Unfortunately, this process was unsuccessful because of the nature of the Cube Voyager
model. For example, it included an extra high occupancy vehicle (HOV) lane that was
separate from the rest of the freeway lanes and could connect only at certain points.
The most critical problem, however, was the program-to-program data transfer. Attempts
to change the network geometry in VISSIM, such as lane additions or link movement,
produced node errors and created an irreparable network. Many other problems were also
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encountered, and it was decided that the macro-level model lacked the appropriate level
of detail to be applied for this study.

The approach adopted then was to code the network geometry through multiple aerial
images. An image of the proposed network area was captured from Google Maps. The
network was then properly scaled and links (roads) were added to create the vehicle
thoroughfares. Initially, the area to be modeled consisted of 20 square miles, including all
the freeways and arterials in the network. The initial boundary is shown in Figure 6. The
image on the left of the figure is from Google Maps, and the image on the right is from
Google Earth.
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Figure 6. Initial Area of the Evacuation Study

The entire network within the study area was coded in VISSIM with the help of multiple
images. However, while calibrating a network with so many intersections and streets, the
traffic-assignment algorithm was not able to converge. Multiple attempts were made to
overcome this, by relaxing constraints on convergence and increasing the lengths of some
of the links to provide enough pockets to store queued vehicles. In addition, a dynamic
traffic-assignment feature known as “route guidance,” which assumes that some cars have
GPS and will continually gather data on the fastest routes available, was used. To get the
dynamic assignment to converge, merging needed to be made smoother, for example, by
eliminating locations where two connectors came from a multiple-lane link to a link that
had fewer lanes. This problem caused cars to make unnecessary lane changes because
there were two possible routes.

Moreover, this large network was not precise enough to provide the modeling detall
needed. Therefore, the scope of the network was reduced. The reduced network is shown
in Figure 7. It captures all the major exit and entry points into the downtown area and still
can be precisely modeled with all the requisite details in a microsimulation environment.
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Figure 7. Reduced Evacuation Study Area

This network chosen for simulation was based on proximity and relevance to the terrorist
bombings that would occur in the disaster scenario. Since the larger network of San José
had previously been created with traffic signals and desired-speed decisions to regulate
the roadway speeds, the remaining work consisted of simply removing the extraneous
freeways and surface streets. The final study area is shown in Figure 8.

Figure 8. Final Evacuation Study Area
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In addition to changes such as deletion of irrelevant network elements, functional changes
were made that initially produced unrealistic driver behavior and traffic congestion during
test runs. A number of elements had to be carefully changed to ensure that the simulation
replicated reality as well as possible. The detailed, thorough process of modifying the
network is summarized in Table 3.

Table 3. Network Modification Procedure

1. Insertion of vehicle inputs

2. Create routing decisions from each vehicle input to respective destinations

3. Check speeds throughout network on desired speed decisions

4. Input stop signs for controlled intersections for modeling of right turn on red on signalized intersections
5. Check conflict areas to ensure proper yield rules at conflict points (such as permitted left turns)

6. Check proper positioning of signal heads (an improper location in VISSIM may lead to vehicles not stopping at red
signals)

7. Input vehicle detectors at intersections working in correspondence with signal heads

SIGNAL TIMING DATA

The signal timing and volumes were set up to match the base case scenario. The signals
during the peak hour were modeled as Ring Barrier Controller in VISSIM, since it captures
the general signal timing pattern created for the intersections throughout the network.

In order for the network to recognize the signal heads, each was assigned a signal
controller number. Every time a new signal was input into the network, a new signal file
was created through the “edit controllers” option. The Ring Barrier Controller software is
one of the actuated-signal timing options within VISSIM. The controller dialog consisted of
the standard options to create a customized signal timing plan, including minimum green
time, as well as yellow and red timings. In addition, the Ring Barrier Controller offered the
option of mostly signalizing intersections with four approaches, the occasional protected
left turn, vehicle extensions, and vehicle detection. Figure 9 shows the standard signal
timing that accommodated the eight movements (four through and four protected left
turns) at the intersections.
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Figure 9. Ring Barrier Controller Timing Template

For intersections that allowed only permitted left turns, the left-turn-only phases of 12,
14, 16, and 18 were not input, and vehicles were instructed to yield to oncoming traffic
through conflict areas. Another unique feature of Ring Barrier Controllers is the ability
to synchronize vehicle detectors with the signal controllers. This allowed a much more
efficient flow of traffic that enabled a phase to be skipped, if necessary, to call on a signal
controller that had cars waiting at the intersection. It also mimics the functionality of the

actual signals in most urban areas.

Just as the network modification procedures followed standard steps, the signal timing
was input and tested in simulation to ensure that the network traffic ran properly. The steps

taken are displayed in Table 4.

Table 4. Signal Timing Procedure

1. Input the signal group number, name, minimum green, maximum green, yellow, red, and vehicle extension timings

2. Check the existing network geometry in Google Streetview to determine whether protected left phases are

necessary

3. Set the phasing order and ensure vehicle detectors are selected according to the signal group numbers

4. Install actual signal heads and detectors within the network
5. Install stop signs on right-turning connectors to allow right turn on red

6. Complete simulation test run to ensure proper phasing and vehicle detection
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After signal-head creation and signal timings were completed for the base case scenario,
it was necessary to input and balance the vehicle volumes.

VOLUME DATA FOR SURFACE STREETS

The available surface-street volume data were compiled into one spreadsheet. The best
available data, including intersection counts throughout downtown San José from 2006 to
2009, were obtained from SUDOT. However, this information was insufficient for determining
all the volumes at every intersection. The next option was to refer to the Cube Voyager
data, also from SJDOT, which included directional traffic volumes throughout the network.
Prior to coding the counts in VISSIM, all the SJDOT traffic-count data were entered into
a single Excel spreadsheet. An intersection was shown as four different approaches (see
Figure 10).
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Figure 10. Traffic Volume Excel Spreadsheet

The purpose of the directional “on/off flow” cells in Figure 10 was to calculate the volume
difference between the upstream intersection departure and the downstream intersection
approach. While the spreadsheet shows a completely balanced intersection, prior to the
volume balancing, if the on/off flow cells presented a negative integer, a volume had to exit
the road before the next intersection. However, if the cell value was positive, the number of
vehicles indicated in the cell would enter the road prior to the adjacent intersection.

The procedure of using the best available volumes in the Excel file, then using Cube
Voyager data to fill in the missing intersections, is summarized in Table 5.
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Table 5. Volume Input and Balancing Procedure

1. Enter volumes from the 2006—2009 Excel files into the turning-movement cells at each intersection

2. Working away from the known intersections, integrate the Cube Voyager data into adjacent intersections; to get
the volumes to match, use midblock driveways as either feeders or exits from the network

3. Using an iterative (west to east, north to south) approach, balance the network so that the “on/off flow” cells are as
close to zero as possible

4. Perform as many iterations as required to prevent volume balances being upset, as they would be if any approach
fed into the balanced segment from an adjacent intersection

The next step was to create the midblock driveways in the network, using the procedure
shown in Table 6.

Table 6. Midblock Driveway Coding Procedure

1. Select a roadway in VISSIM and place a single link at each location, depending on whether the link serves as a
feeder into the network or an exit from the network; if the spreadsheet shows a volume departing from the road,
create an exit as if vehicles had to enter the road, and code an entrance

2. Check that driveway locations include links, connectors, and conflict areas to resolve right-of-way issues

3. Code midblock exits as far upstream as possible to discourage unrealistic weaving and to allow adequate lane
change distances for vehicles; create midblock entrances as far upstream as possible, again to allow ample lane
change distances

4. Place the driveways were placed on their respective roads, refer to the traffic volume compilation and place the
corresponding volumes into the network

Figure 11 shows the layout of a typical entrance and exit. For most driveways, if traffic
flows in, there are no vehicles departing from the driveway and vice versa. Occasionally,
the placement of a midblock driveway was not realistic (e.g., the Bird Street interchange
and the Julian Street interchange) and driveways were not coded.

Feeder/Entrance

Figure 11. Midblock Driveway Entrance and Exit

Certain midblock feeders and exits warranted signals because of the large entering/exiting
volumes and their placement. Figure 12 depicts the placement of one such midblock feeder
with signals. This was an example of a feeder in which both an entrance and an exit were
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warranted due to the large number of vehicles entering and exiting. Also, a signal actually
exists at that location.

Figure 13. lllustrative Routing Decision

Following the driveway coding, the traffic volumes and turning movements from the compiled
spreadsheet were entered into the vehicle routing decisions. Figure 13 shows a routing
decision that branches through several intersections after a routing combination. There
were also locations throughout the network where closely placed intersections exhibited
large through and turning volumes. As a result, some cars could not change lanes fast
enough to access the connector they should have traveled on. The solution to this problem
was to create one routing decision that would span several intersections to allow vehicles
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ample time to make necessary lane changes. Figure 14 depicts the intersection routing
combinations needed to allow for vehicles to properly access their destinations.

Figure 14. Intersection Routing Combination

VOLUME DATA FOR FREEWAY AND HIGHWAY SEGMENTS

Caltrans has placed data counters on both 1-280 and Highway 87. Volumes for both
locations were obtained from PeMS data. However, data for the freeway/highway segments
included only one set of counters each on [-280 SB and NB at I-280 and the Highway
87 interchange within the simulated area. In addition, there was only one counter along
Highway 87 NB and none on Highway 87 SB. The data for Highway 87 NB, which were
last collected in 2006, displayed approximately 9,000 fewer vehicles than a more current
dataset (2009 Annual Average Daily Traffic “Peak Hour”).

The most current data available were used for all freeway and highway segments. The
turning-movement spreadsheet occasionally contained volumes coming onto the surface
streets from an off-ramp or vehicles departing onto the freeway/highway. These data were
used first, and Cube Voyager data were used to fill in the locations for which no traffic-
count data were available.

An AutoCAD file depicting the highways and freeways, along with the respective on-ramp
and off-ramp volumes, was created for visualization purposes (see Figure 15).

Mineta Transportation Institute



Network Modeling

"
& 3 > il
(J:} . 4 4 :
) B -
B yid % i '
Hard L% L e e %
i N ——
I e . Wi = s
[~ o] : ¥ ¥ & . .l
E 8 ?5; =
3 9 Sl G
4 i i
Tor e o G e e Lo
4 - Plicaes 10 am g g
¥ ¥ o
e daa 70D
[ vista i ; 3 Rl ot 1 201 1
’ M Bcademy
mis AVE 2 el e i - @
- . 5 g y
%} li‘_;!.;?_:_ Hulet 51 ;E- : L 1
/ £ i w '
'f' r 4 E E {
o L = [ t
¥ [t = J 5T maizem =] g
i Qj\ Wes Viroinia 2 &

Figure 15. On-Ramp/Off-Ramp Volumes on a Google Maps Image

VISSIM NETWORK CALIBRATION

After routing decisions were entered, calibration and validation were performed. Calibration
in the completed VISSIM network for the base case scenario involved refining and
adjusting the network to simulate realistic driving conditions. Calibrating a microscopic
simulation model can include adjusting components, such as turning-movement volumes,
car following model parameters, and traffic speeds. A well-calibrated model is essential for
this research to predict future vehicle behavior and model alternative disaster scenarios.
The model’s volumes were compared to those in the SIDOT or Caltrans data. If the data
did not match the models’ volumes, behavior parameters in the VISSIM network were
modified and the entire process was repeated. The calibration process is described in

additional detail below.

Driving Behavior Parameters

The final network consists of both freeway and local streets involving different car following
model parameters and driving behavior. Surface streets that use the “Urban (motorized)”
driving behavior were not altered. Figure 16 shows a screenshot of the default values used

in the simulation.
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Figure 16. Driving Behavior Parameter for Local Roads

For freeway driving behavior, several of the car following parameters needed to be altered
to adjust the network behavior to resemble reality. During the simulation of the base case
scenario (i.e., a typical Friday afternoon), unrealistic congestion (i.e., not observed by the
researchers in their trips to the region) built up at the on-ramps and off-ramps of 1-280
NB and SB, as well as Highway 87 NB and SB. The congestion was created by many
free-flowing vehicles traveling on the rightmost lanes, which prevented other vehicles on
adjacent on-ramps from entering into the freeway. Also, free-flowing vehicles that were in
an exit-only lane on the freeway would change lanes too late and create congestion. The
congestion was corrected under the “Lateral” tab for freeway (free lane selection). The
desired position at free flow on the freeways had previously been set to the middle of the
lane, but this was changed to the left lanes on the freeway, and vehicles no longer queued
at the on-ramps and off-ramps.

