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I. INTRODUCTION

Wireless power transfer (WPT), as shown in Fig. 1, is an advanced technology which is 
able to solve the technical drawbacks of electric vehicles (EVs). The operation of a wireless 
power transfer system is similar to that of inductive power transfer (IPT) technology. Indeed, 
in a WPT system, power transfers through mutual inductance between the transmitting and 
receiving coils.1 Additionally, WPT systems eliminate any risks related to electrical shock. 

ACAC/DC 
with PFC

DC to high 
frequency 

AC

Primary 
Compensation

Secondary 
Compensation

AC/DC

Battery

Receiving Coil

Transmitting Coil

Figure 1.	 Wireless Power Transfer for Electric Vehicles

The complete configuration of WPT includes four main parts: input rectifier, input 
H-bridge inverter, resonant tank (often known as compensation network), and output
rectifier, as shown in Fig. 2. This report focuses on the design of a compensation
network including an LCC along with its control algorithm. Additionally, the use of an
LLC network is explored in this report and a comparison analysis is conducted between
the compensation networks investigated.

Figure 2.	 Dual-Sided LCC Wireless Power Converter
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II. COMPENSATION NETWORK

One of the characteristics of a WPT system is that air gap variation and misalignment 
between two coils are unavoidable. In addition, since the air gap between transmitting 
and receiving coils in a WPT system is large, the coupling coefficient is small. The value 
of the coupling coefficient depends on the air gap, alignment, and design of transmitting 
and receiving coils. The most popular problem among WPT systems is that the small 
value of the coupling coefficient limits the power transferred through two coils. Thus, a 
compensation network such as LCC or LLC is required to increase the coupling coefficient. 
Moreover, in modern power electronics systems, achieving soft switching such as Zero 
Voltage Switching (ZVS) is critical in order to increase efficiency and reduce the size of the 
systems.2 This report proposes two series-parallel resonant converters (SPRC) which will 
act as the compensation network of the WPT system.

DUAL-SIDED LCC NETWORK

The dual-sided LCC compensation network, as shown in Fig. 3, uses two capacitors and 
one inductor for each side. The LCC network has outstanding characteristics that are 
able to improve the performance of WPT systems. Particularly, LCC converter yields zero 
voltage switching mode; therefore, it improves the efficiency of the WPT system. Moreover, 
utilizing an LCC compensation network enables unity power factor for both the input side 
and the output rectifier.

Figure 3.	 Dual-Sided LCC Resonant Tank

Based on the theoretical analysis, there are four important conclusions:

• If ILf1 and UAB are in phase  unit power factor of input side is achieved.

• If ILf2 and Uab are in phase  unit power factor of output side is achieved.

• The phase relation is independent of the coupling coefficient or the load variations.

• The power transferred through LCC tank depends on the coupling coefficient k and
the input and output voltage of resonant tank UAB  , Uab .
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To achieve soft switching, there must be a small portion of reactive power on the primary 
side. Thus, the LCC network is often tuned to ensure that the phase between voltage and 
current is close to zero, but not completely zero. In this paper, Zero Voltage Switching is 
the desired mode. Since the reactive power is quite small, it does not affect the pure power 
factor characteristics. In particular, the phase between voltage and current is close to zero 
after the tuning process.3 One method to obtain Zero Voltage Switching is to configure the 
system so that switches turn on with a negative current. To ensure this negative turn-on 
current, the turn-off current of MOSFETs has to be positive. This report proposes a tuning 
method that can yield conditions for ZVS regardless of coupling coefficient.

RESONANT LLC NETWORK

The LLC compensation network can control the output over wide load variation with a 
small change in switching frequency. Moreover, soft switching can be achieved by tuning 
the parameters of the inductors and the capacitor. The structure of the LLC resonant tank is 
depicted in Fig. 4. The configuration of the LLC resonant converter includes one capacitor 
and two inductors, known as an LLC structure. The first inductor Lr is called the leakage 
inductor, while the second Lm is the magnetizing inductor. The resonant capacitor is Cr.

