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EXECUTIVE SUMMARY

This report describes the development and evaluation of real-time crash risk-assessment 
models for four freeway corridors: U.S. Route 101 NB (northbound) and SB (southbound) 
and  Interstate 880 NB and SB. Crash data for these freeway segments for the 16-month 
period from January 2010 through April 2011 are used to link historical crash occurrences 
with real-time traffic patterns observed through loop-detector data. 

The analysis techniques used in this study are logistic regression and classification trees, 
which are among the most common data mining tools. The crash risk-assessment models 
are based on a binary classification approach (crash and non-crash outcomes), with traffic 
parameters measured at surrounding vehicle detection station (VDS) locations as the 
independent variables. The authors developed the classification-performance assessment 
methodology that accounts for the rarity of crashes compared to non-crash cases in the 
sample rather than using a pre-specified threshold-based classification.

Prior to developing the models, some data-related issues such as data cleaning and 
aggregation were addressed. The modeling efforts revealed that the turbulence resulting 
from speed variation is significantly associated with crash risk on the U.S. 101 NB corridor. 
The models estimated with data from U.S. 101 NB were evaluated on the basis of their 
classification performance, not only on U.S. 101 NB, but also on the other three freeways 
for assessment of transferability. It was found that the predictive model derived from one 
freeway can be readily applied to other freeways, although the classification performance 
decreases. The models that transfer best to other roadways were determined to be those 
that use the least number of VDSs–that is, those that use one upstream or downstream 
station rather than two or three.

The classification accuracy of the models is discussed in terms of how the models can be 
used for real-time crash risk assessment. The models can be applied to developing and 
testing variable speed limits (VSLs) and ramp-metering strategies that proactively attempt 
to reduce crash risk.



Mineta Transportat ion Inst i tute

2 Executive Summary



Mineta Transportat ion Inst i tute

3

I.  INTRODUCTION

Much progress has been made in recent years in shifting from reactive (incident detection) 
to proactive (real-time crash risk assessment) traffic strategies as traffic safety on 
freeways continues to be a concern.  Reliable models that can use real-time loop-detector 
information and distinguish normal flow conditions from crash-prone conditions are keys 
to implementing crash-preventive measures. This area of research has gained increased 
attention since vehicle detector stations (VDSs) on freeways have been able to gather 
real-time traffic data, and the ability to collect, archive, and analyze these data has grown. 

This report presents the findings of a study sponsored by the Mineta Transportation Institute 
(MTI) and carried out jointly by California Polytechnic State University, San Luis Obispo 
and San José State University. The study team developed statistical models relating traffic-
flow variables to crash likelihood and also tested the transferability of these models to 
other, nearby freeway corridors. A few past studies have demonstrated that statistical links 
between real-time traffic-flow variables (such as average speed, volume, occupancy, and 
their respective standard deviations) and crash likelihood can be established.  However, 
those studies focused primarily on one particular highway corridor.  The research reported 
here advances the current body of knowledge by exploring whether driver characteristics 
and behavior in close geographic proximity are similar enough to accurately apply the 
estimated classification models from one roadway segment to another. While safety 
applications using intelligent transportation systems (ITSs) need to be examined further, 
this study took the following steps to estimate the crash risk-estimation models and assess 
their transferability:

1.	Assemble a database of archived loop-detector data for four study segments within 
the milepost range in the vicinity of the San José, CA, metropolitan area—U.S. 
Route 101 NB and SB (northbound and southbound) and Interstate 880 NB/SB—
for the 16-month period from January 1, 2010, to April 30, 2011.

2.	Assemble a database of observed crash data for the same period, including 
information on date, time, and location of crashes, from the Performance 
Measurement System (PeMS) database for the study period.

3.	Create a database of “normal” conditions that provides 10 “normal” observations 
for each crash. The date, time, and location of these non-crashes were randomly 
chosen from the range of all possible combinations of date, time, and location 
for the 16-month period. These were times/locations in which no crashes were 
observed; using these data along with the crash information, the researchers set up 
the database for binary classification. 

4.	Extract loop-detector data for all crash and non-crash events, using the date, time, 
and milepost information from the PeMS database. 

5.	Perform statistical (logistic regression) and data mining (classification tree) analyses 
to fit the most appropriate classification model for explaining the effects of traffic-
flow variables on crash risk. These variables are measured at different locations 
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upstream and downstream of the crash and from different time durations prior to the 
crash to gain an understanding of the spatiotemporal impact these variables have 
on crash risk.

6.	Select the best models estimated from the U.S. 101 NB crash and non-crash 
data and use them to score the datasets (which include both crash and non-crash 
observations) for U.S. 101 SB and I-880 NB and SB.

7.	Examine the classification performance of the models on these datasets in the 
context of a real-time application.

Chapter II reviews relevant past research efforts, including those aimed at real-time 
identification of crash-prone conditions. Chapter III presents background information on 
the study area and the data-preparation process. Chapter IV presents the results of the 
logistic-regression and data mining models and examines how well they performed on 
nearby freeways. Chapter V discusses the conclusions drawn from these results and other 
relevant issues regarding their application.
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II.  LITERATURE REVIEW

This chapter reviews previous studies from the literature on traffic safety, with real-time 
identification of crash-prone conditions on freeways, and on data mining applications 
in incident detection and crash analysis. The safety studies are further categorized into 
exploratory studies and studies establishing statistical links. All of these studies are fairly 
recent, indicating that the idea of using loop-detector data for traffic-safety applications is 
still in its early stages.  

SAFETY APPLICATIONS OF ARCHIVED INTELLIGENT TRANSPORTATION 
SYSTEM DATA

Golob, Recker, and Alvarez (2004b) categorized traffic-safety-related studies into two 
groups: aggregate studies and disaggregate analysis. In the aggregate studies, units of 
analysis represent counts of crashes or crash rates for specific time periods (typically 
months or years) and locations (specific roads or networks). The traffic flow in these 
studies is represented by the parameters of statistical distributions of traffic, such as annual 
average daily traffic (AADT), for similar time and location (Zhou and Sisiopiku 1997). In the 
disaggregate analysis, the units of analysis are the crashes themselves, and traffic flow is 
represented by parameters of traffic flow at the time and location of each crash.

While determination of freeway crash patterns has been the stated focus of the traffic-safety 
literature, most of the efforts are aggregate studies. Disaggregate studies are relatively new 
and have been made possible by recent enhancements in the ability to collect, store, and 
analyze real-time traffic data through intelligent transportation system (ITS) applications. 
This section summarizes and critically reviews the disaggregate analyses in the literature.

Exploratory Studies

Hughes and Council (1999) were among the first authors to use loop-detector data to 
explore the relationship between freeway safety and peak-period operations. They 
concluded that macroscopic measures such as AADT and even hourly volume correlate 
poorly with real-time system performance. Most of their work relied upon the data coming 
from a single milepost location during peak periods, on which they tried to overlay the 
crash time at that location to make inferences about the changes in system performance 
as the time of the crash approaches. The changes in performance were also examined 
from “snapshots” provided by cameras installed on the freeway.

One of their most important observations was that “design inconsistency”—the non-
uniform application of geometric design standards—is a key factor in crash causation. 
Future research should consider “traffic-flow consistency,” that is, the variability in traffic 
parameters (such as speed, volume, and occupancy) as an important variable from a 
human-factor standpoint. Hughes and Council also expressed a need for determining the 
exact time of a crash to avoid the “cause and effect” fallacy.
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Studies Establishing Statistical Links

Madanat and Liu (1995) developed an incident-likelihood prediction model using loop 
data as input. The focus of their research was on enhancing existing incident-detection 
algorithms with the likelihood of crashes and overheating vehicles. The methodology they 
used for analysis was binary logit. They concluded that merging sector, visibility, and rain 
are statistically the most significant factors for crash-likelihood prediction.

Lee, Saccomanno, and Hellinga (2002) introduced the concept of “crash precursors” and 
hypothesized that the likelihood of crash occurrence is significantly affected by short-term 
turbulence of traffic flow. They identified factors such as speed variation along the length 
of the roadway (i.e., the difference between the speeds upstream and downstream of the 
crash location) and across the three lanes at the crash location. Another important factor 
they identified was traffic density at the instant of the crash. Weather, road geometry, 
and time of day were used as external controls. With these variables, they developed a 
crash-prediction model using log-linear analysis. The log-linear model was chosen so that 
the exposure could be easily determined; this would have been difficult if a logit model 
had been used. To test the goodness of fit of the model, a Pearson chi-square test was 
performed, measuring how close the expected frequencies are to the observed frequencies 
for any combination of crash precursors and control factors. At the 95% confidence level, 
the model yielded a good fit. 

In a subsequent study, Lee, Hellinga, and Saccomanno (2003) continued work along the 
same lines and modified their earlier model. They incorporated an algorithm to obtain 
a better estimate of the time of the crash and the length of the time slice (prior to the 
crash), that is, the duration to be examined. They concluded that variation of speed has a 
relatively longer-term effect on crash potential than density or the average speed difference 
between upstream and downstream ends of roadway sections. They also observed that 
the average variation-of-speed difference across adjacent lanes does not have a direct 
impact on crashes, and hence it was eliminated from the model. 

The prediction models in both studies relied upon the log-linear models developed in the 
past to estimate crash frequencies on freeways, using aggregate measures of traffic-flow 
variables. However, they determined the crash precursors included in the model in an 
objective manner and did not base them on their subjective categorization. In a related 
study (Lee, Hellinga, and Saccomanno (2004), they proposed the application of the models 
and estimated real-time crash potential. The main focus of this study was on reducing the 
crash potential obtained from the model through different control strategies of variable 
speed limits (VSLs). To mimic responses of the drivers to changes in speed limits, they 
used the microscopic simulation tool PARAMICS. At least on the simulated data, the VSLs 
showed significant safety benefits in terms of estimated reduction in crash potential.

Gayah et al. (2006) similarly used PARAMICS to assess the effectiveness of various 
ITS strategies in mitigating crash-prone conditions on the previously studied Interstate 4 
corridor in Orlando, FL. They also concluded that VSL significantly reduced the potential 
for crashes with high-speed conditions preceding them, but that such a benefit could be 
achieved only by ramp metering in the congested regime.
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Continuing this trend of investigating advanced traffic management (ATM) strategies, 
Nezamuddin et al. (2011) used VISSIM to model VSL, peak-period shoulder-lane use, and 
both strategies together. Their study assessed the effects of these strategies on speed, 
throughput, and safety on a section of the Missouri-Pacific Expressway in Austin, TX.  
Speed harmonization and a reduction in the number of stops per vehicle and vehicle 
conflicts were achieved with VSL; however, this came at the expense of operating speed.  
Shoulder use increased operating speed and decreased traffic density but also increased 
speed variability and had many other safety considerations that must be addressed.  Ramp 
metering was not considered in this study.

In a similar study, weather, environmental, and loop-detector data were analyzed for 
association with different incident types (Songchitruksa and Balke, 2006). It was found 
that five-minute average occupancy and coefficient of variation in speed had the strongest 
association with crash risk, and other factors such as visibility, time of day, and lighting 
condition strongly affected the type of incident that occurred.

A study by Pande, Abdel-Aty, and Hsia (2005) utilized within-stratum one-covariate logistic-
regression models to determine the relative risk of crash occurrence, measured by the 
hazard ratio. This ratio represents the increase in the risk of crash occurrence (in log 
odds) resulting from changing the covariate by one unit. The study found that the log of the 
coefficient of variation in speed and average occupancy (expressed as a percentage) and 
standard deviation of volume most significantly affected the likelihood of crash occurrence. 
Additionally, it determined that computing these parameters at five-minute time intervals 
was more closely associated with crash risk than computing them at three-minute 
intervals. Contour plots of spatiotemporal variation of crash risk were created, and the 
one representing the log of the coefficient of variation in speed most clearly demonstrated 
increasing crash risk as the time and location of the crash were approached. The authors 
also proposed a methodology for identifying crash-prone conditions in real-time, for 
potential use in proactive traffic management.

Oh et al. (2001) showed that five-minute standard deviation of 30-second speed 
measurements was the best indicator of “disruptive” traffic flow leading to a crash, as 
opposed to “normal” traffic flow. They used the Bayesian classifier to categorize the 
two possible traffic-flow conditions. Since the Bayesian classifier requires a probability-
distribution function for each competing class, the standard deviations of speed over 
crash and non-crash cases were used to fit non-parametric distribution functions, using 
Kernel smoothing techniques. The potential application of the model in real-time was also 
demonstrated.

A more detailed analysis of patterns in crash characteristics as a function of real-time traffic 
flow was performed by Golob and Recker (2003). The methodology used was non-linear 
(non-parametric) canonical correlation analysis (NLCCA) with three sets of variables. The 
first set comprised a seven-category segmentation variable defining lighting and weather 
conditions; the second set was made up of crash characteristics (collision type, location, 
and severity); the third set consisted of real-time traffic-flow variables. NLCCA requires 
reducing collinearity in the data, so a principal component analysis (PCA) was performed 
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to identify relatively independent measurements of traffic-flow conditions. The results of 
the PCA are shown in Table 1.