Table 7 presents the default values, a short description of the parameters, and the values
used if the parameter was altered.
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Table 7. Calibration of Freeway Car Following Parameters

Parameters Parameter Description Default Value Parameter Values

CCo (Standstill distance) or distance between stopped cars 4.92 1.51 ft

(Headway time) or time driver wants to maintain while
following another car

Example: The higher the value the more cautious the
driver

CcC1 0.90 1.00s

(Following variation) or maximum distance a driver can
go beyond safety distance before moving closer to front
cc2 car 13.12 13.12 ft
Example: The higher the value, the more aggressive the
driver

(Threshold for entering “Following”) defines when a
CC3 driver needs to accelerate before reaching safety -8.00 -8.00
distance

(“Following” thresholds) control speed differences

during “Following” state

CC4 is used for negative and CC5 for positive speed

differences (-0.35, (-0.35,
Example: Smaller values result in a more sensitive 0.35) 0.35)
reaction of drivers to accelerations or decelerations

of the preceding car, i.e., the vehicles are more tightly

coupled

(Speed dependency of oscillation) describes effect of
distance on speed oscillation in the following process
If parameter is zero, the speed oscillation will be
independent of distance to preceding car

Example: Larger values cause greater speed
oscillation with increasing distance

CC4 and CC5

CC6 11.44 11.44

(Oscillation acceleration) defines acceleration during

N 0.82 ft/s? 0.82 ft/s?
oscillation process

CccC7

(Standstill acceleration) defines desired acceleration

2 2
from standstill situation 11.48 ft/s 11.48 ft/s

CcCs

(Acceleration at 50 mph) defines desired acceleration at

50 mph 4.92 ft/s? 4.92 ft/s?

CC9

Vehicle-Record Data

Once behavior parameters were altered to represent reality satisfactorily, data were
needed to advance to base-network validation. Data counters were placed to collect the
number of vehicles passing a particular intersection point. In addition, travel time counters
were placed for the entire length of the freeway and highway segments on the network.
These data-collection methods were believed to be best suited to measure the network’s
similarity to data collected on individual vehicles throughout San José. The number of
vehicles passing through an intersection was tallied every time a vehicle passed a data
counter, and at the end of the simulation period of 4,500 seconds, the data were written
to a file. For the travel time counters, data were collected every 1,500 seconds and the
average was taken.

VISSIM NETWORK VALIDATION

Although the calibration process facilitated the creation of a VISSIM simulation that was
visually similar to reality, the network had to be tested to see how it would respond to
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changes in the seed numbers. This process is important because validation of the network
would justify its use in different disaster scenarios and would permit realistic comparison
of the scenarios’ performance.

Seed Numbers

The network’s performance was tested with ten different seed numbers. When a random
seed is chosen for a microscopic simulation, a random-number generator assigns values
for certain parameters based on stochastic (probabilistic) distributions built into VISSIM.
The random-number generator produces different numbers (based on the underlying
distribution) for parameters such as lane changing, driver behavior, route choice, and car
following. Running the simulation with the same seed number produces identical results
on different runs. When seed numbers are altered, the simulation output displays different
values based on different numbers assigned to driving behavior parameters.

GEH Statistics Validation for Turning-Movement Counts

After each simulation run based on one of the random seed numbers, turning movements
at the three intersection locations were collected for analysis. The intersections were Santa
Clara Street and Market Street, Park Avenue and Almaden Boulevard, and San Carlos
Street and Almaden Boulevard. To define a baseline accuracy to test the simulation’s
validity, SIDOT field counts were compared to the simulation turning volumes using GEH
statistics.

GEH statistics are commonly used in transportation analysis and simulation to compare
sets of traffic volumes. The empirical formula is similar to that of a Chi-squared test:

2(M - )2
N M+ C (1)

where M = traffic count from the simulation model, and C = traffic count observed in the
real world.

GEH =

The GEH statistics formula is not considered a true statistical test, but because it does not
follow a linear pattern due to the potentially large variations in traffic volumes, it avoids
common pitfalls of using simple percentage comparisons (Kilbert, 2011).

The simulation of downtown San José was assumed to be reasonably accurate when
GEH statistics for all 36 turning movements were less than 5. The averaged statistics for
the initial run shown in Table 8 are an average of the ten different-seed-number runs. None
of the recorded volumes displayed a GEH statistic over 5, indicating that the simulation
was validated for surface streets. Tables of the complete statistics from each simulation
run and random seed are given in Appendix A.
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Table 8. GEH Statistics for the Initial Model Run

Roadway/Intersection Movement Direction  Simulation? Actual® GEH Statistic

NbR 132 158 2.17

NbT 285 348 3.56

NbL 69 88 2.10

EbR 217 209 0.54

EbT 826 759 2.37

Almaden and San Carlos EbL 198 184 1.01
SbR 103 100 0.29

SbT 1009 1017 0.25

SbL 113 104 0.89

WbL 120 106 1.33

WbT 588 514 3.16

WbR 94 83 1.22

NbR 34 36 0.37

NbT 223 237 0.93

NbL 35 37 0.36

EbR 116 117 0.13

EbT 83 86 0.37

Almaden and Park EbL 97 105 0.79
SbR 87 86 0.10

SbT 955 965 0.33

ShL 43 48 0.70

WhbL 178 163 1.17

WbT 112 104 0.79

WbR 68 60 0.98

NbR 47 41 0.93

NbT 276 231 2.85

NbL 79 69 1.14

EbR 119 114 0.49

EbT 613 581 1.29

Market and Santa Clara Ebl 92 87 0.51
SbR 125 80 4.48

SbT 886 760 4.40

SbL 79 118 3.93

WhbL 107 90 1.68

WbT 448 395 2.56

WbR 91 80 1.20

aThe number of vehicles that passed through the data-collection point during the simulation.

Travel Time Validation

Validating the network travel time required a method other than GEH statistics. Travel
times were recorded separately for each highway and freeway segment in the network by
driving the highways for the same distance as was coded. The actual travel times were
then compared with the simulation times. The freeways in the network for which driving
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times were recorded were 1-280 NB and SB, and the highways were Highway 87 NB and
SB.

According to calibration targets developed by the Wisconsin Department of Transportation
for its Milwaukee freeway-system model, model travel times must be within 15% of the
observed travel times for more than 85% of the cases. The average statistics for the
initial run of the San José model are shown in Table 9. None of the recorded volumes had
a percentage error even close to 15%. Tables for the complete statistics detailing each
simulation run and random seed number are presented in Appendix B.

Table 9. Initial Run Travel Time Statistics

Roadway Actual Travel Time (min) Percent Error Simulation Average Travel Time (min)
I-280 NB 3.43 -3.3 3.3
1-280 SB 4.15 -3.2 4.0
Hwy 87 NB 3.15 -25 3.1
Hwy 87 SB 3.15 7.1 3.4

ESTIMATING THE NUMBER OF RUNS

Estimating the adequate number of simulation runs for the acceptable margin of error is
an iterative process. The results from the ten runs used in the validation process were first
used to obtain estimates of standard error and averages of the parameters of interest.
These averages and standard deviations were then used with a specified margin of error to
determine the appropriate number of runs for the disaster scenarios. If fewer than ten runs
were needed, the ten runs would be used; if more than ten were needed, the simulation
would be run that many times to repeat the estimation. The following equation was used
to estimate the number of runs:

where 5% = performance-metric variance based on ten trial runs

"% = threshold value for a 100 percent (1—a) confidence interval

n, = required number of times to run the simulation

£ = maximum error of the estimate

Freeway travel times were chosen as the performance measure to determine the number
of simulation runs required. A 95% confidence level (o = 0.05) was chosen, which
corresponds to a z-value of 1.96. The maximum error of the estimate (¢) was assumed to
be 5% of the mean for each performance metric. The number of runs required from each
calculation was rounded up to the nearest whole number. The minimum number of runs
specified from each performance metric on each roadway is shown in Table 10.
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Table 10. Number of Simulation Runs Required

Roadway I-280 NB 1-280 SB Hwy 87 NB Hwy 87 SB
Average (min) 3.3 4.0 3.1 3.4
Standard deviation(s) 0.1 0.1 0.1 0.0

Variance (s"2) 0.0 0.0 0.0 0.0

2" a/2 for 95% confidence level 1.96 1.96 1.96 1.96

Z a2 for 95% confidence level 3.84 3.84 3.84 3.84

B 0.2 0.2 0.2 0.2
Number of runs required (n) 3 1 1 1

Although fewer than five runs were required for all of the metrics, ten simulations were run
for the disaster scenarios. It can be concluded that ten simulation runs should be more
than sufficient to establish a travel time estimate for the disaster scenarios with a 95%
level of confidence.
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V. ALTERNATIVE DISASTER SCENARIOS

The validated base case network was used to estimate network performance and related
variations resulting from the mass exodus of vehicles from the downtown area.

DISASTER SCENARIO ASSUMPTIONS

One important assumption for all the disaster scenarios was that all the parking lots are
filled to capacity because of the special events being organized (making them essentially
worst-case scenarios). It was also assumed in all the scenarios that HP Pavilion traffic
leaving from the directly adjacent parking lot divide evenly (1/4 of 1,460)—meaning 365
vehicles each were input onto Julian Street, Cahill Street, Alamden Boulevard, and N.
Autumn Street—and all leave at approximately the same time. Three-quarters of the cars
in the San José Convention Center parking lot across from the center would exit onto
Almaden Boulevard from Woz Way. The remainder would exit onto Woz Way toward the
Highway 87 NB off-ramp. In the base case disaster scenario, people evacuate as they
might according to these assumptions. This scenario is compared with three alternative
scenarios. In each case, the travel times (for evacuees as well as for emergency-response
personnel) are compared to the base case scenario. These scenarios were chosen to
demonstrate how various scenarios can be tested using simulation. Of course, emergency
planners may deem other scenarios more likely or realistic than these.

The San José Fire Department uses the Opticon system (for traffic-light preemption by
first responders) during normal traffic operations. However, traffic-light preemption may
not be effective in disasters such as those considered here, as motorists are likely to block
intersections when lights change, making it impossible for emergency vehicles to pass
through. Therefore, the Opticon function was not factored into the travel time estimates.

CONTINGENCY SCENARIOS
Scenario 1

The first contingency scenario was created to test the effect of an incident such as an
accident or construction work resulting in road closure. At the peak hour, one lane on Bird
Avenue was closed as cars were trying to leave HP Pavilion and the other affected areas.
The closure was positioned southbound along Bird Avenue between San Carlos Street
and the 1-280 NB on-ramp. Figure 17 depicts the location of the closure.

Mineta Transportation Institute



34 Alternative Disaster Scenarios

Figure 17. Scenario 1. Right Lane Closure on Bird Avenue

Scenario 2

The second scenario was to created to test the effects, if any, of contraflow lanes exiting
toward the freeway on S. Montgomery Street, beginning at the Montgomery and Park
intersection, and heading south toward 1-280 and past the on- and off-ramps. All the traffic
was expected to depart from HP Pavilion toward the freeway, and the contraflow lanes
provided another path to exit the area. The lane configurations from Montgomery Street to
Bird Avenue are shown in Figure 18.
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Figure 18. Scenario 2: Contraflow Lanes

This was the most complex scenario to model because it involved traffic rerouting on
at least four different streets and one freeway on-ramp. The expected congestion on
Montgomery Street/Bird Avenue could potentially be alleviated by creating a path for left-
turning vehicles from both San Carlos Street and Park Avenue to exit toward 1-280. For
vehicles heading east on both Park Avenue and San Carlos Street, there are two right-turn
lanes onto Montgomery Street/Bird Avenue. In addition, left-turn and through movements
from this intersection approach are prohibited.

Vehicles traveling west on San Carlos Street and Park Avenue have one left-turn lane each
when turning onto Montgomery Street/Bird Avenue. Through movements are prohibited,
and from Park Avenue, only emergency vehicles are allowed to make a right turn going
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north toward HP Pavilion. From San Carlos Street, right-turn movements are entirely
prohibited because there is no emergency vehicle-only lane.

Also, as depicted in Figure 18, the Bird Avenue exits for both 1-280 NB and SB are open
to emergency assets only. In addition, vehicles wanting access to the 1-280 SB on-ramp
to Bird Avenue must be on the contraflow lanes, not the original lanes, because there will
be no left turns from the original lanes onto the on-ramp. The green arrow in the figure
indicates the permitted left-turn movement from the contraflow lanes onto the freeway.

Scenario 3

In the third scenario, it is assumed that more people take public transit from the Diridon
Station Transit Center to exit the disaster area, which could result in less congestion and a
faster exit from the disaster area for everyone. Volume from the 24 exiting parking lots of
the disaster areas was reduced by 30% as a result of the evacuees using public transit (In
VISSIM, any vehicle generating point within the simulation is called a “parking lot.”). This
scenario was created to demonstrate how effective public transit can be for emergency
evacuation in a downtown area. The proportion of drivers choosing transit can be modified
to test different scenarios.

