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EXECUTIVE SUMMARY

Taxis provide an alternative to conventional public transit services in many cities, and 
understanding the demand for taxis requires consideration of the role that taxis serve in 
the greater transportation system. This report presents the results of a study to model taxi 
demand across time and space, explicitly accounting for the presence and quality of transit 
service. The primary objective of the study was to identify the factors that drive taxi demand 
and to understand how this varies by location and time of day. This was accomplished by 
developing demand models for taxi trip generation and mode choice that explicitly account 
for the characteristics of transit service in the neighborhoods where trips are made. The 
resulting insights are useful for making regulatory, planning, and engineering decisions 
about how to manage taxi markets, accounting for their role in the transportation system.

A secondary objective of the study was to demonstrate how emerging “big data” from taxis 
and transit systems can be integrated with demographic, socioeconomic, and employment 
information to develop useful demand models. In particular, large sets of data that include 
records referencing specific times and locations provide a wealth of information that can 
be used to model and understand how demand varies across time and space. Ultimately, 
developing methods to systematically analyze and extract meaningful information from 
these large data sources will help improve the way transportation systems are monitored 
and managed.

The dataset includes records of every taxi trip in New York City over a 10-month period. The 
data was tracked by automatically operating Global Positioning System (GPS) receivers 
installed in each licensed taxi. Additional data sources included detailed transit schedule 
and routing information from transit agencies available online in the Google Transit Feed 
Specification (GTFS) format. Demographic, socioeconomic, and employment data were 
obtained from the U.S. Census Bureau at the spatial resolution of census tracts. By properly 
processing the data and integrating the various types of information in a Geographic 
Information System (GIS), it was possible to develop models that provide insights into 
the factors that determine the number of trips made by taxi. This study demonstrates the 
model for NYC, but the methods are general and can be applied to cities around the world 
where similar data is collected and available.

The study was conducted in two parts. First, a trip generation model was developed to 
identify location characteristics that determine the number of taxi trip origins (pickups) and 
taxi trip destinations (drop-offs) that are generated during each hour of the day. Second, a 
mode choice model was developed and analyzed to determine how the competitive appeal 
of taxi travel versus transit changes by time of day as the travel cost for each mode varies.

A trip generation model was developed as a hybrid cross-classification and regression 
model. Taxi demand and transit accessibility data were classified by hour of day. A separate 
regression model was then developed to estimate the number of taxi pickups and drop-
offs in a census tract for each hour of the day. In order to fit these models, the different 
data sources had to be aggregated to the same spatial and temporal resolution. Since 
demographic, socioeconomic, and employment data is available at the level of census 
tracts, that was the spatial unit used for the analysis.
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In order to account for the spatial and temporal variation of transit accessibility across 
the city, a method was developed to measure Transit Access Time (TAT) based on transit 
schedules. The TAT at a specific point and time represents the time that it would take a 
person to access the nearest transit departure, which includes walking to a transit station 
and waiting for the next departing vehicle. Detailed transit schedule information was 
extracted from a database of transit route and schedule records that are available from 
transit agencies in the GTFS format. Then a clustering algorithm was used to identify the 
minimum access time from a location, which may not be at the nearest station because 
a further station with more frequent service may provide better transit accessibility. The 
result is a quantitative measurement of transit accessibility that can be mapped to show 
variation across different locations in the city and used as an explanatory variable in the 
trip generation model.

The trip generation models that have been developed from these data reveal that there are 
six characteristics of a census tract that have the greatest explanatory power for estimating 
taxi demand:

•	 Transit accessibility

•	 Population size

•	 Median age

•	 Percent of population educated beyond bachelor’s degree

•	 Median income per capita

•	 Number of job opportunities (irrespective of residence)

An additional, detailed investigation of taxi demand within Manhattan shows that there 
are certain types of employment opportunities that are more correlated with taxi trips than 
others. The number of employees working in retail, accommodation and food service, 
and healthcare are the strongest determinants of the number of taxi trips. The magnitude 
of their influence also changes with the time of day, so patterns are revealed about how 
activities in NYC vary over the course of the day and which activities are most associated 
with taxi use. Although it is not possible to know the precise trip purpose without a traveler 
survey, these findings support the notion that people are more likely to use taxis when 
traveling to and from stores, hotels, restaurants, and hospitals. It appears that taxis and 
transit sometimes operate in competition and at other times are complements because 
both modes follow and influence the levels of activity in neighborhoods across the city.

The second part of the study focused on the costs of taxi and transit trips for a few specific 
origin-destination (OD) pairs. Using the data for NYC, the analysis looked at trips between 
Penn Station and each of the three major airports in the area: John F. Kennedy International 
Airport (JFK), LaGuardia Airport (LGA), and Newark Liberty International Airport (EWR). 
The taxi data reveals how travel time and fare varies for each OD pair by time of day. This 
was compared against the main non-driving alternative, public transit. A script was used 
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to extract detailed, time-specific transit routes and access locations from the Google Maps 
API Transit Directions Service. These were used determine the waiting time, travel time, 
and fare for making the same trips, at the same times of day, as the taxi trips.

In the context of a mode choice analysis, the comparison of trip costs by taxi and transit 
show how the likelihood of travelers choosing one mode or the other changes over the 
course of the day. A sensitivity analysis is particularly useful in showing the tipping points 
at which the number of passengers traveling together in a group, or the value they place 
on their time, makes the additional expenditure for a taxi worthwhile. Typically transit is 
more competitive during the day when the frequency of service is high, especially during 
the morning and evening peaks when traffic congestion also slows taxis. Taxis are more 
competitive in the evening hours when traffic moves quickly and less frequent transit 
service imposes longer waiting times on travelers. In two cases, there was no trade-off 
observed: Transit is both faster and cheaper than taxis for trips to JFK during the afternoon 
peak and trips from JFK during the morning peak, when traffic congestion eliminates the 
competitive advantage of taxi speed.

The models and findings presented in this report are specific to NYC, because of the data 
sources used. The methods can be generally applied to any city in which similarly detailed 
data on taxi use and transit schedules are available. The models provide insights about 
both the spatial and temporal variation of taxi demand across the city. These models and 
insights are useful for designing taxi regulations and transit schedule improvements. The 
models also show how characteristics of a neighborhood and competing transit service 
affect the number of trips made by taxi.
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I.  INTRODUCTION

Transportation systems in large cities are inherently multimodal. Of the modes available 
for use by the general public, taxis have received relatively less attention in the modeling 
literature. In the largest cities in the United States and around the world, taxis play a 
major role in the urban transportation system and present an alternative mode of travel 
to conventional public transportation systems. For example, 13,363 licensed taxis in New 
York City (NYC) served 172 million trips in 2006, accounting for 11 percent of all travel in 
the city.1

There are concerns from transportation planners and citizens of New York City about how 
taxi service is distributed across the city in space and time because taxis tend to congregate 
and serve trips in parts of Manhattan and the city’s airports. In order to effectively regulate 
the taxi industry and plan for its effective integration into the citywide transportation system, 
it is necessary to understand the demand for taxis. Relevant information includes where 
taxis are used, when taxis are used, and which factors tend to drive people to use taxis as 
opposed to other modes, such as transit.

In recent years, technologies have allowed for the collection of detailed transportation 
data in much larger quantities than was previously available. For example, the Taxi and 
Limousine Commission (TLC) in NYC logs Global Positioning System (GPS) data for every 
taxi trip in the city, including the time and location of pickups and drop-offs. A complete 
set of trip data is used for this study from the 10-month period from February 1, 2010, 
to November 28, 2010, consisting of 147 million observed trips. Due to its large scale, 
this source is an example of “big data.” Using big data to develop useful models for taxi 
demand requires developing procedures to clean and process the information so that it 
can be organized in a useful way.

The primary objective of this study is to identify the factors that drive demand for taxis, 
accounting for the effect of transit service availability and quality of service. The approach 
was to develop demand models that acknowledge the distribution of taxi demand in space 
and time so that it is possible to identify how taxi demand varies from neighborhood to 
neighborhood and how the demand evolves over the course of a day.

MODELING APPROACH

The analysis in this study was conducted in two parts. First, a trip generation model was 
developed to identify the factors that determine the number of taxi pickups and drop-offs 
generated in a given neighborhood. The model followed a hybrid approach, classifying taxi 
records by hour of day and then using regression to model within each hour the number 
of pickups and drop-offs within each census tract. The result was a model (actually a set 
of models) that provides predictive capability and makes distinctions between location and 
time of day.

The goal of the trip generation model was to identify the factors that affect the demand for 
taxi trips at the level of a census tract. Thus, extensive data from the U.S. Census Bureau, 
including characteristics related to population, age, education, income, and employment 
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by industry sector, were considered. An additional goal was to identify what effect, if any, 
accessibility of transit has on demand for taxis in a neighborhood, so transit schedules 
were also considered for this part of the analysis.

A second analysis was conducted to investigate the competition between taxi and transit 
for specific origin-destination pairs. The goal was to determine how mode choice is likely 
to change over the course of a day. Traffic congestion affects the speed and price of 
taxis, and changes in transit service headways affect the amount of time that travelers 
can expect to wait for service. For this part of the analysis, consideration was given to 
trips between Penn Station and each of the three major NYC airports: John F. Kennedy 
International Airport (JFK), LaGuardia Airport (LGA), and Newark Liberty International 
Airport (EWR). Trips to and from airports constitute an important market for taxis and 
provide a case for demonstrating a general modeling methodology that could be extended 
across other origin-destination pairs. The results provide insights about how the operating 
characteristics of taxis and transit, as well as traveler preferences, such as value of travel 
time, affect the tendency of people to choose one mode or the other.

ORGANIZATION OF THE REPORT

This report is organized in four main sections as follows. The first section is a review 
of the existing literature on models for taxi markets, trip generation, and airport trips. 
The literature review serves to demonstrate that there is an unmet need for research to 
model taxi demand, and there is an opportunity to use complete taxi data from GPS to 
conduct this type of research. The second section provides a detailed description of the 
data sources used for each analysis. This includes a description of the GPS data, as well 
as the transit schedules, demographic, socioeconomic, and employment data associated 
with each census tract in NYC. The third section describes the trip generation modeling 
procedure and results. The fourth section describes the mode modeling procedure and 
findings. Finally, a conclusion links the findings from the modeling and analysis described 
throughout the report to show how the objectives of the study have been addressed.
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II.  LITERATURE REVIEW

The literature on taxis and public transit systems is diverse in the breadth of topics covered 
and the level of detail of analysis. Many studies have addressed trip generation and mode 
choice related to public transit systems; far fewer have sought to model demand for taxis. 
A review of the literature on trip generation and mode choice for these modes reveals a 
need to use modern data sources to answer questions about where and when taxis are 
most likely to be used for travel, and by whom.