Table 1.	 Interpretation of Principal Components and Variable Selection 

Factor Interpretation Represented by

1 Central tendency of speed Median volume/occupancy, interior lane

2 Central tendency of volume Mean volume, left lane

3 Temporal variation in volume, left and interior 
lanes Variation in volume, left lane

4 Temporal variation in speed, left and interior 
lanes Variation in volume/occupancy, interior lane

5 Temporal variation in speed, right lane Variation in volume/occupancy, right lane

6 Temporal variation in volume, right lane Variation in volume, right lane

 
SOURCE: Golob and Recker (2003).

Golob and Recker concluded that collision type is the best-explained characteristic and is 
related to the median speed and left-lane and interior-lane variations in speed. Moreover, 
the severity of the crash tracks the inverse of the traffic volume and is influenced more by 
volume than by speed. 

In a later study, Golob, Recker, and Alvarez (2004a) used data for more than 1,000 crashes 
over six major freeways in Orange County, CA, and developed a software tool called Flow 
Impacts on Traffic Safety (FITS) to forecast the types of crashes that are most likely to 
occur for the flow conditions being monitored. A case-study application of this tool on a 
section of State Route (SR) 55 was also demonstrated.  

Golob and Recker (2004) showed that certain traffic-flow regimes are more conducive to 
traffic crashes than others. They found that of the eight traffic-flow regimes that exist on the 
six freeways in Orange County, CA, nearly 76% of all crashes occurred in the four traffic 
regimes that represent flow nearing or at congestion. This displays a correlation between 
the types of flow and crashes and indicates that understanding the patterns in real-time 
traffic flow might be the key to ”predicting” crashes on urban freeways. It should be noted 
that none of these studies included non-crash-loop data as a measure of “normal” traffic 
conditions.

The link between traffic congestion and freeway crashes was also noted by Zhang et al. 
(2005) in a study that explored the relationship between crashes, weather conditions, and 
traffic congestion. The study showed that the relationship between the “relative risk ratio” 
(a measure of crash probability) resembles an inverted U-shaped curve with a peak value 
during moderate congestion and low points at free flow and heavy congestion.  
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Park and Ritchie (2004) showed that lane-changing behavior and the presence of long 
vehicles within a freeway section have a significant impact on section-speed variability. 
Section-speed variance rather than point-speed variance was used to demonstrate the 
traffic changes more efficiently. The traffic data for their study were not obtained from 
conventional single- or dual-loop detectors. Instead, a state-of-the-art vehicle-signature-
based traffic-monitoring technology that provided individual vehicle trajectories as well as 
accurate vehicle classification was used.

Pande and Abdel-Aty (2006) further correlated lane-changing maneuvers with both 
sideswipe and angle crashes on the inner lanes of a freeway.  Classification trees using 
data collected from loop detectors on the Interstate 4 corridor identified average speed 
upstream and downstream of the crash location and difference in occupancy of adjacent 
lanes as having significant association with the crash/non-crash binary variable.  Satisfactory 
classification accuracy indicated the potential for real-time application in identifying risk for 
lane-change-related crashes.

Another study by Pande and Abdel-Aty (2006a) analyzed rear-end crashes occurring 
under two flow regimes: extended congestion and near-free-flow five to 10 minutes prior 
to a crash. In the first case, the coefficient of variation in speed and average occupancy 
distinguished crashes from randomly selected non-crash cases.  In the second case (nearly 
free-flow conditions preceding a crash), average speed and occupancy downstream of the 
crash location were identified as significant factors. The authors proposed a strategy for 
real-time identification of crash-prone conditions, using neural-network-based classifiers.

While almost all studies have indicated a relationship between crash occurrence and 
speed variability, Kockelman and Ma (2004) found no evidence that speeds or their 
variations trigger crashes. The study was conducted for the same location as that used by 
Golob, Recker, and Alvarez (2004b). The sample size was limited to 55 severe crashes 
that occurred during January 1998, and with such a small sample, their conclusions are 
suspect. Similarly, Ishak and Alecsandru (2005) were unable to separate pre-incident, post-
incident, and non-incident traffic regimes from one another, which indicated that conditions 
before a crash might not be discernible in real-time. The study was performed using part 
of the ITS-archived data from Interstate 4 in Orlando, FL, that was used by Pande (2003). 
However, data for only 116 crashes were used, which raises concerns about the validity of 
the findings from this research.

Various modeling methodologies have been explored by researchers, including probabilistic 
neural network (PNN) (Abdel-Aty and Pande, 2005), matched case-control logistic 
regression (Abdel-Aty et al., 2004), split models (Abdel-Aty, Uddin, and Pande, 2005), 
multilayer perceptron (MLP)/radial basis function (RBF) neural-network architectures 
(Pande, 2003), and generalized estimation equation (Abdel-Aty and Abdalla, 2004). The 
data for these studies were collected from a 13.2-mile central corridor of Interstate 4 in 
Orlando. All the studies made significant contributions toward enriching the literature. 
However, there remains considerable scope for improvement.
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Critical Review

It is evident that exploring the loop data in traffic-safety research is still in its preliminary 
stages. Some of the aforementioned studies do have potential application in real-time 
proactive traffic management, but they have not fully analyzed the “recipe” of crashes. In 
addition, the statistical analysis in some cases is not really sound, from a theoretical point 
of view. 

Lee, Hellinga, and Saccomanno (2003) have an advantage over other research groups—
the availability of dual loops placed close to each other (38 loops on a 10-km stretch of 
freeway in Canada). Their analysis is based on a log-linear crash frequency model. As this 
model is not based on classification, it cannot decipher whether or not conditions are risky 
in real-time and is therefore unsuitable for real-time classification of the loop-data patterns. 

Golob and Recker (2003) have established sound statistical links between environmental 
factors, traffic flow as obtained from loop data, and crash occurrence, but their findings 
are limited by the fact that the traffic data are obtained from single-loop detectors, and 
speed has to be estimated using a proportional variable (volume/occupancy). FITS has 
limited application due to a systematic pattern of missing values within the data used in its 
development. 

The classification model developed by Oh et al. (2001) seems to have the most promising 
online application, but because of limited crash data (only 52 crashes), it remains far 
from being implemented in the field. The only factor used for classification is the five-
minute standard deviation of speed; other significant factors such as geometry, weather, 
and other traffic-flow variables are not considered. It is also to be understood that for a 
crash-prediction model to be useful, it is necessary to classify the data much ahead of the 
crash occurrence time and not just five minutes prior to the crash to provide the Regional 
Transportation Management Center (RTMC) with some time for analysis, prediction, and 
dissemination of the information. 

The use of limited crash and traffic data causes concerns about the findings of Ishak and 
Alecsandru (2005) as well.  In their study, pre-incident, post-incident, and non-incident 
traffic-flow regimes are described by 30-second average speed and its variation depicted 
through spatiotemporal contour charts. Using second-order statistical analyses, Ishak 
and Alecsandru measured the charts for smoothness, homogeneity, and randomness. No 
consistent pattern for any of the statistical measures was found within the three categories 
of traffic regime. Therefore, it was concluded that conditions belonging to these regimes 
could not be differentiated based on loop data.  However, only 116 crashes were used in 
the analysis, with speed and its variation as the only independent parameters. It is likely 
that more crash and non-crash data, along with different flow parameters from a range of 
stations located around crash locations, would have yielded better results. The findings 
from previous studies by Abdel-Aty et al. (differentiating pre-crash from non-crash) and Al-
Deek et al. (separating post-incident from non-incident) used the loop data from the same 
corridor, making this postulation all the more plausible.
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Investigators deem the most critical issue not addressed by past research to be the issue 
of transferability. Since gathering data from different sources and combining them is a 
significant effort, it would be worthwhile to know whether models developed from one 
freeway can be applied to the data from other freeways. While it may be unreasonable for 
models developed with data from a dense urban freeway environment to perform well on 
a rural freeway corridor, no studies have tested even models from the same geographical 
area to other freeways in close proximity. This study makes an effort in that direction. 

APPLICATIONS OF DATA MINING IN TRANSPORTATION

Data mining is defined as the process of extracting valid, previously unknown, and ultimately 
comprehensive information from large databases (Hand, Mannila, and Smyth, 2001). Over 
the years, data mining has emerged as a powerful instrument offering value across a 
broad spectrum of information-intensive industries, including banking and logistics. The 
potential of various data mining techniques in the field of transportation engineering, 
however, remains underutilized, with the exception of neural-network applications for 
incident detection.

The incident-detection algorithms are the most relevant data mining applications for 
this research problem, since detecting an incident also involves classification of traffic-
flow patterns emanating from loop detectors. The critical distinction is that while we are 
interested in pre-crash data, detection algorithms involve analysis of post-incident loop 
data. The following section reviews data mining-based incident-detection algorithms.

Incident-Detection Algorithms

Cheu and Ritchie (1995) developed three types of neural-network models to classify traffic 
data obtained from loop detectors: multilayer feed forward (MLF), self-organizing feature 
map (SOFM), and adaptive resonance theory 2 (ART2). Their objective was to use the 
classified output to detect lane-blocking freeway incidents. 

Artificial neural network models (ANNs) were designed to classify the input data into 
one of the two states: an incident or an incident-free condition. ANNs were trained using 
post-incident loop-detector data generated from Integrated Traffic Simulator (INTRAS), 
a microscopic traffic-simulation model, because, according to the authors, it would have 
been impractical to put extensive effort into collecting real-life data. INTRAS initially 
generated the incident and incident-free input vectors in a ratio of 1:4. The incident input 
vectors were later replicated to make the number of state 1 and state 2 vectors equal in 
the training dataset. The input vectors used were 16-dimensional, consisting of upstream 
and downstream detectors’ volume and occupancy at 30-second slices after the time of 
the incident. The performance of these networks on field evaluation data indicated that 
MLP neural networks produce consistently better results than the other two networks; the 
results were also better than those obtained by the traditional detection algorithms.  

Abdulhai and Ritchie (1999) tried to identify the requirements of a successful detection 
framework and found that inability to address the issues of predicted probability of incident 
occurrence is a major shortcoming of detection algorithms. They proposed the concept 
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of using statistical distance and a modified probabilistic neural-network model (PNN2) in 
addition to a Bayesian-based traditional PNN model to detect the patterns in the loop data. 
They also reported that these two models were competitive with the more frequently used 
MLP neural networks for incident detection.

Ishak and Al-Deek (1999) conducted a study that did not use simulation data and training 
and testing of the neural-network models for incident detection; rather, it used real-life 
loop data only. In this regard, studies by Al-Deek, Ishak, and Khan (1996) and Al-Deek, 
Garib, and Radwan (1998) on incident detection are remarkable. The data used by Ishak 
and Al-Deek (1999) were collected from the same Interstate 4 corridor for which the initial 
crash-prediction models were developed by Pande and Abdel-Aty (2008). Input patterns 
of various dimensions were attempted, and the network size was changed accordingly 
to achieve better performance. They found that when using the MLF neural network, the 
incidents might be detected better with the speed patterns alone than with occupancy 
patterns or a combination of speed-occupancy patterns.

Data Mining Applications in Traffic Safety

Sayed and Abdelwahab (1998) compared the fuzzy K-nearest neighbor algorithm and the 
MLP neural network for identifying crash-prone locations. Results showed that the MLP 
produced slightly more accurate results and achieved higher computational efficiency than 
fuzzy classification.

Awad and Janson (1998) applied an MLP to model truck crashes at interchanges in the 
state of Washington. Results of the neural-network model were compared with those 
from a linear-regression model. The comparison was based on the root mean squared 
error (RMSE). The trained neural network showed a better fit when the training data 
are presented. However, the ability of the trained ANN to predict “unseen” test data was 
unsatisfactory.

Mussone, Ferrari, and Oneta (1999) used an MLP approach to analyze traffic crashes that 
occurred at intersections in Milan, Italy. Results showed that the neural-network models 
could extract information such as factors explaining crashes and contributing to a higher 
degree of danger. 

Through a sequential review of the literature, we observed that the only neural-network 
architecture explored for traffic-safety analysis was the MLP until Abdelwahab and Abdel-
Aty (2001) developed Fuzzy Adaptive Resonance Theory (Fuzzy ART) neural networks 
to predict driver-injury severity in traffic crashes at signalized intersections. These models 
were compared with the MLP architecture and it was concluded that MLP models were 
superior to the ordered logit model and Fuzzy ART. In a later study (Abdelwahab and 
Abdel-Aty, 2002), ANN models were used for traffic-safety analysis of toll plazas. Driver-
injury severity (no injury, possible injury, evident injury, severe injury/fatality) and location 
of the crash (before the plaza, at the plaza, past the plaza) were analyzed using MLP as 
well as a radial basis function (RBF) neural network. Abdelwahab and Abdel-Aty (2002) 
reported that the nested logit model was the best model for analyzing crash location, while 
the RBF neural network was the best model for analysis of driver-injury severity. 
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Pande and Abdel-Aty (2008) explored PNNs, an implementation of the Bayesian classifier, 
on the Interstate 4 corridor in Orlando to identify rear-end-crash-prone conditions. These 
crashes were divided into those occurring under (1) congested and (2) relatively free-flow 
conditions preceding the crash, and decision tree-based classification determined that 
while their frequencies are comparable, the first condition is much rarer and can hence 
be described as a “crash-prone” condition. PNN-based classification models were also 
developed for the free-flow regime.