EMERGENCY VEHICLE ROUTING

The model was used to aid in determining the optimal routing strategy for dispatching a
fleet of emergency-response vehicles from fire stations to the disaster sites. The three fire
stations in San Joseé that would certainly respond in a disaster scenario are Stations 1, 7,
and 30. Their locations are shown in Figure 19.

The shortest and fastest routes for response vehicles traveling from the disaster site to
hospitals were also analyzed. The primary hospitals to receive the injured from the disaster
were (1) O’ Connor Hospital, (2) Valley Medical Center, and (3) the Regional Medical
Center, shown in Figure 20.
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Figure 19. Primary Fire Station Responders
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Figure 20. Primary Hospitals to Which the Injured Would Be Taken

For each scenario, including the base case, the fastest route was determined using the
traffic simulation and Google Maps travel times. For example, from HP Pavilion to O’
Connor Hospital in the base case scenario, the fastest total time from beginning to end
was achieved by traveling via Montgomery, R onto Julian -> R onto Highway 87 SB on-
ramp -> R onto 1-280 NB -> R onto [-880 NB -> exit R onto Stevens Creek Boulevard
-> L onto Bellerose -> L onto Forest. Since O’ Connor Hospital was outside the simulated
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network, a Google Maps time was substituted for the time until a coded network road
began in the simulation. The total travel time was 11.3 minutes, of which 5 minutes was
Google Maps travel time and 6.3 minutes was simulation time.

Two of the fire stations are within the network. To record the travel time for the emergency
vehicles to the disaster areas, two new vehicle compositions were created. For network
locations where emergency vehicles and other vehicles could emerge together, a vehicle
composition called Car + Emergency was created that would generate 3% of the total
flow as emergency vehicles. In locations where only fire station vehicles would emerge, a
separate vehicle composition called Fire stations was created, consisting of heavy gross
vehicles (HGVs), i.e., fire trucks and engines. In addition, new routing decisions for the
vehicles had to be created and directed to the disaster sites. The averaged fastest travel
times, as well as the most efficient routes for both hospitals and fire stations, are listed in
Tables 11 through 14 for each scenario tested.
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EMERGENCY VEHICLE TRAVEL TIMES

Travel Times to O’ Connor Hospital
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Figure 21. Travel Times to O’ Connor Hospital from Disaster Sites

Figure 21 shows that travel time for ambulances from the disaster sites to O’Connor Hospital
were relatively consistent for all four scenarios. For example, an ambulance traveling from HP
Pavilion to O’ Connor Hospital would have the same travel time in all the scenarios. Likewise,
the travel times for ambulances traveling from the San José Convention Center would differ by
no more than 30 seconds. One of the reasons for the consistent travel times is that ambulances
going to O’ Connor Hospital were traveling on the most optimized routes, which are the same

for each scenario.
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Travel Times to Santa Clara Valley Medical Center
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Figure 22. Travel Times to Santa Clara Valley Medical Center from Disaster Sites

As shown in Figure 22, the results for ambulances dispatched to Santa Clara Valley Medical
Center from HP Pavilion were very similar in consistency to those for O’ Connor Hospital,
although the travel times from the disaster sites varied. Overall, the emergency vehicle
travel times from the San José Convention Center were the shortest. The travel time for
trips to Santa Clara Valley Medical Center are mostly unaffected by the existing traffic or
the additional congestion created by the mass exodus of vehicles from parking lots. Most
of the ambulance route from the San José Convention Center is on I-280 NB, which would
be impacted less than local and collector roads near the disaster area.

Travel times for ambulances from the HP Pavilion did not differ significantly among the
scenarios, primarily because of ambulances having sole access to Highway 87. This
suggests that authorities may be able to get help to HP Pavilion victims quite easily under
the circumstances simulated. Without any congestion, the ambulances could quickly gain
access to the necessary route from HP Pavilion; other route options involved less distance,
but travel would be on local roads.

Travel times from the IRS building would be greatest for the base case, Scenario 1, and
Scenario 2 because of the congestion severity encountered along Santa Clara Street.
The simulation showed that vehicles would travel quickly along Highway 87 but would
encounter severe congestion approaching the hospital via the Santa Clara Street off-ramp.
Other route options explored resulted in even more travel time. There were no significant
differences in travel time for ambulances traveling from 100 Paseo de San Antonio.

Mineta Transportation Institute



Alternative Disaster Scenarios 45

Travel Times to the Regional Medical Center
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Figure 23. Travel Times to the Regional Medical Center from Disaster Sites

As shown in Figure 23, the travel times to the Regional Medical Center were very
consistent for ambulances traveling from HP Pavilion, again because emergency vehicles
have exclusive access to Highway 87, thereby avoiding congestion on the local roads.
The same consistency was found for ambulances traveling from the San José Convention
Center. Travel times from 100 Paseo de San Antonio were the longest in all the scenarios
due to the congestion on 4th Street caused by vehicles attempting to access 1-280 NB.
The travel times were relatively consistent among the scenarios.
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Travel Times from Fire Station 1

This section examines the travel times from fire stations so that the best dispatch location
for each affected area can be identified.

12

E To HP Pavilion

H To 5] Convention Center

Time (min)

i To IRS Building

M To 100 Paseo de San
Antonio

Base Case Scenario 1 Scenario 25cenario 3

Figure 24. Travel Times from Fire Station 1 to Disaster Sites

As shown in Figure 24, an emergency vehicle trip from Fire Station 1 to HP Pavilion took
the most time. Although the vehicles had to travel only 0.7 miles, they encountered a
great deal of congestion on Julian Street as a result of vehicles exiting the parking lots
in addition to the regular traffic flow. Travel times for emergency vehicles going to the
San José Convention Center were generally consistent at approximately 8 minutes. Also,
vehicles traveling to the IRS building, which was right down the street, did not encounter
any congestion. It is clear that Fire Station 1 should be used to dispatch vehicles to the IRS
building and to 100 Paseo de San Antonio.

Mineta Transportation Institute



Alternative Disaster Scenarios 47

Travel Times from Fire Station 7
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Figure 25. Travel Time from Fire Station 7 to Disaster Sites

As shown in Figure 25, there was very little difference between travel times from Fire
Station 7 to the four disaster sites. For example, the travel times from Fire Station 7 to
HP Pavilion were identical across all four scenarios, as was the case for most of the

destinations.

Travel Times from Fire Station 30

B To HP Pavilion

E To 5] Convention Center

Time [min)
B

& To IRS Building

B To 100 Paseo de San
Antonio
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Figure 26. Travel Time from Fire Station 30 to Disaster Areas
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Figure 26 shows that emergency vehicles traveling from Fire Station 30 to HP Pavilion
would encounter very similar travel times at around 3 minutes, except in Scenario 2. The
simulation travel time was about half the predicted Google Maps travel time of 5 minutes.
However, in Scenario 2, the contraflow lanes providing traffic routing away from HP Pavilion
seemed to have an adverse effect on travel time. The travel times for emergency vehicles
traveling to the San José Convention Center were around 1 to 2 minutes. The trips to the
IRS building most clearly highlighted the effects of the vehicle reduction resulting from
greater use of public transit in Scenario 3. Whereas travel times in the three preceding
scenarios were over 5 minutes, the Scenario 3 travel times were around 1.5 to 3 minutes.

EMERGENCY RESPONDER TRAVEL TIMES TO AND FROM DISASTER SITES
Travel Times from Disaster Areas to Hospitals
The hospital at which patients could most quickly arrive was analyzed for each disaster

area. Figure 27 shows the travel times from HP Pavilion to the primary hospitals in the
disaster scenarios.
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Figure 27. Travel Times from HP Pavilion to Primary Hospitals

Ambulances could take patients affected by the disaster to either O’Connor Hospital or
Santa Clara Valley Medical Center. The travel times from HP Pavilion were all very close
to 11 minutes, indicating that the ambulance routes were relatively unaffected by the
differences in the scenarios.
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Figure 28. Travel Times from the San José Convention Center to Primary Hospitals

Persons injured at the San José Convention Center should be dispatched to either O’ Connor
Hospital or Santa Clara Valley Medical Center in Scenarios 1, 2, and 3 because the travel
time is less than that to the Regional Medical Center. For the base case scenario, however,
O’ Connor Hospital would be preferred as the travel time to it is 1 minute less than the time
to the next closest hospital, Santa Clara Valley Medical Center (see Figure 28).
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Figure 29. Travel Time from the IRS Building to Primary Hospitals

Ambulances traveling from the IRS building should be dispatched to Santa Clara Valley
Medical Center in the base case and Scenarios 2 and 3. O’ Connor Hospital would be the

Mineta Transportation Institute



50 Alternative Disaster Scenarios

next best option; the travel time differences for the two hospitals are only about a minute
or less, as shown in Figure 29.
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Figure 30. Travel Time from the State of California Building to Primary Hospitals

Travel time from the State of California building at 100 Paseo de San Antonio was
consistently shortest for Santa Clara Valley Medical Center in all of the scenarios. However,
Figure 30 shows that the time to O’ Connor Hospital was only one minute or less greater
than the time to Santa Clara Valley Medical Center. Therefore, O’ Connor Hospital would
be the second best option for patients dispatched from the State of California building.

Travel Times from Fire Stations to Disaster Areas
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Figure 31. Travel Times from Fire Stations to HP Pavilion
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As shown in Figure 31, Fire Station 7 should be the primary responder to a disaster at
HP Pavilion in all of the simulation scenarios; its response time was consistently about 7
minutes shorter than that of the next closest fire station, Fire Station 30.
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Figure 32. Travel Times from Fire Stations to the San José Convention Center

Travel times to the San José Convention Center were clearly shortest for Fire Station 7, as
shown in Figure 32. The travel times from Fire Station 7 were shorter than those from Fire
Station 1 by about one to two minutes for each scenario. Therefore, in all the simulation
scenarios, Fire Station 7 should be the primary responder to the San José Convention

Center.
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Figure 33. Travel Times from Fire Stations to the IRS Building
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Fire Station 1’s proximity to the IRS building (only 0.2 miles) makes it the first choice for
all of the scenarios. Fire Station 7 was not even a close second—the travel time from Fire
Station 7 was approximately 5 minutes greater than that from Fire Station 1, as shown in
Figure 33.
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Figure 34. Travel Times from Fire Stations to the State of California Building

For the State of California building, Fire Station 1 would offer the shortest travel time in all
scenarios, around 2 minutes. Travel times from the next closest fire station, Fire Station 7,
were approximately 6.5 minutes longer for each scenario.

TRAVEL TIMES FOR EVACUEES

The average travel times for the evacuees leaving the four disaster locations to reach their
destinations are shown in Table 15. Destinations for each origin are different specified exit
points on the modeled network.

Table 15. Travel Times for Evacuees to Reach Their Destinations

Travel Time (minutes)

Origin Base Case Scenario 1 Scenario 2 Scenario 3
HP Pavilion 14.0 17.6 124 9.8
San José Convention Center 5.3 4.9 5.5 5.0
IRS building 16.6 12.7 12.2 12.6
State of California building 7.8 7.3 5.7 6.5

While specific destinations are not listed, Table 15 shows the improving or worsening travel
times from the disaster locations. The longer travel time from HP Pavilion for Scenario 1 is
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caused by the incident closing a lane of traffic toward the [-280 SB and NB on-ramps. If the
objective of the evacuation plan is to evacuate HP Pavilion, Scenario 2 might be the best
option, which includes contraflow lanes designed specifically to alleviate the congestion
anticipated from vehicles exiting from HP Pavilion. Evacuee travel time away from HP
Pavilion was approximately 6 minutes shorter in Scenario 2 than in Scenario 1. However,
the contraflow lanes did not reduce the travel time from HP Pavilion to the vehicles’ intended
destinations better than Scenario 3, in which vehicular traffic from the parking lots was
reduced by 30%. An unintended consequence of the contraflow lanes was the rerouting of
vehicles onto adjacent streets, which directly affected evacuees’ travel time from the San
José Convention Center. However, since the increase in travel time is less than a minute
(from 4.9 minutes to 5.5 minutes), it may be an acceptable alternative. Scenario 3 had the
fastest travel times from all the disaster areas in the simulation, except for Scenario 2's
HP Pavilion trips, in which contraflow lanes assisted evacuees’ departure from the area.