MODELING TAXI MARKETS

Taxis are an important transport mode in urban areas, including airport ground access, 
first, because they provide passengers with convenient, comfortable and prompt trips2 
and, second, they can be used as to complement or substitute for the mass transit 
system.3 Three types of taxi markets are generally discussed in the literature: the dispatch 
(telephone order) market, cab stand market (also known as rank place market), and the 
hail market in which cabs cruise streets in search of customers.4

Most of the literature on taxi markets focuses on issues related to regulation and the 
aggregated effects of policies on the supply of taxis in a market. Studies dating back to 
the 1960’s raise debates about how taxi markets should be regulated, if at all, on the 
basis of economic analysis. Arguments in favor of regulation are based on the notion that 
regulated taxi markets limit the number of private vehicles on the road,5 protect public 
transit systems,6 and provide public safety and consumer protection.7 Others argue that 
regulations on the taxi industry impose costly economic inefficiencies.8

The importance of understanding taxi markets in order to better manage them has driven 
more recent empirical research. Schaller9 presents an analysis of the number of taxicabs 
in 118 U.S. cities using multiple linear regression models. The factors influencing the size 
of a city’s taxi fleet include population, employment, use of complements to taxi cabs (e.g., 
transit), cost of taxis, and taxi service quality. However, the model predicts the quantity 
of taxicabs instead of the number of trips generated. Schaller shows that the number of 
workers commuting by subway, the number of households with no vehicles available, and 
the number of airport taxi trips have significant explanatory power for the number of cabs 
in operation. This work, and most others that address the size and characteristics of taxi 
markets, are based on aggregated citywide data.10

In recent years, technologies, such as GPS, installed in each cab have allowed the 
collection and analysis of much richer sets of taxi data.11 This data has been used in some 
research for calibrating models of traffic conditions.12 There are limited examples of large 
taxi GPS datasets to model taxi demand.13 The availability of big data from GPS for taxi 
trips now presents an opportunity for more quantitative analysis of the factors that drive 
the demand for taxis.
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MODELING TRIP GENERATION

Although little work has been done to model taxi trip generation explicitly, trip generation 
models for other modes, such as public transit, have been much more thoroughly developed. 
Since both taxis and transit provide transportation service to the general public, insights 
from transit trip generation models may provide a starting point for the development of 
taxi trip generation models. Furthermore, a goal of the present study was to determine if 
transit service has an effect on taxi use, so the interconnections between these modes 
were important to consider.

Trip generation models were used to predict the total number of trips that originate or 
terminate in a Transportation Analysis Zone (TAZ), and this constitutes the first step of a 
travel demand forecast. These models relate the total number of trips produced in a TAZ 
to a variety of factors related to the TAZ and transportation modes available:14

•	 Level Of Service (LOS) of the mode;

•	 accessibility of the mode; 

•	 demographics of the TAZ (e.g., population, race); 

•	 socioeconomics of the TAZ (e.g., income, education);

•	 other characteristics of the TAZ (e.g., as land area); 

•	 land use in the TAZ.

TAZs are geographic units of analysis that may vary in size depending on the model and 
analysis objectives. The models that are presented and analyzed in this report use census 
tracts as the geographic units for the TAZs because the relevant socioeconomic data is 
already collected and aggregated at that level.

Three methods are commonly used to model trip production: rate method,15 cross-
classification,16 and regression.17 Regression is a widely used statistical method for 
exploring the relationship between response variables and explanatory variables with 
various approaches for validating the model. If enough information is available, trip 
generation based on regression models can be very useful to forecast travel demands 
in each TAZ of an urban transportation system.18 A large dataset with sufficiently detailed 
information about travel and TAZ characteristics is necessary to model trip generation 
across a large geographic area using regression.

Characteristics of the trip (e.g., travel purpose) and characteristics of the traveler (e.g., 
age and income) have been identified as influential factors that affect the trips generated 
by different travel modes.19 Trips to residential areas and non-residential areas20 and trips 
for business and non-business purposes21 are analyzed separately in most studies. A 
number of studies have been conducted about the generation of airport trips22 and travel 
to schools.23 Researchers have also studied trips generated by elderly people, because 
their needs and behavior have some distinct difference from other population groups.24
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MODELING MODE CHOICE WITH TRANSIT

In addition to developing models of travel demand to forecast the number of trips that will 
be made, other models have been developed to specifically analyze how users choose 
between modes. Mode choice models are used to compare among various transportation 
options, for example public transportation services and taxis.25 The most common method 
is to estimate the probability that a person will choose a specific mode using a logit model 
based on the utility of completing the trip by each of the modes available. There are many 
different types of logit models, such as a binary logit model,26 nested logit model,27 ordered 
logit model,28 and box-cox logit model.29

Racca and Ratledge30 present a comprehensive list of factors that are used for modeling 
mode choices involving transit including transit LOS, accessibility, land use, demographics, 
and characteristics of the trips. That study shows that high transit service is focused at 
locations with high employment and population densities in the city of Wilmington, Delaware. 
The analysis on mode split versus mean age and time of day indicate that these variables 
affect the modes that people choose, and this means that they may also relate to taxi 
trip generation. Corpuz31 shows that socioeconomic characteristics and time of day have 
influenced people’s choices between private vehicles and public transportation. Workers 
and households with higher incomes are more likely to use cars over public transit in that 
time-of-day analysis. The train and the bus are more likely to be picked during morning 
and late afternoon peaks, because people want to avoid the time and the cost of driving 
in congestion.

Most of the research that seriously considers taxis as a mode choice focuses on trips to and 
from airports. Harvey32 was one of the first studies to demonstrate the factors influencing the 
airport access mode choice of departing airline passengers based on a travel survey in the 
San Francisco Bay Area. The analysis, using a multinomial logit model, shows that travel 
time and travel cost are two strong explanatory variables. Business travelers are found to 
be more sensitive to airport access travel time than leisure travelers, and values of time for 
most individuals are estimated to be at least as high as the average wage. Extra luggage, 
which is defined as more than one piece per person, deters passengers from choosing 
transit. Psaraki and Abacoumkin33 analyzed the mode split for Athens International Airport 
in Greece to predict future mode shares and found that international passengers are more 
likely to use taxis or be dropped off by private cars. Pels et al.34 also studied mode choice 
in the San Francisco Bay Area and reported that business travelers have higher value of 
time and higher access time elasticity compared to leisure travelers. The authors reported 
that access time has a larger influence on mode and airport choice compared to the dollar 
cost. However, they calculated travel times for each alternative mode as follows: public 
transit travel time estimates are drawn from train and bus schedules, and taxi travel times 
are based on distances from the center of the origin zip code to the airport. Therefore their 
estimations do not account for walking and transit transfer times for public transit or the 
effect of traffic congestion or road network circuity for taxis or private vehicles.

Some studies have investigated the factors that influence airport ground access mode 
choice including demographics, trip cost, travel time, travel time reliability, and accessibility. 
Gupta et al.35 developed a ground access mode choice model for NYC using an air 
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passenger survey and a nested logit model. They prepared transit LOS data using online 
schedules, and waiting times are also taken into account. Demographic characteristics, 
trip cost, travel time, and trip purpose are shown to be the most significant variables 
in passengers’ mode and airport choice, which is consistent with previous studies. 
Tam et al.36 investigated how travel time reliability affects mode choice using a combined 
dataset from revealed and stated preference surveys. The authors state that increasing 
reliability can attract more passengers to use bus services. Luken and Garrow37 studied the 
airport choice problem in NYC. Their analysis, based on online ticketing data, showed that 
the accessibility of the airport significantly affects the airport choice. They acknowledge 
that their model can be improved by explicitly considering peak and off-peak driving times.

GAPS IN THE LITERATURE

The existing literature on travel demand models is extensive, especially for trip generation 
and mode choice. Although there are many studies that address trip generation for public 
transit systems and the choices that people make between travel by transit and private 
car, taxis have not received as much attention. In large cities, taxis provide a substantial 
portion of all travel; e.g., roughly 11 percent of all trips in New York.38 However, most of the 
literature on taxis is focused on economic analysis of taxi markets from a regulatory and 
supply-side perspective. There is a need for research to identify the factors that drive taxi 
demand. Based on existing research for transit and other modes, the important factors for 
taxis are likely to include demographics, land use characteristics, and properties of other 
modes, like transit LOS.

The availability of high-resolution GPS data for taxis in NYC provides an opportunity to 
address these existing gaps in the literature with a detailed study of taxi demand across 
space and time. Not only can demand models be developed for taxis, but they can be 
developed with consideration for the variations in activity patterns that occur through the 
course of a day.



Mineta Nat ional  Transi t  Research Consort ium

11

III.  DATA SOURCES AND PREPARATION

In order to conduct the proposed analysis on trip generation and mode choice for taxis, the 
relevant data must be collected and organized. There are three main bodies of data used 
for this study. The first is a complete collection of GPS taxi data for every taxi trip made in 
NYC within a 10-month period. Second, detailed transit schedule for the same geographic 
region is acquired using Google Transit. Finally, these transportation data are supplemented 
with demographic, employment, and land use data, which are expected to include key 
characteristics of the locations that are associated with the highest rates of taxi use. The 
following subsections describe these data sources and their limitations in more detail.

TAXI DATA

The database of taxi trips contains information of 147 million taxi trips made between 
February 1, 2010 and November 28, 2010. Each record includes information about where 
and when a trip was made, the distance traveled, and the fare paid. Specifically, the dataset 
includes the following data fields for each record:

•	 Taxi Medallion Number, Shift Number, and Driver Name;

•	 Pickup Location (latitude and longitude), Date, and Time;

•	 Drop-off Location (latitude and longitude), Date, and Time;

•	 Distance Traveled from Pickup to Drop-Off;

•	 Number of Passengers;

•	 Fare Paid, including breakdown by Fare, Tolls, Tips;

•	 Method of Payment (e.g., cash, credit card).

These data are collected by the Taxi and Limousine Commission (TLC) using the GPS and 
meter devices that are installed in every licensed taxi in the city.

Although there are advantages to working with big data such as this, the dataset has 
some limitations. For example, none of the intermediate locations that a taxi passes along 
a route from a passenger pickup to a drop-off are logged, so it is not possible to know for 
certain which routes individual taxis follow to serve each trip. For the purposes of modeling 
trip generation, however, it is sufficient to look at the number of trips starting (pickups) and 
ending (drop-offs) across space and at different times of day in the city. For mode choice 
analysis, trips connecting specific origin-destination pairs can be extracted from this larger 
dataset in order to compare the properties of taxi travel with public transit.