Data mining techniques other than neural networks have also appeared in recent traffic-
safety literature. Vorko and Jovic (2000) used multiple-attribute entropy models to classify 
injuries of school-age passengers. Sohn and Shin (2001) employed neural networks and 
decision-tree algorithms to develop classification models for road-traffic crash severity 
(bodily injury or property damage) as a function of potentially correlated categorical factors. 
They noted that classification accuracy of the individual models from both algorithms 
was relatively low, and the use of data-fusion or ensemble algorithms increased the 
classification accuracy. Data-fusion techniques combine classification results obtained 
from individual classifiers and are known to improve classification accuracy when some 
results of relatively uncorrelated classifiers are combined. The resulting performance is 
usually more stable than that of a single classifier.

Pande and Abdel-Aty (2007) proposed a multiple-model framework incorporating the 
findings of earlier studies on rear-end and lane-change-related crashes on the Interstate 
4 corridor in Orlando. The models satisfactorily identified both of these cases, as well 
as related single-vehicle crashes. This work elaborates on Pande’s doctoral dissertation 
(Pande, 2005), which attempted to identify the unique precursors to each crash type and 
develop models that can be hybridized and applied in real-time as part of a proactive 
traffic-management strategy.

A study conducted by Xu et al. (2011) on a 9.2-mile stretch of the I-880 corridor in Hayward, 
CA, used loop-detector data gathered by researchers at the University of California, 
Berkeley. The researchers classified traffic into five homogeneous flow states using 
K-means clustering analysis to compare occupancy data for a one-crash case with four 
non-crash cases, all occurring at the same time and location between loop detectors.  The 
researchers developed four logistic-regression models, indicating odds ratios four to five 
times higher for the “risky” scenarios of free flow upstream to a congested downstream 
regime and congested upstream flow to free flow downstream, and an odds ratio two 
times higher for flow in the transition region between uncongested and congested flow, 
when compared with the base case of free flow.  The crash risk in the case of congested, 
homogeneous flow was not statistically different from that in the case of free flow.  
Discriminant functions developed using linear combinations of the lane-occupancy 
variables were able to correctly categorize the type of flow with 97.2% accuracy, and they 
can be deployed in real-time.

Pham, El Faouzi, and Dumont (2011) considered not only the speed and variability in 
speed as explanatory variables for crash risk, but also meteorological conditions (namely 
precipitation).  Focusing on a 10-km stretch of the A1 motorway near Bern, Switzerland, 
between 2002 and 2007, the authors analyzed 120 rear-end and sideswipe crashes.  
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Data were collected for 30 minutes before each crash (in five-minute intervals), as well as 
for non-crash cases. PCA was used to normalize and transform traffic situations to self-
organizing maps (SOMs), which partition the data points into clusters.  Random Forests™ 
was then used to develop risk-identification models for each of eight defined flow regimes.  
Six of the regimes performed with acceptable accuracy (70% of crash and non-crash 
cases correctly identified). The two that performed poorly did not have enough data to 
develop a good statistical model.  It was found that rain had a much stronger influence in 
medium-flow regimes than under either congested or free-flow conditions.  For most of the 
traffic regimes, lane speed and lane variation in speed were the most significant factors in 
determining crash risk.

CONCLUSIONS FROM THE LITERATURE REVIEW

The findings of an extensive review of relevant literature demonstrate the applications, 
albeit limited, of ITS archived data and data mining techniques in the field of traffic safety.

The issues not addressed adequately by studies using real-time loop-detector data for 
predicting crashes are referred to by Golob, Recker, and Alvarez (2004b) as disaggregate 
studies. The most significant of these issues in the research reported here is that of 
transferability. Therefore, a sufficiently large database of crash and non-crash data was 
assembled for this study from a subset of the major freeways/expressways in the city 
of San José. The models developed from U.S. 101 NB data were applied to the other 
three corridors for which data were assembled. PeMS, managed by Caltrans, provided 
the archived ITS data (collected and stored on a continuous basis), as well as the incident 
data. Chapter III discusses these data sources and the details of the four corridors in the 
context of the present research problem.
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III.  STUDY AREA

This study examines four freeway segments: U.S. 101 NB and SB and I-880 NB and SB 
in the San José area of Santa Clara County, CA.  These freeway corridors run through 
dense urban development and are among the busiest in the South Bay area. The logistic-
regression and data mining models are estimated using the U.S. 101 NB data, and the 
models are applied on U.S. 101 SB, I-880 NB, and I-880 SB to evaluate their transferability. 
This chapter provides details of these segments and describes the process of data 
collection and preparation. 

FREEWAY CORRIDORS

U.S. 101

U.S. 101 (also known as the Bayshore Freeway) is the primary north-south corridor through 
the city of San José.  The route runs as a six-lane freeway through the suburbs of Gilroy 
and Morgan Hill in southern Santa Clara County.  North of Morgan Hill, U.S. 101 gains a 
high-occupancy vehicle (HOV) lane in each direction (expanding to an eight-lane freeway) 
through the rural area known as Coyote.  The freeway wanders in and out of the San José 
city limits and unincorporated land for approximately eight miles.  At the junction of SR 85, 
U.S. 101 enters the area conventionally accepted as the boundary of the city of San José.  
The route continues as an eight-lane freeway through the junctions of SR-82, I-280/I-680, 
I-880, and SR-87, then enters the city of Santa Clara.  It continues through the South Bay 
cities of Sunnyvale, Mountain View, and Palo Alto, finally running up the Peninsula through 
San Mateo County to San Francisco.

The study segment of interest for U.S. 101 NB is 17.1 miles long, starting at milepost 
375.31 and ending at milepost 392.37. The study segment for U.S. 101 SB starts at 
milepost 392.45 and ends at milepost 375.81, for a total length of 16.6 miles.  Figure 1 and 
Figure 2 present schematic diagrams of the VDSs along these routes. In the diagrams, 
VDS identification (ID) numbers are truncated to the last four digits and superimposed on 
the route.
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Figure 1.	 U.S. 101 NB Corridor and VDS Locations

Figure 2.	 U.S. 101 SB Corridor and VDS Locations
 
I-880

I-880 (also known as the Nimitz Freeway) is a six-lane freeway with no dedicated HOV 
lanes. Its officially designated beginning is north of the I-280 junction. The freeway extends 
south of this interchange as SR 17, running between Santa Cruz, CA, and San José, CA.  
I-880 runs north through the city of San José for approximately seven miles, connecting 
to SR 82, crossing over SR 87 (with no interchange) and connecting to U.S. 101.  I-880 
next enters the city of Milpitas and finally crosses the Alameda County line, running up 
the East Bay to Oakland.  An improvement project has been under way since 2010 to 
reconfigure the I-280/I-880 interchange. The goal is to provide a dedicated ramp from 
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I-280 NB to I-880 NB; the connection is currently shared with the busy Stevens Creek 
Boulevard interchange, causing merging and weaving issues.

The study segment of interest for I-880 NB is 8.1 miles long, starting at milepost 0.13 
and ending at milepost 8.27. The segment for I-880 SB starts at milepost 9.01 and ends 
at milepost 0.9, for a total length of 8.1 miles. Figure 3 and Figure 4 present schematic 
diagrams of the routes, along with VDS locations. The study location is shown in Figure 5.

Figure 3.	 I-880 NB Corridor and VDS Locations

Figure 4.	 I-880 SB Corridor and VDS Locations
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Figure 5.	 Study Location

DATA COLLECTION AND PREPARATION

Crash Data

The study considers crashes that occurred during a 16-month period from January 2010 
through April 2011.  This time period was chosen because new loop detectors had been 
installed on U.S. 101 in 2009.  Crash data were downloaded from the California Highway 
Patrol (CHP) Incidents section of Caltrans’ PeMS database. Figure 6 shows a sample of 
the downloaded data. Important variables for our analysis include each incident’s unique 
ID number, time of occurrence, and milepost.
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Figure 6.	 Crash Data from PeMS
SOURCE:  PeMS database.

The predictive models were developed from the crash data from U.S. 101 NB. There were 
2,176 crashes during the study period, the type, number, and percentage of which are 
shown in Table 2.

Table 2.	 Crash Details for U.S. 101 NB
Crash Type Number Percentage of Total Crashes

1181 - Traffic collision, minor injuries               38                          1.7
1182 - Traffic collision, property damage             754                        34.7
1179 - Traffic collision, ambulance responding             257                        11.8
1144 - Possible fatality                 2                          0.1
20002 - Hit and run, no injuries             182                          8.4
20001 - Hit and run, injuries or fatalities                 5                          0.2
1183 - Traffic collision, no details             938                        43.1
Total 2,176 100.0
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Traffic Information

Once the crash data were obtained, a list of all VDS locations on the study segments was 
compiled along with their respective mileposts. A sample list is shown in Figure 7. The 
variables of interest for this study include the VDS number and the milepost.

Figure 7.	 VDS Locations, by Milepost

Traffic data from these VDS locations were downloaded from the Data Clearinghouse 
section of PeMS for the entirety of Caltrans District 4 (Bay Area).  The following variables 
for each VDS were included: time and date, milepost and average speed, volume, and 
lane-occupancy information measured every 30 seconds, by corresponding VDS. Among 
these variables, only volume and lane occupancy are measured, and the 30-second 
average speed is calculated (in the database) using these measurements. Figure 8 shows 
a sample of the downloaded raw loop-detector data.

We next matched the traffic data to the corresponding crash events. The crash time and 
locations were known from the database (see sample in Figure 6), and each crash was 
merged with corresponding traffic data from six VDS locations—the three VDSs nearest to 
the location of the crash in the upstream direction and the nearest three in the downstream 
direction. The spatial arrangement of locations is shown later in this chapter, in Figure 11. 
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VDSs were typically spaced 0.5 to 0.8 mile apart. The time horizon for each event was the 
period up to 20 minutes before the crash and five minutes after the crash. The period of 
up to five minutes after the crash was used only to verify the incident’s occurrence (and 
is typically relevant only for incident detection); it will therefore not be discussed further in 
this report.

Figure 8.	 Raw Data from VDSs
SOURCE: PeMS database.

Non-Crash Events
Since the modeling approach adopted here was binary classification, we collected traffic 
data for both crash and non-crash cases. The traffic data for the non-crash cases would be 
representative of normal conditions on the freeways, whereas the traffic data for the crash 
cases represent crash-prone conditions. To represent normal freeway traffic conditions, 
we generated a sample of random traffic conditions. As the crashes occurred both on- and 
off-peak, non-crashes for the same conditions were generated to sample overall traffic 
conditions. To generate the random non-crash sample, the total study period was divided 
into one-minute periods from which a random sample of times could be selected as the 
time of the non-crash event. Similarly, milepost locations for non-crash cases could also 
be drawn from any milepost from the beginning to the end of the corresponding corridor. 
All possible combinations of date-time and mileposts were used to derive a sample of 
non-crash cases. To adequately represent normal conditions, for every crash event in the 
analysis, ten non-crash events were generated. An earlier study testing different ratios of 
crash to non-crash events found that the number of non-crashes included had no effect on 
the classification accuracy of the model (Pande, Abdel-Aty, and Hsia, 2005). A snapshot 
of the process of generating the random non-crash sample is shown in Figure 9. Excel’s 
RANDBETWEEN function is used in the process. 
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Figure 9.	 Random Generation of Non-Crash Events

The nearest three VDS both upstream and downstream of the event-location milepost 
were also identified for all of the non-crash events. The time horizon (from 20 minutes 
before the crash up to five minutes after the crash) was also the same as that for the crash 
events. Figure 10 shows a sample spreadsheet of this identification process. The station-
arrangement convention for any crash is depicted in Figure 11. 
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Figure 10.	 Identification of Nearest Three Upstream and Downstream VDSs
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Figure 11.	 Arrangement of the Loop-Detector Stations

The upstream station IDs, in order of increasing distance from the crash site, are US1, 
US2, and US3; downstream stations, in order of increasing distance from the crash site, 
are DS1, DS2, and DS3 (yellow highlighted cells in Figure 10). In addition to the IDs, 
the spreadsheet also shows the mileposts that were identified for these VDS locations 
(highlighted in orange in Figure 10).

Data Aggregation

As noted by Pande and Abdel-Aty (2006a), there is significant noise in the raw 30-second 
loop-detector data, making them unsuitable for modeling purposes. Hence, for each of 
the six VDS locations identified for crash and non-crash events, individual variables were 
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averaged across all lanes and aggregated into five-minute intervals.  The intervals are: 0–5 
minutes after the event (time slice 0), 0–5 minutes before the event (time slice 1), 5–10 
minutes before the event (time slice 2), 10–15 minutes before the event (time slice 3), and 
15–20 minutes before the event (time slice 4). For these time slices, standard deviations 
of the variables were also calculated, since past studies documented in the literature noted 
that variation in traffic parameters was critically associated with freeway crash potential.

As time slice 0 occurs after the crash, it is relevant only to incident detection and will not 
be further analyzed or discussed here. The five-minute intervals preceding a crash were 
selected on the basis of previous research by Pande. Generally, the closer the analysis 
interval to the crash time, the more accurate the model prediction will be. However, 
there must also be sufficient time for a traffic-management center to identify crash-prone 
conditions and deploy countermeasures; it is therefore likely that only the time-slice 2, 3, 
and 4 models will be relevant for proactive crash management.