DIFFERENCES AMONG THE MEAN TRAVEL TIMES (STATISTICAL
ANALYSIS)

The preliminary assessment described above shows that significant transit support would
be needed to evacuate the general public most efficiently, while roads would mostly be
used by emergency personnel. However, these general inferences need to be verified
by statistical tests. As noted earlier, the averages of travel times were obtained using ten
simulation runs, and the base case scenario is essentially the “do-nothing” scenario. The
statistical test was conducted using the average of the total travel times for the emergency
vehicles and the evacuees. Hence, a lower value implies quicker evacuation and faster
response. The travel times were compared through a two-sample t-test (one side/one
tail), which was conducted for each pair of plans to test if there was indeed a significant
difference between their means. The t-value was estimated using following equation:

(X_n_ E)— (11— 2)

-1 1
Cntm

(2)
where

X, = Mean value of 10 samples in the first specified scenario

Ym = Mean value of 10 samples in the second specified scenario being compared to
n=number of observations for the first specified scenario

m = number of observations for the first specified scenario
H, = real mean of the first specified scenario
H, = real mean of the second specified scenario

& = Pooled estimate of the sample standard deviation
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In this study, the null hypothesis (H,) was the population’s mean p, < p, against an
alternative hypothesis (H,; p,>l,). This essentially predicts that the first scenario’s times
are greater than those in the second scenario.

In this study, the null hypothesis (Hea) was the population’s mean #: = k2 against an
alternative hypothesis (H1; k1 > 2). This essentially predicts that the first scenario’s times
are greater than those in the second scenario.

In testing the difference between the means of the base case and Scenario 1, the null
hypothesis was that the mean value from the base case minus the mean value from
Scenario 1 was less than or equal to zero. If it was zero, there was no significant difference
between the two plans. The alternative hypothesis was that the mean value from the
base case was larger than that from Scenario 1. Both the base case and Scenario 1 had
ten values, with mean values of 5.7 and 6.4 minutes, respectively. The mean difference
between the scenarios was estimated in to be —0.34 minutes. Therefore, using Equation
2, the t-value was found to be —1.76. The p-value was calculated from these estimates.
For this study, the simulation achieved 95% confidence when the value of a was 0.05. That
means the interval will contain the true parameter with 95% confidence, and only 5% of all
values would exceed this interval. The significant mean difference between the base case
and Scenario 1 is shown in Figure 35.

Two-sample t-test and Cl: Base case vs. Scenario 1
N Mean StDev SE Mean

Basecase 10 5.700 0.262 0.083

Scenario1 10 6.040 0.552 0.17

Difference = mu (Base case) - mu (Scenario 1)

Estimate for difference: -0.340

95% ClI for difference: (-0.746, 0.066)

t-test of difference = 0 (vs not =): t-value =-1.76 p-value =0.096 DF =18
Both use pooled StDev = 0.4323

Figure 35. Significant Mean Difference Between the Base Case and Scenario 1

From the comparison between the base case and Scenario 1 in Figure 35, the null
hypothesis was not rejected. The p-value was 0.096, which is greater than the o value
of 0.05. Therefore, the null hypothesis was not rejected at the 95% confidence interval,
meaning that there was not enough evidence to conclude that the base case as a whole
performed significantly worse than Scenario 1 in terms of travel time.

The same procedure was repeated to verify the difference between the base case and
Scenario 2. The output from the statistical test is shown in Figure 36.
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Two sample t-test and Cl: Base case vs. Scenario 2
N mean StDev SE mean

Base Case 10 5.700 0.262 0.083

Scenario2 10 5.640 0.617 0.20

Difference = mu (Base case) - mu (Scenario 2)

Estimate for difference: 0.060

95% ClI for difference: (-0.385, 0.505)

t-test of difference = 0 (vs not =): t-value = 0.28 p-value =0.780 DF =18
Both use pooled StDev = 0.4740

Figure 36. Significant Mean Difference Between the Base Case and Scenario 2

Figure 36 shows that the null hypothesis cannot be rejected, since the p-value was 0.78,
which is greater than the o value of 0.05.

The identical procedure was performed to validate the difference between the base case
and Scenario 3. The output for the comparison is displayed in Figure 37.

Two sample t-test and Cl: Base case vs. Scenario 3
N mean StDev SE mean

Base Case 10 5.700 0.262 0.083

Scenario2 10 5.130 0.359 0.1

Difference = mu (Base case) - mu (Scenario 3)

Estimate for difference: 0.570

95% CI for difference: (-0.274, 0.866)

t-test of difference = 0 (vs not =): t-value = 4.05 p-value = 0.010 DF =18
Both use pooled StDev = 0.3416

Figure 37. Significant Mean Difference Between the Base Case and Scenario 3

Figure 37 shows the statistical summary of the differential mean test, assuming equal
variance. Since the p-value was 0.01, which is close to zero and is less than the a value
of 0.05, the null hypothesis can be rejected. Therefore, it can be concluded that the mean
travel time in the base case network is larger than that in Scenario 3, which means that
public vehicles in the base case needed more time to discharge and emergency vehicles
needed more time to reach their destinations than in Scenario 3.

The statistical tests showed that Scenario 3 enabled emergency vehicles and evacuees
to reach their intended destinations in the fastest time. It indicates the role mass transit
can play in urban areas, not only in terms of the daily commute, but also in executing an
effective mass evacuation. In Scenario 3, 30% of the evacuations were assumed to be
on mass transit, but a higher proportion would further reduce the pressure on the roads,
clearing them for the emergency responders.
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V. CONCLUSIONS, EMERGENCY MANAGEMENT
APPLICATIONS, AND FUTURE SCOPE

CONCLUSIONS

In this study, simulation modeling was applied to investigate evacuation strategies and
scenarios for a human caused disaster in downtown San José and to generate a replicable
approach to evacuation planning. A microscopic simulation model of the downtown street
network was developed in VISSIM. Google Maps and the manual observation of the
network were used to code the network for factors such as lane configurations and traffic
signals. The network was coded to have evening peak hour volumes to represent the
worst-case traffic scenario.

The base case scenario included near-simultaneous terrorist bombings at four downtown
San José locations: HP Pavilion on Santa Clara Street, the IRS building on Market Street,
the Convention Center on Almaden Boulevard, and the State of California building at 100
Paseo de San Antonio. Three hospitals and three fire stations were identified as locations
for the emergency responders. The primary hospitals to which patients from the disaster
would be transported were O’ Connor Hospital, Valley Medical Center, and the Regional
Medical Center. The fire stations were the origins for the emergency responders, and the
four terrorist targets were the destinations. The terrorist targets were also the origins for
evacuees (general public), with their destinations being different exit points on the network.

The simulation model was used to identify efficient routing strategies for four different
scenarios, chosen to investigate different complications or potential improvements that
could be made in the event of a large-scale terrorist attack. The fastest route for each of
the four scenarios was chosen after averaging the travel times from ten simulation runs.
These fastest routes were for the evacuees exiting the downtown, ambulances traveling to
the hospitals from the disaster locations, and fire vehicles traveling to the disaster locations
from nearby fire stations.

In the base case scenario, the most severe traffic bottlenecks occurred along Santa Clara
Street and Montgomery Street, as vehicles exiting from the surrounding HP Pavilion
parking lots attempted to flee the area. The Santa Clara Street bottleneck began at the
intersection of Santa Clara Street and Cabhill Street and continued as far as Market Street.
The worst traffic in the Montgomery Street bottleneck occurred from the intersection of
Montgomery Street and Santa Clara to the 1-280 on- and off-ramps.

In alternative Scenario 1, contraflow lanes on Montgomery Street/Bird Avenue helped to
reduce the bottleneck on Montgomery Street and subsequently reduced the bottleneck on
Santa Clara Street as well, since fewer cars were able to turn onto Santa Clara Street from
Autumn Street. Any bottleneck directly associated with implementing contraflow lanes in
this location can be alleviated by the fact that the reversal begins at the intersection of
Park Avenue and Montgomery Street. In Scenario 2, in addition to providing two contraflow
lanes for the general public to exit the disaster area, one of the lanes immediately adjacent
to the contraflow lanes was used only for emergency vehicle access to HP Pavilion.
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However, this did not seem to produce shorter travel times than that in scenarios without
the emergency vehicle-only lane.

As expected, reducing the number of evacuating vehicles on the road was the most
efficient way to reduce travel times. In Scenario 3, where 30% of the traffic was diverted to
transit via the Diridon Station Transit Center, the least congestion was encountered by the
remaining evacuees and emergency responders. While this is a logical conclusion, putting
it into practice and implementing a plan in which drivers abandon their vehicles in a car-
oriented society would be difficult. It would help if emergency responders and emergency-
response planners could advertise their plan in a way that effectively communicates the
advantages of using transit in a disaster situation. If transit is not available (possibly due
to attacks on the station or on the tracks), the contraflow lanes will be helpful. Emergency
professionals may be able to devise even more effective scenarios that can be evaluated
using the simulation model developed here. The real goal of this research was not to
identify the best possible strategy but to demonstrate how any evacuation and response
strategy can be evaluated using the model.

EMERGENCY MANAGEMENT APPLICATIONS

In the United States, CAD systems are used to dispatch most emergency-response
vehicles to the scene of an event. These systems integrate community maps with overlays
of fire station locations and information on real-time locations of patrolling police cars
and ambulances, generally based on vehicle locator systems. The computer-based maps
enable the dispatcher to quickly select the closest emergency-response vehicles that are
in service and available to take a call.

For the most part, neither the CAD maps nor the information available in the emergency-
response vehicles uses GPS technology for routing to the scene of an event or call for
service. Likewise, intelligent transportation system (ITS) data obtained, for example, by
road sensors and traffic cameras, are not generally integrated into the CAD decision
systems. Rather, the emergency responders are responsible for being familiar with the
district in which they operate, including knowing about alleys and shortcuts, current traffic
repairs blocking lanes or streets, and special events in the community that would impact
traffic flows (Seal, 2012). Rather than using computer support, the fire captain, police
officer, or ambulance driver selects the route to a call based on experience with that
transportation node.
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Figure 38. Emergency Vehicles are Dispatched Using CAD
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Although the model developed in this research can provide enhanced information for pre-
event vehicle routing, the time to develop a specific model for the relevant section of a
community is too great for real-time disaster application. Modeling is useful for pre-event
planning, training, and exercising purposes, but it offers no assistance in the real-time
management of an no-notice event. By the time the modeling determines which strategy
to use to manage traffic, it is usually too late to make the changes to the streets, as the
population in the affected area is likely to begin to move immediately. Setting up barricades
to create contraflow, block freeway exits, or create emergency vehicle-only lanes requires
pre-planning and notice to be successful (Seal, 2012).

Simulation modeling of traffic patterns and disaster-induced changes can have useful
applications in several aspects of emergency management. During emergencies, a
community’s emergency operations center may benefit from traffic circulation information
collected through the ITS. Such data mightinclude real-time broadcasts from traffic cameras
and traffic flow speeds from road sensors. In communities like Montgomery County, MD,
the traffic management center and the emergency operations center are colocated with
the emergency dispatch center to enhance information sharing. Models of key nodes or
areas of special concern could be warehoused by the traffic management center and used
to estimate disaster impacts on the traffic circulation in the community.

Development of disaster circulation patterns and evacuation plans for specific communities
can begin with the use of simulation models. Emergency planners can postulate traffic
management modifications and use a model to test their effects. Such simulations are
useful for designing new streets or street modifications that decrease the supply of available
travel lanes, such as bike lanes, carpool lanes, or bus lanes. Simulations are also useful
in determining how best to augment travel lanes for special-events management, peak
commute management, or evacuation.

Once a design is selected, the traffic managers can determine what signage or traffic-
control devices need to be installed to support emergency changes to road usage. For
example, electronic signboards can be installed to designate street lanes for contraflow
during evacuations, special events, or even commute hours. The Coronado Bridge in
San Diego, California, moves K-rail twice each day to create extra lanes in the heaviest
commute direction and fewer lanes in the less-traveled direction. The city of Santa Clara,
California, has overhead, two-sided traffic signals that use red and green lights to designate
which lanes can be used in each direction of travel on heavily traveled commute routes.
The colors are easily changed during special events and high traffic periods or in the event
of an accident on the road. Simulations can enable evacuation planners to determine
which streets would benefit from contraflow lanes under specific conditions and then install
permanent traffic-control devices to support the rapid conversion of the streets’ directional
flow.

Modeling can also assist emergency planners in creating more meaningful and realistic
training. For example, training on evacuation management for a hazardous materials
event can start with the simulation model showing normal traffic for the area at a given
time of day. The effects of different traffic management options in response to the need
to evacuate the population at risk can be demonstrated to teach traffic managers and
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emergency responders about how different strategies change the flow of traffic. By seeing
the difference between contraflow and limited access, students can better understand the
impact of their choices under disaster conditions. Limited access from flooding could be
added to the model to show how it limits traffic rerouting options for an area around a gas
pipeline leak or a tanker truck accident, while the addition of contraflow on another street
could demonstrate the degree of congestion relief obtained. A model allows the instructor
to manipulate community conditions and then test traffic flow in different scenarios.