The resonant frequency of the LLC resonant tank is denoted as

The voltage gain function of the resonant tank is expressed as

where : normalized frequency; : inductance ratio; : quality factor; 

Re : reflected load resistance.

Figure 4.	 LLC Resonant Tank
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Fig. 5 describes the curve of the voltage-gain function  with the normalized switching 
frequency  for various values of  and fixed value of . In Fig. 5, lower  curve represents a 
lighter load condition, while higher  describes a heavier load operation. In addtion, each  
curve has a peak point such that  is the maximum. To the right of the peak is the inductive 
operation region, and to the left of the peak is the capacitive operation region. The resonant 
tank is designed in order to operate in the inductive region for the entire input votage and 
load range and never to fall into the capacitive region. Moreover, in Fig. 5, every  curve 
meets and goes through the point (,) = (1,1). At this point, the switching frequency is equal 
to the resonant frequeny  and the gain of the resonant tank is unity. In other words, when , 
the operation of the resonant tank is independent of loading conditions. Thus, it is desirable 
to operate the resonant tank at . Moreover, when working at resonant frequency, LLC 
resonant tank yields conditions for Zero Voltage Swiching mode that increase efficiency 
and reduce the converter size.4
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a) 

b) 

Figure 5.	 Plots of Voltage Gain Function for an LLC Converter
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III.  DESIGN OF TRANSMITTING AND RECEIVING COILS

The next step is to build a simulation model of transmitting and receiving coils in Ansys/
Maxwell as shown in Fig 6. The purpose of this step is to investigate fully the operation of 
two coils in WPT applications. Finally, the co-simulation between Matlab/Simulink, Ansys/
Simplorer, and Ansys/Maxwell will be carried out. In particular, the controller is simulated 
in Matlab/Simulink, the transmitting and receiving coil are simulated in Ansys/Maxwell, and 
the remaining parts are simulated in Ansys/Simplorer.

In this project, the Polarized Single-Sided Flux Pad topology is applied for the design of 
transmitting and receiving coils.  Since the coils are wound like a “D shape”, this topology 
is also called a Double-D (DD) structure. The DD structure yields valuable characteristics 
which are desired for wireless charging systems with EV applications. For instance, the 
charge zone for a DD pad could be about twice as large compared to a conventional circular 
pad with similar material cost. Moreover, the DD structure is capable of improving the 
coupling coefficient of transmitting and receiving coils compared to traditional coil designs.

The structure of the transmitting coil and receiving coil includes two windings, which are 
connected magnetically in series and electrically in parallel. The coil width is made up of 
20 turns of 4mm-diameter Litz wire. The ferrite bars are implemented in order to guide and 
enhance the magnetic fields. In addition, an aluminum plate is used as the shielding layer 
and heat sink.

Figure 6.	 Single-Sided Double D Coils
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IV.  PHASE-SHIFTED CONTROLLER

In charging applications, there is a need to regulate the amount of energy charging the 
EVs. There are three popular control methods, known as primary side control, secondary 
side control, and dual-side control. The name of each method indicates where the control 
is applied. In this paper, the controller is applied at the primary side.

Primary side control could be accomplished by adjusting the switching frequency or the 
phase-shift between Mosfet legs. The compensation network of the WPT system is a 
resonant converter, thus, the switching frequency adjustment is not adequate at all loading 
conditions. In particular, wide switching frequency variation could lead the resonant 
converter to lose soft switching ability.

In this paper, the primary side control, known as phase-shifted control, is applied in order 
to regulate the transferred power. Fig. 7 shows the configuration of the WPT system with 
LCC compensation network. In the phase-shifted controller, at the first leg, MOSFETs QA 
and QB switch at 50% duty cycle with their PWM signals 180 degrees out of phase of 
each other. Similarly, at the second leg, MOSFETs QC and QD switch at 50% duty and 
180 degrees out of phase. In this control method, the switching frequency is fixed and the 
amount of phase shift between the MOSFET legs determines the transferred power.