The nomenclature for these average and standard deviations is of the form XYZα_b. X 
takes the value A or S for average and standard deviation, respectively. Y takes the value 
S, V, or O for speed, volume, or lane-occupancy, respectively. Zα takes the value of U1, 
U2, U3 or D1, D2, D3, depending on the station to which a traffic parameter belongs 
(the nearest upstream/downstream station relative to the crash location being U1/D1, and 
subsequent detectors being U2/D2 and U3/D3, respectively). β takes the values 1, 2, 3, or 
4, referring to the aforementioned four time slices. Hence, ASD1_2 and AVU1_2 represent 
average speed on station DS1 over time slice 2 and average volume on station US1 over 
time slice 2, respectively. All these averages and standard deviations were calculated for 
both crash and non-crash cases. 

The data described above are used in Chapter IV to estimate and test statistical (binary 
logistic regression) and data mining (classification tree) models for classifying crash-prone 
and normal conditions on the freeways. 
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IV.  MODELING TOOLS, ANALYSIS, AND RESULTS

As noted earlier, this study applies two different modeling tools—logistic regression and 
classification trees—to identify crash-prone conditions. These tools are applied to data 
from U.S. 101 NB, and the models estimated from the data are then applied to the U.S. 
101 SB and I-880 NB/SB segments. This chapter provides the details of the statistical and 
data mining methods and then describes the analysis and results. 

LOGISTIC REGRESSION

In a logistic regression, setting the function of dependent variables yielding a linear function 
of the independent variables would be the logit transformation:

0 1
( )( ) ln

1 ( )
xg x x

x
  
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 
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									         (1)
where π (x) = E (Y|x) is the conditional mean of Y (the dependent variable representing 
crash occurrence; Y = 1 in this case) given independent variable x when the logistic dis-
tribution is used. Under the assumption that the logit is linear in continuous covariate x, the 
equation for the logit would be g(x).Once the model (i.e., the coefficient βs) is esti-mated 
for the binary target variable, it can be used to score any dataset that contains the required 
input variable to the model (i.e., x). The output of the model is in the form of a posterior 
probability of crash occurrence, lying between 0 and 1. Note that the same formulation 
may be extended to multiple independent variables, as is the case in this research. In 
case of multiple independent variables, a standard stepwise variable-selection method 
will be used to finalize the set of variables that are significantly asso-ciated with the 
crash occurrence. The details of logistic regression and the stepwise variable-selection 
procedure can be found in standard texts on logistic-regression and binary-data modeling 
(e.g., Collett, 1991, and Hosner and Lemeshow, 1989).

CLASSIFICATION TREES

A classification tree represents segmentation of data created by applying a series of simple 
rules, each of which assigns an observation to a group based on the value of an input. 
One rule is applied after another, resulting in a hierarchy of groups within groups. The 
hierarchy is called a tree, and each group is called a node. The final, or terminal, nodes are 
called leaves. For each leaf, a decision is made and applied to all observations in that leaf. 
Decision trees are one of the most widely utilized tools in data mining applications and 
may be used for classification of categorical variables, as well as for continuous targets. 
(The latter application, of course, is not relevant here.) The advantage of classification 
trees over other modeling tools such as neural networks is that they produce a model 
that may represent interpretable English rules or logic statements. The other advantage 
of trees is that no assumptions are necessary about the data and the model form. In 
the next subsection, theoretical details of the classification trees are described. Since 
we invariably deal with binary target variables (Y=1 for crash and Y=0 for non-crash) in 
this study, the details of the methodology are provided in the context of a binary target. 
Neural networks and decision-tree algorithms have been successfully used to develop 
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classification models for crash severity as a function of potentially correlated categorical 
factors (Sohn and Shin, 2001) and, more recently, to demonstrate significant correlation 
between speed differentials upstream/downstream and crash risk (Pande and Abdel-Aty, 
2006).

The basic action in classification-tree construction is to split each (non-terminal) node such 
that the descendant nodes are ”purer” than the parent node. In a completely “pure” node, 
all of the observations belong to the same class. To achieve this, a set of candidate split 
rules is created that consists of all possible splits for all variables included in the analysis. 
For example, a dataset with 200 observations and five input variables would have up to 
200 ́  5 = 1000 splits available at the root node. These splits are then evaluated based on a 
criterion to choose among various available splits at every non-terminal node (including the 
root node). The Gini index is used as the measure (i.e., purity functions) to rank candidate 
splits for a binary target variable. This measure was proposed by Breiman et al. (1984).

One of the criteria is applied recursively to the descendants, which become the parents 
to successive splits, and so on. The splitting process is continued until the criterion of 
minimum reduction in impurity (i.e., reduction in the Gini Index) and/or minimum size of a 
node is satisfied. To stop the splitting process, one may choose the classification accuracy 
over the validation dataset (i.e., the dataset not used for estimating the splits) as the 
criterion. The classification accuracy may be assessed after every split, and the process 
may be terminated if it declines after a particular split. The output from the classification-
tree model is also the posterior probability of an observation being a crash (a number lying 
between 0 and 1).  

These tools are selected because they can provide not only a measure for crash vs. 
non-crash classification, but also because the variables included in the model can be 
explained. Neural networks were also considered as a tool but were not used because of 
their “black box” nature. In other words, the effect of individual independent variables on 
the output is not transparent. 

METHOD FOR ANALYSIS OF CLASSIFICATION PERFORMANCE

Assumptions

Some critical issues needed to be addressed before proceeding with the modeling 
exercise. Crashes, however frequent on the corridors under consideration, are still rare 
events. Sampling their actual proportion in the dataset would mean that the sample would 
consist almost exclusively of non-crash cases (crash cases would be less than 0.001%). 
It is reasonable to assume that the crash-prone conditions, which would justify issuing 
warnings, are more frequent than the crashes themselves. For any model intended to be 
applied in real-time, the ideal sample composition for modeling would have the proportion 
of the two competing events the same as that in reality. However, there is currently no 
way to estimate the proportion of crash-prone conditions on the freeway. Also, since the 
number of warnings beyond a certain point would constitute an “unreasonable” number of 
false alarms, the decision from the models cannot be positive (i.e., cannot predict a crash) 
around 50% of the time. Hence, a sample with equal numbers of crash and non-crash 
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cases would not be ideal. Therefore, we deemed 10% to be an appropriate ratio of crash 
vs. non-crash cases and included ten non-crash cases for each crash in the sample. 

Because of the imbalance in the proportions of crashes and non-crash cases, model 
performance evaluation becomes complicated. The output of the models (for any 
observation) is the posterior probability of the crash, i.e., a number between 0 and 1. 
The closer it is to unity, the more likely, according to the model, the observation is to be 
a crash. The overall classification accuracy based on a pre-selected threshold is usually 
an appropriate measure for judging the performance of the model. However, with only 
9.1% of the crashes in the sample (one crash for ten non-crash cases) used for modeling, 
90.9% overall classification accuracy could be achieved by a model that merely classifies 
every data point as non-crash. Such a model would, of course, be useless for identifying 
crash-prone conditions. Also, since the classification performance of the models would 
vary based on the cutoff set on the output from the models (i.e., the posterior probability), 
even the classification accuracy for each individual class (at a certain cutoff) would not be 
appropriate for comparing the performance of competing models. It would reflect only the 
performance of the model at a predetermined threshold on output posterior probability.  This 
is especially true here, since we have two different classes of models, and their outputs 
are calibrated differently. The same threshold can potentially produce varying results for 
the different classes of modeling techniques. Therefore, a well-calibrated measure of 
performance evaluation was needed; that measure is presented below. 

The Performance Evaluation Measure

We evaluate the performance of the estimated models by applying them to a dataset 
consisting of the input variables. The output of these models (for any observation) is the 
posterior probability of a crash. The closer the posterior probability is to unity, the more 
likely, according to the model, it is for that observation to be a crash. We therefore sorted 
the output dataset by the estimated posterior probability. In the sorted group, the top 
10% of observations would be those most likely to be a crash, according to the model. 
The performance of a model may be measured by determining the proportion of crashes 
captured within various deciles of posterior probability. (A decile is defined as any of nine 
points that divide a distribution of ranked scores into equal intervals, each containing one-
tenth of the scores.) Since these models are intended to identify an event as rare as a 
crash, the proportion of crashes captured within the first few deciles must be critically 
examined. We decided that the best model among a set of competing models would be the 
one capturing the highest percentage of crashes within the first three deciles (i.e., the 30th 

percentile). As mentioned earlier, because of the imbalance in the proportions of crash 
and non-crash cases in the sample, this dataset would not be a good measure for model 
performance evaluation. 

LOGISTIC-REGRESSION ANALYSIS

Overview

The multivariate logistic-regression modeling was estimated using U.S. 101 NB data. 
The statistical analysis software (SAS) package (SAS Institute, 2001) was used to fit the 
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regression models. The target variable for the logistic-regression models was Y, with a 
value of 0 for non-crash cases and 1 for crashes. The independent variables of interest 
were average speed, standard deviation of speed, average volume, standard deviation of 
volume, average lane occupancy, and standard deviation of lane occupancy calculated 
over each VDS location and time slice. The traffic parameters (speed, volume, and lane-
occupancy) were not all included simultaneously in any model, and speed-based models 
were created separately from the volume and occupancy-based models, as the study 
VDSs were all based on single-loop detectors. This implies that speed was calculated 
from the volume and occupancy data and was not independently measured. Including 
those data in the same regression model would have led to an unacceptable level of 
correlation in independent variables. A stepwise selection process was used to identify the 
most significant variables, and the model coefficients were estimated for these significant 
variables.  

A total of 30 logistic-regression models were estimated, using traffic information from four 
time slices (ranging from 0 to 20 minutes before the crash in five-minute intervals) and 
three sets of VDS locations. For each VDS and time-slice combination, there were two 
models: one based on Caltrans’ derived speed information and one based on independently 
measured volume and lane-occupancy information. The crash-risk estimation models are 
identified as PredX_Y_Z, where:

X is the number of VDS stations upstream and downstream of the crash (or non-
crash) location (1, 2, or 3) contributing traffic information to the model

Y is the time slice number (1, 2, 3, or 4), as described in Chapter III

Z is whether the model uses speed information (s) or volume and lane-occupancy 
information (v)

For example, Pred1_4_s would indicate that the model is developed from a dataset of 
speed observations from the one nearest VDS both upstream and downstream of the 
crash, over the period of 15–20 minutes before the crash occurred. This model utilizes 
traffic data from two VDS locations

As another example, Pred3_4_s would indicate that the model used the dataset of speed 
observations from the nearest three loop detectors both upstream and downstream of the 
crash, over the period of 15–20 minutes before the crash occurred. This model utilizes traffic 
data from a total of six VDS locations, two of which are the same as those in Pred1_4_s. 

The 30 models were applied to the dataset used to estimate the models containing 
observations (both crash and non-crash events for U.S. 101 NB), with the posterior 
probability of the observation being a crash estimated for each observation. The models 
were then compared in terms of the cumulative proportion of crashes correctly identified 
within 30% of the observations they predicted were most likely to be a crash (the criterion 
selected based on the discussion in the previous section). The percentage of crashes 
identified by each model can also be examined in the context of the “performance” of 
a random baseline “model” that represents the percentage of crashes identified in the 
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sample if the observations are randomly assigned as crash and non-crash. Of course, in 
any set of 30% observations, such a “model” could correctly identify 30% of the crashes 
in the dataset. Any model can be assessed for its classification based on the difference 
between crashes it identifies within the first three deciles and 30%, which is the percentage 
of crashes that can be identified by the random, baseline “model.”  

Using this criterion, we selected the best model from subsets of one, two, and three 
upstream/downstream VDS models. Traffic parameters from time slice 1, being too close 
to the time of the crash used in a model, would leave absolutely no time available to 
process, analyze, and disseminate the information that could be used to avoid crashes. 
Hence, models using variables measured only during time slice 2, 3, or 4 are given further 
consideration. 

The single loops analyzed in this study collect raw volume and occupancy data and use a 
predetermined effective vehicle length (g-factor) to calculate average speed; dual loops, 
in contrast, can measure speeds directly. Acknowledging that this g-factor will vary by 
lane, time of day, and loop sensitivity, PeMS calculates it for each loop for every five-
minute period during an average week to improve the accuracy of the speed estimates. 
The smoothed g-factor is then applied to the real-time VDS data to obtain speeds. These 
speeds are then smoothed with an exponential filter, which is weighted based on traffic flow 
to produce reasonable estimates of speed (lower flow conditions require more smoothing).

In general, the volume and occupancy (v) models had a much higher classification 
accuracy at the 30th percentile than the speed (s) models. This is understandable, as the 
speeds derived by the PeMS algorithm are inherently less reflective of field conditions 
than the actual VDS data. Additionally, only the volume and occupancy data are reported 
live by Caltrans districts (in a variety of methods, including extensible markup language 
(XML) feed over TPC, SQLnet, and raw controller packets over RPC [remote procedure 
call]); speeds must be post-processed from these transmitted data. For reasons of model 
reliability and applicability in a real-time framework, only the volume and occupancy models 
will be considered further. The following section describes the U.S. 101 NB models for all 
available crash and non-crash data.