Modeling and simulation can also contribute to emergency management exercises
involving traffic flow. During an exercise, a traffic simulation using a VISSIM model can
show how decisions made by the participants impact traffic flow in the community as the
scenario unfolds. For example, the closing of freeway ramps can be included in the model,
which will then show the resulting backups on the freeway. The effects of implementing
contraflow can similarly be demonstrated. This ability to model the outcome of traffic-
flow decisions can help exercise participants appreciate how one or two decisions can
enhance the flow of traffic during an evacuation or can make matters significantly worse.

The simulation model developed here can be used by emergency planners to revise
strategies and evacuation scenarios to determine what works best for any given disaster.
It allows for the evaluation of evacuation scenarios for the downtown area in general, as
well as for specific events and locations. The scenarios can be used to add factors such
as the damage to the road system caused by an attack to determine which evacuation
strategies would be most effective. Planners can also postulate the impact on evacuation
routes of hurricanes, tsunamis, flooding, sea-level rise, and loss of infrastructure through
seismic shaking or human caused damage.

With the model developed here, emergency planners can analyze more scenarios for
downtown San José with little additional work. While application of the model to other
communities would require the creation of new data for the area of analysis, this research
provides insight into the best model to use.

FUTURE TRAFFIC PLANNING STUDIES

The results of this research can also serve as a basis for further research into disaster
planning. Knowing the time horizon of an evacuation, as well as the inclusion of more area,
would be helpful. In this study, attempts were made to create a network encompassed by
Highway 101, 1-880, and 1-280 (a 20-square-mile area) with all roads coded. However, the
traffic assignments could not be made to converge, because of the many details and the
large amount of traffic.

Increasing the modeled area might make it impossible to model the network in the detail
attained here. Mesoscopic modeling, such as cell-transmission modeling, might be
used in that case. Observations during the VISSIM simulation indicated that even after
background traffic had mostly diminished, queues would take some time to clear the
network. Therefore, a potential investigation could delve deeper into the data to estimate
a point in time where queues have successfully cleared the network from an emergency
management standpoint.
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The simulated downtown San José network could be used for other applications as well.
The quality of traffic flow in downtown San José could be examined through an application
such as the two-fluid model. Any proposed changes to the network, such as lane-widening
or one-way streets, could be easily coded into the existing VISSIM model, and the resulting
quality of traffic flow could be represented with new two-fluid model parameters. This could
help assess the impact of newly proposed improvements on the traffic flow in the entire
network.
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APPENDIX D: TURNING MOVEMENTS FOR THE BASE CASE
SCENARIO

SB on/off flow

NB on/off flow

SC: 39
NS: Cahill
EW: Santa Clara
43 50 8 63
WB on/off flow s v N\ A WB on/off flow
576 | < N 58 0 |
0 A < 490
EB on/off flow 800 = r 58 EB on/off flow
120 N -> 838 0 |
\2 N A 7
228 43 5 30
SB on/off flow NB on/off flow
| 0 -37
Intersection: Cahill and Santa Clara
SB on/off flow NB on/off flow
SC:38
NS: Montgomery
EW: Santa Clara
0 0 0 0
WB on/off flow v v N A WB on/off flow
0 606 | < N 0 0 |
0 A < 606
EB on/off flow 589 —> v 188 EB on/off flow
| 0 | 249 N > 589 [ 0 |
N2 N A 7
437 0 0 0
SB on/off flow NB on/off flow
0 0
Intersection: Montgomery and Santa Clara
SB on/off flow NB on/off flow
| 0 0
SC: 14
NS: Montgomery
EW: San Fernando
15 650 72 0
WB on/off flow o ¥ v N\ A WB on/off flow
0 115 [ < N 0 0 |
0 A < 100
EB on/off flow 300 == r 50 EB on/off flow
0 150 N -> 372 0 |
\2 N i 7
850 0 0 0
SB on/off flow NB on/off flow
| 0 0

Intersection: Montgomery and San Fernando

Mineta Transportation Institute
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Appendix D: Turning Movements for the Base Case Scenario

SB on/off flow

NB on/off flow

| 0
SC:9
NS: Montgomery
EW: Park
43 736 15 240
4 v N\ S WB on/off flow
302 | < N 18 | 0 |
14 A < 138
107 = r 208 EB on/off flow
192 Ny —> 174 | 0 |
i AN A 7
1136 121 208 52
SB on/off flow NB on/off flow
0 [ o
Intersection: Montgomery and Park
SB on/off flow NB on/off flow
[ 0 0
SC: 1
NS: Bird
EW: San Carlos
81 1030 75 399
WB on/off flow v v N A WB on/off flow
| | 575 | < N 25 0
70 A < 370
EB on/off flow 505 —> r 209 EB on/off flow
| | 261 N -> 707 0
\ AN A 7
1500 124 304 127
SB on/off flow NB on/off flow
I 0 I 0
Intersection: Bird and San Carlos
SB on/off flow NB on/off flow
[ 0 0
SC: 66
NS: Bird
EW: 280 WB
572 928 0 649
WB on/off flow 4 \’ N\ A WB on/off flow
| | 768 | < N 248 [ |
0 A < 0
EB on/off flow 0 = r 702 EB on/off flow
I | 0 N -> 0
v N A 7
1630 196 401 0

SB on/off flow

NB on/off flow

I 0 I

0

Intersection: Bird and 1-280 WB

Mineta Transportation Institute
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SB on/off flow NB on/off flow
[ 0 0
SC: 67 | Int#: 2
NS: Bird
EW: 280 EB
0 1044 586 597
WB on/off flow v v N\ A WB on/off flow
| | 0o [« N 0 I |
224 A < 0
EB on/off flow 0 —> v 0 EB on/off flow
409 N -> 819 |
N2 N A 7
1453 0 373 233
SB on/off flow NB on/off flow
| 182 | 48
Intersection: Bird and 1-280 EB
SB on/off flow NB on/off flow
l 0 [ 0
SC:N/A [ Int#: 1
NS: Bird
EW: Virginia
36 1283 316 558
WB on/off flow v v N A WB on/off flow
| | 76 | < N 133 [ |
31 A < 11
EB on/off flow 9 —> v 46 EB on/off flow
| | 4 N -> 378 [ |
\2 N A 7
1333 29 394 53
Intersection: Bird and Virginia
SB on/off flow NB on/off flow
| |
SC: 40
NS: Montgomery
EW: Julian
25 3 48 41
WB on/off flow s v N A WB on/off flow
337 | < N 2 0 |
13 A <= 302
EB on/off flow 395 —> v 16 EB on/off flow
5 N -> 468 0 |
\2 AN 1P 7
24 10 6 25

SB on/off flow

NB on/off flow

Intersection: Montgomery and Julian

Mineta Transportation Institute



84

Appendix D:

Turning Movements for the Base Case Scenario

SB on/off flow NB on/off flow

SC:7
NS: Pleasant
EW: Julian
0 0 394 111
WB on/off flow v v N\ A WB on/off flow
[ 0 | 30 [ < N 111 [ 0 |
0 A < 340
EB on/off flow 468 —> r 0 EB on/off flow
0 | 0 N -> 862 0
2 LN a 7
0 0 0 0
SB on/off flow NB on/off flow
Intersection: Pleasant and Julian
SB on/off flow NB on/off flow
I
SC: 41
NS: Hwy 87 (W)
EW: Julian
75 87 172 1084
WB on/off flow s v Y A WB on/off flow
0 | 151 [ < N 1084 0
0 A < 376
EB on/off flow 837 = 4 220 EB on/off flow
0 25 Y —> 445 0
332 0 0 0
273
SB on/off flow NB on/off flow
Intersection: Hwy 87 (W) and Julian
SB on/off flow NB on/off flow
SC: 42
NS: Hwy 87 (E)
EW: James/Julian
*Below is the 0 317 162 757
WB on/off flow freeway volume v v N A
0 | 1680 | < N 126 WB on/off flow
117 A < 1156 0
EB on/off flow 328 —> r 0
0 | 0 N -> 686 EB on/off flow

v N ff 2

0 407 352 41

*The above volume is Notre Dame Ave.

SB on/off flow NB on/off flow

Intersection: Hwy 87 (E) and Julian

0

Mineta Transportation Institute
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Turning Movements for the Base Case Scenario
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SB on/off flow NB on/off flow
SC: 43
NS: Market
EW: James
0 1000 145 282
WB on/off flow v V N A WB on/off flow
[ 0 | 0 < N 0 | 0 |
50 A < 0
EB on/off flow 500 —> v 0 EB on/off flow
0 100 [ N > 675 | 0
v N 1F 2
1100 0 232 30
SB on/off flow NB on/off flow
0 0
Intersection: Market and Street James
SC: 43 Int#: 24
NS: 1st
EW: James
0 0 0 285
WB on/off flow s % N\ A WB on/off flow
0 0o [« N 0 0 |
53 A < 0
EB on/off flow 710 — 4 0 EB on/off flow
[ o | 0 N -> 740 [ 0 |
\2 N n 7
0 0 232 30
SB on/off flow NB on/off flow
| | 0
Intersection: 1st and James
SC: 43 Int#: 24
NS: 4th
EW: James
0 900 121 0
WB on/off flow s % N\ A WB on/off flow
0 0o [« N 0 0 |
0 Z = 0
EB on/off flow 750 = r 0 EB on/off flow
0 81 N > 871 -871 |
831 N N A 7
981 0 0 0
SB on/off flow NB on/off flow
| 0 | 0

Intersection: 4th and James

Mineta Transportation Institute
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Appendix D: Turning Movements for the Base Case Scenario

SB on/off flow

NB on/off flow

SC: 37
NS: Autumn
EW: Santa Clara
88 0 23 189
WB on/off flow v v N\ A WB on/off flow
| 0 | 794 [ < N 106 [ 0 |
25 A < 621
EB on/off flow 564 —> r 0 EB on/off flow
0 | 0 N - 655 0
2 N a 7
0 85 58 68
SB on/off flow NB on/off flow
0 0
Intersection: Autumn and Santa Clara
SB on/off flow NB on/off flow
[ 0 [ 0
SC: 15
NS: Autumn
EW: San Fernando
0 0 0 327
WB on/off flow s v Y A WB on/off flow
| 0 | 150 | < N 75 0 |
72 i < 125
EB on/off flow 300 == 4 0 EB on/off flow
| 0 | 0 N -> 445 0 |
\2 N ar 7
0 25 180 145 350
SB on/off flow NB on/off flow
[ 0 0
Intersection: Autumn and San Fernando
SB on/off flow NB on/off flow
SC: N/A
NS: Delmas
EW: Santa Clara
0 0 0 0
WB on/off flow v v N A WB on/off flow
| 0 | 727 [ < N 0 [ 0 |
0 A < 655
EB on/off flow 600 —> r 288 EB on/off flow
| 0 | 55 N - 746 0
2 N ar 7
343 72 0 146

SB on/off flow

NB on/off flow

0

0

Intersection: Delmas and Santa Clara

Mineta Transportation Institute



Appendix D: Turning Movements for the Base Case Scenario

SB on/off flow NB on/off flow
0 | 0
SC: 16
NS: Delmas
EW: San Fernando
50 300 50 250
WB on/off flow v v N\ A WB on/off flow
| 0 | 100 | < N 200 [ 0 |
50 A < 50
EB on/off flow 500 —> v 200 EB on/off flow
0 50 N -> 550 0 |
\2 N A 7
550 0 0 0
SB on/off flow NB on/off flow
| 0 | 0
Intersection: Delmas and San Fernando
SB on/off flow NB on/off flow
| 0 | 0
SC: 2
NS: Delmas
EW: Park
77 365 249 306
WB on/off flow s v N\ A WB on/off flow
0 470 < The above volume is the freeway N 0 0 |
0 A offramp < 323
EB on/off flow 121 = r 121 EB on/off flow
0 46 N -> 419 0 |

v ¥ 2 N

838 70 306 49 *The volumes to the right are Delmas St. SB
SB on/off flow NB on/off flow 174
| 0 | -425 |
Intersection: Delmas and Park
SB on/off flow NB on/off flow
I 0 [ 0
SC: 2
NS: Delmas
EW: San Carlos
203 468 35 0
WB on/off flow v v ~N A WB on/off flow
| 0 | 541 | < N 0 [ 0 |
0 A < 338
EB on/off flow 428 —> v 40 EB on/off flow
0 106 N > 463 0 |