Figure 9 shows the configuration of the phase-shifted controller. In this controller, the J-K 
and RS flip-flop are implemented. The J-K flip-flop block models a negative-edge-triggered 
J-K flip-flop. The S-R flip-flop block models a simple set-reset flip-flop. In addition, the 
Monostable block generates the dead time between switches at the same leg. In this 
project, the dead time is 150 ns.

The remainder of this section will describe the operation of the phase-shifted controller. 
The PI controller (outer voltage loop) will provide the reference current Iref based on the 
output current reference I0_ref defined earlier. This reference current Iref is compared to the 
input current of the converter (Idc ).
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Figure 7.	 Wireless Power Transfer with Dual-Sided LCC Compensation Network
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Figure 8.	 Wireless Power Transfer with LLC Compensation Network

Figure 9.	 Phase-Shifted Control Algorithm

Figure 9b illustrates the generation of the gate drive signals of QA&QB. As is known, if 
gates J and K are connected to a true signal, the J-K flip-flop toggles the output Q when 
there is a falling-edge at the Clk gate. In Fig. 9b, the Clk gate is connected to a pulse 
whose frequency is f = 170 khz and the duty ratio is D = 0.05. This configuration gives an 
85 khz; D = 0.5 pulse at the output of J-K flip-flop. This frequency is exactly the switching 
frequency. Then, the Monostable block excites the deadtime. Here, the deadtime is td 
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= 150 ns. In particular, the switching frequency of QA&QB is 85 khz, the duty ratio is D = 
0.5, and the deadtime 150 ns. In addition, QA and QB switch 180 degrees out of phase of 
each other. 

In Fig 9a, assume that at the beginning, QC = 0 and QD = 1. Consequently, signal c is 0. If Idc 
> Iref, signal a is 0, signal b is 1, and nothing changes in the circuit. This means that QC = 0 
and QD = 1. However, if Idc > Iref, signal a becomes 1; therefore, there is a rising-edge signal 
that goes to the R gate of R-S flip-flop. Consequently, the ouput of R-S flip-flop, signal b, is 
reset to 0. At that time, this falling edge goes to the Clk gate of J-K flip-flop. Since both the J 
and K gates are connected to 1, signal c is toggled from 0 to 1 when a falling edge occurs. 
In other words, when Idc > Iref, the gate drive signal QD is reset from 1 to 0. In addition, after 
the deadtime tdead = 150 ns, the gate drive signal QC is set. The analysis is the same for the 
case when, initially, QC = 1 and QD = 0.

Therefore, by controlling the phase between MOSFETs, it is possible to control the power 
transferred through the transmitting and receiving coils.
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V.  SIMULATION RESULTS 

A simulation model of the Wireless Power Transfer system, as shown in Fig. 7 and Fig. 8, 
was built in Ansys/Simplorer. Simulation results agree well with the theoretical analysis. 
The effect of misalignment to the system was investigated by running the simulation under 
three different values of coupling coefficient k. Both the LCC and LLC configuration yield 
the desired characteristics. Nevertheless, for wireless power transfer applications, dual-
sided LCC topology is more promising than LLC topology. Indeed, the LCC yields more 
efficiency than does the LLC topology. Also, the LCC compensation produces soft switching 
conditions as well as pure power factor correction. Therefore, this section focuses on the 
analysis of WPT with dual-sided LCC compensation network.

In addition, Fig. 10 shows the waveforms of the phase-shifted controller. According to the 
waveforms, there is a phase shift between QA and QD as well as QB and QC. This phase 
shift determines the power transferred through two coils.

Fig. 11 shows the waveform of  VAB &IAB and Vab &Iab, the input and output signals of the 
LCC compensation network. According to the waveforms, both VAB &IAB and Vab &Iab have 
the unity power factor correction. Indeed, the voltage and current signals are in phase with 
each other. This characteristic is significant, as it maximizes the power transferred through 
transmitting and receiving coils.