Comparison of Crash Models

The best models for all crashes, using the 30th-percentile selection criterion, are 
summarized in Table 3.
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Table 3.	 Best Models for All Crashes

Model Namea Time Slice
Cumulative % of Crashes 

Captured Within First Three 
Deciles (30th Percentile)

Pred1_4_V 4 53.463
Pred1_3_V 3 52.276
Pred1_2_V 2 50.069
Pred2_4_V 4 56.546
Pred2_3_V 3 56.711
Pred2_2_V 2 57.524
Pred3_4_V 4 61.749
Pred3_3_V 3 61.264
Pred3_2_V 2 60.000

aThe best models are indicated in boldface.

The best one-VDS model used volume and occupancy data from the fourth time slice, 
Pred1_4_v. The best two-VDS model used volume and occupancy data from the second 
time slice, Pred2_2_v. The best three-VDS model used volume and occupancy data from 
the fourth time slice, Pred3_4_v. Classification accuracy increases when data from more 
VDS locations are used. The model from three VDSs upstream and downstream is able 
to identify more than 61% of the crashes, a 31% improvement over the random baseline 
“model.” 

Model Details

The coefficients of the best one-VDS, two-VDS, and three-VDS logistic-regression models 
are shown in Tables 4, 5, and 6, respectively. Only the variables used in models based 
on the stepwise selection procedure are included. In addition to the model parameters, 
the tables provide the corresponding p-values for the model coefficients. A p-value less 
than 0.05 indicates that the variable is significant at the 95% confidence level. A positive 
(negative) coefficient means that as the value of the corresponding variable increases, the 
crash-risk measure increases (decreases).



Mineta Transportat ion Inst i tute

31
Modeling Tools, Analysis, and Results

Table 4.	 Model Coefficients for the Best One-VDS Model

Parametera Estimate Pr > ChiSq 
(p-value)

AVDS1_4   0.1 <0.0001

AVUS1_4     0.08 <0.0001

AODS1_4     1.72 <0.0001

AOUS1_4     0.87   0.0058

SVDS1_4     0.05   0.1355

SVUS1_4 –0.1   0.0035

SODS1_4   –0.57   0.2157
Syntax:

Column 1:  	 A = average; 		  S = standard deviation
Column 2: 	 O = occupancy;		 V = volume	 S = speed
Columns 3 and 4:	 DS = downstream;	 US = upstream
For example,		  AODS = average occupancy downstream.
aBold text denotes statistical significance at the 95% confidence level.

Table 5.	 Model Coefficients for the Best Two-VDS Model

Parametera Estimate Pr > ChiSq 
(p-value)

AVDS1_2   0.05  0.0138

AVUS1_2   0.04 0.027

AODS1_2   0.91  0.0171

AOUS1_2  1.5  0.0443

SVDS1_2   0.07  0.0997

SOUS1_2 –0.93  0.2134

AVDS2_2   0.05  0.0442

AVUS2_2   0.08  0.0013

AODS2_2   1.45  0.0158

AOUS2_2 –1.49 0.139

SVDS2_2 –0.22 <0.0001

SVUS2_2 –0.08 0.081

SODS2_2 –1.85  0.0061

SOUS2_2   2.87  0.0024

aBold text denotes statistical significance at the 95% confidence level.
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Table 6.	 Model Coefficients for the Best Three-VDS Model

Parametera Estimate Pr > ChiSq
(p-value)

AVUS1_4     0.13 <0.0001

SVDS1_4     0.08   0.0407

SVUS1_4    -0.18   0.0017 

AVUS2_4     0.06   0.0318

AODS2_4   –1.24   0.0389

SVDS2_4   –0.09   0.0454

SVUS2_4 –0.1 0.068

SOUS2_4   2.7 <0.0001

AVDS3_4   –0.11 <0.0001

AVUS3_4     0.11 <0.0001

AODS3_4     1.87   0.0112

AOUS3_4     3.04   0.0003

SVDS3_4     0.16   0.0023

SODS3_4    –1.82   0.0169

SOUS3_4    –1.32   0.1416
aBold text denotes statistical significance at the 95% confidence level.

The model coefficients show that the standard deviation of occupancy downstream of a 
freeway location is negatively associated with crash risk, i.e., if the standard deviation of 
lane occupancy decreases, crash risk increases.  Also, variables representing average 
occupancy downstream (AODS*_*) have a positive coefficient in all models, indicating 
that increased lane occupancy (i.e., congestion) downstream of a site increases crash 
likelihood. Because the specific crash type is not known, it is not possible to associate 
these coefficients with the relevant crash mechanism. However, the coefficients might be 
more readily associated with conditions prone to rear-end crashes, which are the most 
common crash type on urban freeways. 

Model Application for Assessing Transferability

A major focus of our research project was evaluation of transferability, that is, the potential 
to apply the predictive model developed on one freeway segment to other similar facilities 
nearby. As discussed in Chapter II, previous studies have either failed to address the 
issue or have tried to apply the model on dissimilar facilities and failed to attain good 
classification accuracy.

To assess transferability, we used the coefficients of regression models shown in Tables 
4, 5, and 6 to score the combined crash and non-crash data for the other three corridors—
U.S. 101 SB, I-880 NB, and I-880 SB.  For each observation in these datasets, a posterior 
probability output was obtained. We then examined the proportion of crashes correctly 
identified within the 30% of observations having the highest posterior probability. The 
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cumulative percentages of identified crashes for each model on each of the three corridors 
are shown in Figure 12. The model that identifies a higher proportion of crashes within the 
30th percentile is considered a better model. 

Figure 12.	Transferability of the Models to Other Freeways, All Crashes

The same data for each model are presented in Tables 7, 8, and 9, along with the information 
on upstream/downstream stations and time slices used by each model. 

Table 7.	 Classification Accuracy of the Best One-VDS Model Applied to Other 
Freeways, All Crashes

Best one-VDS model pred1_4
VDS US/DS 1
Time slice 4
Minutes before crash 15–20
Selection criterion 30%
Percent captured within segment:
	 U.S. 101 NB (estimation baseline) 53.463
	 U.S. 101 SB 53.846
	 I-880 NB 52.439
	 I-880 SB 53.898



Mineta Transportat ion Inst i tute

34 Modeling Tools, Analysis, and Results

Table 8.	 Classification Accuracy of the Best Two-VDS Model Applied to Other 
Freeways, All Crashes

Best 2 VDS model pred2_2
VDS US/DS 2
Time slice 2
Minues before crash 5–10
Selection criterion 30%
Percent captured within segment:
	 U.S. 101 NB (estimation baseline) 57.524
	 U.S. 101 SB 51.083
	 I-880 NB 55.340
	 I-880 SB 55.844

Table 9.	 Classification Accuracy of the Best Three-VDS Model Applied to Other 
Freeways, All Crashes

Best 2 VDS model pred3_4
VDS US/DS 3
Time slice 4

Minues before crash 15-20
Selection criterion 30%
Percent captured within segment:
	 U.S. 101 NB (estimation baseline) 61.749
	 U.S. 101 SB 43.700
	 I-880 NB 37.838
	 I-880 SB 52.660

The one-VDS and two-VDS models work almost as well on nearby freeways as on the 
roadway for which they were developed. The three-VDS model is a much less accurate 
predictor of crashes on the nearby roadway segments. In other words, the one- and two-
VDS models are easily transferable, while the three-VDS model does not appear to be so.

The three-VDS model appears to be overfitting; we believe that traffic conditions 
approximately 1.5 miles from a crash location do not have a real relationship with crash 
risk 15–20 minutes later. The overfitting is happening on the training data; the model does 
not perform very well when tested with an unseen dataset.

Daytime-Only Models

We also estimated daytime-only models, assuming that late-night crashes are more likely to 
occur as a result of driver error or driving conditions (e.g., driving under the influence) than 
because of measurable traffic conditions. The modeling process and model comparison 
were identical to the above analysis, except that the regression models were estimated 
using data only for crashes and non-crash cases between the weekday hours of 5:00 am 
and 10:00 pm. The model results are summarized in Table 10.
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Table 10.	 Best Models for Daytime-Only Crashes

Model Namea Time Slice Cumulative % of Crashes Captured Within the 
30th Percentile (U.S. 101 NB)

Pred1_4_V 4 52.362
Pred1_3_V 3 51.866
Pred1_2_V 2 50.000
Pred2_4_V 4 57.724
Pred2_3_V 3 56.873
Pred2_2_V 2 55.285
Pred3_4_V 4 60.324
Pred3_2_V 3 59.438
Pred3_3_V 2 59.438

aThe best models are indicated in boldface.

Again, the volume-occupancy models performed better than the models based on calculated 
speed information in almost every case. Therefore, we dropped the speed models from 
the analysis.  The best one-, two-, and three-VDS models all used volume and occupancy 
data from the fourth time slice.

The daytime-only results are compared with the all-crash results in Table 12. 

Table 11.	 Best Three Models for All Crashes and Daytime-Only Crashes
All Crashes Daytime-Only Crashes

Model Name Time Slice Cumulative % 
Captured Model Name Time Slice Cumulative 

% Captured
One-VDS

pred1_4_v 4 53.463 pred1_4_v 4 52.362
Two-VDS

pred2_2_v 2 57.524 Pred2_4_v 4 57.724
Three-VDS

pred3_4_v 4 61.749 pred3_4_v 4 60.324

There is no appreciable difference between the performance of the all-crash models and 
that of the daytime-only crash models. Hence, it is not advantageous to estimate the model 
for daytime crashes only. Therefore, the transferability analysis for daytime-only crashes is 
not discussed here. 

CLASSIFICATION-TREE ANALYSIS

Overview

Classification-tree models are frequently used data mining tools. However, they tend to 
overfit the data, which affects their future performance on unseen datasets. Therefore, 
in data mining analysis, models are usually estimated with a “training dataset” of 70% 
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of the available observations and then validated with the remaining 30%. Validating with 
the unseen dataset helps identify more-robust models in terms of performance on new 
datasets. The choice of using a separate validation dataset was informed by the literature, 
which has shown the overfitting and instability problems of classification trees to be much 
worse than those in the regression models (e.g., Perlich, Provost, and Simonoff, 2003).

We estimated 30 different classification-tree models, and those using data from time slice 
1 were then excluded, for the reasons discussed above for logistic-regression models. 
The speed classification-tree models were generally better than the volume-occupancy 
models. The classification-tree models were compared using the same metric we used 
for the logistic-regression models, the proportion of validation-dataset crashes identified 
within the top 30th percentile. 

Selection of the Best Model

In addition to different one-VDS, two-VDS, and three-VDS models from different time 
slices, we estimated a classification-tree model using only time of crash (and non-crash) 
as input. This model was estimated to ensure that the models provide real differentiation 
between crash-prone and normal traffic conditions. If the models using traffic data are 
providing valuable information about crash risk, they should perform much better than the 
model with only time-of-crash/non-crash information. These models do, in fact, perform 
much better, as shown in Table 12. It is clear that while the time-of-crash model performs 
better than the random baseline “model” (i.e., identifies more than 30% of the crashes), 
its performance is significantly worse than that of the models using traffic information. 
The model performance in Table 12 is based on the 30% validation dataset. The results 
in Table 12 and Figure 13 identify the two-VDS, time-slice 3 model as the most accurate 
classifier on the validation dataset.

Table 12.	 Classification Accuracy of Classification-Tree Models

Model Name US/DS VDS Locations Time Slice
Cumulative % of Crashes Captured 

Within the 30th Percentile 
(validation dataset)

Pred1_4_s 1 4 56.662
Pred2_3_s 2 3 58.647
Pred3_3_s 3 3 56.309

Time-of-crash model - - 43.771

 
Model Details

Classification-tree models are a series of “if-then” rules created to classify the observations. 
Sample code is provided in the Appendix. The variables analyzed through classification 
trees for crash vs. non-crash classification can be ranked by combinations of the number 
of times they appear in various rules and the number of observations they contribute. The 
variables in the best classification-tree model (Pred2_3_s) were ranked as follows:
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1.	 SSDS2_3 			 

2.	 ASDS2_3 		

3.	 ASUS1_3 		

4.	 SSUS1_3 	

5.	 ASUS2_3 			 

6.	 SSDS1_3 			 

7.	 ASDS1_3 		  	

The standard deviation and averages of speed at the second downstream VDS are the 
two most significant variables. These results are consistent with those of past studies, 
which have found that the turbulence in speed downstream of a location is significantly 
associated with crash risk on urban freeways. The standard deviation of speed at the 
second upstream VDS (SSUS2_3) was the only variable found to be not associated with 
crash likelihood. 

Transferability Analysis

The best classification-tree model (Pred2_3_s) was applied to complete sets of data from 
U.S. 101 SB and I-880 NB/SB. It was also applied on the complete set of U.S. 101 NB 
data, since the results shown in Table 12 are based on applying the tree model on the 
validation dataset (i.e., 30% of the observations from U.S. 101 NB). The classification 
accuracy in Table 13 (61.897%) is higher for U.S. 101 NB than for the validation dataset 
(58.657%, shown in Table 12), since the complete set also includes the 70% training data. 
Applying the model to the U.S. 101 NB dataset allows us to compare the classification-
tree-model performance with that of the logistic-regression model.  