Mineta Nat ional  Transi t  Research Consort ium

12 Data Sources and Preparation

Preparing Taxi Data for Trip Generation Modeling

The raw taxi data requires some filtering in order to remove errors in the dataset. The 
deficiencies in the GPS data are mostly due to satellite errors, receiver noise errors, 
coordinate transformation errors, and errors made by the driver.39 The taxi GPS data were 
processed to minimize the influence of outliers. Some false records were eliminated, for 
example, records with a total fare amount equal to zero or a travel distance less than the 
straight-line distance between the origin and destination. Sometimes more than two criteria 
were used to determine whether to remove a data point (e.g., fare amount, distance, and 
travel time). Ultimately, less than 2 percent of the original taxi records were eliminated 
through this filtering process.

The goal of the trip generation analysis was to identify which demographic, employment, 
and land use factors have the strongest effect on the number of taxi trips made. An 
additional goal of this study was to identify whether the availability and accessibility of 
public transit is related to the use of taxis in a neighborhood when controlling for these 
other factors. In order to conduct this analysis, the raw taxi data must be processed into a 
format that is compatible with the other data sources. Since the spatial resolution of much 
of the demographic data is at the level of census tracts, this is the same level of spatial 
resolution that should be used for aggregating the taxi data. For the taxi trip generation 
models developed in this study, census tracts were used as the geographic unit for the 
Transportation Analysis Zones (TAZs).

In addition to the spatial aggregation, the taxi data was also aggregated by hour of day 
so that the trip generation model could account for temporal variations in demand. The 
process of aggregating pickup and drop-off records for this study was similar to the process 
used by Yazici et al.40 in that taxis were used as probes to monitor traffic conditions by time 
of day. The distribution of pickups (origins) and drop-offs (destinations) were considered 
separately because they are clustered differently in time and space. Thus, separate models 
were developed to understand these two trip ends.

This aggregated data can be visualized on maps of New York City in which each census 
tract is shaded based on the number of taxi trips that were observed starting or ending. 
Although the dataset is split into 24 hours of the day, illustrative examples are shown for 
the afternoon peak at 5:00 p.m. (Figure 1) and late at night at 12:00 a.m. (Figure 2). The 
figures provide a visualization of where pickups and drop-offs are located at different times 
of day. All maps were constructed with the same scale so that they can be compared directly 
with one another. The figures show that the locations where demand is concentrated are 
mostly in Manhattan and downtown Brooklyn, but a more complete statistical analysis is 
necessary to quantify how this demand relates to characteristics of each census tract and 
the transit service available at each location.
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Figure 1.	 Taxi Pickups and Drop-Offs from 5:00 p.m. – 6:00 p.m.
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Figure 2.	 Taxi Pickups and Drop-Offs from 12:00 a.m. – 1:00 a.m.
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Preparing Taxi Data for Mode Choice Analysis

In order to evaluate mode choice, that analysis focused on a few specific origin-destination 
pairs involving travel between New York Penn Station and the region’s three main airports. 
The relevant taxi trips were extracted from the larger dataset by identifying only those that 
have one trip end near Penn Station and the other trip end near an airport. All airport trips 
within a 500-foot radius of the center of Penn Station, within a 1-mile radius of the center 
of EWR, and within the census tract of JFK (census tract ID: 36081071600), and LGA 
(census tract ID: 36081033100) were considered. As NYC taxis are not allowed to pick 
up passengers from EWR, the cabs must return empty, so only trips from Penn Station to 
EWR were included in this study. JFK and LGA have taxi trips in both directions, so a total 
of five OD pairs were considered. The relative locations of Penn Station and each of the 
region’s airports is shown in Figure 3.

 Figure 3.	 Locations of New York Penn Station and Three Major Airports: 
John F. Kennedy International (JFK), LaGuardia (LGA), and 
Newark Liberty International (EWR)

The total fare is a flat rate between most of Manhattan and JFK or EWR airports, plus any 
tolls, tips, and surcharges. The fare between Manhattan and LGA has some variability 
because trips are charged the normal metered rate. The travel time has largest variability 
among all four variables due to the variability of traffic conditions. The trip distance is 
mostly stable for all airport trips, but the slight variability indicates that alternative routes 
might be taken for the same origin-destination pairs.
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TRANSIT DATA

Data on transit service over the same geographic area as the taxi data is necessary for 
determining how transit service affects taxi trip generation and how travelers choose 
between the two modes. The Metropolitan Transit Authority (MTA) operates extensive 
bus, subway, and commuter railroad services in New York City. Additionally, New Jersey 
Transit operates commuter rail services from Penn Station into New Jersey, including a 
connection to EWR. AirTrain services at JFK and EWR connect the airport terminals with 
the regional rail network.

In addition to published route and schedule information provided by the operating agencies, 
several web-based services make route and schedule information available in electronic 
format. Examples include Google Transit, Bing Maps, and MapQuest. For this study, data 
from Google was utilized in two ways. First, station and schedule information was extracted 
in an electronic format for analysis of transit accessibility. Second, a specialized program 
was developed to make use of the trip-planning functionality of Google Maps API Transit 
Directions Service. 

Preparing Transit Data for Modeling Taxi Trip Generation

One of the goals of this study was to identify what role that transit accessibility plays 
in determining the number of taxi trips that start or end in a census tract. Therefore, 
information is needed about the locations of transit stations and the frequency of service 
at these stations. This information is available in a standardized electronic format called 
the Google Transit Feed Specification (GTFS). Transit agencies submit their route and 
schedule information in GTFS to Google so that users of Google Maps can search for 
directions online. The GTFS data is a series of files that describe the locations of transit 
stations, the sequence of stations served by each route, and sets of times when vehicles 
depart from each station. Together, these make up a comprehensive description of all 
routes and schedules operated by an agency.

The raw data from GTFS can be directly combined to determine the number of scheduled 
vehicle departures per hour from each transit station. For example, Figure 4 shows a map 
of subway stations in NYC with each station shaded to represent the number of subway 
trains serving the station in the 5:00 p.m. to 6:00 p.m. hour on weekday afternoons. 
Additional analysis and calculations are required to convert the information on this map 
into a measure of transit accessibility for each census tract in the city. That process is part 
of the methodology for this study, and the details are described in the section about trip 
generation modeling. Although rail schedules are complete throughout the region, some 
data for bus routes is missing from Google’s databases (notably, bus routes in Queens are 
not currently available in the GTFS format). Due to this limitation of the data, the analysis 
in this study is based only on measuring subway accessibility in New York.
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Figure 4.	 Frequency of Subway Service at Each Station in New York City 
Between 5:00 p.m. – 6:00 p.m.

Preparing Transit Data for Mode Choice Modeling

Whereas trip generation models are constructed only based on the characteristics of the 
locations at the beginning and end of a trip, mode choice models require information about 
the complete trip itself. In order to compare taxi and transit service between Penn Station 
and the airports in the NYC region, specific information about travel times and fares are 
needed for each of the relevant origin-destination pairs. The transit service to each airport 
is summarized as follows:

•	 JFK, located in Queens, NY, is accessible from AirTrain, buses, and car/taxis. 
AirTrain JFK connects to the Long Island Rail Road (LIRR) and the NYC subway 
and bus system at Jamaica and Howard Beach.

•	 LGA, located in Queens, NY, is four miles from Manhattan and can be accessed by 
car or taxi. LGA does not have a direct rail link, but bus services do connect to the 
LIRR and subway.

•	 EWR is located in Newark, NJ, and is accessed from Manhattan via the Holland and 
Lincoln Tunnels by car/taxi. AirTrain Newark provides access to New Jersey Transit 
trains into NYC Penn Station.



Mineta Nat ional  Transi t  Research Consort ium

18 Data Sources and Preparation

The travel time and monetary costs of each airport trip was summarized by hour of the day 
in the taxi dataset, so comparable data was required for the competing transit trip. Without 
live data collection of travel times for passengers, the next best data source for assessing 
transit is to look to the schedules. The travel time and fare for using transit depends on the 
specific route selected (e.g., whether only subway and bus are used, or if commuter rail 
is used).

Google Maps API Transit Directions Service, which offers free transit route guidance with 
a daily request limit, was used to obtain transit data. The information was gathered in XML 
format using a web-based JavaScript code. An application was developed that extracts 
one week of travel time and route information (including weekdays and weekends) based 
on schedules for the five origin-destination pairs every 5 minutes throughout the day. The 
routing information provided by Google was assumed to be the optimal transit option 
for the requested time and origin-destination pair since the web-based routing service 
compiles all available scheduling information for different transit modes and routes. The 
fare was estimated based on the optimal route. Data for approximately 2,016 transit trips 
have been collected for each origin-destination pair over a 10-month period. The transit 
travel duration of each trip includes waiting time, transfer time, and in-vehicle travel time. 
Each data point was also associated with an estimated fare based on the service utilized 
to complete the trip.

DEMOGRAPHIC, EMPLOYMENT, AND LAND USE DATA

In addition to characteristics of the taxi and transit modes themselves, there are 
characteristics of the places that where taxi trips start and end that are likely to have an 
effect on the magnitude of taxi demand. The literature on trip generation models shows 
that population, demographic characteristics of the population, employment, land use, and 
other characteristics of a transportation analysis zone can all have important explanatory 
power for predicting the number of trips that each zone generates. Much of this data is 
collected and made available by government entities such as the United States Census 
Bureau. Since so many of the relevant population characteristics are aggregated at the 
level of census tracts, this is a logical scale for analyzing taxi demand.

The sources of data for the explanatory factors considered in this study include:

•	 demographic data for each census tract is available from the U.S. Census 2010, 
including total population, population categorized by age, and population categorized 
by race;

•	 socioeconomic data is available from the American Community Survey 5-year 
(2007-2011) estimate of education and income;

•	 employment data by census tract, including categorization by age, earnings, type, 
race, ethnicity, educational attainment, and sex is available for NYC from 2010 
Workplace Area Characteristic (WAC) data available from the U.S. Census Bureau;

•	 geographic data including relevant shapefiles (e.g., rivers, roads, county, census 
tract), and land area.
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The population density and employment density in 2010 was calculated for all 2,167 
census tracts in NYC. Figure 5 shows that the population density and employment density 
are concentrated in Manhattan. Some census tracts consisting of cemeteries, parks, or 
islands do not have employment associated with them, so the WAC employment data 
covers 2,143 census tracts. Census tracts with variables that are lacking certain required 
information are excluded from the linear model analysis; e.g., where the population or 
employment are zero. Ultimately, 116 out of 2,167 census tracts (5 percent) were omitted 
from the analysis, because there was insufficient population or employment in those few 
regions to create a useful data point. With all of the demographic, employment, and land 
use data aggregated by census tract, the dataset was prepared with a large set of variables 
that can used to develop models for taxi trip generation.
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Figure 5.	 2010 Population and Job Density (per square mile)
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IV.  ANALYSIS 1: TAXI TRIP GENERATION

The first analysis conducted in this study was the development of a trip generation model 
for taxi demand that accounts for the role that transit plays in determining taxi demand. 
There are two important methodological contributions of this trip generation study. The 
first was the development of a novel transit accessibility measure based on the time to 
access and wait for transit. This requires processing raw transit schedule information to 
determine how much time it takes person at a specific location and time of day to access 
the public transit system. The second contribution was the development of a hybrid cross-
classification and regression model for estimating taxi trip generation. The taxi data was 
cross-classified by pickup and drop-off and aggregated by hour of the day. Within each 
classification, a multiple linear regression model was estimated to identify the factors that 
influence taxi demand.