N R i 7

614 0 0 0

SB on/off flow NB on/off flow

Intersection: Delmas and San Carlos

Mineta Transportation Institute
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Appendix D: Turning Movements for the Base Case Scenario

SB on/off flow NB on/off flow
[ 423
SC: 35
NS: Almaden
EW: Santa Clara (W)
164 105 154 0
WB on/off flow v v N\ A WB on/off flow
| 0 | 700 [ < N 0 [ 0 |
0 A < 536
EB on/off flow 1000 —> r 0 EB on/off flow
0 | 241 N -> 1154 0
2 N a 7
346 0 0 0
SB on/off flow NB on/off flow
[ 0 [ 0
Intersection: Almaden and Santa Clara (W)
SB on/off flow NB on/off flow
[ [ 266
SC:35 [ Int#: 18
NS: Almaden
EW: Santa Clara (E)
0 0 0 534
WB on/off flow s v Y A WB on/off flow
| 0 | 536 | < N 126 0
182 bz < 425
EB on/off flow 972 = 4 161 EB on/off flow
| 0 | 0 N -> 1090 1
\2 N ar 7
161 111 226 118
SB on/off flow NB on/off flow
0 [ 15
Intersection: AlImaden and Santa Clara (E)
SB on/off flow NB on/off flow
| 0 | 0
SC: 17
NS: Almaden
EW: San Fernando
50 580 57 440
WB on/off flow v v N A WB on/off flow
| 0 | 20 [ < N 50 [ 0 |
90 A < 300
EB on/off flow 340 —> r 150 EB on/off flow
| 0 | 250 N > 467 0

\ Y G} 7

980 70 300 70

SB on/off flow NB on/off flow

0 [ 0

Intersection: Almaden and San Fernando

Mineta Transportation Institute



Appendix D: Turning Movements for the Base Case Scenario

SB on/off flow

NB on/off flow

[ 0 0
SC: 12
NS: Almaden
WB on/off flow EW: Park
1099 86 965 48 402
v v N A WB on/off flow
EB on/off flow 227 < N 60 0 |
0 105 Vi < 104
86 —> v 163 EB on/off flow
117 N -> 170 0 |
2 AN A 7
1245 37 237 36 310
SB on/off flow NB on/off flow
| 0 0
Intersection: Almaden and Park
SB on/off flow NB on/off flow
[ 0 0
SC:3
NS: Almaden
WB on/off flow EW: San Carlos
100 1017 104 615
v v N A WB on/off flow
EB on/off flow 702 < N 83 -27 |
0 184 A < 514
759 —> v 106 EB on/off flow
209 N -> 1021 0 |
2 AN A 7
1332 88 348 158
SB on/off flow NB on/off flow
| 0 | 0
Intersection: Almaden and San Carlos
SC: 68
NS: Almaden
EW: Reed
524 1225 0 407 407
WB on/off flow v % N\ A WB on/off flow
| -728 | 728 | < N 80 2 |
0 i < 204
EB on/off flow 0 — V4 0 EB on/off flow
0 0 N > 0 0 |
v N n 7
1225 0 327 0
SB on/off flow NB on/off flow
| 2 0

Intersection: Almaden and Reed

Mineta Transportation Institute
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Appendix D:

Turning Movements for the Base Case Scenario

SB on/off flow

NB on/off flow

2 0
SC: 69
NS: Vine
EW: Grant
0 1227 0 327
WB on/off flow v v N A WB on/off flow
| 0 | 0 < N 20 [ 0 |
307 A < 0
EB on/off flow 16 —> r 0 EB on/off flow
[ 896 | 573 N - 16 0
2 N a 7
1800 0 0 0
SB on/off flow NB on/off flow
Intersection: Vine and Grant
SB on/off flow NB on/off flow
| |
SC:43
NS: Market
EW: James
0 1000 145 282
WB on/off flow Vs % N\ A WB on/off flow
0 0 < N 0 0
50 A < 0
EB on/off flow 500 = 4 0 EB on/off flow
0 100 N > 675 0
v N i 2
1100 0 232 30
SB on/off flow NB on/off flow
| 0 0
Intersection: Market and Street James
SB on/off flow NB on/off flow
0 0
SC: 32
NS: Market
EW: Santa Clara (E)
958 80 760 118 408
WB on/off flow v v ~N A WB on/off flow
| 0 | saq | < N %0 | 0 |
87 A < 395
EB on/off flow 581 —> v 80 EB on/off flow
0 114 Y = 740 0
v N A 7
954 69 231 41
| SB on/off flow NB on/off flow
0 0

Intersection: Market and Santa Clara (E)

Mineta Transportation Institute



Appendix D: Turning Movements for the Base Case Scenario

91

SB on/off flow NB on/off flow
0 [ 0
SC: 18
NS: Market
EW: San Fernando
44 940 127 305
WB on/off flow v V N A WB on/off flow
[ 0 | 251 < N 57 | 0 |
18 A < 164
EB on/off flow 239 —> V4 71 EB on/off flow
0 | 140 [ N > 442 | 0
N N A 2
397 1151 43 230 76
SB on/off flow NB on/off flow
0 [ 0
Intersection: Market and San Fernando
SB on/off flow NB on/off flow
0 | 0
SC:13
NS: Market (W side)
EW: Park
133 1018 0 0
WB on/off flow v N N\ A
133 | €< N 0
0 A < 0
EB on/off flow 0 —> v 0
161 N\ —> 0
2 AN A A
1179 0 0 0
SB on/off flow NB on/off flow
| 0 | 0
Intersection: Market (W side) and Park
SB on/off flow NB on/off flow
| 0 | 0
SC:4
NS: Market
EW: San Carlos
86 860 96 283
WB on/off flow v " N\ A
| 0 | 558 | <= N 21
78 A < 357
EB on/off flow 374 - V4 0
| 0 | 145 N > 472
v AN A 7
1005 115 184 2
SB on/off flow NB on/off flow
| 0 0

Intersection: Market and San Carlos

Mineta Transportation Institute
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Appendix D: Turning Movements for the Base Case Scenario

SB on/off flow NB on/off flow
[ 0 0
SC: 50
NS: Market
EW: San Salvador
37 1172 47 322
WB on/off flow s W N\ A WB on/off flow
-48 8 [ < N 68 0 |
20 A < 10
EB on/off flow 8 = V4 73 EB on/off flow
48 20 N -> 89 0 |
v N i 7
1265 1 234 34
SB on/off flow NB on/off flow
[ 0 0
Intersection: Market and San Salvador
SB on/off flow NB on/off flow
| 0 | 0
SC: N/A
NS: Market
EW: William
0 1200 65 269
WB on/off flow v " N A WB on/off flow
0 0 — N 34 0
0 A < 0
EB on/off flow 0 —> V4 67 EB on/off flow
| 0 | 0 N -> 95 | 0 |
2 N i 7
1267 0 235 30
SB on/off flow NB on/off flow
0 0
Intersection: Market and William
SB on/off flow NB on/off flow
0 -3
SC: 65
NS: 1st
EW: Reed
0 1220 47 508
WB on/off flow v v N A WB on/off flow
| 0 | 0 < N 108 0
0 A < 0
EB on/off flow 0 —> V4 92 EB on/off flow
| 0 | 0 N -> 247 0
v N a 7
1312 0 400 200

Intersection: 1st and Reed
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SC: 44
NS: 1st
EW: James
0 0 0 285
WB on/off flow s v N\ A WB on/off flow
0 | 0 < N 0 0
53 A < 0
EB on/off flow 710 —> v 0 EB on/off flow
0 | 0 N > 740 0
v LN 1P 7
0 0 232 30
SB on/off flow NB on/off flow
0
Intersection: 1st and James
SB on/off flow NB on/off flow
0
SC: 31
NS: 1st
EW: Santa Clara (E)
0 0 0 448
WB on/off flow v v N A WB on/off flow
| 0 | 565 | < N 9 [ 0 |
87 A < 445
EB on/off flow 653 —> r 0 EB on/off flow
0 | 0 N -> 880 0
2 N A 7
0 120 271 227
SB on/off flow NB on/off flow
0 | 1
Intersection: 1st and Santa Clara (E)
SB on/off flow NB on/off flow
0 | 0
SC: 19 | Int#: ?
NS: 1st
EW: San Fernando
0 0 0 255
WB on/off flow s v N A 269 WB on/off flow
0 | 200 < N 71 [ 0
31 A &= 198
EB on/off flow 390 —> v 0 EB on/off flow
0 | 0 N -> 418 0

N3 N A 7

0 2 153 28

SB on/off flow NB on/off flow

0 | 0

Intersection: 1st and San Fernando
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Appendix D: Turning Movements for the Base Case Scenario

SB on/off flow NB on/off flow

0 [ 0
SC: 5
NS: 1st
EW: San Carlos
0 0 0 268
WB on/off flow v v N\ A WB on/off flow
| 0 | 378 < N 20 [ 0 |
48 A < 378
EB on/off flow 375 —> r 0 EB on/off flow
0 | 49 N -> 431 0
2 N a 7
49 0 200 56
SB on/off flow NB on/off flow
0 [ 0
Intersection: 1st and San Carlos
SB on/off flow NB on/off flow
0 [ 0
SC: 51
NS: 1st
EW: San Salvador
24 22 3 213
WB on/off flow s v Y A WB on/off flow
0 | 158 <~ N 61 0
14 A &= 132
EB on/off flow 75 — r 7 EB on/off flow
0 | 7 N -> 121 0
\2 N ar 7
36 2 138 43
SB on/off flow NB on/off flow
0 | 0
Intersection: 1st and San Salvador
SC: 6
NS: 4th
EW: James
0 900 121 0
WB on/off flow s v N\ A WB on/off flow
0 | 0 [« N 0 0
0 A = 0
EB on/off flow 750 = V4 0 EB on/off flow
0 | 81 N -> 871 -871

Intersection: 4th and James

v N i 7

981 0 0 0

SB on/off flow NB on/off flow

0 [ 0
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SB on/off flow

NB on/off flow

[ 0
SC: 28
NS: 4th
EW: Santa Clara (E)
56 800 125 0
WB on/off flow v % N\ A WB on/off flow
| 0 | 134 | < N 0 [ |
0 A < 378
EB on/off flow 625 —> V4 130 EB on/off flow
0 252 N -> 750 |
N2 N A 7
1182 0 0 0
SB on/off flow NB on/off flow
| 0
Intersection: 4th and Santa Clara
SB on/off flow NB on/off flow
| 0 |
SC: 22
NS: 4th
EW: San Fernando
96 1064 70 0
WB on/off flow s v N\ A WB on/off flow
0 340 < N 0 502 |
0 A < 244
EB on/off flow 311 = 4 258 EB on/off flow
0 144 | N -> 381 [ -3m |
\2 N 1 7
1466 0 0 0
SB on/off flow NB on/off flow
| 0
Intersection: 4th and San Fernando
SB on/off flow NB on/off flow
[ 0
SC: 8
NS: 4th
EW: San Carlos
266 1200 0 0
WB on/off flow v v ~N A WB on/off flow
| 0 | 266 < N 0 [ HREF! |
0 A < 0
EB on/off flow 0 —> V4 0 EB on/off flow
0 431 N > 0 0 |
N2 N A 7
1631 0 0 0

SB on/off flow

NB on/off flow

| 0

0

Intersection: 4th and San Carlos
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Appendix D: Turning Movements for the Base Case Scenario

SB on/off flow NB on/off flow
I 0 I 0
SC: 54
NS: 4th
EW: San Salvador
100 1031 300 0
WB on/off flow v \ N A WB on/off flow
0 | 344 < N 0 [ 514 |
0 A < 244
EB on/off flow 80 —> v 270 EB on/off flow
0 | 37 N -> 380 -380
\2 N 0 7
1338 0 0 0
SB on/off flow NB on/off flow
I 0 I 0
Intersection: 4th and San Salvador
1 1 1
=hon o fler Pl ey iff flow
1 | r
s | ek
MEZdth
L' lieed
I =1 i b
o e Y it
m = i 0
a A < e
i) o al ki
m 4 - a
v K, t A
FFid i 1 1

Intersection:

The sbowe volume isthe treeway an-
ramp. 171215 2ifferertfrom the CUEE
marel

4th and Reed
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APPENDIX E: DYNAMIC-ASSIGNMENT RESULTS

This appendix presents the results of the attempts to run a 48 x 48 OD matrix that was
created for the purpose of dynamic assignment in VISSIM. The “From to” row indicates
the real time that is simulated, which in this case is 4:00 to 5:00 pm. The “Factor” row is
the scale factor for the network. The “Number of network objects” is the number of zones
within the network, while the “Network object numbers” is the reference on which the later
summaries depend.