Furthermore, as shown in Fig. 11, the LCC compensation network yields soft switching at 
all MOSFETs. In particular, the voltage of MOSFETs is zero when the current of MOSFETs 
is increasing. This means that there is no switching loss when then the MOSFETs conduct. 
Therefore, the total losses of a WPT system are significantly reduced by using an LCC 
compensation network.

Fig. 12 displays the variations in the coupling coefficient with respect to both, vertical and 
horizontal misalignments. 

Figure 10.	 Phase-Shifted Control Waveform
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Simulation Results 

a) VAB &IAB  b) Vab &Iab

c) Voltage and Current of MOSFET QA d) Voltage and Current of MOSFET QB

e) Voltage and Current of MOSFET QC f) Voltage and Current of MOSFET QD

Figure 11.	 Current and Voltage Waveforms 

Figure 12.	Coupling Coefficient – Air Gap Variation – Slide_X Misalignment
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The aim of this project is to design a configuration of two coils which is able to produce 
a coupling coefficient k = [0.15,0.3] at the normal air gap y = 200 mm and Slide_X 
misalignment SlideX = 50 mm. The air gap y = 200 mm  is selected since this distance 
is also the normal gap between an electric vehicle’s floor and the ground. The preferred 
Slide_X between two coils is 50 mm because drivers with normal driving skills are able to 
park cars in that range of misalignment between the transmitting and receiving coils.

According to Fig 12, the coupling coefficient decreases when the air gap variation or 
Slide_X misalignment increases. Furthermore, at air gap = 200 mm and SlideX = 50 mm, 
the coupling coefficient is k = 0.2.

The simulation system efficiency from a DC power source to power the electronics load is 
97.48% for maximum power with coupling coefficient of 0.25.



Mineta Transportat ion Inst i tute

13

VI.  HARDWARE IMPLEMENTATION

According to the simulation results, it is concluded that for wireless power transfer for EV 
applications, the double-sided LCC converter is more promising than LLC. Therefore, in 
this project, a hardware prototype of a wireless power transfer system using Double-Sided 
LCC converter has been built.

The prototype design of 3.3 kw wireless charging system is designed using Altium Designer. 
The DSP TMS320F28379D is used in order to implement phase-shifted controller algorithm 
and generate PWM signals.

The specifications are as follows: input voltage is 400 V, and 3.3 kw; 400 V power electronics 
loads are used to take the position of a real battery pack. The 800-strand AWG-38 Litz wire 
is used to make the transmitting and receiving coils. The coil dimension is 740 mm length 
and 430 mm in width.

To ensure isolation for this high-power application, all gate drivers, sensors, and voltage 
regulators are isolated from the digital signal side. A four-layer printed circuit board is used 
to ensure compactness of the hardware. 

Figure 13.	 Developed Dual-Sided LCC Converter Prototype
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VII.  CONCLUSION

A dual-sided resonant LCC converter and an LLC converter are simulated and analyzed 
for EV wireless charging applications. The designed converter can achieve a high system 
efficiency due to its soft switching features. A feedback frequency control is applied on 
the converter to increase the system efficiency while tracking the output power.  The 
simulation model is fully developed and analyzed using LTspice, MATLAB, and Ansys 
Simplorer/Maxwell. The simulation system efficiency from a DC power source to power 
the electronics load is 97.48% for maximum power with coupling coefficient of 0.25. 
A prototype is developed to prove the system’s functionality and efficient performance 
under different operating conditions.
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ABBREVIATIONS AND ACRONYMS

Please provide a list of abbreviations/acronyms and their definitions here. The template 
uses a table, which will be properly formatted during the publication process. Add additional 
rows as needed.

EV Electric vehicle
WPT Wireless power transfer
LLC Inductor, inductor and capacitor
LCC Inductor, capacitor and capacitor
Lr Leakage inductor
Cr Resonant capacitor
Rm Magnetizing inductor
ZVS Zero voltage switching
IPT Inductive power transfer
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