DEFINING TRANSIT ACCESS TIME (TAT)

Transit LOS and accessibility must be quantified in order to be used as an explanatory 
variable to model taxi. A new measure was developed that combines the estimated walking 
time a person must spend to access the nearest station (transit accessibility) and the 
estimated time that person will wait for transit service (transit LOS).

This measure is the Transit Access Time (TAT), and it represents the minimum expected 
time for a person at a specific location and time of day to walk to, wait for, and board a 
transit vehicle. For a walking speed of 3.1 mph,41 the transit access time in minutes is:

TAT =
60𝐷𝐷
𝑣𝑣𝑤𝑤

+
60
𝑓𝑓

 		  (1)

where 𝑓𝑓  is the frequency of subway dispatches per hour at the nearest station, 𝐷𝐷  is the 
distance to the nearest station (mi), and 𝑣𝑣𝑤𝑤  is the walking speed (mph).

The minimum TAT was calculated at each location by the following steps. First, the 
transit schedule in GTFS provides the number of transit departures (i.e., frequency) in 
each hour at each station. The waiting time depends on the frequency based on the 
second term of Equation 1, and it was calculated separately for each hour of the day to 
account for variations in the schedule. Then, a fine grid was imposed on the study area 
with cells measuring 250 meters square, which is small enough that the walking time 
to cross each cell is less than one minute. Each cell was characterized by the location 
of its centroid, and a TAT was calculated for each cell. A modified K-nearest-neighbor 
algorithm was implemented by calculating the minimum TAT from the K nearest transit 
stations by screening distance and waiting time to all transit stations from the centroid. 

People are assumed to be well informed about transit schedules and to choose the nearby 
station that minimizes the sum of their walking and waiting time. Thus, the TAT is a metric of 
transit accessibility that is independent of specific origin-destination demand patterns. For 
simplicity, the method looks only at the closest access from each location (cell centroid) to 
the nearest subway departure, in space and time, anywhere in the system. The minimum 
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TAT was calculated for each cell in NYC at each hour of the day, and this was used to 
quantify transit accessibility in the city with spatial resolution of 250 meters and temporal 
resolution of an hour.

The minimum TAT for each census tract was determined by averaging the values across all 
of the 250-meter square cells included within the census tract. This provides a better TAT 
measure than simply calculating from census tract centroids, because a large census tract 
may have a centroid near a transit station but extensive peripheral land that has relatively 
low accessibility. The TAT was calculated for different times of day for each census tract 
using only the subway data in this study, because the GTFS bus schedule data that is 
available from the MTA is incomplete (e.g., bus data for Queens are not available).

VISUALIZING TRANSIT ACCESS TIME AND DEMAND

In order to develop an intuitive understanding of what that TAT represents, it is useful to 
look at a visualization of how it varies over space and time. Figure 6 shows the TAT for 
subways during 5:00 p.m. – 6:00 p.m. (afternoon) and 12:00 a.m. – 1:00 a.m. (midnight). 
The map of TAT shows that there is greater transit accessibility in Manhattan and along 
the subway routes than in other parts of the city, which is expected, based on the spatial 
coverage of the subway network. The transit accessibility is also generally greater during 
5:00 p.m. – 6:00 p.m. than at 12:00 a.m. – 1:00 a.m., because services operate more 
frequently during the peak hours than late at night.
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Figure 6.	 Transit Access Time (minutes) During Evening Rush 
(5:00 p.m. – 6:00 p.m.) and Midnight (12:00 a.m. – 1:00 a.m.)

The visualization of TAT can be compared with the mapping of taxi pickups and drop-
offs during the evening and midnight hours shown in Figure 1 and Figure 2, respectively. 
These figures suggest that the pickups and drop-offs per capita are higher where the TAT 
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is lower (i.e., transit is more accessible), which is a negative correlation between TAT and 
taxi use. The mapping of TAT and taxi demand provide a visualization of their relationship 
and help provide intuition about why such a relationship exists.

These visualizations also show that it is necessary to split the dataset up by hour of the day, 
because the distribution of activities in NYC changes with time. There are also differences 
between the rates of taxi pickups per capita at 5:00 p.m. and at 12:00 a.m. For example, 
there are more taxi pickups at Jamaica at 5:00 p.m. than that at 12:00 a.m., which could 
result from people getting off the subway at Jamaica and then taking a taxi complete a trip 
home from work. In some areas of lower Manhattan there are more pickups at 12:00 a.m. 
than at 5:00 p.m., which indicates concentrations of nightlife.

The drop-offs per capita show big differences between 5:00 p.m. and 12:00 a.m. as well. 
For example, there are more drop-offs per capita at some popular locations such as Penn 
Station, Grand Central Station, and Flushing at 5:00 p.m. than at 12:00 a.m., which is 
consistent with the fact that these are busy transit hubs that used by commuters. Although 
the total amount of travel activity in the city is lower at midnight than at 5:00 p.m., many 
areas of the outer boroughs actually see a greater rate of drop-offs in the late night hours. 
This suggests that people use taxis more often to travel to outlying neighborhoods when 
it is dark and transit services are less frequent. There appears to be a consistent trend at 
all times of day that pickups are more concentrated around transit hubs and central areas, 
whereas drop-offs are more dispersed around the city. Clearly, trip-making behavior by 
taxis is asymmetric in that trip origins are more concentrated than trip destinations.

With the hourly data for TAT, taxi pickups, taxi drop-offs, and all other demographic and 
socioeconomic information, visual inspection of the maps is interesting but insufficient for 
determining the quantitative relationship between the explanatory variables and the taxi 
demand. A multiple linear regression model is introduced in the next section in order to 
achieve this objective.

METHOD FOR MODELING TAXI DEMAND

Linear models have been broadly applied to trip generation.42 The idea behind multiple 
linear regression modeling is to explore the relationship between the dependent variable 
and independent variables with the assumption that this relationship is linear as follows:

𝑌𝑌 = �𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=0

+ 𝜀𝜀 		  (2)

where 𝑌𝑌  is the number of taxi trips generated in a TAZ (response variable), 𝑋𝑋𝑖𝑖   is one of 
𝑛𝑛  independent variables, 𝑋𝑋0  is the intercept, 𝛽𝛽𝑖𝑖  is the coefficient corresponding to 𝑋𝑋𝑖𝑖  , and 
𝜀𝜀  is the error representing the difference between the modeled and observed number of 
taxi trips.

Using least squares estimation (i.e., maximum likelihood estimation) coefficients were 
estimated for each explanatory variable by minimizing the mean squared error between 
the modeled 𝑌𝑌  and observed 𝑌𝑌 . The goal was to select a set of explanatory variables 
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that results in low model error and in which each explanatory variable has a statistically 
significant coefficient. There are many methodological and statistical criteria for selecting 
important variables. For example, stepwise selection and best subset regression are two 
methods for comparing model specifications in order to identify the best set of explanatory 
variables to include in the final model. The following steps describe several procedures 
used to select important variables in this study.

Step 1: Check Correlation Coefficients

An analysis of the correlation coefficients among the response variable and all explanatory 
variables shows how closely each pair of variables vary with each other. A correlation 
coefficient that is greater than 0.5 or less than -0.5 was considered strong in this analysis. 
The strong correlation between an explanatory variable and the response variable could 
indicate the explanatory variable is important. Strong correlation among explanatory 
variables leads to multicollinearity in the model, because it is not possible to identify which 
factor has the more significant statistical relationship with the response variable. The 
Variance Inflation Factor (VIF) quantifies the severity of multicollinearity in an Ordinary 
Least Squares regression by measuring how much the variance of an estimated regression 
coefficient increases due of multicollinearity.43 Each indicator has a VIF value to indicate 
the degree of multicollinearity, and a large value indicates that a variable needs to be 
either removed or replaced. A common rule of thumb is that if the VIF of each factor is 
larger than five, then multicollinearity is high.

Step 2: Stepwise Selection

Stepwise selection (or forward and backward selection) is a method of selecting variables 
by adding or eliminating one at a time. The best model was chosen by seeking the model 
with the lowest value of Akaike Information Criterion (AIC) and smaller Residual Sum 
of Squares (RSS). AIC is a measure of the complexity of the model, and it is a function 
of maximum likelihood and the number of parameters included in the model. A smaller 
AIC value indicates a better goodness of fit.44 The AIC value is especially useful when 
comparing models with a large number of explanatory variables. The stepwise method 
involves ranking the importance of each factor by listing the AIC values would result from 
removing it. Then, the least relevant factors can be eliminated one by one until a suitable 
model is specified.

Step 3: Best Subsets Regression

Best subsets regression (a.k.a. complete subset regression) is a method to select the best 
subset of predictors among all the possible combinations of predictors (2𝑘𝑘  combinations 
if there are 𝑘𝑘  predictors in the initial model).45 There are several metrics for comparing 
model performance:

•	 R squared (R2) is the coefficient of determination that quantifies the variance in the 
model error, and it is also an indicator of how well the model fits the data points.

http://en.wikipedia.org/wiki/Multicollinearity
http://en.wikipedia.org/wiki/Ordinary_least_squares
http://en.wikipedia.org/wiki/Ordinary_least_squares
http://en.wikipedia.org/wiki/Linear_regression
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•	 Adjusted R squared (AdjR2) is similar to R2 but incorporates a penalty for the number 
of extra explanatory variables added to the model; a higher AdjR2 is better.

•	 Bayesian Information Criterion (BIC), which is similar to AIC, is a function of the 
maximized value of the likelihood function and the number of variables included 
in the model. The difference from AIC is that the penalty term for the number of 
variables included in the model is larger in BIC than in AIC.46 For both metrics, 
lower values are an indication of a better model.

•	 Mallows 𝐶𝐶𝑝𝑝  assesses overfitting of the model, and a desirable model has 𝐶𝐶𝑝𝑝  close to 
the number of explanatory variables, 𝑝𝑝 .47

The best subset method works well to refine the selection of explanatory variables from 
the important factors that are already identified. It is very useful for modeling the same 
major pickups and drop-offs at different times of day based on the same set explanatory 
variables, because trips at different times of day could be associated with different 
explanatory factors.