$v;D3

*From to

16.00 17.00

* Factor

1.00

* Cal Poly

*01/31/11

* Number of network objects

48

* Network object numbers
1 2 3 4 5 6 7 8 9 10
1 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48

* Obj 1 Sum = 68.000

0.000 2.000 2.000 2.000 2.000 2.000 2.000 1.000 1.000 1.000

1.000 1.000 2.000 1.000 2.000 1.000 1.000 2.000 2.000 2.000

1.000 0.000 1.000 2.000 0.000 1.000 1.000 2.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000

1.000 0.000 2.000 13.000 0.000 4.000 0.000 0.000

* Obj 2 Sum = 867.000

1.000 0.000 21.000 11.000 21.000 21.000 1.000 1.000 5.000 2.000

1.000 1.000 3.000 2.00021.000 1.000 5.000 21.000 1.000 21.000
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1.000 0.000 1.000 1.000 0.000 1.000 2.000 1.000 21.000 21.000
1.000 1.000 21.000 1.000 1.000 0.000 0.000 21.000 481.000 1.000
1.000 0.000 21.000 66.000 0.000 41.000 0.000 0.000

* Obj 3 Sum =929.000

1.000 11.000 0.000 11.000 22.000 22.000 22.000 1.000 4.000 4.000
1.000 1.000 4.000 1.00022.000 1.000 1.000 22.000 2.000 22.000
1.000 0.000 1.000 2.000 0.000 2.000 4.000 2.000 22.000 22.000
1.000 1.000 22.000 1.000 22.000 0.000 0.000 22.000 482.000 10.000
22.000 22.000 22.000 22.000 0.000 49.000 0.000 0.000

* Obj 4 Sum = 583.000

0.000 14.000 14.000 0.000 14.000 1.000 14.000 1.000 5.000 4.000
1.000 1.000 5.000 2.000 14.000 1.000 5.000 14.000 4.000 14.000
1.000 0.000 1.000 1.000 0.000 1.000 2.000 1.000 14.000 14.000
1.000 1.000 14.000 1.000 14.000 0.000 0.000 14.000 279.000 10.000
14.000 14.000 14.000 14.000 0.000 30.000 0.000 0.000

* Obj 5 Sum = 2352.000

1.000 28.000 56.000 42.000 0.000 56.000 1.000 1.000 6.000 1.000
1.000 1.000 5.000 3.000 56.000 1.000 1.000 56.000 2.000 56.000
1.000 0.000 1.000 2.000 0.000 2.000 1.000 5.000 56.000 56.000
1.000 1.000 56.000 1.000 56.000 0.000 0.000 326.000 1025.000 10.000
56.000 56.000 56.000 56.000 0.000 154.000 0.000 0.000

* Obj 6 Sum = 1222.000

1.000 15.000 29.000 29.000 29.000 0.000 29.000 1.000 8.000 5.000
29.000 1.000 1.000 4.000 29.000 1.000 2.000 29.000 3.000 29.000
1.000 0.000 1.000 1.000 0.000 2.000 29.000 4.000 29.000 29.000
1.000 1.000 29.000 1.000 29.000 0.000 0.000 31.000 557.000 10.000
29.000 29.000 29.000 29.000 0.000 77.000 0.000 0.000

*Obj 7 Sum = 291.000

0.000 7.000 7.000 7.000 7.000 7.000 0.000 1.000 7.000 7.000
7.000 7.000 7.000 7.000 7.000 2.000 5.000 7.000 2.000 7.000
1.000 0.000 1.000 7.000 0.000 1.000 7.000 3.000 7.000 7.000
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1.000 1.000 7.000 1.000 7.000 0.000 0.000 7.000 87.000 0.000
0.000 7.000 7.000 7.000 0.000 17.000 0.000 0.000

* Obj 8 Sum = 160.000

1.000 4.000 4.000 4.000 4.000 4.000 4.000 1.000 4.000 4.000

4.000 4.000 4.000 4.000 4.000 1.000 1.000 4.000 2.000 4.000

1.000 0.000 1.000 4.000 0.000 2.000 4.000 2.000 4.000 4.000

1.000 1.000 4.000 1.000 4.000 0.000 0.000 4.000 34.000 0.000

0.000 4.000 4.000 7.000 0.000 8.000 0.000 0.000

* Obj 9 Sum = 1297.000

1.000 16.000 32.000 1.000 32.000 32.000 1.000 1.000 0.000 10.000

32.000 32.000 32.000 32.000 32.000 1.000 1.000 32.000 1.000 32.000

1.000 0.000 1.000 2.000 0.000 1.000 32.000 1.000 32.000 32.000

1.000 1.000 32.000 1.000 32.000 0.000 0.000 32.000 582.000 1.000

32.000 32.000 32.000 32.000 0.000 32.000 0.000 0.000

* Obj 10 Sum = 6552.000

182.000 20.000 35.000 17.000 365.000 65.000 12.000 1.000 165.000 0.000
98.000 165.000 65.000 9.000 285.000 182.000 183.000 346.000 196.000 165.000
13.000 0.000 195.000 182.000 0.000 191.000 211.000 186.000 165.000 229.000
216.000 244.000 346.000 182.000 196.000 0.000 0.000 165.000 597.000 1.000
346.000 1.000 0.000 165.000 0.000 165.000 0.000 0.000

* Obj 11 Sum = 799.000

1.000 19.000 19.000 19.000 265.000 19.000 1.000 1.000 7.000 0.000

0.000 19.000 19.000 19.000 19.000 19.000 1.000 19.000 19.000 19.000

19.000 0.000 19.000 5.000 0.000 0.000 19.000 4.000 71.000 19.000

1.000 19.000 19.000 1.000 19.000 0.000 0.000 1.000 19.000 1.000

19.000 1.000 1.000 19.000 0.000 19.000 0.000 0.000

* Obj 12 Sum = 1550.000

0.000 37.000 37.000 37.000 37.000 37.000 37.000 1.000 37.000 10.000

37.000 0.000 37.000 37.000 37.000 37.000 2.000 37.000 37.000 37.000

37.000 0.000 37.000 4.000 0.000 3.000 37.000 2.000 37.000 37.000

1.000 37.000 37.000 1.000 37.000 0.000 0.000 524.000 37.000 1.000
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37.000 1.000 1.000 37.000 0.000 37.000 0.000 0.000

* Obj 13 Sum = 677.000

1.000 16.000 16.000 16.000 16.000 16.000 16.000 1.000 16.000 1.000
16.000 16.000 0.000 16.000 16.000 16.000 30.000 16.000 16.000 16.000
16.000 0.000 16.000 3.000 0.000 4.000 16.000 3.000 16.000 16.000
1.000 16.000 16.000 1.000 16.000 0.000 0.000 16.000 16.000 1.000
16.000 1.000 1.000 16.000 0.000 197.000 0.000 0.000

* Obj 14 Sum = 793.000

1.000 19.000 19.000 1.000 19.000 19.000 19.000 0.000 19.000 2.000
19.000 19.000 19.000 0.000 19.000 19.000 30.000 19.000 19.000 19.000
19.000 0.000 19.000 2.000 0.000 5.000 19.000 2.000 19.000 1.000
1.000 19.000 19.000 1.000 19.000 0.000 0.000 19.000 19.000 1.000
19.000 1.000 1.000 19.000 0.000 269.000 0.000 0.000

* Obj 15 Sum = 1303.000

1.000 31.000 31.000 1.000 31.000 31.000 0.000 0.000 0.000 1.000
31.000 31.000 31.000 31.000 0.000 31.000 4.000 31.000 31.000 31.000
31.000 0.000 31.000 4.000 0.000 6.000 31.000 1.000 31.000 1.000
1.000 31.000 31.000 1.000 31.000 0.000 0.000 566.000 31.000 1.000
31.000 1.000 1.000 31.000 0.000 31.000 0.000 0.000

* Obj 16 Sum = 793.000

1.000 19.000 19.000 19.000 19.000 19.000 0.000 0.000 0.000 5.000
19.000 19.000 19.000 19.000 19.000 0.000 25.000 19.000 19.000 19.000
19.000 0.000 19.000 1.000 0.000 8.000 19.000 4.000 19.000 1.000
1.000 19.000 19.000 1.000 19.000 0.000 0.000 19.000 287.000 1.000
19.000 1.000 1.000 19.000 0.000 19.000 0.000 0.000

* Obj 17 Sum = 467.000

1.000 11.000 11.000 11.000 11.000 11.000 0.000 0.000 0.000 4.000
11.000 11.000 11.000 11.000 11.000 11.000 0.000 11.000 11.000 11.000
11.000 0.000 11.000 1.000 0.000 5.000 11.000 0.000 11.000 1.000
1.000 11.000 11.000 1.000 11.000 0.000 0.000 11.000 11.000 1.000
11.000 1.000 1.000 11.000 0.000 175.000 0.000 0.000
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* Obj 18 Sum = 2141.000

1.000 51.000 51.000 1.000 51.000 51.000 0.000 0.000 0.000 3.000
51.000 51.000 51.000 51.000 51.000 51.000 51.000 0.000 51.000 352.000
51.000 0.000 51.000 20.000 0.000 5.000 51.000 0.000 51.000 1.000
1.000 51.000 51.000 1.000 51.000 0.000 0.000 580.000 51.000 1.000
51.000 1.000 1.000 51.000 0.000 51.000 0.000 0.000

* Obj 19 Sum = 1472.000

1.000 10.000 35.000 1.000 35.000 35.000 0.000 0.000 0.000 4.000
35.000 35.000 35.000 35.000 35.000 35.000 40.000 35.000 0.000 596.000
35.000 0.000 35.000 1.000 0.000 4.000 35.000 5.000 35.000 1.000

1.000 35.000 35.000 35.000 35.000 0.000 0.000 35.000 35.000 1.000
35.000 1.000 1.000 35.000 0.000 35.000 0.000 0.000

* Obj 20 Sum = 8964.000

150.000 5.000 21.000 17.000 221.000 145.000 17.000 0.000 17.000 10.000
17.000 133.000 21.000 11.000 270.000 193.000 154.000 370.000 370.000 0.000
71.000 0.000 270.000 161.000 0.000 153.000 170.000 170.000 136.000 169.000
170.000 270.000 370.000 170.000 370.000 0.000 0.000 577.000 2821.000 1.000
229.000 1.000 1.000 321.000 0.000 221.000 0.000 0.000

* Obj 21 Sum = 1214.000

1.000 1.000 29.000 0.000 29.000 29.000 0.000 0.000 29.000 2.000
29.000 29.000 1.000 1.000 29.000 29.000 3.000 29.000 29.000 279.000
0.000 0.000 29.000 29.000 0.000 4.000 29.000 1.000 29.000 2.000
29.000 29.000 29.000 29.000 29.000 0.000 0.000 29.000 249.000 1.000
29.000 1.000 1.000 29.000 0.000 29.000 0.000 0.000

* Obj 22 Sum = 1126.000

1.000 1.000 27.000 0.000 27.000 27.000 0.000 0.000 27.000 1.000
1.000 27.000 1.000 1.000 27.000 27.000 2.000 27.000 27.000 258.000
27.000 0.000 27.000 27.000 0.000 3.000 27.000 1.000 27.000 27.000
27.000 27.000 27.000 27.000 27.000 0.000 0.000 27.000 27.000 1.000
27.000 10.000 1.000 27.000 0.000 196.000 0.000 0.000
* Obj 23 Sum = 0.000
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0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000

0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000

* Obj 24 Sum = 284.000

1.000 7.000
1.000 7.000
7.000 0.000
7.000 7.000
7.000 7.000

7.000 7.000
1.000 1.000
7.000 0.000
7.000 7.000
7.000 7.000

* Obj 25 Sum = 322.000

1.000 8.000
1.000 8.000
8.000 0.000
8.000 8.000
8.000 8.000

8.000 1.000
1.000 1.000
8.000 8.000
8.000 8.000
8.000 8.000

* Obj 26 Sum = 0.000

0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000

0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000

* Obj 27 Sum = 1504.000

0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000

7.000
7.000
0.000
7.000

7.000
7.000
1.000
0.000

0.000
0.000
0.000
0.000
0.000

0.000
7.000
7.000
0.000

0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
7.000
2.000
7.000

7.000
7.000
7.000
7.000

0.000 72.000 0.000 0.000

8.000 8.000 0.000 0.000 8.000
8.000 8.000 8.000 8.000 8.000
0.000 2.000 8.000 2.000 8.000
8.000 0.000 0.000 8.000 8.000
0.000 78.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000