Table 13.	 Classification Accuracy of the Best U.S. 101 NB Classification-Tree 
Model on Other Freeways

Segment
Proportion of Crashes Identified 

Within the 30th Percentile 
(classification-tree model)

Proportion of Crashes Identified 
Within the 30 Percentile 

(logistic-regression model)
U.S. 101 NB 

(estimation baseline) 61.897 61.749

U.S. 101 SB 46.505 43.700
I-880 NB 40.674 37.838
I-880 SB 50.368 52.660
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Figure 13.	 Analysis of Transferability of Models to Other Freeways, All Crashes

The best classification-tree model performs slightly worse on the other freeways, as was 
the case with best logistic-regression model. I-880 SB is the corridor to which the model 
estimated from U.S. 101 NB data seems to be most readily transferable. 
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V.  REAL-TIME APPLICATION FRAMEWORK

PROCEDURE

The models developed here may be applied in real-time, as they are capable of classifying 
the traffic patterns measured at VDSs into posterior probability. A step-by-step procedure 
is shown graphically in Figure 14 and described below.

We first try to obtain data from three VDSs upstream and downstream of the location of 
interest, because the three-VDS models are the best estimators of crash risk. If all the 
VDS are in good condition after a data check, the five-minute averages and standard 
deviations of traffic variables are calculated for each location. Estimated model coefficients 
(for logistic-regression models) or “if–then” rules (for classification-tree models) can be 
applied to obtain the measure of crash risk at the middle of the section.

If data from all six VDSs are not available because of intermittent loop failures, a check 
for data availability is applied for the two-VDS model (for which a total of four VDSs is 
needed). Using the same procedure as that for the three-VDS application, traffic parameters 
are calculated for input into a model. As shown in Chapter IV, models developed using 
two VDSs on nearby freeways are transferable to other roadways. If models developed 
specifically for the segment of interest (which perform best) are not available, a two-VDS 
model from a nearby roadway can be used to estimate crash risk.

If there are only enough good data to run a one-VDS model, the procedure used for the 
two-VDS model is applied. Traffic parameters are calculated from the VDS data and input 
into the calibrated one-VDS model for the segment (if available). If a model has not yet 
been specifically developed for the location, a one-VDS model from another freeway can 
be applied to produce a reasonably accurate assessment of crash risk. The procedure 
differs for the nearby freeways in that the check for three-VDS models is not applied, and 
we have examined data for only two-VDS models for the nearby freeways because the 
three-VDS models lack transferability. 
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Figure 14.	 Real-Time Application Procedure

If the output posterior probability for a segment of freeway is consistently high, the traffic-
management authorities can keep their crash-mitigation squad on alert to minimize the 
impacts of crash occurrence. Also, if the models trigger the warning more often on some 
freeway segments than on others, those segments may be closely watched through the 
freeway cameras. This will help identify problems associated with those locations. Our 
findings could also be used in the formulation of VSL or ramp-metering strategies to 
reduce the likelihood of crashes. These strategies can be tested using microscopic traffic-
simulation models.
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REAL-TIME APPLICATION ISSUES

One-VDS vs. Two-VDS vs. Three-VDS Models

Even though the one-VDS models may not always achieve as high classification accuracy 
as the three-VDS model for the same corridor, they have more tolerant data requirements, 
since the three-VDS models require that data be available from six simultaneous VDS 
locations. If even one of the VDSs is malfunctioning, the three-VDS model cannot be 
applied. A one-VDS model, on the other hand, requires data from only two VDS locations. 

False Alarms

The formulation of the problem, along with the solution approach adopted here, is similar to 
incident detection. In fact, we estimated some models that used the data 0–5 minutes after 
a crash. However, the objective of this analysis is to identify crash-prone conditions—i.e., 
the conditions in which drivers are more likely to make errors resulting in crashes—rather 
than to pinpoint the occurrence of a crash. Conditions prior to crashes are not as readily 
identifiable (possibly due to significant human-factor involvement) as those following 
crashes. Crashes being such rare events, it is not possible to avoid false alarms. Also, 
the relative threshold (based on percentiles or posterior probability output) discussed here 
allows decisionmakers to get an indication of the scale of false alarms being issued based 
on any given model application. An absolute threshold would provide no such indication. 

Adopting even the approach used here for assessing classification-tree models would 
result in a significant number of false alarms throughout the day. The number could be 
reduced somewhat by using a higher threshold (e.g., a 20-percentile value for the posterior 
probability), but it would still be significant. If traffic parameters from time slice 1 were used 
as inputs instead of parameters from time slice 2, slight improvement could be expected. 
However, because time slice 1 is too close to the time of a crash, there would be absolutely 
no time available to process, analyze, and disseminate the information that might be used 
to avoid crashes. Hence, we believe that the warning of crash-prone conditions could 
provide not event prediction but a heightened measure of crash risk. 

Finally, false alarms are not as detrimental in the present application as they are in case 
of incident-detection algorithms. In fact, the ultimate goal of this research should be to 
achieve a false alarm every time a crash warning is issued. With some form of proactive 
countermeasure or warnings for motorists, potential crashes in crash-prone conditions 
might be avoided. The justification or inevitability of false alarms does not mean that an 
unlimited number of warnings could be issued, especially if information based on model 
output is being transferred to drivers on the freeway. Being judicious about the number 
of warnings would help to ensure that drivers would not perceive the number of warnings 
as excessive and would not become immune to them. The whole notion of warnings and 
drivers’ reaction to them is beyond the scope of the present work and requires further 
investigation.
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VI.  CONCLUSIONS

The research reported here was undertaken to develop models for linking ITS-archived 
data with historical crashes on instrumented corridors in the San José metropolitan area 
and to assess their transferability to other corridors. We assembled a detailed database 
of all crashes that occurred on four major corridors in the area over a period of 16 months 
and linked it to the archived loop-detector data from the surrounding VDS locations.  The 
analysis of the models’ classification results showed that their continuous output (i.e., 
posterior probability) can in fact be related to real-time crash risk. 

TRANSFERABILITY ANALYSIS

While crash risk-assessment models have been developed for freeways in the United 
States (I-4 in Orlando, FL), Canada, and the Netherlands, this research advances the 
knowledge regarding transferability of the models. Specifically, it critically examined the 
performance of models estimated with data from the U.S. 101 NB corridor on nearby 
corridors (U.S. 101 SB, I-880 NB, and I-880 SB) and found that the model from one corridor 
can be applied to other corridors, although its classification performance is not as good as 
it is on the original corridor. 

Logistic-regression models that use data from a smaller section surrounding a crash location 
(one VDS) transfer better to nearby corridors than three-VDS models. One possible reason 
is that including traffic data from a larger segment leads to crash risk being influenced by 
variability in geometric factors. Over a smaller segment, the geometrical factors do not 
vary as widely, enabling better model performance on corridors that may have different 
geometric design. 

As logistic-regression models include more and more VDS locations, their classification 
accuracy increases for the freeway segment from which they were estimated. However, 
they perform worse when applied to nearby freeways than models that use data from fewer 
VDSs. Our modeling with weekday-only data did not change the classification results in 
any significant way, hence the proposed models use data for all crashes. Classification-
tree models have classification accuracy comparable to that of logistic-regression models. 
The U.S. 101 NB classification-tree model was a more accurate predictor of I-880 SB 
crashes than of crashes on the other two roadways examined, but it was not nearly as 
accurate on I-880 SB as it was for the U.S. 101 NB crashes (as was also the case for the 
logistic-regression models).

FUTURE WORK

This research used random generation of both times and locations to generate non-crash 
events. To reduce variability in modeling, consideration should be given to using actual 
crash locations and then randomizing times. Also, using a lasso (instead of stepwise) 
selection procedure for logistic regression has been suggested to reduce bias in the 
coefficient estimates.
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In this study, all detectable incidents were treated alike in the modeling procedure. Future 
work might attempt to analyze incidents in terms of intensity, measured, for example, by 
the number of lanes closed, incident duration, and resulting effects on traffic flow.
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APPENDIX A: SAMPLE CODE

BUILD MODELS FROM 101 NB CRASH AND NON-CRASH DATA

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=AVUS1_0	 AVDS1_0SVUS1_0		 SVDS1_0 AOUS1_0 
	 AODS1_0 SOUS1_0	 SODS1_0

/ selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred1_0_vo p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred1_0_vo;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=AVUS1_1	 AVDS1_1SVUS1_1		 SVDS1_1 AOUS1_1 
	 AODS1_1 SOUS1_1	 SODS1_1

/ selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred1_1_vo p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred1_1_vo;

by descending IP_1;
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run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=AVUS1_2	 AVDS1_2SVUS1_2		 SVDS1_2 AOUS1_2 
	 AODS1_2 SOUS1_2	 SODS1_2

/ selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred1_2_vo p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred1_2_vo;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=AVUS1_3	 AVDS1_3SVUS1_3		 SVDS1_3 AOUS1_3 
	 AODS1_3 SOUS1_3	 SODS1_3

/ selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred1_3_vo p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred1_3_vo;

by descending IP_1;

run;
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proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=AVUS1_4	 AVDS1_4SVUS1_4		 SVDS1_4 AOUS1_4 
	 AODS1_4 SOUS1_4	 SODS1_4

/ selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred1_4_vo p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred1_4_vo;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=AVUS1_0	 AVDS1_0SVUS1_0		 SVDS1_0 AOUS1_0 
	 AODS1_0 SOUS1_0	 SODS1_0 AVUS2_0	 AVDS2_0 SVUS2_0 
	 SVDS2_0 AOUS2_0	 AODS2_0 SOUS2_0	 SODS2_0

/ selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred2_0_vo p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred2_0_vo;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;
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where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=AVUS1_1	 AVDS1_1SVUS1_1		 SVDS1_1 AOUS1_1 
	 AODS1_1 SOUS1_1	 SODS1_1 AVUS2_1	 AVDS2_1 SVUS2_1 
	 SVDS2_1 AOUS2_1	 AODS2_1 SOUS2_1	 SODS2_1

/ selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred2_1_vo p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred2_1_vo;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=AVUS1_2	 AVDS1_2SVUS1_2		 SVDS1_2 AOUS1_2 
	 AODS1_2 SOUS1_2	 SODS1_2 AVUS2_2	 AVDS2_2 SVUS2_2 
	 SVDS2_2 AOUS2_2	 AODS2_2 SOUS2_2	 SODS2_2

/ selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred2_2_vo p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred2_2_vo;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;
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where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=AVUS1_3	 AVDS1_3SVUS1_3		 SVDS1_3 AOUS1_3 
	 AODS1_3 SOUS1_3	 SODS1_3 AVUS2_3	 AVDS2_3 SVUS2_3 
	 SVDS2_3 AOUS2_3	 AODS2_3 SOUS2_3	 SODS2_3

/ selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred2_3_vo p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred2_3_vo;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=AVUS1_4	 AVDS1_4SVUS1_4		 SVDS1_4 AOUS1_4 
	 AODS1_4 SOUS1_4	 SODS1_4 AVUS2_4	 AVDS2_4 SVUS2_4 
	 SVDS2_4 AOUS2_4	 AODS2_4 SOUS2_4	 SODS2_4

/ selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred2_4_vo p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred2_4_vo;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;



Mineta Transportat ion Inst i tute

50 Appendix A: Sample Code

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

	 model y(event=’1’)=AVUS1_0	 AVDS1_0 SVUS1_0		 SVDS1_0 AOUS1_0 
		  AODS1_0	 SOUS1_0	 SODS1_0 AVUS2_0	 AVDS2_0 SVUS2_0 
		  SVDS2_0 AOUS2_0	 AODS2_0		  SOUS2_0 
		  SODS2_0 AVUS3_0	 AVDS3_0 SVUS3_0		 SVDS3_0 AOUS3_0 
		  AODS3_0		  SOUS3_0		  SODS3_0

                / selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred3_0_vo p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred3_0_vo;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

	 model y(event=’1’)=AVUS1_1	 AVDS1_1 SVUS1_1		 SVDS1_1 AOUS1_1 
		  AODS1_1	 SOUS1_1	 SODS1_1 AVUS2_1	 AVDS2_1 SVUS2_1 
		  SVDS2_1 AOUS2_1	 AODS2_1 	 SOUS2_1	 SODS2_1 AVUS3_1 
		  AVDS3_1 SVUS3_1		 SVDS3_1 AOUS3_1	 AODS3_1 
		  SOUS3_1	 SODS3_1

                / selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred3_1_vo p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred3_1_vo;

by descending IP_1;
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run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

	 model y(event=’1’)=AVUS1_2	 AVDS1_2 SVUS1_2		 SVDS1_2 AOUS1_2 
		  AODS1_2	 SOUS1_2	 SODS1_2 AVUS2_2	 AVDS2_2 SVUS2_2 
		  SVDS2_2 AOUS2_2	 AODS2_2	 SOUS2_2	 SODS2_2 AVUS3_2 
		  AVDS3_2 SVUS3_2		 SVDS3_2 AOUS3_2	 AODS3_2  
		  SOUS3_2	 SODS3_2

                / selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred3_2_vo p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred3_2_vo;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

	 model y(event=’1’)=AVUS1_3	 AVDS1_3 SVUS1_3		 SVDS1_3 AOUS1_3 
		  AODS1_3 	 SOUS1_3	 SODS1_3 AVUS2_3	 AVDS2_3 SVUS2_3 
		  SVDS2_3 AOUS2_3	 AODS2_3 	 SOUS2_3	 SODS2_3 AVUS3_3 
		  AVDS3_3 SVUS3_3		 SVDS3_3 AOUS3_3	 AODS3_3  
		  SOUS3_3	 SODS3_3

                / selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred3_3_vo p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;
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proc sort data=dayonly.pred3_3_vo;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

	 model y(event=’1’)=AVUS1_4	 AVDS1_4 SVUS1_4		 SVDS1_4 AOUS1_4 
		  AODS1_4 	 SOUS1_4	 SODS1_4 AVUS2_4	 AVDS2_4 SVUS2_4 
		  SVDS2_4 AOUS2_4	 AODS2_4	 SOUS2_4	 SODS2_4 AVUS3_4 
		  AVDS3_4 SVUS3_4		 SVDS3_4 AOUS3_4	 AODS3_4  
		  SOUS3_4	 SODS3_4

                / selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred3_4_vo p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred3_4_vo;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=ASUS1_0	 ASDS1_0SSUS1_0		 SSDS1_0

/ selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred1_0_s p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;
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proc sort data=dayonly.pred1_0_s;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=ASUS1_1	 ASDS1_1SSUS1_1		 SSDS1_1

/ selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred1_1_s p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred1_1_s;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=ASUS1_2	 ASDS1_2SSUS1_2		 SSDS1_2

/ selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred1_2_s p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred1_2_s;

by descending IP_1;

run;
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proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=ASUS1_3	 ASDS1_3SSUS1_3		 SSDS1_3

/ selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred1_3_s p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred1_3_s;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=ASUS1_4	 ASDS1_4SSUS1_4		 SSDS1_4

/ selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred1_4_s p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred1_4_s;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=ASUS1_0	 ASDS1_0SSUS1_0		 SSDS1_0 ASUS2_0 
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	 ASDS2_0 	 SSUS2_0	 SSDS2_0

/ selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred2_0_s p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred2_0_s;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=ASUS1_1	 ASDS1_1SSUS1_1		 SSDS1_1 ASUS2_1 
	 ASDS2_1 	 SSUS2_1	 SSDS2_1

/ selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred2_1_s p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred2_1_s;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=ASUS1_2	 ASDS1_2SSUS1_2		 SSDS1_2 ASUS2_2 
	 ASDS2_2 	 SSUS2_2	 SSDS2_2
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/ selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred2_2_s p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred2_2_s;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=ASUS1_3	 ASDS1_3SSUS1_3		 SSDS1_3 ASUS2_3 
	 ASDS2_3 	 SSUS2_3	 SSDS2_3

/ selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred2_3_s p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred2_3_s;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=ASUS1_4	 ASDS1_4SSUS1_4		 SSDS1_4 ASUS2_4 
	 ASDS2_4 	 SSUS2_4	 SSDS2_4

/ selection=stepwise
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slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred2_4_s p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred2_4_s;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=ASUS1_0	 ASDS1_0SSUS1_0		 SSDS1_0 ASUS2_0 
	 ASDS2_0	 SSUS2_0	 SSDS2_0 ASUS3_0	 ASDS3_0 SSUS3_0 
	 SSDS3_0

/ selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred3_0_s p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred3_0_s;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=ASUS1_1	 ASDS1_1SSUS1_1		 SSDS1_1 ASUS2_1 
	 ASDS2_1	 SSUS2_1	 SSDS2_1 ASUS3_1	 ASDS3_1SSUS3_1 
	 SSDS3_1

/ selection=stepwise
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slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred3_1_s p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred3_1_s;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=ASUS1_2	 ASDS1_2SSUS1_2		 SSDS1_2ASUS2_2 
	 ASDS2_2 	 SSUS2_2	 SSDS2_2 ASUS3_2	 ASDS3_2SSUS3_2 
	 SSDS3_2

/ selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred3_2_s p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred3_2_s;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=ASUS1_3	 ASDS1_3SSUS1_3		 SSDS1_3ASUS2_3 
	 ASDS2_3	 SSUS2_3	 SSDS2_3 ASUS3_3	 ASDS3_3SSUS3_3 
	 SSDS3_3

/ selection=stepwise
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slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred3_3_s p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred3_3_s;

by descending IP_1;

run;

proc logistic data=sas_sjsu.us101nb_crash_nocrash;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=ASUS1_4	 ASDS1_4SSUS1_4		 SSDS1_4 ASUS2_4 
	 ASDS2_4	 SSUS2_4	 SSDS2_4 ASUS3_4	 ASDS3_4SSUS3_4	 
	 SSDS3_4

/ selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=dayonly.pred3_4_s p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

proc sort data=dayonly.pred3_4_s;

by descending IP_1;

run;

COMPARE MODELS TO FIND BEST THREE

%inc “E:\code\gainlift_mac.sas”;

ods graphics on;

%GainLift(data=dayonly.pred1_0_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
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event=1,out=dayonly.pctile_pred1_0_vo);

datadayonly.pctile_pred1_0_vo; set dayonly.pctile_pred1_0_vo; modelname=’pred1_0_
vo’; run;

%GainLift(data=dayonly.pred1_1_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred1_1_vo);

datadayonly.pctile_pred1_1_vo; set dayonly.pctile_pred1_1_vo; modelname=’pred1_1_
vo’; run;

%GainLift(data=dayonly.pred1_2_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred1_2_vo);

datadayonly.pctile_pred1_2_vo; set dayonly.pctile_pred1_2_vo; modelname=’pred1_2_
vo’; run;

%GainLift(data=dayonly.pred1_3_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred1_3_vo);

datadayonly.pctile_pred1_3_vo; set dayonly.pctile_pred1_3_vo; modelname=’pred1_3_
vo’; run;

%GainLift(data=dayonly.pred1_4_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred1_4_vo);

datadayonly.pctile_pred1_4_vo; set dayonly.pctile_pred1_4_vo; modelname=’pred1_4_
vo’; run;

%GainLift(data=dayonly.pred2_0_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred2_0_vo);

datadayonly.pctile_pred2_0_vo; set dayonly.pctile_pred2_0_vo; modelname=’pred2_0_
vo’; run;

%GainLift(data=dayonly.pred2_1_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred2_1_vo);

datadayonly.pctile_pred2_1_vo; set dayonly.pctile_pred2_1_vo; modelname=’pred2_1_
vo’; run;

%GainLift(data=dayonly.pred2_2_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred2_2_vo);

datadayonly.pctile_pred2_2_vo; set dayonly.pctile_pred2_2_vo; modelname=’pred2_2_
vo’; run;

%GainLift(data=dayonly.pred2_3_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred2_3_vo);

datadayonly.pctile_pred2_3_vo; set dayonly.pctile_pred2_3_vo; modelname=’pred2_3_
vo’; run;

%GainLift(data=dayonly.pred2_4_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred2_4_vo);
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datadayonly.pctile_pred2_4_vo; set dayonly.pctile_pred2_4_vo; modelname=’pred2_4_
vo’; run;

%GainLift(data=dayonly.pred3_0_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred3_0_vo);

datadayonly.pctile_pred3_0_vo; set dayonly.pctile_pred3_0_vo; modelname=’pred3_0_
vo’; run;

%GainLift(data=dayonly.pred3_1_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred3_1_vo);

datadayonly.pctile_pred3_1_vo; set dayonly.pctile_pred3_1_vo; modelname=’pred3_1_
vo’; run;

%GainLift(data=dayonly.pred3_2_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred3_2_vo);

datadayonly.pctile_pred3_2_vo; set dayonly.pctile_pred3_2_vo; modelname=’pred3_2_
vo’; run;

%GainLift(data=dayonly.pred3_3_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred3_3_vo);

datadayonly.pctile_pred3_3_vo; set dayonly.pctile_pred3_3_vo; modelname=’pred3_3_
vo’; run;

%GainLift(data=dayonly.pred3_4_vo, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred3_4_vo);

datadayonly.pctile_pred3_4_vo; set dayonly.pctile_pred3_4_vo; modelname=’pred3_4_
vo’; run;

%GainLift(data=dayonly.pred1_0_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred1_0_s);

datadayonly.pctile_pred1_0_s; set dayonly.pctile_pred1_0_s; modelname=’pred1_0_s’; 
run;

%GainLift(data=dayonly.pred1_1_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred1_1_s);

datadayonly.pctile_pred1_1_s; set dayonly.pctile_pred1_1_s; modelname=’pred1_1_s’; 
run;

%GainLift(data=dayonly.pred1_2_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred1_2_s);

datadayonly.pctile_pred1_2_s; set dayonly.pctile_pred1_2_s; modelname=’pred1_2_s’; 
run;

%GainLift(data=dayonly.pred1_3_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred1_3_s);

datadayonly.pctile_pred1_3_s; set dayonly.pctile_pred1_3_s; modelname=’pred1_3_s’; 
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run;

%GainLift(data=dayonly.pred1_4_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred1_4_s);

datadayonly.pctile_pred1_4_s; set dayonly.pctile_pred1_4_s; modelname=’pred1_4_s’; 
run;

%GainLift(data=dayonly.pred2_0_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred2_0_s);

datadayonly.pctile_pred2_0_s; set dayonly.pctile_pred2_0_s; modelname=’pred2_0_s’; 
run;

%GainLift(data=dayonly.pred2_1_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred2_1_s);

datadayonly.pctile_pred2_1_s; set dayonly.pctile_pred2_1_s; modelname=’pred2_1_s’; 
run;

%GainLift(data=dayonly.pred2_2_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred2_2_s);

datadayonly.pctile_pred2_2_s; set dayonly.pctile_pred2_2_s; modelname=’pred2_2_s’; 
run;

%GainLift(data=dayonly.pred2_3_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred2_3_s);

datadayonly.pctile_pred2_3_s; set dayonly.pctile_pred2_3_s; modelname=’pred2_3_s’; 
run;

%GainLift(data=dayonly.pred2_4_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred2_4_s);

datadayonly.pctile_pred2_4_s; set dayonly.pctile_pred2_4_s; modelname=’pred2_4_s’; 
run;

%GainLift(data=dayonly.pred3_0_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred3_0_s);

datadayonly.pctile_pred3_0_s; set dayonly.pctile_pred3_0_s; modelname=’pred3_0_s’; 
run;

%GainLift(data=dayonly.pred3_1_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred3_1_s);

datadayonly.pctile_pred3_1_s; set dayonly.pctile_pred3_1_s; modelname=’pred3_1_s’; 
run;

%GainLift(data=dayonly.pred3_2_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred3_2_s);

datadayonly.pctile_pred3_2_s; set dayonly.pctile_pred3_2_s; modelname=’pred3_2_s’; 
run;
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%GainLift(data=dayonly.pred3_3_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred3_3_s);

datadayonly.pctile_pred3_3_s; set dayonly.pctile_pred3_3_s; modelname=’pred3_3_s’; 
run;

%GainLift(data=dayonly.pred3_4_s, groups=10, oneplot=CCAPT , response=y, p=IP_1, 
event=1,out=dayonly.pctile_pred3_4_s);

datadayonly.pctile_pred3_4_s; set dayonly.pctile_pred3_4_s; modelname=’pred3_4_s’; 
run;

datadayonly.final_compare;

set dayonly.pctile_pred1_0_s

dayonly.pctile_pred1_1_s

dayonly.pctile_pred1_2_s

dayonly.pctile_pred1_3_s

dayonly.pctile_pred1_4_s

dayonly.pctile_pred2_0_s

dayonly.pctile_pred2_1_s

dayonly.pctile_pred2_2_s

dayonly.pctile_pred2_3_s

dayonly.pctile_pred2_4_s

dayonly.pctile_pred3_0_s

dayonly.pctile_pred3_1_s

dayonly.pctile_pred3_2_s

dayonly.pctile_pred3_3_s

dayonly.pctile_pred3_4_s

dayonly.pctile_pred1_0_vo

dayonly.pctile_pred1_1_vo

dayonly.pctile_pred1_2_vo

dayonly.pctile_pred1_3_vo

dayonly.pctile_pred1_4_vo

dayonly.pctile_pred2_0_vo

dayonly.pctile_pred2_1_vo

dayonly.pctile_pred2_2_vo
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dayonly.pctile_pred2_3_vo

dayonly.pctile_pred2_4_vo

dayonly.pctile_pred3_0_vo

dayonly.pctile_pred3_1_vo

dayonly.pctile_pred3_2_vo

dayonly.pctile_pred3_3_vo

dayonly.pctile_pred3_4_vo;

run;

procgplot data=dayonly.final_compare;

whereSelectedPct=30;

plotCumPctCaptured*modelname;

run; 