It is very difficult to achieve an R2 greater than 0.8 in most trip generation studies, because 
there are many things affecting the response variable, and we sought the simplest possible 
model to gain insights for transportation planning. There have been some studies by 
transportation planners on regional growth48 and trip generation49 using linear regression 
and achieving very low R2 or adjusted Adj R2 (much less than 0.5 sometimes less than 0.1), 
however the value of these models is not in the final estimate of the response variable 
but in identifying statistically significant explanatory variables that help us understand 
what drives demand. The goal of this study was to identify the relationships between taxi 
demand and important socioeconomic and land use factors at different times of day and 
at different locations. Therefore the models were developed based not only on R2 but also 
on other criteria used to select an appropriate model. In order to use the fewest number 
of variables for the model, the most statistically significant explanatory variables were 
identified by the t-statistic or p-value (p-value<0.05 is significant at 95% confidence level).

TAXI TRIP GENERATION MODEL AND DISCUSSION

Using the methodology presented in the previous section, an initial model was developed 
and refined to predict the number of pickups or drop-offs generated in each census tract 
by hour of the day from the 10-month taxi GPS data in NYC. The full list of the explanatory 
variables that were considered in the initial model are listed in Table 1.
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Table 1.	 List of Explanatory Variables in Each Model

Factor group Factors or factor category
No. of 

variables
Initial  
model

All NYC 
factors

Manhattan 
model

TAT TAT at specific hour 1 √ √ √
Population Total population (Pop) 1 √ √ √

Population by race 8 √
Population by age 14 √

Age Medium age (MedAge) 1 √ √ √
Education Percentage education higher than 

high school 1
√

Percentage education higher than 
Bachelor (EduBac) 1 √ √ √

Income Median household income 1 √
Mean household income 1 √
Median family income 1 √
Mean family income 1 √
Per capita income (CapInc) 1 √ √ √

Employment Total jobs (TotJob) 1 √ √
Jobs by age 3 √
Jobs by earnings 3 √
Jobs by types 20 √ √
Jobs by race 6 √
Jobs by ethnicity 2 √
Jobs by education attainment 4 √
Jobs by sex 2 √

Total No. of variables 70 70 6 25

Several influential factors from the initial full model have been identified using stepwise 
selection based on AIC values and RSS: TAT, total population, median age, educational 
attainment, income, total jobs, and jobs by type. The correlation coefficient was checked to 
remove factors that are too closely related to each other in selecting major factors for the 
second model. Since median household income, mean family income, and per capita income 
are highly correlated, only one should be included in each model to avoid multicollinearity. 
Due to better performance of the model with per capita income and the higher correlation 
coefficient with the response variables, per capita income was selected. Similarly, jobs by 
type or jobs by sex are closely related to total jobs. In this case, total jobs was chosen for the 
second model (selected factors are listed in Table 1). To prevent multicollinearity, only one 
factor or category among two or more correlated factors was included.

Models with and without the intercept were estimated for pickups and drop-offs for each 
hour of day in NYC. In most of the models the intercept was not significant, and it is 
intuitive that if a census tract has no population and no jobs, then there are likely to be no 
trips as well. The coefficients of the other explanatory variables were very similar whether 
or not the intercept was included in the model. Therefore, the intercept was removed from 
the models formulated in this study. The results, including the six major variables for each 
time of the day, are presented in Table 2 for taxi pickups and Table 3 for taxi drop-offs.
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Table 2.	 Model Fit Statistics and Coefficients for Generation of Pickups in All of 
New York City

Hour Model Fit Statistics Coefficients of Explanatory Variables
R2 AdjR2 Cp BIC Pop MedAge EduBac CapInc TAT TotJob

12 a.m. 0.47 0.46 5.87 -1248.26 0.48 -198.18 0.26 -36.38 0.32
1 a.m. 0.38 0.38 4.00 -943.85 0.38 -142.05 0.19 -30.63 0.21
2 a.m. 0.30 0.30 4.90 -704.99 0.31 -103.55 0.14 -23.54 0.13
3 a.m. 0.26 0.26 5.67 -577.45 0.23 -72.69 0.10 -17.65 0.09
4 a.m. 0.32 0.32 5.74 -753.91 0.17 -52.83 0.07 -11.97 0.07
5 a.m. 0.52 0.52 5.14 -1464.34 0.16 -49.18 0.06 -7.56 0.06
6 a.m. 0.48 0.48 6.00 -1303.97 0.35 -112.34 -25.36 0.15 -13.72 0.14
7 a.m. 0.56 0.56 6.00 -1621.84 0.64 -210.90 -64.23 0.31 -23.79 0.24
8 a.m. 0.61 0.61 6.00 -1872.85 0.70 -255.40 -99.03 0.41 -32.77 0.36
9 a.m. 0.61 0.61 6.00 -1886.77 0.62 -249.00 -106.00 0.42 -37.68 0.43
10 a.m. 0.62 0.62 6.00 -1959.95 0.57 -228.94 -103.30 0.39 -37.49 0.43
11 a.m. 0.63 0.63 6.00 -1990.18 0.47 -216.05 -114.07 0.40 -39.79 0.49
12 p.m. 0.63 0.63 6.00 -2002.51 0.44 -221.88 -125.07 0.43 -43.76 0.54
1 p.m. 0.63 0.63 6.00 -2019.18 0.41 -216.54 -125.18 0.43 -44.67 0.53
2 p.m. 0.63 0.63 6.00 -2013.17 0.40 -219.94 -132.22 0.44 -46.60 0.55
3 p.m. 0.64 0.64 6.00 -2048.37 0.41 -213.26 -121.48 0.42 -43.62 0.49
4 p.m. 0.64 0.64 6.00 -2059.71 0.39 -190.62 -101.24 0.36 -37.57 0.42
5 p.m. 0.65 0.64 6.00 -2082.61 0.49 -237.27 -123.22 0.44 -44.38 0.50
6 p.m. 0.64 0.64 6.00 -2034.77 0.57 -285.92 -155.81 0.54 -54.72 0.63
7 p.m. 0.63 0.63 6.00 -1981.57 0.60 -300.80 -154.44 0.56 -56.44 0.67
8 p.m. 0.62 0.61 6.00 -1915.26 0.55 -277.92 -129.10 0.50 -52.44 0.63
9 p.m. 0.59 0.59 6.00 -1790.40 0.56 -266.61 -111.59 0.47 -52.15 0.60
10 p.m. 0.56 0.56 6.00 -1642.60 0.56 -257.86 -92.14 0.44 -50.00 0.56
11 p.m. 0.53 0.53 6.00 -1504.76 0.55 -236.71 -54.38 0.37 -44.68 0.45
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Table 3.	 Model Fit Statistics and Coefficients for Generation of Drop-Offs in All 
of New York City

Hour Model Fit Statistics Coefficients of Explanatory Variables
R2 AdjR2 Cp BIC Pop MedAge EduBac CapInc TAT TotJob

12 a.m. 0.60 0.59 6.00 -1809.31 0.67 -190.57 19.37a 0.22 -36.05 0.22
1 a.m. 0.60 0.59 6.00 -1812.34 0.52 -136.56 25.23 0.14 -27.86 0.16
2 a.m. 0.59 0.59 6.00 -1796.86 0.41 -100.30 24.64 0.10 -20.09 0.12
3 a.m. 0.61 0.61 6.00 -1900.70 0.30 -68.96 18.14 0.06 -14.69 0.09
4 a.m. 0.59 0.59 6.00 -1782.06 0.18 -40.04 10.99 0.04 -10.13 0.07
5 a.m. 0.45 0.45 6.00 -1169.35 0.06 -22.93 -7.29 0.04 -7.71 0.11
6 a.m. 0.43 0.43 4.02 -1120.11 -49.12 -54.92 0.14 -16.61 0.39
7 a.m. 0.47 0.47 4.16 -1262.46 -95.27 -109.00 0.27 -32.15 0.71
8 a.m. 0.53 0.53 4.00 -1528.36 -132.37 -129.14 0.36 -41.17 0.83
9 a.m. 0.57 0.57 4.24 -1706.02 -140.65 -131.07 0.37 -44.19 0.76
10 a.m. 0.60 0.60 6.00 -1840.99 0.17 -156.26 -114.32 0.36 -42.18 0.60
11 a.m. 0.61 0.61 6.00 -1876.01 0.23 -168.98 -117.39 0.37 -43.79 0.56
12 p.m. 0.62 0.62 6.00 -1952.91 0.31 -190.60 -122.02 0.40 -46.73 0.56
1 p.m. 0.62 0.62 6.00 -1957.41 0.33 -192.48 -116.00 0.40 -45.16 0.55
2 p.m. 0.62 0.62 6.00 -1923.38 0.39 -204.54 -116.39 0.41 -45.51 0.54
3 p.m. 0.62 0.62 6.00 -1943.27 0.44 -207.17 -109.44 0.39 -43.12 0.47
4 p.m. 0.62 0.62 6.00 -1958.00 0.45 -192.80 -90.60 0.35 -37.40 0.38
5 p.m. 0.64 0.64 6.00 -2052.05 0.65 -251.19 -96.90 0.42 -42.86 0.42
6 p.m. 0.65 0.65 6.00 -2122.94 0.86 -317.45 -106.75 0.50 -51.41 0.44
7 p.m. 0.63 0.63 6.00 -2019.56 0.95 -338.33 -92.14 0.51 -52.89 0.43
8 p.m. 0.64 0.64 6.00 -2047.76 0.98 -327.00 -56.46 0.45 -49.35 0.34
9 p.m. 0.66 0.66 6.00 -2163.16 0.97 -312.84 -42.50 0.42 -48.29 0.33
10 p.m. 0.66 0.66 6.00 -2182.20 0.95 -297.63 -26.59a 0.38 -45.89 0.33
11 p.m. 0.63 0.63 4.00 -2026.33 0.84 -254.24 0.31 -42.39 0.29

a	 Indicates non-significance of the coefficient, p-value>0.05, otherwise, it is significant.

The interpretation of the trip generation results for both pickups and drop-offs is useful 
for transportation planning and regulation of taxi services. The magnitude and sign of the 
coefficient for each explanatory variable indicates how much taxi demand will increase (for 
positive coefficients) or decrease (for negative coefficients) as the explanatory variables 
increase by one unit. For example, the coefficient of ‘TotJob’ is 0.32 for pickups at 
12:00 a.m. in NYC (Table 2) indicating that an increase of one job in a census tract is 
associated with an average increase of 0.32 taxi pickups in the 12:00 a.m. hour over a 
10-month period. Similarly, there is an average decrease of 36 taxi pickups at the same 
hour over a 10-month period as TAT increases by one minute, which provides insight 
about how dramatically taxi demand changes with the availability and accessibility of 
transit service.