0.000
0.000
0.000
0.000

1.000
7.000
7.000
1.000

2.000
8.000
8.000
1.000

0.000
0.000
0.000
0.000

1.000 36.000 36.000 1.000 36.000 36.000 1.000 0.000 36.000 5.000
1.000 36.000 2.000 36.000 36.000 36.000 36.000 36.000 36.000 36.000
36.000 0.000 36.000 36.000 0.000 0.000 36.000 36.000 36.000 36.000
36.000 36.000 36.000 36.000 36.000 0.000 0.000 376.000 36.000 1.000
36.000 36.000 36.000 36.000 0.000 36.000 0.000 0.000

* Obj 28 Sum = 211.000

1.000 5.000 5.000 1.000 5.000 5.000 1.000 0.000 5.000 6.000
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1.000 5.000 1.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
5.000 0.000 5.000 5.000 0.000 5.000 0.000 5.000 44.000 5.000
5.000 5.000 5.000 5.000 5.000 0.000 0.000 5.000 5.000 1.000
5.000 5.000 5.000 5.000 0.000 5.000 0.000 0.000

* Obj 29 Sum = 5500.000

1.000 1.000 1.000 10.000 431.000 31.000 10.000 0.000 131.000 10.000
10.000 131.000 20.000 131.000 131.000 131.000 31.000 131.000 131.000 1146.000
69.000 0.000 131.000 12.000 0.000 11.000 131.000 0.000 1564.000 131.000
131.000 31.000 131.000 11.000 131.000 0.000 0.000 131.000 131.000 1.000
131.000 0.000 1.000 1.000 0.000 1.000 0.000 0.000

* Obj 30 Sum = 879.000

1.000 1.000 21.000 0.000 21.000 21.000 0.000 0.000 0.000 5.000
1.000 21.000 10.000 1.000 1.000 1.000 1.000 21.000 2.000 21.000
21.000 0.000 21.000 2.000 0.000 1.000 21.000 21.000 408.000 21.000
21.000 21.000 21.000 21.000 21.000 0.000 0.000 21.000 21.000 1.000
21.000 1.000 1.000 21.000 0.000 21.000 0.000 0.000

* Obj 31 Sum = 804.000

1.000 1.000 19.000 0.000 19.000 19.000 0.000 0.000 0.000 1.000
2.000 19.000 2.000 1.000 1.000 1.000 1.000 19.000 1.000 19.000
19.000 0.000 19.000 19.000 0.000 2.000 19.000 19.000 19.000 0.000
19.000 19.000 19.000 19.000 19.000 0.000 0.000 389.000 19.000 0.000
19.000 1.000 1.000 19.000 0.000 19.000 0.000 0.000

* Obj 32 Sum = 1492.000

1.000 1.000 36.000 0.000 36.000 36.000 0.000 0.000 0.000 5.000
1.000 36.000 1.000 1.000 1.000 1.000 1.000 36.000 5.000 36.000
36.000 0.000 36.000 2.000 0.000 1.000 36.000 36.000 749.000 36.000
0.000 36.000 36.000 36.000 36.000 0.000 0.000 36.000 36.000 0.000
36.000 1.000 1.000 36.000 0.000 36.000 0.000 0.000

* Obj 33 Sum = 1340.000

0.000 1.000 32.000 0.000 32.000 32.000 0.000 0.000 0.000 6.000
5.000 32.000 2.000 1.000 1.000 1.000 1.000 32.000 2.000 672.000
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32.000 0.000 32.000 4.000 0.000 2.000 32.000 32.000 32.000 32.000
32.000 0.000 32.000 32.000 32.000 0.000 0.000 32.000 32.000 0.000
32.000 1.000 1.000 32.000 0.000 32.000 0.000 0.000

* Obj 34 Sum =423.000

0.000 0.000 10.000 10.000 10.000 10.000 0.000 0.000 0.000 7.000
4.000 10.000 3.000 1.000 1.000 1.000 1.000 10.000 3.000 10.000
10.000 0.000 10.000 2.000 0.000 4.000 10.000 10.000 10.000 10.000
10.000 10.000 0.000 10.000 10.000 0.000 0.000 10.000 175.000 0.000
10.000 10.000 1.000 10.000 0.000 10.000 0.000 0.000

* Obj 35 Sum = 1759.000

1.000 20.000 814.000 1.000 42.000 42.000 1.000 0.000 0.000 5.000
5.000 42.000 4.000 2.000 2.000 1.000 1.000 42.000 4.000 42.000
42.000 0.000 42.000 3.000 0.000 1.000 42.000 42.000 42.000 42.000
42.000 42.000 42.000 0.000 42.000 0.000 0.000 42.000 42.000 0.000
42.000 42.000 12.000 42.000 0.000 42.000 0.000 0.000

* Obj 36 Sum = 129.000

1.000 0.000 3.000 3.000 3.000 3.000 3.000 0.000 0.000 6.000
3.000 3.000 3.000 1.000 1.000 1.000 1.000 3.000 3.000 3.000
3.000 0.000 3.000 4.000 0.000 2.000 3.000 3.000 3.000 3.000
3.000 3.000 3.000 3.000 0.000 0.000 0.000 31.000 3.000 0.000
3.000 3.000 3.000 3.000 0.000 3.000 0.000 0.000

* Obj 37 Sum = 1173.000

1.000 1.000 28.000 1.000 28.000 28.000 1.000 0.000 0.000 2.000
28.000 28.000 5.000 2.000 1.000 1.000 1.000 28.000 28.000 28.000
28.000 0.000 28.000 5.000 0.000 3.000 28.000 28.000 448.000 28.000
28.000 28.000 28.000 28.000 28.000 0.000 0.000 28.000 28.000 1.000
28.000 28.000 28.000 28.000 0.000 28.000 0.000 0.000

* Obj 38 Sum = 5334.000

123.000 6.000 1.000 10.000 384.000 33.000 9.000 0.000 133.000 71.000
13.000 133.000 33.000 33.000 206.000 156.000 156.000 156.000 156.000 133.000
33.000 0.000 156.000 144.000 0.000 126.000 256.000 156.000 0.000 156.000
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156.000 256.000 256.000 146.000 256.000 0.000 0.000 323.000 133.000 105.000
124.000 133.000 133.000 208.000 0.000 133.000 0.000 0.000
* Obj 39 Sum = 7847.000

184.000 20.000 1.000 15.000 196.000 0.000 14.000 0.000 196.000 98.000
20.000 196.000 48.000 46.000 279.000 229.000 229.000 579.000 296.000 70.000
96.000 0.000 229.000 195.000 0.000 203.000 237.000 302.000 566.000 233.000
279.000 379.000 489.000 379.000 379.000 0.000 0.000 0.000 196.000 1.000
184.000 196.000 196.000 196.000 0.000 196.000 0.000 0.000

* Obj 40 Sum = 164.000

1.000 4.000 0.000 0.000 4.000 0.000 0.000 0.000 0.000 1.000

1.000 4.000 1.000 1.000 4.000 4.000 4.000 4.000 4.000 4.000

4.000 0.000 4.000 4.000 0.000 4.000 4.000 4.000 4.000 4.000

4.000 4.000 4.000 4.000 4.000 0.000 0.000 50.000 0.000 1.000

4.000 4.000 4.000 4.000 0.000 4.000 0.000 0.000

* Obj 41 Sum = 1547.000

0.000 0.000 0.000 0.000 37.000 0.000 0.000 0.000 0.000 2.000

2.000 37.000 1.000 1.000 37.000 1.000 1.000 187.000 37.000 392.000
37.000 0.000 37.000 37.000 0.000 5.000 37.000 5.000 208.000 37.000
37.000 37.000 37.000 1.000 37.000 0.000 0.000 37.000 37.000 1.000
37.000 37.000 37.000 37.000 0.000 37.000 0.000 0.000

* Obj 42 Sum = 1000.000

1.000 0.000 0.000 0.000 24.000 1.000 0.000 0.000 0.000 3.000

1.000 24.000 1.000 2.000 24.000 2.000 2.000 24.000 24.000 24.000

24.000 0.000 24.000 1.000 0.000 4.000 24.000 4.000 496.000 24.000
24.000 24.000 24.000 1.000 24.000 0.000 0.000 24.000 24.000 1.000

0.000 24.000 24.000 24.000 0.000 24.000 0.000 0.000

* Obj 43 Sum = 999.000

1.000 0.000 0.000 0.000 24.000 24.000 0.000 0.000 0.000 0.000

1.000 24.000 1.000 4.000 24.000 1.000 4.000 24.000 24.000 474.000
24.000 0.000 24.000 1.000 0.000 3.000 24.000 3.000 24.000 24.000
24.000 24.000 24.000 1.000 24.000 0.000 0.000 24.000 24.000 1.000
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24.000 0.000 24.000 24.000 0.000 24.000 0.000 0.000

* Obj 44 Sum = 254.000

1.000 6.000 0.000 0.000 6.000 6.000 0.000 0.000 0.000 1.000
1.000 6.000 2.000 2.000 6.000 2.000 1.000 6.000 6.000 95.000
6.000 0.000 6.000 6.000 0.000 2.000 6.000 2.000 6.000 6.000
6.000 6.000 6.000 6.000 6.000 0.000 0.000 6.000 6.000 1.000
6.000 6.000 0.000 6.000 0.000 6.000 0.000 0.000

* Obj 45 Sum = 2945.000

1.000 1.000 0.000 1.000 70.000 70.000 0.000 0.000 0.000 2.000
1.000 70.000 3.000 1.000 70.000 1.000 1.000 70.000 70.000 902.000
70.000 0.000 70.000 2.000 0.000 1.000 70.000 1.000 70.000 70.000
28.000 70.000 70.000 1.000 70.000 0.000 0.000 450.000 70.000 1.000
70.000 70.000 70.000 70.000 0.000 217.000 0.000 0.000

* Obj 46 Sum = 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

* Obj 47 Sum = 622.000

1.000 0.000 0.000 1.000 264.000 15.000 15.000 0.000 0.000 1.000
1.000 15.000 2.000 1.000 15.000 1.000 1.000 15.000 15.000 15.000
15.000 0.000 15.000 15.000 0.000 1.000 15.000 0.000 15.000 15.000
15.000 15.000 15.000 1.000 15.000 0.000 0.000 15.000 15.000 1.000
15.000 1.000 15.000 15.000 0.000 15.000 0.000 0.000

* Obj 48 Sum = 156.000

4.000 4.000 4.000 4.000 4.000 4.000 4.000 0.000 4.000 4.000
4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
4.000 0.000 4.000 4.000 0.000 4.000 4.000 4.000 4.000 4.000
4.000 4.000 4.000 4.000 4.000 0.000 0.000 4.000 4.000 4.000
4.000 0.000 4.000 4.000 0.000 4.000 0.000 0.000
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ABBREVIATIONS AND ACRONYMS

CAD
EOP
FHWA
GIS
GPS
GUI
HGV
HOV
INTRAS
IRS
OREMS
PeMS
SIDOT

Computer Aided Dispatch
Emergency Operations Plan

Federal Highway Administration
Geographic Information Systems
Global Positioning System

Graphical User Interface

Heavy Gross Vehicle

High Occupancy Vehicle

Integrated Traffic Simulator

Internal Revenue Service

Oak Ridge Evacuation Model System
Performance Measurement System
San José Department of Transportation
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GLOSSARY OF TERMS

GEH Statistic

HP Pavilion

[-280

BART

GUI

DOT

PeMS

IRS

A formula used in traffic engineering and traffic modeling to compare
two sets of traffic volumes. The statistic gets its name from Geoffrey E.
Havers, who invented it in the 1970s while working as a transport
planner in London, England.

Hewlett-Packard Pavilion, where numerous public events are held.

Interstate 280 is a north-south directional freeway that begins in San
Francisco and goes south to San José. After traveling in an east-west
direction through San José, it terminates at the south end of 1-680.

Bay Area Rapid Transit serves the San Francisco Bay Area in a semi-
circle from San Francisco International Airport north to San Francisco,
east to Oakland, and south to Fremont. An extension to southern
Fremont is under construction, and an extension to San José is
planned.

Graphical user interface, which allows users to interact with electronic
devices using images rather than text commands.

The Department of Transportation, which operates at both the federal
and state levels. The federal DOT oversees federal highway, air, rail-
road, mass transit, maritime, and other transportation administration
functions. The state DOTSs are responsible for highway, bridge, ralil,
mass transit, and general aviation transportation planning and
construction and maintenance of the state highway system.

Performance Measurement System, a project conducted by the
Department of Electrical Engineering and Computer Sciences at the
University of California, Berkeley, with the cooperation of the California
Department of Transportation, California Partners for Advanced Transit
and Highways, and Berkeley Transportation Systems.

Internal Revenue Service, the U.S. government agency responsible for
tax collection and tax-law enforcement.
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