SCORING US-101 SB AND I-880 DATA FOR BEST 1 VDS MODEL

proc logistic data=SAS_SJSU.us101nb_crash_nocrashoutmodel=results2.pred1_4_vo_
model;

where (1<weekday(crashday)<7 and 18000<=crashtime<=79200);

model y(event=’1’)=AVUS1_4	 AVDS1_4SVUS1_4	SVDS1_4 AOUS1_4	
AODS1_4 SOUS1_4	 SODS1_4

/ selection=stepwise

slentry=0.3

slstay=0.35

details

lackfit;

output out=results2.pred1_4_vo p=phat lower=lcl upper=ucl

predprob=(individual crossvalidate);

run;

/*pred1_2 name convention for the input to the model*/

proc logistic inmodel=results2.pred1_4_vo_model;

score data=sas_sjsu.crash_nocrash_us101sb out=results2.us101sb_pred1_4_vo;

run;
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proc logistic inmodel=results2.pred1_4_vo_model;

score data=sas_sjsu.crash_nocrash_880nb out=results2.i880nb_pred1_4_vo;

run;

proc logistic inmodel=results2.pred1_4_vo_model;

score data=sas_sjsu.crash_nocrash_880sb out=results2.i880sb_pred1_4_vo;

run;

COMPARING BEST MODELS FOR EACH DATASET

%inc “E:\code\gainlift_mac.sas”;

ods graphics on;

%GainLift(data=results2.us101sb_pred1_4_vo, groups=10, oneplot=CCAPT , 
response=y, p=P_1, event=1,out=results2.pctile_us101sb_pred1_4_vo);

dataresults2.pctile_us101sb_pred1_4_vo; set results2.pctile_us101sb_pred1_4_vo; 
modelname=’us101sb_pred1_4_vo’; run;

%GainLift(data=results2.i880nb_pred1_4_vo, groups=10, oneplot=CCAPT , response=y, 
p=P_1, event=1,out=results2.pctile_i880nb_pred1_4_vo);

dataresults2.pctile_i880nb_pred1_4_vo; set results2.pctile_i880nb_pred1_4_vo; 
modelname=’i880nb_pred1_4_vo’; run;

%GainLift(data=results2.i880sb_pred1_4_vo, groups=10, oneplot=CCAPT , response=y, 
p=P_1, event=1,out=results2.pctile_i880sb_pred1_4_vo);

dataresults2.pctile_i880sb_pred1_4_vo; set results2.pctile_i880sb_pred1_4_vo; 
modelname=’i880sb_pred1_4_vo’; run;

%GainLift(data=results2.us101sb_pred2_1_vo, groups=10, oneplot=CCAPT , 
response=y, p=P_1, event=1,out=results2.pctile_us101sb_pred2_1_vo);

dataresults2.pctile_us101sb_pred2_1_vo; set results2.pctile_us101sb_pred2_1_vo; 
modelname=’us101sb_pred2_1_vo’; run;

%GainLift(data=results2.i880nb_pred2_1_vo, groups=10, oneplot=CCAPT , response=y, 
p=P_1, event=1,out=results2.pctile_i880nb_pred2_1_vo);

dataresults2.pctile_i880nb_pred2_1_vo; set results2.pctile_i880nb_pred2_1_vo; 
modelname=’i880nb_pred2_1_vo’; run;

%GainLift(data=results2.i880sb_pred2_1_vo, groups=10, oneplot=CCAPT , response=y, 
p=P_1, event=1,out=results2.pctile_i880sb_pred2_1_vo);

dataresults2.pctile_i880sb_pred2_1_vo; set results2.pctile_i880sb_pred2_1_vo; 
modelname=’i880sb_pred2_1_vo’; run;

%GainLift(data=results2.us101sb_pred3_1_vo, groups=10, oneplot=CCAPT , 
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response=y, p=P_1, event=1,out=results2.pctile_us101sb_pred3_1_vo);

dataresults2.pctile_us101sb_pred3_1_vo; set results2.pctile_us101sb_pred3_1_vo; 
modelname=’us101sb_pred3_1_vo’; run;

%GainLift(data=results2.i880nb_pred3_1_vo, groups=10, oneplot=CCAPT , response=y, 
p=P_1, event=1,out=results2.pctile_i880nb_pred3_1_vo);

dataresults2.pctile_i880nb_pred3_1_vo; set results2.pctile_i880nb_pred3_1_vo; 
modelname=’i880nb_pred3_1_vo’; run;

%GainLift(data=results2.i880sb_pred3_1_vo, groups=10, oneplot=CCAPT , response=y, 
p=P_1, event=1,out=results2.pctile_i880sb_pred3_1_vo);

dataresults2.pctile_i880sb_pred3_1_vo; set results2.pctile_i880sb_pred3_1_vo; 
modelname=’i880sb_pred3_1_vo’; run;

data results2.final_compare_3_best;

set results2.pctile_us101sb_pred1_4_vo

results2.pctile_i880nb_pred1_4_vo

results2.pctile_i880sb_pred1_4_vo

results2.pctile_us101sb_pred2_1_vo

results2.pctile_i880nb_pred2_1_vo

results2.pctile_i880sb_pred2_1_vo

results2.pctile_us101sb_pred3_1_vo

results2.pctile_i880nb_pred3_1_vo

results2.pctile_i880sb_pred3_1_vo;

run;

procgplot data=results2.final_compare_3_best;

whereSelectedPct=30;

plotCumPctCaptured*modelname;

run;

BEST CLASSIFICATION TREE MODEL RULES
IF  ASDS2_3  <        13.64

AND 27.750069233 <= SSDS2_3 

THEN

  NODE    :       6
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  N       :      29

  0       :   79.3%

  1       :   20.7%

IF  34.787389945<= SSDS1_3 

AND        13.64 <= ASDS2_3 

AND 27.750069233 <= SSDS2_3 

THEN

  NODE    :      13

  N       :     590

  0       :   98.8%

  1       :    1.2%

IF  14.902777778<= ASUS2_3 

AND SSDS2_3  < 3.2564497325

AND ASDS2_3  <      62.4125

THEN

  NODE    :      15

  N       :     644

  0       :   94.6%

  1       :    5.4%

IF       62.4125 <= ASDS2_3  <       76.825

AND SSDS2_3  < 5.2618221829

THEN

  NODE    :      18

  N       :     123

  0       :   85.4%

  1       :   14.6%

IF        76.825 <= ASDS2_3 

AND SSDS2_3  < 5.2618221829

THEN

  NODE    :      19

  N       :      85
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  0       :   65.9%

  1       :   34.1%

IF  46.647222222<= ASUS2_3 

AND SSDS1_3  < 34.787389945

AND        13.64 <= ASDS2_3 

AND 27.750069233 <= SSDS2_3 

THEN

  NODE    :      23

  N       :    1017

  0       :   95.8%

  1       :    4.2%

IF  SSUS1_3  < 30.757920412

AND ASUS2_3  < 14.902777778

AND SSDS2_3  < 3.2564497325

AND ASDS2_3  <      62.4125

THEN

  NODE    :      26

  N       :     191

  0       :   77.0%

  1       :   23.0%

IF  30.757920412<= SSUS1_3 

AND ASUS2_3  < 14.902777778

AND SSDS2_3  < 3.2564497325

AND ASDS2_3  <      62.4125

THEN

  NODE    :      27

  N       :     120

  0       :   92.5%

  1       :    7.5%

IF        51.675 <= ASDS2_3  <      62.4125

AND 21.013899321 <= SSDS2_3  < 27.750069233
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THEN

  NODE    :      33

  N       :     327

  0       :   90.5%

  1       :    9.5%

IF  SSDS1_3  < 6.7492863341

AND 16.562533892 <= SSUS1_3 

AND 5.2618221829 <= SSDS2_3  < 27.750069233

AND      62.4125 <= ASDS2_3 

THEN

  NODE    :      38

  N       :     252

  0       :   99.6%

  1       :    0.4%

IF  ASDS1_3  <        34.65

AND ASUS2_3  < 46.647222222

AND SSDS1_3  < 34.787389945

AND        13.64 <= ASDS2_3 

AND 27.750069233 <= SSDS2_3 

THEN

  NODE    :      40

  N       :     548

  0       :   94.0%

  1       :    6.0%

IF  ASDS2_3  <      11.6375

AND ASUS1_3  <      31.6375

AND 3.2564497325 <= SSDS2_3  < 21.013899321

THEN

  NODE    :      50

  N       :      41
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  0       :   78.0%

  1       :   22.0%

IF       11.6375 <= ASDS2_3  <      62.4125

AND ASUS1_3  <      31.6375

AND 3.2564497325 <= SSDS2_3  < 21.013899321

THEN

  NODE    :      51

  N       :     125

  0       :   48.0%

  1       :   52.0%

IF  ASDS1_3  <       25.185

AND      31.6375 <= ASUS1_3 

AND 3.2564497325 <= SSDS2_3  < 21.013899321

AND ASDS2_3  <      62.4125

THEN

  NODE    :      52

  N       :      67

  0       :   89.6%

  1       :   10.4%

IF        25.185 <= ASDS1_3 

AND      31.6375 <= ASUS1_3 

AND 3.2564497325 <= SSDS2_3  < 21.013899321

AND ASDS2_3  <      62.4125

THEN

  NODE    :      53

  N       :     228

  0       :   71.9%

  1       :   28.1%

IF  ASDS2_3  <      20.2625

AND 21.013899321 <= SSDS2_3  < 27.750069233

THEN
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  NODE    :      54

  N       :      63

  0       :   95.2%

  1       :    4.8%

IF       20.2625 <= ASDS2_3  <       51.675

AND 21.013899321 <= SSDS2_3  < 27.750069233

THEN

  NODE    :      55

  N       :     124

  0       :   71.8%

  1       :   28.2%

IF  SSUS1_3  < 5.4405194116

AND ASUS1_3  < 66.672222222

AND 5.2618221829 <= SSDS2_3  < 27.750069233

AND      62.4125 <= ASDS2_3 

THEN

  NODE    :      58

  N       :     449

  0       :   89.5%

  1       :   10.5%

IF  5.4405194116<= SSUS1_3  < 16.562533892

AND ASUS1_3  < 66.672222222

AND 5.2618221829 <= SSDS2_3  < 27.750069233

AND      62.4125 <= ASDS2_3 

THEN

  NODE    :      59

  N       :     339

  0       :   77.9%

  1       :   22.1%

IF  SSDS1_3  < 20.613077874

AND 66.672222222 <= ASUS1_3 
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AND SSUS1_3  < 16.562533892

AND 5.2618221829 <= SSDS2_3  < 27.750069233

AND      62.4125 <= ASDS2_3 

THEN

  NODE    :      60

  N       :    1586

  0       :   93.4%

  1       :    6.6%

IF  20.613077874<= SSDS1_3 

AND 66.672222222 <= ASUS1_3 

AND SSUS1_3  < 16.562533892

AND 5.2618221829 <= SSDS2_3  < 27.750069233

AND      62.4125 <= ASDS2_3 

THEN

  NODE    :      61

  N       :     433

  0       :   86.4%

  1       :   13.6%

IF  5.2618221829<= SSDS2_3  < 5.7513568455

AND 6.7492863341 <= SSDS1_3 

AND 16.562533892 <= SSUS1_3 

AND      62.4125 <= ASDS2_3 

THEN

  NODE    :      64

  N       :      20

  0       :   80.0%

  1       :   20.0%

IF  5.7513568455<= SSDS2_3  < 27.750069233

AND 6.7492863341 <= SSDS1_3 

AND 16.562533892 <= SSUS1_3 

AND      62.4125 <= ASDS2_3 
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THEN

  NODE    :      65

  N       :    1074

  0       :   95.0%

  1       :    5.0%

IF         13.64 <= ASDS2_3  <      39.7875

AND        34.65 <= ASDS1_3 

AND ASUS2_3  < 46.647222222

AND SSDS1_3  < 34.787389945

AND 27.750069233 <= SSDS2_3 

THEN

  NODE    :      68

  N       :      66

  0       :   80.3%

  1       :   19.7%

IF       39.7875 <= ASDS2_3 

AND        34.65 <= ASDS1_3 

AND ASUS2_3  < 46.647222222

AND SSDS1_3  < 34.787389945

AND 27.750069233 <= SSDS2_3 

THEN

  NODE    :      69

  N       :      85

  0       :   94.1%

  1       :    5.9%
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ABBREVIATIONS AND ACRONYMS

ART2 Adaptive Resonance Theory 2 
AADT Annual Average Daily Traffic 
ANN Artificial Neural Network Model 
XML Extensible Markup Language 
FITS Flow Impacts on Traffic Safety 
ART Adaptive Resonance Theory 
HOV High-occupancy Vehicle 
ID Identification 
ITS Intelligent Transportation System 
MLF Multilayer Feed Forward 
MLP Multilayer Perceptron 
NB Northbound
NLCCA Non-linear (Non-Parametric) Canonical Correlation Analysis 
PeMS Performance Measurement System 
PCA Principal Component Analysis 
PNN Probabilistic Neural Network 
PNN Probabilistic Neural Network 
RBF Radial Basis Function 
RTMC Regional Transportation Management Center 
RMSE Root Mean Squared Error 
SB Southbound
SOFM Self-organizing Feature Map 
SOM Self-organizing Map 
SR State Route 
VSL Variable Speed Limit 
VDS Vehicle-detector Station 
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