The errors of the trip generation model (i.e., difference between observed and modeled 
taxi demand) provide information on when and where taxi demand is underestimated or 
overestimated. This gives some idea of where and when more taxi use would be expected 
than actually occurs, based on citywide trends, so the information can be useful for 
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planning locations of taxi stands or providing incentives for cab drivers to operate over 
certain times of day and in certain parts of the city. At locations where the model estimates 
higher taxi use than is actually realized, it is possible that there is a latent demand that 
goes underserved because there are simply not enough taxis circulating at the specific 
location and time to carry as many passengers as would like to use taxis.

The results show that population, education, income, and total jobs positively influence 
both taxi pickups and drop-offs in NYC. This is expected, because high total population 
and high total number of jobs are indicators of places with high human activity and where 
people are more likely to be traveling by any mode, including taxi. However, median age 
and TAT negatively affect the trip-making by taxis. This shows that younger people are more 
likely to take taxis. The results also show that taxi demand is high where transit is more 
accessible (TAT is small). It is not clear from the available data whether the relationship 
between taxis and transit is competitive or complementary. Thus, it cannot be concluded 
whether the convenience of transit service in an area causes high taxi demand because 
people use taxis to complement transit or if the large number of taxi trips are associated 
with high levels of activity that also happen to be where high levels of transit service are 
provided. The reality is likely that taxis and transit are sometimes operating in competition 
and other times as complements, because both modes follow and influence the levels of 
activity in neighborhoods across the city.

The distribution of coefficients at different times of day also sheds light on how those factors 
influence the number of taxi pickups and drop-offs. For example, the total number of jobs 
has a higher influence on taxi demand from 7:00 a.m. to 6:00 p.m., which indicates that 
extra taxi demand during this period in NYC is likely caused by people going to and from 
work or work-related activities. The coefficients for TAT values from 8:00 a.m. to 11:00 p.m. 
show increased taxi trips associated with good transit accessibility (short TAT) during all 
but the late and overnight hours, so it is possible that many of the trips are being made to 
or from transit facilities, enabling taxis to complement transit service. It is also possible that 
the places that have good transit service are also desirable for taxi use for other reasons. 
For example, it might be easier to hail a cab on busy streets in Manhattan under which the 
busiest subway lines also run. 

Another interesting observation from the stepwise modeling is that some of the variables in 
the category of jobs-by-type are very influential in the linear model performance, especially 
for the pickups and drop-offs in Manhattan, as listed in Table 4 and Table 5. TAT loses its 
influence for drop-off trips in Manhattan, compared to when “total jobs” was used. Factors 
related to job types seem to play key roles in generating the taxi trips in Manhattan. Some of 
the influential industry sectors are retail, accommodation and food service, and health care. 

From 11:00 p.m. to 8:00 a.m., it appears the drop-off taxi demand is not significantly related 
to income, while from 9:00 a.m. to 10:00 p.m. it is. This indicates that people are taking 
taxis in the evening regardless of income; however, in the daytime, wealthy people are 
more likely to take taxis, perhaps because those in the lower income brackets have access 
to more competitive, affordable travel modes during the day. Similar situations were also 
observed for taxi pickup demand except that the time period is slightly earlier.
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People tend to take taxis to places with retail activities from 8:00 a.m. to 4:00 p.m. (Table 3) 
and taxi trips away from these places from 12:00 p.m. to 11:00 p.m. These retail-related 
activities could be commuting to jobs in retail sales, shopping to purchase goods, or 
meeting with other people. Unfortunately, without data about individual trip purposes, it is 
not possible to know precisely which activities each traveler in the census tract engaged 
in, but the high correlation with retail activities shows the importance of retail land use and 
employment in determining taxi demand.

Accommodation and food service jobs, which are an indication of hotel and restaurant 
activity, are located all over Manhattan. It is not surprising to see, from pickup and drop-
off trip generation coefficients, that they are influential almost all day, but they have 
relatively higher influence at breakfast time (7:00 a.m. – 9:00 a.m.), lunch time (1:00 p.m. 
– 2:00 p.m.), and dinner time (5:00 p.m. – 11:00 p.m.). These results provide us with a 
thorough understanding of the relationship between taxi demand and popular activities in 
Manhattan. If combined with other information, such as population, income, and TAT, the 
models provide predictions of taxi demand across time and space. 
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V.  ANALYSIS 2: MODE COST AND CHOICE MODELING

The second analysis in this study is a detailed look at what is at stake when choosing 
between taxi and public transit as a transportation mode. Typically, mode choice models 
are based on comparing the utility associated with the generalized cost of travel by each 
mode available. Although taxi data is available for trips across all of New York City, it is 
useful to narrow the scope and focus on comparing data for specific sets of trips. Trips to 
and from airports are particularly important for non-driving modes, so these were selected 
as a focus for the mode choice analysis.

The objective of this part of the study was to develop a data-oriented method to compare 
the generalized cost for different non-driving modes for airport access and to understand 
whether transit or taxi yields a better utility at different times of the day. While the results of 
this study may be useful to individuals making travel choices, the method proposed in this 
study can also help policymakers understand the factors that affect mode choice in order 
to plan airport ground access.

GENERALIZED COST, UTILITY, MODE CHOICE

As web services and information technology become more advanced, it is easier for people 
to acquire complete information about travel by transit and taxi. Assuming that passengers 
make travel decisions based on monetary costs and travel time, the relative attractiveness 
of one mode over the other may change as transit schedules, fares, and taxi travel times 
vary for different times of day and days of the week. The relevant information can be 
obtained from Google Transit and a large set of taxi GPS data.

The total generalized cost for an individual trip in units of dollars can be computed for each 
mode 𝑖𝑖  at time is denoted by 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  and calculated as follows:50

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 = 𝛼𝛼 × 𝑇𝑇𝑖𝑖𝑖𝑖 +
𝐹𝐹𝑖𝑖𝑖𝑖
𝑛𝑛

 		  (3)

where 𝛼𝛼  is the passenger’s value of time ($/hr), 𝑇𝑇𝑖𝑖𝑖𝑖  is the average travel time for the trip 
(hours), 𝐹𝐹𝑖𝑖𝑖𝑖   is the average fare paid for the trip ($), and 𝑛𝑛  is the number of passengers 
sharing a taxi cab; for transit 𝑛𝑛 = 1 .The total generalized cost can also be expressed in 
units of hours by dividing the 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖  by 𝛼𝛼 .

The utility of each travel by each mode in hour 𝑗𝑗  is based on the generalized cost:

𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗 = 𝑏𝑏 − 𝛽𝛽 × 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗 = 𝑏𝑏 − 𝛼𝛼𝛼𝛼 × 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗 − 𝛽𝛽 × 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗 	 	 (4)

𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗 = 𝑏𝑏 − 𝛽𝛽 × 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗 = 𝑏𝑏 − 𝛼𝛼𝛼𝛼 × 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗 −
𝛽𝛽 × 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗

𝑛𝑛
 		  (5)

where 𝑏𝑏  is the benefit for each individual of completing a trip to or from the airport, and 𝛽𝛽  is 
the equivalent utility of a dollar. For an airport trip, the benefit is assumed to be the same 
for both choices as long as the OD pair is fixed.
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The choice between two modes, such as transit and taxi, is typically modeled with a binary 
logit model based on the difference of utilities between the choices.51 The probability that 
an individual will choose transit over taxi is:

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗 =
𝑒𝑒𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗

𝑒𝑒𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗 + 𝑒𝑒𝑈𝑈𝑡𝑡𝑡𝑡𝑥𝑥𝑥𝑥,𝑗𝑗
=

𝑒𝑒(−𝛽𝛽×𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗)

𝑒𝑒(−𝛽𝛽×𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗) + 𝑒𝑒(−𝛽𝛽×𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗) 		  (6)

and the probability of choosing taxi over transit is:

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗 = 1 − 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗  		  (7)

The number of passengers using choosing mode 𝑖𝑖  is the product of 𝑃𝑃𝑖𝑖,𝑗𝑗  and the total travel 
demand. In the following sections, transit and taxi trips in NYC are compared based on 
their travel time, total cost and the corresponding choice probability.

COMPARING GENERALIZED COST OF TAXI AND TRANSIT

The two main types of public transportation services for airport access in NYC—transit 
(including train, AirTrain, subway, and bus) and taxi—were compared for trips between 
Penn Station and the three main airports in NYC: JFK, LGA, and EWR. These constitute 
the largest airport system in the United States. Penn Station was selected as the non-
airport trip destination of interest for this study because it is a major hub of transit and taxi 
activity. Approximately 18 percent of taxi trips from Penn Station that leave the city are to 
EWR, and approximately one percent of all taxi trips to/from Penn Station are from/to LGA 
and JFK.

In order to make a consistent comparison between taxi and transit for each of the airport 
trips considered, the following assumptions about trip characteristics were made for the 
remaining parts of this analysis:

•	 All fares are calculated per passenger. On transit, this is the way that fares are 
always charged. For taxi, the number of passengers sharing the ride divides the 
total fare paid.

•	 Travel time for walking at Penn Station and at the airports is omitted, because the 
distance is similar whether passengers travel by taxi or transit, so it is unaffected by 
the mode choice.

•	 All transit passengers pay regular pre-paid fares. No discounts for senior citizens or 
weekly pass holders and no surcharges for on-board ticket purchase are included.

The data for airport trips by taxi and transit are summarized in Table 6 for each of the 
origin-destination pairs linking Penn Station and the region’s airports. The taxi data is 
extracted from the entire 10-month dataset, and includes the number of passengers per 
trip, the total amount paid, the trip time, and the distance. The total fare is a flat rate 
between most of Manhattan and JFK or EWR airports, plus any tolls, tips, and surcharges. 
The fare between Manhattan and LGA has some variability because trips are charged the 
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normal metered rate. The travel time has largest variability among all four variables, which 
indicates variability of traffic conditions. The trip distance is mostly stable for all airport 
trips, but the slight variability indicates that various alternative routes might be taken for 
the same OD pairs.

Table 6.	 The Taxi Trips Extracted from 10 Months of Taxi GPS Data and 1 Week of 
Transit Trips

OD pair
No. of 
Obs

Taxi Transit
Passenger 

No.
Total Amount 

($)
Trip Time 

(min)
Trip Distance 

(mi)
Trip Time 

(min)
Fare 
($)

Mean Mean Mean Mean Mean Mean
(Std. Dev.) (Std. Dev.) (Std. Dev.) (Std. Dev.) (Std. Dev.) (Std. Dev.)

Penn-JFK 5624 1.81 52.34 47.79 17.24 52.51 12.47
(1.29) (5.26) (17.57) (1.89) (10.34) (1.69)

JFK-Penn 2691 1.87 51.69 45.11 17.72 60.96 12.65
(1.27) (4.33) (12.74) (1.79) (10.03) (1.37)

Penn-LGA 9697 1.63 34.85 31.43 10.23 60.85 4.92
(1.21) (5.64) (10.30) (1.38) (6.32) (3.57)

LGA-Penn 3630 1.65 35.07 32.06 10.21 61.48 6.91
(1.22) (5.58) (9.35) (1.71) (7.57) (3.23)

Penn-EWR 1445 1.80 67.30 32.09 17.08 58.87 17.25
(1.28) (10.48) (9.49) (2.05) (19.90) (9.54)

The transit data is based on scheduled travel times and fares as opposed to actual realized 
travel times because the transit schedules are publicly available, and this is the basis for 
many travelers’ decisions. The variation in travel times reflects the difference in expected 
waiting time, depending on what time the passenger starts their trip. For example, if trains 
depart for the airport every 30 minutes, the amount of waiting time that travelers experience 
is expected to be uniformly distributed between zero and 30 minutes. This is reflected in 
the expected travel times provided by Google Maps API Transit Directions Service. The 
variations in fare are due to the various combinations of modes that may make up the 
shortest travel time. A trip made entirely by subway and local bus will cost $2.50, but 
commuter trains charge substantially higher fares, and AirTrain also charges an additional 
fare ($5.00 at JFK and $5.50 at EWR).

A more detailed distribution of travel times by the day of the week is shown in Figure 7. 
Travel times for transit on weekdays are consistent, which could result from the fact that 
the transit schedule is similar for all weekdays, but it is necessary to analyze Saturday and 
Sunday separately. The average travel times for transit on weekends is higher because 
service headways are longer, and average travel times for taxis on weekends is lower 
because traffic is less congested. The day of the week affects the costs that travelers face 
on each mode.
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Figure 7.	 Boxplot of Transit Travel Time by Day of the Week
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MODELING MODE CHOICE

In order to model mode choice based on observations of travel time and fare, these costs 
must be combined into an estimate of generalized cost and then converted to equivalent 
units of utility. This requires the calibration of parameters of the utility function based on the 
rate that passengers value their time. Normally, a mode choice model would be estimated 
based on extensive survey data of individual travelers’ decisions, but, without a survey, 
an aggregated approach was adopted to fit model parameters so that the total number of 
transit riders was in agreement with observed ridership on the AirTrain.

Determination of Value of Time, 𝜶𝜶 

The value of time for airport trips varies considerably from person to person, and it can be 
considered as a continuous random variable that is distributed across the user population.52 
The value of time for business trips can be higher than for leisure trips.53 The distribution of 
values of time for airport trips is also likely to differ from that of other trip purposes, which 
makes estimation of this value difficult. 

The UK Department for Transport suggests £47.95 (equivalent to $76) as the value of time 
for a taxi/minicab passenger and £39.65 ($63) for a rail passenger in 2010.54 For trips to/
from Penn Station, the income in Manhattan was used as a reference value.55 The 5-year 
(2007-2011) American Community Survey estimate of per capita income in Manhattan is 
$61,290,56 which is $29.5/hr if working a full-time job of 40 hours per week. Gupta et al.57 
considers a higher value of time for airport trips because travelers may be willing to pay 
more to avoid missing their flight. The authors suggested $42/hr for leisure trips and $63/hr 
for business trips. Since we do not know the value of time for passengers that made airport 
trips in NYC, a preliminary value of time $40/hr was used to represent everyone and 
anytime based on above references. In the sensitivity analysis that follows, wide ranging 
of values of time were considered.

Calibration of 𝜷𝜷  Coefficient

Equation 4 and Equation 5 describe the relationship between cost and utility, and the 𝛽𝛽  
coefficient plays an important role in determining the outcome of the binary logit model. 
The 𝛽𝛽  values are the marginal utility of total cost. In order to estimate mode choice, it is 
necessary to determine 𝛽𝛽 , which was done by comparing the total number of transit and 
taxi trips. JFK AirTrain ridership information and taxi GPS data were used to estimate a 
single 𝛽𝛽 . One value of 𝛽𝛽  was used for all three airport trips because it is likely that the 
average marginal utility of total cost is similar for passengers using each of the airports. 
Furthermore, data are not available to estimate specific 𝛽𝛽  values for LGA and EWR, 
because transit ridership between Penn Station and these airports is not available. 

Paid ridership of the JFK AirTrain was 5.3 million passengers in 2010,58 which accounts 
for nearly all of the transit trips to and from JFK. In the same time period, there were 3.386 
million taxi trips to and from JFK, extrapolated from the complete 10-month records of taxi 
GPS data. Based on the trips counts above, 39% of non-driving trips were made by taxi 
and 61% we made by transit to get to and from JFK.
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Without more detailed transit ridership data, the overall mode share for all trips to and from 
JFK during 2010 was considered to be the same as mode share for trips between Penn 
Station and JFK. The logit model was calibrated by selecting the 𝛽𝛽  value that makes the 
model estimates over the course of the day match this observed mode share. Figure 8 
shows the relationship between 𝛽𝛽  and the aggregated probability of taking a taxi, based 
on the total generalized cost in each hour 𝑗𝑗  between Penn Station and JFK (including both 
directions: Penn-JFK and JFK-Penn), assuming 𝑛𝑛 = 1  passenger per taxi and passengers 
value their time at 𝛼𝛼 = $40 /hour. At each hour, the relationship between number of taxi trips 
(𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗)  and the estimated number of transit users (𝑛𝑛�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗 ) is:

𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗
𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗

− 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗 = 𝑛𝑛�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗 		  (8)

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑗𝑗 = 				    (9)

when 𝛽𝛽 , the expected probability of people choosing taxi to the airport is 0.39, which 
matches the data from 2010. This value of 𝛽𝛽  was applied to the cost data for all the airport 
trips in order to estimate the mode share by taxi and public transit. 

 
Figure 8.	 Calibrating 𝜷𝜷  Using Taxi and Transit Data

Mode Choice by Time of Day

On weekdays, the average travel time for taxis is less than that of transit at all times. When 
considering both the time and money spent on the trip, the total cost indicates that even 
if the passenger is traveling alone, taxi has a cost advantage only in middle of the night 
(12 a.m. to 6 a.m.). The taxi travel times vary significantly, and the longest travel times are 
usually observed during morning peak (6 a.m. to 10 a.m.) and afternoon peak (2 p.m. to 6 
p.m.) as shown in Figure 9.
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Figure 9.	 Comparison of Travel Time and Total Generalized Cost per Trip for Taxi 
and Transit by Weekday Hour (± standard error)
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In order to consider the variability of travel costs, the standard error (SE) was calculated 
for the total cost of trips (Figure 9). There tend to be fewer observations in the taxi data 
at midnight, which results in relatively higher SE and a wider 95% confidence interval for 
the mean values at each hour (approximately equal to mean ± 1.96×SE). On the other 
hand, the transit data show relatively small variance within each of the 24 hours. The main 
difference in transit travel times arises from the waiting times and transfer times for the 
next available train or bus. The transit travel time and cost are less variable than taxi travel 
time and cost, which depend on the traffic condition at different times of day and from day 
to day.59

This analysis is limited to trips between Penn Station and the three airports. The probability 
of choosing taxi at each time of day was calculated using the binary logit model, and the 
results are plotted in Figure 10. Based on the difference between total cost for taxi and 
transit, the mode share can be expected to change for different times of the day. For 
example, transit tends to be more competitive during rush hours when traffic congestion 
makes taxi trips slower. On the other hand, taxis are more competitive in late night hours 
when transit headways are long.
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Figure 10.	 Probability of Choosing Taxi for Each Airport Trip by Time of Day

Since these OD pairs are just a partial set of all trips that go to and from the airports, the 
analysis reflects only the costs at those locations. Different locations may have a totally 
different trend based on the travel time and cost. Time and money are not the only factors 
people consider when making travel choices, but the literature suggests that these are the 
most important. It is possible that some people use transit for all without even considering 
taxi, or others take taxis to the airport without ever considering using transit. 
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Some factors that likely influence mode choice other than travel time and fare are that 
taxis provide a more personalized door-to-door service with additional benefits, such as 
assistance with luggage. Some of this value is captured in the tips that are included in 
the taxi data and the total fare paid, which includes tip. In reality, people may experience 
an additional penalty for using transit because they need to walk a certain distance to get 
transit service. These additional benefits or penalties are omitted from the analysis in order 
to focus on the effects of money cost and travel time on the competitiveness of each mode.

Sensitivity Analysis

The total cost is also influenced by the value of time and the number of passengers traveling 
together. Table 6 shows that on average there are 1.6 to 1.8 passengers taking taxis 
together to go to or from each airport. A sensitivity analysis was performed to investigate 
the effects of both the value of time and the number of passengers in the group on the 
probability of an individual’s travel mode choice in detail. 

The average travel time and fare from all records for taxi and transit are considered travel 
time and fare for each OD pair. This sensitivity analysis considers variation of the value of 
time, 𝛼𝛼  (ranging from $10/hr to $70/hr), and passenger count, 𝑛𝑛  (in the range 1 to 3), to see 
how much influence these factors have on total cost as shown in Figure 11a-e. If the value 
of time is fixed, changing the number of passengers affects only the taxi fare per person 
because the transit fare per person is fixed. The slope in Figure 11 for each mode is the travel 
time, and the intercept is the fare per person according to Equation 3. Intersections of taxi 
cost and transit cost are found for all OD pairs except trips from Penn to JFK (Figure 11a). 
The intersection indicates a value of time when the cost of taxi and transit are the same. This 
value of time at the intersection is a tipping point above which passengers should be willing 
to pay extra fare for the faster mode. For example, the transit cost for JFK-Penn intersects 
with taxi cost at $57/hr for 𝑛𝑛 = 2 , indicating that the total cost of taxi is higher when value of 
time is less than $57/hr, because the slope for transit exceeds the slope for taxi (Figure 11b). 
This means that if two passengers are traveling as a group, it is better to choose transit if the 
value of time is lower than $57/hr, otherwise it is more cost-effective to share a ride in a taxi.
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Figure 11.	 Sensitivity Analysis on the Value of Time (𝜶𝜶 ) and Number of Passengers (𝒏𝒏 )

On average, there is no way that a trip from Penn Station to JFK will be less costly by taxi 
in the assumed range of values of time and number of passengers (Figure 11a). For the 
reverse direction, JFK-Penn, taxis do become competitive for sufficiently high values of 
time and passenger occupancies (Figure 11b). 

For trips to and from LGA (Figure 11c-d), if traveling alone, the taxi costs are higher than 
transit costs when the value of time is less than $66/hr (Penn-LGA) or $61/hr (LGA-Penn); 
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however, if traveling with more than two people, the threshold is $27/hr. This relatively low 
value is reasonable because there is no direct transit service between Penn Station and 
LGA. Since the distance is shorter than any of the other airports, taxis are more competitive. 

The trip cost from Penn to EWR seems similar to JFK-Penn, except that the intersection 
points differ slightly. Transit costs more if the value of time exceeds $47/hr (𝑛𝑛 = 2 ) or $17/hr 
(𝑛𝑛 = 3 ). Considering $63/hr as the value of time for business trips in NYC and $42/h as the 
value of time for leisure trips,60 it is likely that a person traveling on business will use a taxi for 
JFK-Penn or Penn-EWR trips if traveling with more than two people, but a person traveling 
for leisure will use a taxi only if traveling with at least three people.

In order to account for the effect on the variation of travel time throughout a day, the 
threshold value of time within each hour at which passengers will switch their preferred 
mode was plotted (Figure 11f-j). For most cases, travel times are longer by transit than by 
taxi (i.e., the slope for transit exceeds the slope for taxi), so values of time greater than 
the threshold are associated with more cost-effective taxi service, and values of time less 
than the threshold are associated with more cost-effective transit service. For a couple 
of time periods, transit is actually faster than taxi because traffic congestion has such a 
severe effect on taxi travel times, and the interpretation switches, so in the shaded areas 
of Figure 11f-g, all trips served more cost-effectively by transit, regardless of the value of 
time. During these times, transit is faster and cheaper than taxi.

The relatively low tipping point values for LGA compared to EWR and JFK show that taxi 
is more competitive than transit for that airport, appealing to a wider range of values of 
time. There is also a pattern at all airports that taxi is more competitive in the early hours 
of the morning (around 2 a.m.) when transit service is also less frequent. These results 
have policy implications, because they show how airports differ in the competitiveness of 
ground access modes, and how this changes by time of day.

Results for EWR (Figure 11j) suggest that transit is more competitive from Penn Station to 
EWR, but for midnight trips taxis have a lower total cost than transit since the frequency of 
service is lower, which results in longer waiting times. However, because of the relatively 
long distance between Penn and EWR, it is possible that taxi is more likely to be chosen 
based on the factors like convenience and comfort, which are not considered in this study.

DISCUSSION

This part of the analysis presents a methodology to compare the total cost for two modes 
of transportation (transit and taxi) using taxi GPS data and high-resolution transit schedule 
information. Trips between NYC Penn Station and three New York area airports (JFK, 
LGA and EWR) at different times of day were used to illustrate the methods. As shown 
in the analysis of total cost and mode choice, transit is more cost-effective than taxi for 
most times of the day if passengers are traveling alone and value time at $40/hour, except 
during some midnight periods when transit service has long headways that contributes a 
significant amount of time to waiting or transfers.
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The sensitivity analysis suggests that people are more likely to choose taxi to travel from 
Penn Station for airport trips if: 1) they place a high value on time, 2) they are traveling 
with a large group of people, or 3) they are traveling during late-night hours. It is also found 
that if people are traveling for business trips, taxis become a less costly choice for airport 
access. Due to the long distances between Penn Station and JFK or EWR, taxi fares 
for those trips are very high, making transit a more competitive mode most of the time 
(especially when 𝑛𝑛 = 1 ), even though taxis offer an advantage in travel time. LGA airport, 
however, is closer to Penn Station, and the relatively low taxi fare and low travel time make 
taxi a more competitive choice for that OD pair. 

The results show that the total cost or travel time for taxis always has a morning peak 
(between 6 a.m. to 10 a.m.) and an afternoon peak (between 1 p.m. to 6 p.m.). The taxi data 
provides an indication of traffic conditions in NYC,61 so the use of this data to calculate the 
travel cost could incorporate both the temporal and spatial effects of traffic congestion in the 
city. However, this study is limited to the temporal analysis of the five most popular OD pairs 
for the airports, which all include trips to and from Penn Station. This can create bias if used 
to estimate total costs for the entire city. Future applications could be expanded to consider 
the spatial dimension as well by include multiple OD pairs distributed all over the city.

For trips to and from the airport, mode choice is also affected by other factors—such 
as convenience, comfort, and safety—that were not considered in this study because 
they cannot be easily measured and quantified. With additional data on the number of 
passengers using each mode by time of day, it may be possible to gain some insights into 
the effect of these less tangible factors by comparing the expected mode shares from the 
utility functions in this analysis with the observed mode shares. 

The presented analysis could be used as an example of a practical method to estimate 
the travel cost including both time and money. As information and resources like travel 
time and fare are increasingly accessible, it should be possible to design a smartphone 
app or a small computer program for the transit ticket vending machine to estimate total 
cost using this methodology. This information along with the choice model can be used to 
understand the factors that affect the aggregate mode choice decisions of the public. This 
will be useful for transportation for planners and policy makers to improve the quality of 
travel options available to people traveling to and from airports.
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VI.  CONCLUSION

The study presented in this report makes use of big data from GPS records of taxi trips and 
from comprehensive transit schedule information in GTFS format. By connecting this data 
with additional sources of information about neighborhood demographics, socioeconomic 
characteristics, and employment, models were developed to explain the spatial and 
temporal variation of travel demand for taxis. A specific application was illustrated for 
NYC. The first part of the analysis resulted in the development of trip generation models 
that show how various factors (e.g., transit accessibility, demographics, and employment) 
affect the rate of taxi trip pickups and drop-offs in NYC. The second part of the analysis 
focused on trips between Penn Station and the three major airports in the NYC region 
to show how mode choice is affected by the size of the traveling group, the travelers’ 
valuation of time, and the time of day.

In order to analyze taxi demand by using a set of GPS data for every trip made within a 
10-month period, the data had to be processed to eliminate errors. Then the observations 
were aggregated by time of day and census tract to allow for systematic analysis and 
comparison explanatory variables that are aggregated at the same resolution. The result 
was a hybrid cross-classification and regression model that classifies trips by time of day, 
and then, within each hour, fits a regression model to explain the number of taxi trips 
generated. The model reveals that there are six factors that have the greatest explanatory 
power for determining the number of taxi pickups and drop-offs:

•	 Transit access time (TAT)

•	 Population size

•	 Median age

•	 Percent of population educated beyond bachelor’s degree

•	 Income per capita

•	 Number of employment opportunities

Furthermore, the model shows that there are specific industrial sectors in which the number 
of employment opportunities within a census tract has the greatest effect on the rate of taxi 
trips. The number of employees working in retail, accommodation and food service, and 
health care are all significant determinants of the amount of taxi demand in a census tract. 
The magnitude of employment in these sectors provides an indication of the amount of 
related activity occurring, so people are more likely to use taxis to travel to and from places 
that have lots of stores, hotels, restaurants, and medical facilities. Although the correlation 
does not prove trip purpose, this observation supports the notion that these people are 
more likely to use taxis to travel to and from the listed activities.

To account for the effect of transit service on taxi demand, a method was developed to 
quantify the transit accessibility at any place and time in the form of a TAT. The TAT is a 
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measure of the shortest time that it takes to board a transit vehicle, accounting for walking 
time and waiting from a specific location. This value was calculated using the complete 
schedule of subway services for the city, which is publicly available online in GTFS format. 
For the study of taxi demand in NYC, the TAT was evaluated for the subway system across 
each of the 2,167 census tracts in the city and for each hour of the day. The result can be 
visualized as a series of maps of transit accessibility, and the quantified value of transit 
accessibility was used as an explanatory variable in the taxi trip generation models that 
were developed.

In the second part of the study, the total cost of travel by taxi and by public transit was 
compared systematically across each hour of the day for five origin-destination pairs 
(between Penn Station and each of the New York area airports, not including the return 
trip from Newark to NYC). The relative competitiveness of transit and taxis depends on the 
number of passengers traveling in a group, the travelers’ value of time, and the time of day. 
Traffic congestion changes the travel time by taxi at different times of day, and changes 
in schedule frequency affect the amount of time that passengers can expect to wait for 
transit at different times of day. At a value of time of $40/hour, transit is almost always more 
competitive for passengers traveling alone for all airport trips, except for a few hours in the 
middle of the night transit when headways are quite long.

A sensitivity analysis of the mode choice results was conducted to address the fact that 
some data is lacking from the existing dataset that would normally be used to calibrate a 
mode choice model. Many times there is a trade-off between faster, more expensive modes 
and slower, less expensive mode. A useful outcome of the analysis is the identification of 
tipping point values of time above which one mode becomes more competitive than the 
other for a specific origin-destination pair and time of day. For example, business travelers 
with higher values of time are more likely to choose taxi in many situations. An exception 
exists for trips to JFK in the afternoon peak and from JFK in the morning peak when traffic 
congestion makes taxi trips so slow that transit is both faster and cheaper.

This study provides useful insights in the ways that large data sources can be processed 
and integrated to improve our understanding of the way people use the transportation 
system. Some types of data still require individual surveys in order to estimate effectively. 
For example, estimating passengers’ value of time should include assessing the number 
of passengers who travel between Penn Station and each of the airports by public transit; 
however much of this data is unavailable in the large-scale, aggregated data sources. 
Subway and bus users swipe a fare card only when entering the system, so their 
movements are not tracked. However, complete observations of the number of trip origins 
and destinations over several months does provide an opportunity to build models to 
understand taxi demand that are not susceptible to errors from sampling or undercounting.

Continuing work in this area includes improving the model specification to better represent 
trip counts and acknowledge the problems associated with correlations between adjacent 
census tracts. The nature of the taxi dataset, which not only tracks individual trips but 
also links them to shifts operated by individual drivers, provides the potential to look at 
the spatial and temporal distribution of taxi supply as well. These are refinements that can 
improve modeling capabilities.
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Ultimately, the usefulness of these models of trip generation and mode choice is that they 
provide planners, engineers, and decision makers with information about how people use 
the transportation system. In this case, by identifying the factors that drive taxi demand, 
forecasts can be made about how this demand can be expected to grow and change 
as neighborhoods evolve. As decisions are made regarding the regulation of the taxi 
industry, the provision of transit service, and urban development, these models are useful 
for forming a complete and holistic vision of how travel patterns and use of modes can be 
expected to respond.
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ABBREVIATIONS AND ACRONYMS

AIC Akaike Information Criterion
BIC Bayesian Information Criterion
EWR Newark Liberty International Airport
GIS Geographic Information System
GPS Global Positioning System
GTFS Google Transit Feed Specification
JFK John F. Kennedy International Airport
LGA Laguardia Airport
LIRR Long Island Railroad
LOS Level of Service
MTA Metropolitan Transit Authority
NYC New York City
OD Origin-Destination (In the context of origin to destination pair)
RSS Residual Sum of Squares
SE Standard Error
TAT Transit Access Time
TAZ Transportation Analysis Zone
TLC Taxi and Limousine Commission
VIF Variance Inflation Factor
WAC Workplace Area Characteristic
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